“Vega” Instruction Set Architecture

Preface

About This Document

This document describes the environment, organization and program state of AMD GCN “VEGA” Generation devices. It details the instruction set and the microcode formats native to this family of processors that are accessible to programmers and compilers.

The document specifies the instructions (include the format of each type of instruction) and the relevant program state (including how the program state interacts with the instructions). Some instruction fields are mutually dependent; not all possible settings for all fields are legal. This document specifies the valid combinations.

The main purposes of this document are to:

  1. Specify the language constructs and behavior, including the organization of each type of instruction in both text syntax and binary format.

  2. Provide a reference of instruction operation that compiler writers can use to maximize performance of the processor.

Audience

This document is intended for programmers writing application and system software, including operating systems, compilers, loaders, linkers,device drivers, and system utilities. It assumes that programmers are writing compute-intensive parallel applications (streaming applications) and assumes an understanding of requisite programming practices.

Organization

This document begins with an overview of the AMD GCN processor’s hardware and programming environment (Chapter 1).
Chapter 2 describes the organization of GCN programs.
Chapter 3 describes the program state that is maintained.
Chapter 4 describes the program flow.
Chapter 5 describes the scalar ALU operations.
Chapter 6 describes the vector ALU operations.
Chapter 7 describes the scalar memory operations.
Chapter 8 describes the vector memory operations.
Chapter 9 provides information about the flat memory instructions.
Chapter 10 describes the data share operations.
Chapter 11 describes exporting the parameters of pixel color and vertex shaders.
Chapter 12 describes instruction details, first by the microcode format to which they belong, then in alphabetic order.
Finally, Chapter 13 provides a detailed specification of each microcode format.

Conventions

The following conventions are used in this document:

mono-spaced font

A filename, file path or code.

*

Any number of alphanumeric characters in the name of a code format, parameter, or instruction.

< >

Angle brackets denote streams.

[1,2)

A range that includes the left-most value (in this case, 1), but excludes the right-most value (in this case, 2).

[1,2]

A range that includes both the left-most and right-most values.

{x | y}

One of the multiple options listed. In this case, X or Y.

0.0

A single-precision (32-bit) floating-point value.

1011b

A binary value, in this example a 4-bit value.

7:4

A bit range, from bit 7 to bit 4, inclusive. The high-order bit is shown first.

italicized word or phrase

The first use of a term or concept basic to the understanding of stream computing.

Differences Between VEGA and Previous Devices

Summary of kernel instruction changes in Vega GPUs:

  • New packed 16-bit math instructions.

    V_PK_MAD_I16       V_PK_MUL_LO_U16    V_PK_ADD_I16       V_PK_SUB_I16
    V_PK_LSHLREV_B16   V_PK_LSHRREV_B16   V_PK_ASHRREV_I16   V_PK_MAX_I16
    V_PK_MIN_I16       V_PK_MAD_U16       V_PK_ADD_U16       V_PK_SUB_U16
    V_PK_MAX_U16       V_PK_MIN_U16       V_PK_FMA_F16       V_PK_ADD_F16
    V_PK_MUL_F16       V_PK_MIN_F16       V_PK_MAX_F16       V_MAD_MIX_F32
    V_MAD_MIXLO_F16    V_MAD_MIXHI_F16    S_PACK_{LL,LH,HH}_B16_B32
    
  • TMA and TBA registers are stored one per VM-ID, not per draw or dispatch.

  • Added Image operations support 16-bit address and data.

  • Added Global and Scratch memory read/write operations.

    • Also added Scratch load/store to scalar memory.

  • Added Scalar memory atomic instructions.

  • MIMG Microcode format: removed the R128 bit.

  • FLAT Microcode format: added an offset field.

  • Removed V_MOVEREL instructions.

  • Added control over arithmetic overflow for FP16 VALU operations.

  • Modified bit packing of surface descriptors and samplers:

    • T#: removed heap, elem_size, last_array, interlaced, uservm_mode bits.

    • V#: removed mtype.

    • S#: removed astc_hdr field.

Contact Information

For information concerning AMD Accelerated Parallel Processing developing, please see: http://developer.amd.com/ .

For information about developing with AMD Accelerated Parallel Processing, please see: http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/ .

We also have a growing community of AMD Accelerated Parallel Processing users. Come visit us at the AMD Accelerated Parallel Processing Developer Forum ( http://developer.amd.com/openclforum ) to find out what applications other users are trying on their AMD Accelerated Parallel Processing products.

Introduction

AMD GCN processors implement a parallel micro-architecture that provides an excellent platform not only for computer graphics applications but also for general-purpose data parallel applications. Any data-intensive application that requires high bandwidth or is computationally intensive is a candidate for running on an AMD GCN processor.

The figure below shows a block diagram of the AMD GCN Vega Generation series processors

../_images/fig_1_1_vega.png

AMD GCN VEGA Generation Series Block Diagram

The GCN device includes a data-parallel processor (DPP) array, a command processor, a memory controller, and other logic (not shown). The GCN command processor reads commands that the host has written to memory-mapped GCN registers in the system-memory address space. The command processor sends hardware-generated interrupts to the host when the command is completed. The GCN memory controller has direct access to all GCN device memory and the host-specified areas of system memory. To satisfy read and write requests, the memory controller performs the functions of a direct-memory access (DMA) controller, including computing memory-address offsets based on the format of the requested data in memory. In the GCN environment, a complete application includes two parts: - a program running on the host processor, and

  • programs, called kernels, running on the GCN processor.

The GCN programs are controlled by host commands that

  • set GCN internal base-address and other configuration registers,

  • specify the data domain on which the GCN GPU is to operate,

  • invalidate and flush caches on the GCN GPU, and

  • cause the GCN GPU to begin execution of a program.

The GCN driver program runs on the host.

The DPP array is the heart of the GCN processor. The array is organized as a set of compute unit pipelines, each independent from the others, that operate in parallel on streams of floating-point or integer data.The compute unit pipelines can process data or, through the memory controller, transfer data to, or from, memory. Computation in a compute unit pipeline can be made conditional. Outputs written to memory can also be made conditional.

When it receives a request, the compute unit pipeline loads instructions and data from memory, begins execution, and continues until the end of the kernel. As kernels are running, the GCN hardware automatically fetches instructions from memory into on-chip caches; GCN software plays no role in this. GCN kernels can load data from off-chip memory into on-chip general-purpose registers (GPRs) and caches.

The AMD GCN devices can detect floating point exceptions and can generate interrupts. In particular, they detect IEEE floating-point exceptions in hardware; these can be recorded for post-execution analysis. The software interrupts shown in the previous figure from the command processor to the host represent hardware-generated interrupts for signaling command-completion and related management functions.

The GCN processor hides memory latency by keeping track of potentially hundreds of work-items in different stages of execution, and by overlapping compute operations with memory-access operations.

The figure below shows the dataflow for a GCN application. For general-purpose applications, only one processing block performs all computation.

GCN VEGA Generation Dataflow

GCN VEGA Generation Dataflow

Terminology

Term

Description

GCN Processor

The Graphics Core Next shader processor is a scalar and vector ALU capable of running complex programs on behalf of a wavefront.

Dispatch

A dispatch launches a 1D, 2D, or 3D grid of work to the GCN processor array.

Workgroup

A workgroup is a collection of wavefronts that have the ability to synchronize with each other quickly; they also can share data through the Local Data Share.

Wavefront

A collection of 64 work-items that execute in parallel on a single GCN processor.

Work-item

A single element of work: one element from the dispatch grid, or in graphics a pixel or vertex.

Literal Constant

A 32-bit integer or float constant that is placed in the instruction stream.

Scalar ALU (SALU)

The scalar ALU operates on one value per wavefront and manages all control flow.

Vector ALU (VALU)

The vector ALU maintains Vector GPRs that are unique for each work item and execute arithmetic operations uniquely on each work-item.

Microcode format

The microcode format describes the bit patterns used to encode instructions. Each instruction is either 32 or 64 bits.

Instruction

An instruction is the basic unit of the kernel. Instructions include: vector ALU, scalar ALU, memory transfer, and control flow operations.

Quad

A quad is a 2x2 group of screen-aligned pixels. This is relevant for sampling texture maps.

Texture Sampler

A texture sampler is a 128-bit entity that describes how the vector memory system reads and samples (filters) a texture map.

Texture Resource

A texture resource describes a block of memory: address, data format, stride, etc.

Table : Basic Terms Uses

Program Organization

GCN kernels are programs executed by the GCN processor. Conceptually, the kernel is executed independently on every work-item, but in reality the GCN processor groups 64 work-items into a wavefront, which executes the kernel on all 64 work-items in one pass.

The GCN processor consists of:

  • A scalar ALU, which operates on one value per wavefront (common to all work items).

  • A vector ALU, which operates on unique values per work-item.

  • Local data storage, which allows work-items within a workgroup to communicate and share data.

  • Scalar memory, which can transfer data between SGPRs and memory through a cache.

  • Vector memory, which can transfer data between VGPRs and memory,including sampling texture maps.

All kernel control flow is handled using scalar ALU instructions. This includes if/else, branches and looping. Scalar ALU (SALU) and memory instructions work on an entire wavefront and operate on up to two SGPRs,as well as literal constants.

Vector memory and ALU instructions operate on all work-items in the wavefront at one time. In order to support branching and conditional execute, every wavefront has an EXECute mask that determines which work-items are active at that moment, and which are dormant. Active work-items execute the vector instruction, and dormant ones treat the instruction as a NOP. The EXEC mask can be changed at any time by Scalar ALU instructions.

Vector ALU instructions can take up to three arguments, which can come from VGPRs, SGPRs, or literal constants that are part of the instruction stream. They operate on all work-items enabled by the EXEC mask. Vector compare and add with- carryout return a bit-per-work-item mask back to the SGPRs to indicate, per work-item, which had a “true” result from the compare or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item supplies its own memory address and supplies or receives unique data. These instructions are also subject to the EXEC mask.

Compute Shaders

Compute kernels (shaders) are generic programs that can run on the GCN processor, taking data from memory, processing it, and writing results back to memory. Compute kernels are created by a dispatch, which causes the GCN processors to run the kernel over all of the work-items in a 1D, 2D, or 3D grid of data. The GCN processor walks through this grid and generates wavefronts, which then run the compute kernel. Each work-item is initialized with its unique address (index) within the grid. Based on this index, the work-item computes the address of the data it is required to work on and what to do with the results.

Data Sharing

The AMD GCN stream processors can share data between different work-items. Data sharing can significantly boost performance. The figure below shows the memory hierarchy that is available to each work-item.

Shared Memory Hierarchy

Shared Memory Hierarchy

Local Data Share (LDS)

Each compute unit has a 64 kB memory space that enables low-latency communication between work-items within a work-group, or the work-items within a wavefront; this is the local data share (LDS). This memory is configured with 32 banks, each with 512 entries of 4 bytes. The AMD GCN processors use a 64 kB local data share (LDS) memory for each compute unit; this enables 64 kB of low-latency bandwidth to the processing elements. The shared memory contains 32 integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache for predictable re-use of data, a data exchange machine for the work-items of a work-group, or as a cooperative way to enable efficient access to off-chip memory.

Global Data Share (GDS)

The AMD GCN devices use a 64 kB global data share (GDS) memory that can be used by wavefronts of a kernel on all compute units. This memory provides 128 bytes per cycle of memory access to all the processing elements. The GDS is configured with 32 banks, each with 512 entries of 4 bytes each. It provides full access to any location for any processor. The shared memory contains 32 integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache to store important control data for compute kernels, reduction operations, or a small global shared surface. Data can be preloaded from memory prior to kernel launch and written to memory after kernel completion. The GDS block contains support logic for unordered append/consume and domain launch ordered append/consume operations to buffers in memory. These dedicated circuits enable fast compaction of data or the creation of complex data structures in memory.

Device Memory

The AMD GCN devices offer several methods for access to off-chip memory from the processing elements (PE) within each compute unit. On the primary read path, the device consists of multiple channels of L2 read-only cache that provides data to an L1 cache for each compute unit. Special cache-less load instructions can force data to be retrieved from device memory during an execution of a load clause. Load requests that overlap within the clause are cached with respect to each other. The output cache is formed by two levels of cache: the first for write-combining cache (collect scatter and store operations and combine them to provide good access patterns to memory); the second is a read/write cache with atomic units that lets each processing element complete unordered atomic accesses that return the initial value. Each processing element provides the destination address on which the atomic operation acts, the data to be used in the atomic operation, and a return address for the read/write atomic unit to store the pre-op value in memory. Each store or atomic operation can be set up to return an acknowledgment to the requesting PE upon write confirmation of the return value (pre-atomic op value at destination) being stored to device memory.

This acknowledgment has two purposes:

  • enabling a PE to recover the pre-op value from an atomic operation by performing a cache-less load from its return address after receipt of the write confirmation acknowledgment, and

  • enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel always maintains order. The acknowledgment enables one processing element to implement a fence to maintain serial consistency by ensuring all writes have been posted to memory prior to completing a subsequent write. In this manner, the system can maintain a relaxed consistency model between all parallel work-items operating on the system.

Kernel State

This chapter describes the kernel states visible to the shader program.

State Overview

The table below shows all of the hardware states readable or writable by a shader program.

Abbrev.

Name

Size (bits)

Description

PC

Program Counter

48

Points to the memory address of the next shader instruction to execute.

V0-V255

VGPR

32

Vector general-purpose register.

S0-S103

SGPR

32

Vector general-purpose register.

LDS

Local Data Share

64kB

Local data share is a scratch RAM with built-in arithmetic capabilities that allow data to be shared between threads in a workgroup.

EXEC

Execute Mask

64

A bit mask with one bit per thread, which is applied to vector instructions and controls that threads execute and that ignore the instruction.

EXECZ

EXEC is zero

1

A single bit flag indicating that the EXEC mask is all zeros.

VCC

Vector Condition Code

64

A bit mask with one bit per thread; it holds the result of a vector compare operation.

VCCZ

VCC is zero

1

A single bit-flag indicating that the VCC mask is all zeros.

SCC

Scalar Condition Code

1

Result from a scalar ALU comparison instruction.

FLAT_SCRATC H

Flat scratch address

64

The base address of scratch memory.

XNACK_MASK

Address translation failure.

64

Bit mask of threads that have failed their address translation.

STATUS

Status

32

Read-only shader status bits.

MODE

Mode

32

Writable shader mode bits.

M0

Memory Reg

32

A temporary register that has various uses, including GPR indexing and bounds checking.

TRAPSTS

Trap Status

32

Holds information about exceptions and pending traps.

TBA

Trap Base Address

64

Holds the pointer to the current trap handler program.

TMA

Trap Memory Address

64

Temporary register for shader operations. For example, can hold a pointer to memory used by the trap handler.

TTMP0-TTMP15

Trap Temporary SGPRs

32

16 SGPRs available only to the Trap Handler for temporary storage.

VMCNT

Vector memory instruction count

6

Counts the number of VMEM instructions issued but not yet completed.

EXPCNT

Export Count

3

Counts the number of Export and GDS instructions issued but not yet completed. Also counts VMEM writes that have not yet sent their write-data to the TC.

LGKMCNT

LDS, GDS, Constant and Message count

4

Counts the number of LDS, GDS, constant-fetch (scalar memory read), and message instructions issued but not yet completed.

Table : Readable and Writable Hardware States

Program Counter (PC)

The program counter (PC) is a byte address pointing to the next instruction to execute. When a wavefront is created, the PC is initialized to the first instruction in the program.

The PC interacts with three instructions: S_GET_PC, S_SET_PC,S_SWAP_PC. These transfer the PC to, and from, an even-aligned SGPR pair.

Branches jump to (PC_of_the_instruction_after_the_branch +offset). The shader program cannot directly read from, or write to, the PC. Branches, GET_PC and SWAP_PC, are PC-relative to the next instruction, not the current one. S_TRAP saves the PC of the S_TRAP instruction itself.

EXECute Mask

The Execute mask (64-bit) determines which threads in the vector are executed:
1 = execute, 0 = do not execute.

EXEC can be read from, and written to, through scalar instructions; it also can be written as a result of a vector-ALU compare. This mask affects vector-ALU, vector-memory, LDS, and export instructions. It does not affect scalar execution or branches.

A helper bit (EXECZ) can be used as a condition for branches to skip code when EXEC is zero.

Note

This GPU does no optimization when EXEC = 0. The shader hardware executes every instruction, wasting instruction issue bandwidth. Use CBRANCH or VSKIP to rapidly skip over code when it is likely that the EXEC mask is zero.

Status registers

Status register fields can be read, but not written to, by the shader.These bits are initialized at wavefront-creation time. The table below lists and briefly describes the status register fields.

Field

Bit Positio n

Description

SCC

1

Scalar condition code. Used as a carry-out bit. For a comparison instruction, this bit indicates failure or success. For logical operations, this is 1 if the result was non-zero.

SPI_PRIO

2:1

Wavefront priority set by the shader processor interpolator (SPI) when the wavefront is created. See the S_SETPRIO instruction (page 12-49) for details. 0 is lowest, 3 is highest priority.

WAVE_PRIO

4:3

Wavefront priority set by the shader program. See the S_SETPRIO instruction (page 12-49) for details.

PRIV

5

Privileged mode. Can only be active when in the trap handler. Gives write access to the TTMP, TMA, and TBA registers.

TRAP_EN

6

Indicates that a trap handler is present. When set to zero, traps are not taken.

TTRACE_EN

7

Indicates whether thread trace is enabled for this wavefront. If zero, also ignore any shader-generated (instruction) thread-trace data.

EXPORT_RDY

8

This status bit indicates if export buffer space has been allocated. The shader stalls any export instruction until this bit becomes 1. It is set to 1 when export buffer space has been allocated. Before a Pixel or Vertex shader can export, the hardware checks the state of this bit. If the bit is 1, export can be issued. If the bit is zero, the wavefront sleeps until space becomes available in the export buffer. Then, this bit is set to 1, and the wavefront resumes.

EXECZ

9

Exec mask is zero.

VCCZ

10

Vector condition code is zero.

IN_TG

11

Wavefront is a member of a work-group of more than one wavefront.

IN_BARRIER

12

Wavefront is waiting at a barrier.

HALT

13

Wavefront is halted or scheduled to halt. HALT can be set by the host through wavefront-control messages, or by the shader. This bit is ignored while in the trap handler (PRIV = 1); it also is ignored if a host-initiated trap is received (request to enter the trap handler).

TRAP

14

Wavefront is flagged to enter the trap handler as soon as possible.

TTRACE_CU_EN

15

Enables/disables thread trace for this compute unit (CU). This bit allows more than one CU to be outputting USERDATA (shader initiated writes to the thread-trace buffer). Note that wavefront data is only traced from one CU per shader array. Wavefront user data (instruction based) can be output if this bit is zero.

VALID

16

Wavefront is active (has been created and not yet ended).

ECC_ERR

17

An ECC error has occurred.

SKIP_EXPORT

18

For Vertex Shaders only. 1 = this shader is not allocated export buffer space; all export instructions are ignored (treated as NOPs). Formerly called VS_NO_ALLOC. Used for stream-out of multiple streams (multiple passes over the same VS), and for DS running in the VS stage for wavefronts that produced no primitives.

PERF_EN

19

Performance counters are enabled for this wavefront.

COND_DBG_USER

20

Conditional debug indicator for user mode

COND_DBG_SYS

21

Conditional debug indicator for system mode.

ALLOW_REPLAY

22

Indicates that ATC replay is enabled.

MUST_EXPORT

27

This wavefront is required to perform an export with Done=1 before terminating.

Table : Status Register Fields

Mode register

Mode register fields can be read from, and written to, by the shader through scalar instructions. The table below lists and briefly describes the mode register fields.

Field

Bit Positio n

Description

FP_ROUND

3:0

[1:0] Single precision round mode. [3:2] Double precision round mode.
Round Modes: 0=nearest even, 1= +infinity, 2= -infinity, 3= toward zero.

FP_DENORM

7:4

[1:0] Single denormal mode. [3:2] Double denormal mode. Denorm modes:
0 = flush input and output denorms.
1 = allow input denorms, flush output denorms.
2 = flush input denorms, allow output denorms.
3 = allow input and output denorms.

DX10_CLAMP

8

Used by the vector ALU to force DX10-style treatment of NaNs: when set, clamp NaN to zero; otherwise, pass NaN through.

IEEE

9

Floating point opcodes that support exception flag gathering quiet and propagate signaling NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10 become IEEE 754-2008 compliant due to signaling NaN propagation and quieting.

LOD_CLAMPED

10

Sticky bit indicating that one or more texture accesses had their LOD clamped.

DEBUG

11

Forces the wavefront to jump to the exception handler after each instruction is executed (but not after ENDPGM). Only works if TRAP_EN = 1.

EXCP_EN

18:12

Enable mask for exceptions. Enabled means if the exception occurs and TRAP_EN==1, a trap is taken.
[12] : invalid.
[13] : inputDenormal.
[14] : float_div0.
[15] : overflow.
[16] : underflow.
[17] : inexact.
[18] : int_div0.
[19] : address watch
[20] : memory violation

FP16_OVFL

23

If set, an overflowed FP16 result is clamped to +/- MAX_FP16, regardless of round mode, while still preserving true INF values.

POPS_PACKER0

24

1 = this wave is associated with packer 0. User shader must set this to !PackerID from the POPS initialized SGPR (load_collision_waveID), or zero if not using POPS.

POPS_PACKER1

25

1 = this wave is associated with packer 1. User shader must set this to PackerID from the POPS initialized SGPR (load_collision_waveID), or zero if not using POPS.

DISABLE_PERF

26

1 = disable performance counting for this wave

GPR_IDX_EN

27

GPR index enable.

VSKIP

28

0 = normal operation. 1 = skip (do not execute) any vector instructions: valu, vmem, export, lds, gds. “Skipping” instructions occurs at high-speed (10 wavefronts per clock cycle can skip one instruction). This is much faster than issuing and discarding instructions.

CSP

31:29

Conditional branch stack pointer.

Table : Mode Register Fields

GPRs and LDS

This section describes how GPR and LDS space is allocated to a wavefront, as well as how out-of-range and misaligned accesses are handled.

Out-of-Range behavior

This section defines the behavior when a source or destination GPR or memory address is outside the legal range for a wavefront.

Out-of-range can occur through GPR-indexing or bad programming. It is illegal to index from one register type into another (for example: SGPRs into trap registers or inline constants). It is also illegal to index within inline constants.

The following describe the out-of-range behavior for various storage types.

  • SGPRs

    • Source or destination out-of-range = (sgpr < 0 || (sgpr >= sgpr_size)).

    • Source out-of-range: returns the value of SGPR0 (not the value 0).

    • Destination out-of-range: instruction writes no SGPR result.

  • VGPRs

    • Similar to SGPRs. It is illegal to index from SGPRs into VGPRs, or vice versa.

    • Out-of-range = (vgpr < 0 || (vgpr >= vgpr_size))

    • If a source VGPR is out of range, VGPR0 is used.

    • If a destination VGPR is out-of-range, the instruction is ignored (treated as an NOP).

  • LDS

    • If the LDS-ADDRESS is out-of-range (addr < 0 or > (MIN(lds_size, m0)):

      • Writes out-of-range are discarded; it is undefined if SIZE is not a multiple of write-data-size.

      • Reads return the value zero.

    • If any source-VGPR is out-of-range, use the VGPR0 value is used.

    • If the dest-VGPR is out of range, nullify the instruction (issue with exec=0)

  • Memory, LDS, and GDS: Reads and atomics with returns.

    • If any source VGPR or SGPR is out-of-range, the data value is undefined.

    • If any destination VGPR is out-of-range, the operation is nullified by issuing the instruction as if the EXEC mask were cleared to 0.

      • This out-of-range check must check all VGPRs that can be returned (for example: VDST to VDST+3 for a BUFFER_LOAD_DWORDx4).

      • This check must also include the extra PRT (partially resident texture) VGPR and nullify the fetch if this VGPR is out-of-range, no matter whether the texture system actually returns this value or not.

      • Atomic operations with out-of-range destination VGPRs are nullified: issued, but with exec mask of zero.

Instructions with multiple destinations (for example: V_ADDC): if any destination is out-of-range, no results are written.

SGPR Allocation and storage

A wavefront can be allocated 16 to 102 SGPRs, in units of 16 GPRs (Dwords). These are logically viewed as SGPRs 0-101. The VCC is physically stored as part of the wavefront’s SGPRs in the highest numbered two SGPRs (SGPR 106 and 107; the source/destination VCC is an alias for those two SGPRs). When a trap handler is present, 16 additional SGPRs are reserved after VCC to hold the trap addresses, as well as saved-PC and trap-handler temps. These all are privileged (cannot be written to unless privilege is set). Note that if a wavefront allocates 16 SGPRs, 2 SGPRs are normally used as VCC, the remaining 14 are available to the shader. Shader hardware does not prevent use of all 16 SGPRs.

SGPR Alignment

Even-aligned SGPRs are required in the following cases.

  • When 64-bit data is used. This is required for moves to/from 64-bit registers, including the PC.

  • When scalar memory reads that the address-base comes from an SGPR-pair (either in SGPR).

Quad-alignment is required for the data-GPR when a scalar memory read returns four or more Dwords. When a 64-bit quantity is stored in SGPRs, the LSBs are in SGPR[n], and the MSBs are in SGPR[n+1].

VGPR Allocation and Alignment

VGPRs are allocated in groups of four Dwords. Operations using pairs of VGPRs (for example: double-floats) have no alignment restrictions. Physically, allocations of VGPRs can wrap around the VGPR memory pool.

LDS Allocation and Clamping

LDS is allocated per work-group or per-wavefront when work-groups are not in use. LDS space is allocated to a work-group or wavefront in contiguous blocks of 128 Dwords on 128-Dword alignment. LDS allocations do not wrap around the LDS storage. All accesses to LDS are restricted to the space allocated to that wavefront/work-group.

Clamping of LDS reads and writes is controlled by two size registers, which contain values for the size of the LDS space allocated by SPI to this wavefront or work-group, and a possibly smaller value specified in the LDS instruction (size is held in M0). The LDS operations use the smaller of these two sizes to determine how to clamp the read/write addresses.

M# Memory Descriptor

There is one 32-bit M# (M0) register per wavefront, which can be used for:

  • Local Data Share (LDS)

    • Interpolation: holds { 1’b0, new_prim_mask[15:1], parameter_offset[15:0] } // in bytes

    • LDS direct-read offset and data type: { 13’b0, DataType[2:0], LDS_address[15:0] } // addr in bytes

    • LDS addressing for Memory/Vfetch → LDS: {16’h0, lds_offset[15:0]} // in bytes

  • Global Data Share (GDS)

    • { base[15:0] , size[15:0] } // base and size are in bytes

  • Indirect GPR addressing for both vector and scalar instructions. M0 is an unsigned index.

  • Send-message value. EMIT/CUT use M0 and EXEC as the send-message data.

SCC: Scalar Condition code

Most scalar ALU instructions set the Scalar Condition Code (SCC) bit,indicating the result of the operation.

Compare operations: 1 = true
Arithmetic operations: 1 = carry out
Bit/logical operations: 1 = result was not zero
Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the selector for conditional moves and branches.

Vector Compares: VCC and VCCZ

Vector ALU comparisons always set the Vector Condition Code (VCC) register (1=pass, 0=fail). Also, vector compares have the option of setting EXEC to the VCC value.

There is also a VCC summary bit (vccz) that is set to 1 when the VCC result is zero. This is useful for early-exit branch tests. VCC is also set for selected integer ALU operations (carry-out).

Vector compares have the option of writing the result to VCC (32-bit instruction encoding) or to any SGPR (64-bit instruction encoding). VCCZ is updated every time VCC is updated: vector compares and scalar writes to VCC.

The EXEC mask determines which threads execute an instruction. The VCC indicates which executing threads passed the conditional test, or which threads generated a carry-out from an integer add or subtract.

V_CMP_* ⇒ VCC[n] = EXEC[n] & (test passed for thread[n])

VCC is always fully written; there are no partial mask updates.

Note

VCC physically resides in the SGPR register file, so when an instruction sources VCC, that counts against the limit on the total number of SGPRs that can be sourced for a given instruction. VCC physically resides in the highest two user SGPRs.

Shader Hazard with VCC The user/compiler must prevent a scalar-ALU write to the SGPR holding VCC, immediately followed by a conditional branch using VCCZ. The hardware cannot detect this, and inserts the one required wait state (hardware does detect it when the SALU writes to VCC, it only fails to do this when the SALU instruction references the SGPRs that happen to hold VCC).

Trap and Exception registers

Each type of exception can be enabled or disabled independently by setting, or clearing, bits in the TRAPSTS register’s EXCP_EN field.This section describes the registers which control and report kernel exceptions.

All Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in the trap handler (status.priv = 1). When not privileged, writes to these are ignored. TMA and TBA are read-only; they can be accessed through S_GETREG_B32.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware generates an S_TRAP instruction. This loads trap information into a pair of SGPRS:

{TTMP1, TTMP0} = {3'h0, pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}.

HT is set to one for host initiated traps, and zero for user traps (s_trap) or exceptions. TRAP_ID is zero for exceptions, or the user/host trapID for those traps. When the trap handler is entered, the PC of the faulting instruction will be: (PC - PC_rewind*4).

STATUS . TRAP_EN - This bit indicates to the shader whether or not a trap handler is present. When one is not present, traps are not taken, no matter whether they’re floating point, user-, or host-initiated traps. When the trap handler is present, the wavefront uses an extra 16 SGPRs for trap processing. If trap_en == 0, all traps and exceptions are ignored, and s_trap is converted by hardware to NOP.

MODE . EXCP_EN[8:0] - Floating point exception enables. Defines which exceptions and events cause a trap.

Bit

Exception

0

Invalid

1

Input Denormal

2

Divide by zero

3

Overflow

4

Underflow

5

Inexact

6

Integer divide by zero

7

Address Watch - TC (L1) has witnessed a thread access to an ‘address of interest’

Trap Status register

The trap status register records previously seen traps or exceptions. It can be read and written by the kernel.

Field

Bits

Description

EXCP

8:0

Status bits of which exceptions have occurred. These bits are sticky and accumulate results until the shader program clears them. These bits are accumulated regardless of the setting of EXCP_EN. These can be read or written without shader privilege. Bit Exception 0 invalid
1 Input Denormal
2 Divide by zero
3 overflow
4 underflow
5 inexact
6 integer divide by zero
7 address watch
8 memory violation

SAVECTX

10

A bit set by the host command indicating that this wave must jump to its trap handler and save its context. This bit must be cleared by the trap handler using S_SETREG. Note - a shader can set this bit to 1 to cause a save-context trap, and due to hardware latency the shader may execute up to 2 additional instructions before taking the trap.

ILLEGAL_INST

11

An illegal instruction has been detected.

ADDR_WATCH1-3

14:12

Indicates that address watch 1, 2, or 3 has been hit. Bit 12 is address watch 1; bit 13 is 2; bit 14 is 3.

EXCP_CYCLE

21:16

When a float exception occurs, this tells the trap handler on which cycle the exception occurred on. 0-3 for normal float operations, 0-7 for double float add, and 0-15 for double float muladd or transcendentals. This register records the cycle number of the first occurrence of an enabled (unmasked) exception. EXCP_CYCLE[1:0] Phase: threads 0-15 are in phase 0, 48-63 in phase 3.
EXCP_CYCLE[3:2] Multi-slot pass.
EXCP_CYCLE[5:4] Hybrid pass: used for machines running at lower rates.

DP_RATE

31:29

Determines how the shader interprets the TRAP_STS.cycle. Different Vector Shader Processors (VSP) process instructions at different rates.

Table : Exception Field Bits

Memory Violations

A Memory Violation is reported from:

  • LDS alignment error.

  • Memory read/write/atomic alignment error.

  • Flat access where the address is invalid (does not fall in any aperture).

  • Write to a read-only surface.

  • GDS alignment or address range error.

  • GWS operation aborted (semaphore or barrier not executed).

Memory violations are not reported for instruction or scalar-data accesses.

Memory Buffer to LDS does NOT return a memory violation if the LDS address is out of range, but masks off EXEC bits of threads that would go out of range.

When a memory access is in violation, the appropriate memory (LDS or TC) returns MEM_VIOL to the wave. This is stored in the wave’s TRAPSTS.mem_viol bit. This bit is sticky, so once set to 1, it remains at 1 until the user clears it.

There is a corresponding exception enable bit (EXCP_EN.mem_viol). If this bit is set when the memory returns with a violation, the wave jumps to the trap handler.

Memory violations are not precise. The violation is reported when the LDS or TC processes the address; during this time, the wave may have processed many more instructions. When a mem_viol is reported, the Program Counter saved is that of the next instruction to execute; it has no relationship the faulting instruction.

Program Flow Control

All program flow control is programmed using scalar ALU instructions. This includes loops, branches, subroutine calls, and traps. The program uses SGPRs to store branch conditions and loop counters. Constants can be fetched from the scalar constant cache directly into SGPRs.

Program Control

The instructions in the table below control the priority and termination of a shader program, as well as provide support for trap handlers.

Instructions

Description

S_ENDPGM

Terminates the wavefront. It can appear anywhere in the kernel and can appear multiple times.

S_ENDPGM_SAVED

Terminates the wavefront due to context save. It can appear anywhere in the kernel and can appear multiple times.

S_NOP

Does nothing; it can be repeated in hardware up to eight times.

S_TRAP

Jumps to the trap handler.

S_RFE

Returns from the trap handler

S_SETPRIO

Modifies the priority of this wavefront: 0=lowest, 3 = highest.

S_SLEEP

Causes the wavefront to sleep for 64 - 960 clock cycles.

S_SENDMSG

Sends a message (typically an interrupt) to the host CPU.

Table : Control Instructions

Branching

Branching is done using one of the following scalar ALU instructions.

Instructions

Description

S_BRANCH

Unconditional branch.

S_CBRANCH_<test>

Conditional branch. Branch only if <test> is true. Tests are VCCZ, VCCNZ, EXECZ, EXECNZ, SCCZ, and SCCNZ.

S_CBRANCH_CDBGSYS

Conditional branch, taken if the COND_DBG_SYS status bit is set.

S_CBRANCH_CDBGUSER

Conditional branch, taken if the COND_DBG_USER status bit is set.

S_CBRANCH_CDBGSYS_AND_USER

Conditional branch, taken only if both COND_DBG_SYS and COND_DBG_USER are set.

S_SETPC

Directly set the PC from an SGPR pair.

S_SWAPPC

Swap the current PC with an address in an SGPR pair.

S_GETPC

Retrieve the current PC value (does not cause a branch).

S_CBRANCH_FORK and S_CBRANCH_JOIN

Conditional branch for complex branching.

S_SETVSKIP

Set a bit that causes all vector instructions to be ignored. Useful alternative to branching.

S_CALL_B64

Jump to a subroutine, and save return address. SGPR_pair = PC+4; PC = PC+4+SIMM16*4.

Table : Branch Instructions

For conditional branches, the branch condition can be determined by either scalar or vector operations. A scalar compare operation sets the Scalar Condition Code (SCC), which then can be used as a conditional branch condition. Vector compare operations set the VCC mask, and VCCZ or VCCNZ then can be used to determine branching.

Workgroups

Work-groups are collections of wavefronts running on the same compute unit which can synchronize and share data. Up to 16 wavefronts (1024 work-items) can be combined into a work-group. When multiple wavefronts are in a workgroup, the S_BARRIER instruction can be used to force each wavefront to wait until all other wavefronts reach the same instruction; then, all wavefronts continue. Any wavefront can terminate early using S_ENDPGM, and the barrier is considered satisfied when the remaining live waves reach their barrier instruction.

Data Dependency Resolution

Shader hardware resolves most data dependencies, but a few cases must be explicitly handled by the shader program. In these cases, the program must insert S_WAITCNT instructions to ensure that previous operations have completed before continuing.

The shader has three counters that track the progress of issued instructions. S_WAITCNT waits for the values of these counters to be at, or below, specified values before continuing.

These allow the shader writer to schedule long-latency instructions,execute unrelated work, and specify when results of long-latency operations are needed.

Instructions of a given type return in order, but instructions of different types can complete out-of-order. For example, both GDS and LDS instructions use LGKM_cnt, but they can return out-of-order.

  • VM_CNT: Vector memory count.
    Determines when memory reads have returned data to VGPRs, or memory writes have completed.
    • Incremented every time a vector-memory read or write (MIMG, MUBUF, or MTBUF format) instruction is issued.

    • Decremented for reads when the data has been written back to the VGPRs, and for writes when the data has been written to the L2 cache. Ordering: Memory reads and writes return in the order they were issued, including mixing reads and writes.

  • LGKM_CNT: (LDS, GDS, (K)constant, (M)essage) Determines when one of these low-latency instructions have completed.

    • Incremented by 1 for every LDS or GDS instruction issued, as well as by Dword-count for scalar-memory reads. For example, s_memtime counts the same as an s_load_dwordx2.

    • Decremented by 1 for LDS/GDS reads or atomic-with-return when the data has been returned to VGPRs.

    • Incremented by 1 for each S_SENDMSG issued. Decremented by 1 when message is sent out.

    • Decremented by 1 for LDS/GDS writes when the data has been written to LDS/GDS.

    • Decremented by 1 for each Dword returned from the data-cache (SMEM).
      Ordering:
      • Instructions of different types are returned out-of-order.

      • Instructions of the same type are returned in the order they were issued, except scalar-memory-reads, which can return out-of-order (in which case only S_WAITCNT 0 is the only legitimate value).

  • EXP_CNT: VGPR-export count.
    Determines when data has been read out of the VGPR and sent to GDS, at which time it is safe to overwrite the contents of that VGPR.
    • Incremented when an Export/GDS instruction is issued from the wavefront buffer.

    • Decremented for exports/GDS when the last cycle of the export instruction is granted and executed (VGPRs read out). Ordering

      • Exports are kept in order only within each export type (color/null, position, parameter cache).

Manually Inserted Wait States (NOPs)

The hardware does not check for the following dependencies; they must be resolved by inserting NOPs or independent instructions.

First Instruction

Second Instruction

Wait

Notes

S_SETREG <*>

S_GETREG <same reg>

2

S_SETREG <*>

S_SETREG <same reg>

2

SET_VSKIP

S_GETREG MODE

2

Reads VSKIP from MODE.

S_SETREG MODE.vskip

any vector op

2

Requires two nops or non-vector instructions.

VALU that sets VCC or EXEC

VALU that uses EXECZ or VCCZ as a data source

5

VALU writes SGPR/VCC (readlane, cmp, add/sub, div_scale)

V_{READ,WRITE}LANE using that SGPR/VCC as the lane select

4

VALU writes VCC (including v_div_scale)

V_DIV_FMAS

4

FLAT_STORE_X3 FLAT_STORE_X4 FLAT_ATOMIC_{F}CMPSWA

P_X2

BUFFER_STORE_DWORD_X

3

BUFFER_STORE_DWORD_X

4

BUFFER_STORE_FORMAT_

XYZ

BUFFER_STORE_FORMAT_

XYZW

BUFFER_ATOMIC_{F}CMPS

WAP_X2

IMAGE_STORE_* > 64 bits IMAGE_ATOMIC_{F}CMPSW

AP

> + 64bits

Write VGPRs holding writedata from those instructions.

1

BUFFER_STORE_* operations that use an SGPR for “offset” do not require any wait states.

IMAGE_STORE_* and IMAGE_{F}CMPSWAP* ops with more than two DMASK bits set require this one wait state. Ops that use a 256-bit T# do not need a wait state.

VALU writes SGPR

VMEM reads that SGPR

5

Hardware assumes that there is no dependency here. If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states.

SALU writes M0

GDS, S_SENDMSG or S_TTRACE_DATA

1

VALU writes VGPR

VALU DPP reads that VGPR

2

VALU writes EXEC

VALU DPP op

5

ALU does not forward EXEC to DPP.

Mixed use of VCC: alias vs SGPR# v_readlane, v_readfirstlane v_cmp v_add*i/u v_sub*_i/u v_div_scale* (writes vcc)

VALU which reads VCC as a constant (not as a carry-in which is 0 wait states).

1

VCC can be accessed by name or by the logical SGPR which holds VCC. The data dependency check logic does not understand that these are the same register and do not prevent races.

S_SETREG TRAPSTS

RFE, RFE_restore

1

SALU writes M0

LDS “add-TID” instruction, buffer_store_LDS_ dword, scratch or global with LDS = 1, VINTERP or LDS_direct

1

SALU writes M0

S_MOVEREL

1

Table : Required Software-inserted Wait States

Arbitrary Divergent Control Flow

In the GCN architecture, conditional branches are handled in one of the following ways.

  1. S_CBRANCH This case is used for simple control flow, where the decision to take a branch is based on a previous compare operation. This is the most common method for conditional branching.

  2. S_CBRANCH_I/G_FORK and S_CBRANCH_JOIN This method, intended for complex, irreducible control flow graphs, is described in the rest of this section. The performance of this method is lower than that for S_CBRANCH on simple flow control; use it only when necessary.

Conditional Branch (CBR) graphs are grouped into self-contained code blocks, denoted by FORK at the entrance point, and JOIN and the exit point. The shader compiler must add these instructions into the code.This method uses a six-deep stack and requires three SGPRs for each fork/join block. Fork/Join blocks can be hierarchically nested to any depth (subject to SGPR requirements); they also can coexist with other conditional flow control or computed jumps.

Example of Complex Control Flow Graph

Example of Complex Control Flow Graph

The register requirements per wavefront are:

  • CSP [2:0] - control stack pointer.

  • Six stack entries of 128-bits each, stored in SGPRS: { exec[63:0], PC[47:2] }

This method compares how many of the 64 threads go down the PASS path instead of the FAIL path; then, it selects the path with the fewer number of threads first. This means at most 50% of the threads are active, and this limits the necessary stack depth to Log264 = 6.

The following pseudo-code shows the details of CBRANCH Fork and Join operations.

S_CBRANCH_G_FORK arg0, arg1
    // arg1 is an sgpr-pair which holds 64bit (48bit) target address

S_CBRANCH_I_FORK arg0, #target_addr_offset[17:2]
    // target_addr_offset: 16b signed immediate offset

// PC: in this pseudo-code is pointing to the cbranch_*_fork instruction
mask_pass = SGPR[arg0] & exec
mask_fail = ~SGPR[arg0] & exec

if (mask_pass == exec)
    I_FORK : PC += 4 + target_addr_offset
    G_FORK: PC = SGPR[arg1]
else if (mask_fail == exec)
    PC += 4
else if (bitcount(mask_fail) < bitcount(mask_pass))
    exec = mask_fail
    I_FORK : SGPR[CSP*4] = { (pc + 4 + target_addr_offset), mask_pass }
    G_FORK: SGPR[CSP*4] = { SGPR[arg1], mask_pass }
    CSP++
    PC += 4
else
    exec = mask_pass
    SGPR[CSP*4] = { (pc+4), mask_fail }
    CSP++
    I_FORK : PC += 4 + target_addr_offset
    G_FORK: PC = SGPR[arg1]

S_CBRANCH_JOIN arg0
if (CSP == SGPR[arg0]) // SGPR[arg0] holds the CSP value when the FORK started
    PC += 4 // this is the 2nd time to JOIN: continue with pgm
else
    CSP -- // this is the 1st time to JOIN: jump to other FORK path
    {PC, EXEC} = SGPR[CSP*4] // read 128-bits from 4 consecutive SGPRs

Scalar ALU Operations

Scalar ALU (SALU) instructions operate on a single value per wavefront.These operations consist of 32-bit integer arithmetic and 32- or 64-bit bit-wise operations. The SALU also can perform operations directly on the Program Counter, allowing the program to create a call stack in SGPRs. Many operations also set the Scalar Condition Code bit (SCC) to indicate the result of a comparison, a carry-out, or whether the instruction result was zero.

SALU Instruction Formats

SALU instructions are encoded in one of five microcode formats, shown below:

microcode sop1

microcode sop2

microcode sopk

microcode sopc

microcode sopp

Each of these instruction formats uses some of these fields:

Field

Description

OP

Opcode: instruction to be executed.

SDST

Destination SGPR.

SSRC0

First source operand.

SSRC1

Second source operand.

SIMM16

Signed immediate 16-bit integer constant.

The lists of similar instructions sometimes use a condensed form using curly braces { } to express a list of possible names. For example, S_AND_{B32, B64} defines two legal instructions: S_AND_B32 and S_AND_B64.

Scalar ALU Operands

Valid operands of SALU instructions are:

  • SGPRs, including trap temporary SGPRs.

  • Mode register.

  • Status register (read-only).

  • M0 register.

  • TrapSts register.

  • EXEC mask.

  • VCC mask.

  • SCC.

  • PC.

  • Inline constants: integers from -16 to 64, and a some floating point values.

  • VCCZ, EXECZ, and SCC.

  • Hardware registers.

  • 32-bit literal constant.

In the table below, 0-127 can be used as scalar sources or destinations; 128-255 can only be used as sources.

Code scalar Dest (0-7 bits)

Meaning

Description

0-101

SGPR 0 to 101

Scalar GPRs

102

FLAT_SCR

Holds the low_LO Dword of the flatscratch memory descriptor

103

FLAT_SCR

Holds the high_HI Dword of the flatscratch memory descriptor

104

XNACK_MA

Holds the lowSK_LO Dword of the XNACK mask

105

XNACK_MA

Holds the high SK_HI Dword of the XNACK mask

106

VCC_LO

Holds the low Dword of the vector condition code

107

VCC_HI

Holds the high Dword of the vector condition code

108-123

TTMP0 to Trap temps

TTMP15 (privileged)

124

M0

Holds the low Dword of the flatscratch memory descriptor

125

reserved

reserved

126

EXEC_LO

Execute mask, low Dword

127

EXEC_HI

Execute mask, high Dword

128

0

zero

129-192

int 1 to 64

Positive integer values.

193-208

int 1 to 16

Negative integer values.

209-234

reserved

Unused.

235

SHARED_BASE

Memory Aperture definition.

236

SHARED_LIMIT

237

PRIVATE_BASE

238

PRIVATE_LIMIT

239

POPS_EXITING_WAV

Primitive Ordered Pixel Shading E_IDwave ID.

240

0.5

single or double floats

241

0.5

242

1.0

243

1.0

244

2.0

245

2.0

246

4.0

247

4.0

248

1.0 / (2 * PI)

249-250

reserved

unused

251

VCCZ

{ zeros, VCCZ }

252

EXECZ

{ zeros, EXECZ}

253

SCC

{ zeros, SCC }

254

reserved

unused

255

Literal

constant 32bit constant from instruction stream.

Table : Scalar Operands

The SALU cannot use VGPRs or LDS. SALU instructions can use a 32-bit literal constant. This constant is part of the instruction stream and is available to all SALU microcode formats except SOPP and SOPK. Literal constants are used by setting the source instruction field to “literal” (255), and then the following instruction dword is used as the source value.

If any source SGPR is out-of-range, the value of SGPR0 is used instead.

If the destination SGPR is out-of-range, no SGPR is written with the result. However, SCC and possibly EXEC (if saveexec) will still be written.

If an instruction uses 64-bit data in SGPRs, the SGPR pair must be aligned to an even boundary. For example, it is legal to use SGPRs 2 and 3 or 8 and 9 (but not 11 and 12) to represent 64-bit data.

Scalar Condition Code (SCC)

The scalar condition code (SCC) is written as a result of executing most SALU instructions.

The SCC is set by many instructions:

  • Compare operations: 1 = true.

  • Arithmetic operations: 1 = carry out.

    • SCC = overflow for signed add and subtract operations. For add, overflow = both operands are of the same sign, and the MSB (sign bit) of the result is different than the sign of the operands. For subtract (AB), overflow = A and B have opposite signs and the resulting sign is not the same as the sign of A.

  • Bit/logical operations: 1 = result was not zero.

Integer Arithmetic Instructions

This section describes the arithmetic operations supplied by the SALU. The table below shows the scalar integer arithmetic instructions:

Instruction

Encoding

Sets SCC?

Operation

S_ADD_I32

SOP2

y

D = S0 + S1, SCC = overflow.

S_ADD_U32

SOP2

y

D = S0 + S1, SCC = carry out.

S_ADDC_U32

SOP2

y

D = S0 + S1 + SCC = overflow.

S_SUB_I32

SOP2

y

D = S0 - S1, SCC = overflow.

S_SUB_U32

SOP2

y

D = S0 - S1, SCC = carry out.

S_SUBB_U32

SOP2

y

D = S0 - S1 - SCC = carry out.

S_ABSDIFF_I32

SOP2

y

D = abs (s1 - s2), SCC = result not zero.

S_MIN_I32
S_MIN_U32

SOP2

y

D = (S0 < S1) ? S0 : S1. SCC = 1 if S0 was min.

S_MAX_I32
S_MAX_U32

SOP2

y

D = (S0 > S1) ? S0 : S1. SCC = 1 if S0 was max.

S_MUL_I32

SOP2

n

D = S0 * S1. Low 32 bits of result.

S_ADDK_I32

SOPK

y

D = D + simm16, SCC = overflow. Sign extended version of simm16.

S_MULK_I32

SOPK

n

D = D * simm16. Return low 32bits. Sign extended version of simm16.

S_ABS_I32

SOP1

y

D.i = abs (S0.i). SCC=result not zero.

S_SEXT_I32_I8

SOP1

n

D = { 24{S0[7]}, S0[7:0] }.

S_SEXT_I32_I16

SOP1

n

D = { 16{S0[15]}, S0[15:0] }.

Table: Integer Arithmetic Instructions

Conditional Instructions

Conditional instructions use the SCC flag to determine whether to perform the operation, or (for CSELECT) which source operand to use.

Instruction

Encoding

Sets SCC?

Operation

S_CSELECT_{B32, B64}

SOP2

n

D = SCC ? S0 : S1.

S_CMOVK_I 32

SOPK

n

if (SCC) D = signext(simm16).

S_CMOV_{B 32,B64}

SOP1

n

if (SCC) D = S0, else NOP.

Table : Conditional Instructions

Comparison Instructions

These instructions compare two values and set the SCC to 1 if the comparison yielded a TRUE result.

Instruction

Encoding

Sets SCC?

Operation

S_CMP_EQ_U64, S_CMP_NE_U64

SOPC

y

Compare two 64-bit source values. SCC = S0 <cond> S1.

S_CMP_{EQ,NE,GT,GE ,LE,LT}_{I32,U32}

SOPC

y

Compare two source values. SCC = S0 <cond> S1.

S_CMPK_{EQ,NE,GT,G E,LE,LT}_{I32,U32}

SOPK

y

Compare Dest SGPR to a constant. SCC = DST <cond> simm16. simm16 is zero-extended (U32) or sign-extended (I32).

S_BITCMP0_{B32,B64 }

SOPC

y

Test for “is a bit zero”. SCC = !S0[S1].

S_BITCMP1_{B32,B64 }

SOPC

y

Test for “is a bit one”. SCC = S0[S1].

Table : Conditional Instructions

Bit-Wise Instructions

Bit-wise instructions operate on 32- or 64-bit data without interpreting it has having a type. For bit-wise operations if noted in the table below, SCC is set if the result is nonzero.

Instruction

Encodin g

Sets SCC?

Operation

S_MOV_{B32,B64}

SOP1

n

D = S0

S_MOVK_I32

SOPK

n

D = signext(simm16)

{S_AND,S_OR,S_XOR}_{B 32,B64}

SOP2

y

D = S0 & S1, S0 OR S1, S0 XOR S1

{S_ANDN2,S_ORN2}_{B32, B64}

SOP2

y

D = S0 & ~S1, S0 OR ~S1, S0 XOR ~S1,

{S_NAND,S_NOR,S_XNOR}_{B32,B64}

SOP2

y

D = ~(S0 & S1), ~(S0 OR S1), ~(S0 XOR S1)

S_LSHL_{B32,B64}

SOP2

y

D = S0 << S1[4:0], [5:0] for B64.

S_LSHR_{B32,B64}

SOP2

y

D = S0 >> S1[4:0], [5:0] for B64.

S_ASHR_{I32,I64}

SOP2

y

D = sext(S0 >> S1[4:0]) ([5:0] for I64).

S_BFM_{B32,B64}

SOP2

n

Bit field mask. D = ((1 << S0[4:0]) - 1) << S1[4:0].

S_BFE_U32, S_BFE_U64
S_BFE_I32, S_BFE_I64
(signed/unsigned)

SOP2

n

Bit Field Extract, then sign-extend result for I32/64 instructions.
S0 = data,
S1[5:0] = offset, S1[22:16]= width.

S_NOT_{B32,B64}

SOP1

y

D = ~S0.

S_WQM_{B32,B64}

SOP1

y

D = wholeQuadMode(S0). If any bit in a group of four is set to 1, set the resulting group of four bits all to 1.

S_QUADMASK_{B32,B64}

SOP1

y

D[0] = OR(S0[3:0]), D[1]=OR(S0[7:4]), etc.

S_BREV_{B32,B64}

SOP1

n

D = S0[0:31] are reverse bits.

S_BCNT0_I32_{B32,B64}

SOP1

y

D = CountZeroBits(S0).

S_BCNT1_I32_{B32,B64}

SOP1

y

D = CountOneBits(S0).

S_FF0_I32_{B32,B64}

SOP1

n

D = Bit position of first zero in S0 starting from LSB. -1 if not found.

S_FF1_I32_{B32,B64}

SOP1

n

D = Bit position of first one in S0 starting from LSB. -1 if not found.

S_FLBIT_I32_{B32,B64}

SOP1

n

Find last bit. D = the number of zeros before the first one starting from the MSB. Returns -1 if none.

S_FLBIT_I32
S_FLBIT_I32_I64

SOP1

n

Count how many bits in a row (from MSB to LSB) are the same as the sign bit. Return -1 if the input is zero or all 1’s (-1). 32-bit pseudo-code:
if (S0 == 0 || S0 == -1) D = -1
else
D = 0
for (I = 31 .. 0)
if (S0[I] == S0[31])
D++
else break
This opcode behaves the same as V_FFBH_I32.

S_BITSET0_{B32,B64}

SOP1

n

D[S0[4:0], [5:0] for B64] = 0

S_BITSET1_{B32,B64}

SOP1

n

D[S0[4:0], [5:0] for B64] = 1

S_{and,or,xor,andn2,orn2 ,nand, nor,xnor}_SAVEEXEC_B64

SOP1

y

Save the EXEC mask, then apply a bit-wise operation to it.
D = EXEC
EXEC = S0 <op> EXEC
SCC = (exec != 0)

S_{ANDN{1,2}_WREXEC_B6 4

SOP1

y

N1: EXEC, D = ~S0 & EXEC
N2: EXEC, D = S0 & ~EXEC
Both D and EXEC get the same result. SCC = (result != 0).
S_MOVRELS_{B32,B64}
S_MOVRELD_{B32,B64}

SOP1

n

Move a value into an SGPR relative to the value in M0.
MOVERELS: D = SGPR[S0+M0]
MOVERELD: SGPR[D+M0] = S0
Index must be even for 64. M0 is an unsigned index.

Table : Bit-Wise Instructions

Special Instructions

These instructions access hardware internal registers.

Instruction

Encodin g

Sets SCC?

Operation

S_GETREG_B32

SOPK*

n

Read a hardware register into the LSBs of D.

S_SETREG_B32

SOPK*

n

Write the LSBs of D into a hardware register. (Note that D is a source SGPR.) Must add an S_NOP between two consecutive S_SETREG to the same register.

S_SETREG_IMM32_B32

SOPK*

n

S_SETREG where 32-bit data comes from a literal constant (so this is a 64-bit instruction format).

Table : Hardware Internal Registers

The hardware register is specified in the DEST field of the instruction,using the values in the table above. Some bits of the DEST specify which register to read/write, but additional bits specify which bits in the special register to read/write:

SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is 0..31, size is 1..32.

Code

Register

Description

0

reserved

1

MODE

R/W.

2

STATUS

Read only.

3

TRAPSTS

R/W.

4

HW_ID

Read only. Debug only.

5

GPR_ALLOC

Read only. {sgpr_size, sgpr_base, vgpr_size, vgpr_base }.

6

LDS_ALLOC

Read only. {lds_size, lds_base}.

7

IB_STS

Read only. {valu_cnt, lgkm_cnt, exp_cnt, vm_cnt}.

8 - 15

reserved.

16

TBA_LO

Trap base address register [31:0].

17

TBA_HI

Trap base address register [47:32].

18

TMA_LO

Trap memory address register [31:0].

19

TMA_HI

Trap memory address register [47:32].

Table : Hardware Register Values

Code

Register

Description

VM_CNT

23:22,
3:0

Number of VMEM instructions issued but not yet returned.

EXP_CNT

6:4

Number of Exports issued but have not yet read their data from VGPRs.

LGKM_CNT

11:8

LDS, GDS, Constant-memory and Message instructions issued-but-not-completed count.

VALU_CNT

14:12

Number of VALU instructions outstanding for this wavefront.

Table : IB_STS

Code

Register

Description

VGPR_BASE

5:0

Physical address of first VGPR assigned to this wavefront, as [7:2]

VGPR_SIZE

13:8

Number of VGPRs assigned to this wavefront, as [7:2]. 0=4 VGPRs, 1=8 VGPRs, etc.

SGPR_BASE

21:16

Physical address of first SGPR assigned to this wavefront, as [7:3].

SGPR_SIZE

27:24

Number of SGPRs assigned to this wave, as [7:3]. 0=8 SGPRs, 1=16 SGPRs, etc.

Table : GPR_ALLOC

Code

Register

Description

LDS_BASE

7:0

Physical address of first LDS location assigned to this wavefront, in units of 64 Dwords.

LDS_SIZE

20:12

Amount of LDS space assigned to this wavefront, in units of 64 Dwords.

Table : LDS_ALLOC

Vector ALU Operations

Vector ALU instructions (VALU) perform an arithmetic or logical operation on data for each of 64 threads and write results back to VGPRs, SGPRs or the EXEC mask.

Parameter interpolation is a mixed VALU and LDS instruction, and is described in the Data Share chapter.

Microcode Encodings

Most VALU instructions are available in two encodings: VOP3 which uses 64-bits of instruction and has the full range of capabilities, and one of three 32-bit encodings that offer a restricted set of capabilities. A few instructions are only available in the VOP3 encoding. The only instructions that cannot use the VOP3 format are the parameter interpolation instructions.

When an instruction is available in two microcode formats, it is up to the user to decide which to use. It is recommended to use the 32-bit encoding whenever possible.

The microcode encodings are shown below.

VOP2 is for instructions with two inputs and a single vector destination. Instructions that have a carry-out implicitly write the carry-out to the VCC register.

microcode vop2

VOP1 is for instructions with no inputs or a single input and one destination.

microcode vop1

VOPC is for comparison instructions.

microcode vopc

VINTRP is for parameter interpolation instructions.

microcode vintrp

VOP3 is for instructions with up to three inputs, input modifiers (negate and absolute value), and output modifiers. There are two forms of VOP3: one which uses a scalar destination field (used only for div_scale, integer add and subtract); this is designated VOP3b. All other instructions use the common form, designated VOP3a.

microcode vop3a

microcode vop3b

Any of the 32-bit microcode formats may use a 32-bit literal constant, but not VOP3.

VOP3P is for instructions that use “packed math”: They perform the operation on a pair of input values that are packed into the high and low 16-bits of each operand; the two 16-bit results are written to a single VGPR as two packed values.

microcode vop3p

Operands

All VALU instructions take at least one input operand (except V_NOP and V_CLREXCP). The data-size of the operands is explicitly defined in the name of the instruction. For example, V_MAD_F32 operates on 32-bit floating point data.

Instruction Inputs

VALU instructions can use any of the following sources for input, subject to restrictions listed below:

  • VGPRs.

  • SGPRs.

  • Inline constants - constant selected by a specific VSRC value.

  • Literal constant - 32-bit value in the instruction stream. When a literal constant is used with a 64bit instruction, the literal is expanded to 64 bits by: padding the LSBs with zeros for floats, padding the MSBs with zeros for unsigned ints, and by sign-extending signed ints.

  • LDS direct data read.

  • M0.

  • EXEC mask.

Limitations

  • At most one SGPR can be read per instruction, but the value can be used for more than one operand.

  • At most one literal constant can be used, and only when an SGPR or M0 is not used as a source.

  • Only SRC0 can use LDS_DIRECT (see Chapter 10, “Data Share Operations”).

    Special Cases for Constants
    VALU “ADDC”, “SUBB” and CNDMASK all implicitly use an
    SGPR value (VCC), so these instructions cannot use an additional SGPR or literal constant.

Instructions using the VOP3 form and also using floating-point inputs have the option of applying absolute value (ABS field) or negate (NEG field) to any of the input operands.

Literal Expansion to 64 bits

Literal constants are 32-bits, but they can be used as sources which normally require 64-bit data:

  • 64 bit float: the lower 32-bit are padded with zero.

  • 64-bit unsigned integer: zero extended to 64 bits

  • 64-bit signed integer: sign extended to 64 bits

Instruction Outputs

VALU instructions typically write their results to VGPRs specified in the VDST field of the microcode word. A thread only writes a result if the associated bit in the EXEC mask is set to 1.

All V_CMPX instructions write the result of their comparison (one bit per thread) to both an SGPR (or VCC) and the EXEC mask.

Instructions producing a carry-out (integer add and subtract) write their result to VCC when used in the VOP2 form, and to an arbitrary SGPR-pair when used in the VOP3 form.

When the VOP3 form is used, instructions with a floating-point result can apply an output modifier (OMOD field) that multiplies the result by: 0.5, 1.0, 2.0 or 4.0. Optionally, the result can be clamped (CLAMP field) to the range [0.0, +1.0].

In the table below, all codes can be used when the vector source is nine bits; codes 0 to 255 can be the scalar source if it is eight bits; codes 0 to 127 can be the scalar source if it is seven bits; and codes 256 to 511 can be the vector source or destination.

Field

Bit Position

Description

0-101

SGPR

0 .. 101

102

FLATSCR_LO

Flat Scratch[31:0].

103

FLATSCR_HI

Flat Scratch[63:32].

104

XNACK_MASK_LO

105

XNACK_MASK_HI

106

VCC_LO

vcc[31:0].

107

VCC_HI

vcc[63:32].

108-123

TTMP0 to TTMP 15

Trap handler temps (privileged).

124

M0

125

reserved

126

EXEC_LO

exec[31:0].

127

EXEC_HI

exec[63:32].

128

0

129-192

int 1.. 64

Integer inline constants.

193-208

int -1 .. -16

209-234

reserved

Unused.

235

SHARED_BASE

Memory Aperture definition.

236

SHARED_LIMIT

237

PRIVATE_BASE

238

PRIVATE_LIMIT

239

POPS_EXITING_WAV E_ID

Primitive Ordered Pixel Shading wave ID.

240

0.5

Single, double, or half-precision inline floats.
1/(2*PI) is 0.15915494.
The exact value used is:
half: 0x3118
single: 0x3e22f983
double: 0x3fc45f306dc9c882

241

-0.5

242

1.0

243

-1.0

244

2.0

245

-2.0

246

4.0

247

-4.0

248

1/(2*PI)

249

SDWA

250

DPP

251

VCCZ

{ zeros, VCCZ }

252

EXECZ

{ zeros, EXECZ }

253

SCC

{ zeros, SCC }

254

LDS direct

Use LDS direct read to supply 32-bit value Vector-al u instructi ons only.

255

Literal

constant 32-bit constant from instructi on stream.

256-511

VGPR

Table: Instruction Operands

Out-of-Range GPRs

When a source VGPR is out-of-range, the instruction uses as input the value from VGPR0.

When the destination GPR is out-of-range, the instruction executes but does not write the results.

Instructions

The table below lists the complete VALU instruction set by microcode encoding.

VOP3

VOP3 - 1-2 operand opcodes

VOP2

VOP1

V_MAD_LEGACY _F32

V_ADD_F64

V_ADD_{ F16,F32, U16,U32}

V_NOP

V_MAD_{ F16,I16,U16,F3 2}

V_MUL_F64

V_SUB_{ F16,F32,U16, U32}

V_MOV_B32

V_MAD_LEGACY _{F16,U16,I16 }

V_MIN_F64

V_SUBREV_{ F16,F32, U16,U32}

V_MAD_I32_I 24

V_MAX_F64

V_ADD_CO_U3 2

V_READFIRSTLANE_B32

V_MAD_U32_U 24

V_LDEXP_F64

V_SUB_CO_U3 2

V_CVT_F32_{I32,U32,F16,F6 4 }

V_CUBEID_F32

V_MUL_LO_U3 2

V_SUBREV_CO_U32

V_CVT_{I32,U32,F16, F64}_F32

V_CUBESC_F32

V_MUL_HI_{I 32,U32}

V_ADDC_U32

V_CVT_{I32,U32}_F64

V_CUBETC_F32

V_LSHLREV_B6 4

V_SUBB_U32

V_CVT_F64_{I32,U32}

V_CUBEMA_F32

V_LSHRREV_B6 4

V_SUBBREV_U3 2

V_CVT_F32_UBYTE{0,1,2,3}

V_BFE_{U32 , I32 }

V_ASHRREV_I6 4

V_MUL_LEGACY _F32

V_CVT_F16_{U16, I16}

V_FMA_{ F16, F32 , F64}

V_LDEXP_F32

V_MUL_{F16, F32}

V_CVT_RPI_I32_F32

V_FMA_LEGACY _F16

V_READLANE_B 32

V_MUL_I32_I 24

V_CVT_FLR_I32_F32

V_BFI_B32

V_WRITELANE_ B32

V_MUL_HI_I3 2_I24

V_CVT_OFF_F32_I4

V_LERP_U8

V_BCNT_U32_ B32

V_MUL_U32_U 24

V_FRACT_{ F16,F32,F64}

V_ALIGNBIT_B 32

V_MBCNT_LO_ U32_B32

V_MUL_HI_U3 2_U24

V_TRUNC_{ F16,F32, F64}

V_ALIGNBYTE_ B32

V_MBCNT_HI_ U32_B32

V_MIN_{ F16,U16, I16,F32,I32,U3 2}

V_CEIL_{ F16,F32, F64}

V_MIN3_{F32, I32,U32}

V_CVT_PKACCU M_U8_F32

V_MAX_{ F16,U16, I16,F32,I32,U3 2}

V_RNDNE_{ F16,F32, F64}

V_MAX3_{F32, I32,U32}

V_CVT_PKNORM _I16_F32

V_LSHRREV_{ B16,B32}

V_FLOOR_{ F16,F32, F64}

V_MED3_{F32, I32,U32}

V_CVT_PKNORM _U16_F32

V_ASHRREV_{I 16,I32}

V_EXP_{ F16,F32}

V_SAD_{U8, HI_U8, U16, U32}

V_CVT_PKRTZ_F16_F32

V_LSHLREV_{ B16,B32}

V_LOG_ {F16,F32}

V_CVT_PK_U8 _F32

V_CVT_PK_U1 6_U32

V_AND_B32

V_RCP_{ F16,F32,F64}

V_DIV_FIXUP_{ F16,F32,F64}

V_CVT_PK_I1 6_I32

V_OR_B32

V_RCP_IFLAG_F32

V_DIV_FIXUP_LEGACY_F16

V_MAC_LEGACY _F32

V_XOR_B32

V_RSQ_{ F16,F32, F64}

V_DIV_SCALE_{F32,F64}

V_BFM_B32

V_MAC_{ F16,F32}

V_SQRT_{ F16,F32,F64}

V_DIV_FMAS_ {F32,F64}

V_INTERP_P1_F32

V_MADMK_{ F16,F32}

V_SIN_ {F16,F32}

V_MSAD_U8

V_INTERP_P2_F32

V_MADAK_{ F16,F32}

V_COS_ {F16,F32}

V_QSAD_PK_U 16_U8

V_INTERP_MOV _F32

V_CNDMASK_B3 2

V_NOT_B32

V_MQSAD_PK_ U16_U8

V_INTERP_P1L L_F16

V_LDEXP_F16

V_BFREV_B32

V_MQSAD_PK_ U32_U8

V_INTERP_P1L V_F16

MUL_LO_U16

V_FFBH_{U32, I32}

V_TRIG_PREOP _F64

V_INTERP_P2_F16

V_FFBL_B32

V_MAD_{U64_ U32, I64_I32}

V_INTERP_P2_LEGACY_F16

V_FREXP_EXP_I32_F64

V_CVT_PKNORM _I16_F16

V_FREXP_MANT_{ F16,F32,64}

V_CVT_PKNORM _U16_F16

V_FREXP_EXP_I32_F32

V_MAD_U32_U 16

V_FREXP_EXP_I16_F16

V_MAD_I32_I 16

V_CLREXCP

V_XAD_U32

V_MOV_FED_B32

V_MIN3_{F16, I16,U16}

V_CVT_NORM_I16_F16

V_MAX3_{F16, I16,U16}

V_CVT_NORM_U16_F16

V_MED3_{F16, I16,U16}

V_SAT_PK_U8_I16

V_CVT_PKNORM _{I16_F16, U16_F16}

V_WRITELANE_REGWR

V_READLANE_R EGRD_B32

V_SWAP_B32

V_PACK_B32_ F16

V_SCREEN_PARTITION_4SE_B 32

Table: VALU Instruction Set


The next table lists the compare instructions.

Op

Formats

Functions

Result

V_CMP

I16, I32, I64, U16, U32, U64

F, LT, EQ, LE, GT, LG, GE, T

Write VCC..

V_CMPX

Write VCC and exec.

V_CMP

F16, F32, F64

F, LT, EQ,LE, GT, LG, GE, T, GE, T,
O, U, NGE, NLG, NGT, NLE, NEQ, NLT
(o = total order, u = unordered,
N = NaN or normal compare)

Write VCC.

V_CMPX

Write VCC and exec.

V_CMP_CLASS

F16, F32, F64

Test for one of: signaling -NaN quiet-NaN,
|positive or negative :

infinity,normal,subnormal, zero

Write VCC.

V_CMPX_CLASS

Write VCC and exec.

Table: VALU Instruction Set

Denormalized and Rounding Modes

The shader program has explicit control over the rounding mode applied and the handling of denormalized inputs and results. The MODE register is set using the S_SETREG instruction; it has separate bits for controlling the behavior of single and double-precision floating-point numbers.

Field

Bit Position

Description

FP_ROUND

3:0

[1:0] Single-precision round mode.
[3:2] Double-precision round mode.
Round Modes: 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.

FP_DENORM

7:4

[5:4] Single-precision denormal mode.
[7:6] Double-precision denormal mode.
Denormal modes:
0 = Flush input and output denorms.
1 = Allow input denorms, flush output denorms.
2 = Flush input denorms, allow output denorms.
3 = Allow input and output denorms.

Table: Round and Denormal Modes

ALU Clamp Bit Usage

In GCN Vega Generation, the meaning of the “Clamp” bit in the VALU instructions has changed. For V_CMP instructions, setting the clamp bit to 1 indicates that the compare signals if a floating point exception occurs. For integer operations, it clamps the result to the largest and smallest representable value. For floating point operations, it clamps the result to the range: [0.0, 1.0].

VGPR Indexing

VGPR Indexing allows a value stored in the M0 register to act as an index into the VGPRs either for the source or destination registers in VALU instructions.

Indexing Instructions

The table below describes the instructions which enable, disable and control VGPR indexing.

Instruction

Encoding

Sets SCC?

Operation

S_SET_GPR_IDX_ OFF

SOPP

N

Disable VGPR indexing mode. Sets: mode.gpr_idx_en = 0.

S_SET_GPR_IDX_ ON

SOPC

N

Enable VGPR indexing, and set the index value and mode from an SGPR. mode.gpr_idx_en = 1
M0[7:0] = S0.u[7:0]
M0[15:12] = SIMM4

S_SET_GPR_IDX_ IDX

SOP1

N

Set the VGPR index value:
M0[7:0] = S0.u[7:0]

S_SET_GPR_IDX_ MODE

SOPP

N

Change the VGPR indexing mode, which is stored in
M0[15:12].
M0[15:12] = SIMM4

Table: VGPR Indexing Instructions

Indexing is enabled and disabled by a bit in the MODE register: gpr_idx_en. When enabled, two fields from M0 are used to determine the index value and what it applies to:

  • M0[7:0] holds the unsigned index value, added to selected source or destination VGPR addresses.

  • M0[15:12] holds a four-bit mask indicating to which source or destination the index is applied.

    • M0[15] = dest_enable.

    • M0[14] = src2_enable.

    • M0[13] = src1_enable.

    • M0[12] = src0_enable.

Indexing only works on VGPR source and destinations, not on inline constants or SGPRs. It is illegal for the index attempt to address VGPRs that are out of range.

Special Cases

This section describes how VGPR indexing is applied to instructions that use source and destination registers in unusual ways. The table below shows which M0 bits control indexing of the sources and destination registers for these special instructions.

Instruction

Microcode Encodes

VALU Receives

M0[15] (dst)

M0[15] (s2)

M0[15] (s1)

M0[12] (s0)

v_readlane

sdst = src0, SS1

x

x

x

src0

v_readfirstlan e

sdst = func(src0)

x

x

x

src0

v_writelane

dst = func(ss0, ss1)

dst

x

x

x

v_mac_*

dst = src0 * src1 + dst

mad: dst, src0, src1, src2

dst, s2

x

src1

src0

v_madak

dst = src0 * src1 + imm

mad: dst, src0, src1, src2

dst

x

src1

src0

v_madmk

dst = S0 * imm + src1

mad: dst, src0, src1, src2

dst

src2

x

src0

v_*sh*_rev

dst = S1 << S0

<shift> (src1, src0)

dst

x

src1

src0

v_cvt_pkaccum

uses dst as src2

dst, s2

x

src1

src0

SDWA (dest preserve, sub-Dword mask)

uses dst as src2 for read-mod-write

dst, s2

where:
src= vector source
SS = scalar source
dst = vector destination
sdst = scalar destination

Packed Math

Vega adds support for packed math, which performs operations on two 16-bit values within a Dword as if they were separate threads. For example, a packed add of V0=V1+V2 is really two separate adds: adding the low 16 bits of each Dword and storing the result in the low 16 bit s of V0, and adding the high halves.

Packed math uses the instructions below and the microcode format “VOP3P”. This format adds op_sel and neg fields for both the low and high operands, and removes ABS and OMOD.

Packed Math Opcodes:

V_PK_MAD_I16

V_PK_MUL_LO_U1 6

V_PK_ADD_I16

V_PK_SUB_I16

V_PK_LSHLREV_B1 6

V_PK_LSHRREV_B1 6

V_PK_ASHRREV_I1 6

V_PK_MAX_I16

V_PK_MIN_I16

V_PK_MAD_U16

V_PK_ADD_U16

V_PK_SUB_U16

V_PK_MAX_U16

V_PK_MIN_U16

V_PK_FMA_F16

V_PK_ADD_F16

V_PK_MUL_F16

V_PK_MIN_F16

V_PK_MAX_F16

V_MAD_MIX_F32

Note

V_MAD_MIX_* are not packed math, but perform a single MAD operation on a mixture of 16- and 32-bit inputs. They are listed here because they use the VOP3P encoding.

Scalar Memory Operations

Scalar Memory Read (SMEM) instructions allow a shader program to load data from memory into SGPRs through the Scalar Data Cache, or write data from SGPRs to memory through the Scalar Data Cache. Instructions can read from 1 to 16 Dwords, or write 1 to 4 Dwords at a time. Data is read directly into SGPRs without any format conversion.

The scalar unit reads and writes consecutive Dwords between memory and the SGPRs. This is intended primarily for loading ALU constants and for indirect T#/S# lookup. No data formatting is supported, nor is byte or short data.

Microcode Encoding

Scalar memory read, write and atomic instructions are encoded using the SMEM microcode format.

microcode smem

The fields are described in the table below:

Field

Size

Description

OP

8

Opcode.

IMM

1

Determines how the OFFSET field is interpreted.
IMM=1 : Offset is a 20-bit unsigned byte offset to the address.
IMM=0 : Offset[6:0] specifies an SGPR or M0 which provides an unsigned byte offset. STORE and ATOMIC instructions cannot use an SGPR: only imm or M0.

GLC

1

Globally Coherent.
For loads, controls L1 cache policy: 0=hit_lru, 1=miss_evict.
For stores, controls L1 cache bypass: 0=write-combine, 1=write-thru.
For atomics, “1” indicates that the atomic returns the pre-op value.

SDATA

7

SGPRs to return read data to, or to source write-data from.
Reads of two Dwords must have an even SDST-sgpr.
Reads of four or more Dwords must have their DST-gpr aligned to a multiple of 4.
SDATA must be: SGPR or VCC. Not: exec or m0.

SBASE

6

SGPR-pair (SBASE has an implied LSB of zero) which provides a base address, or for BUFFER instructions, a set of 4 SGPRs (4-sgpr aligned) which hold the resource constant. For BUFFER instructions, the only resource fields used are: base, stride, num_records.

OFFSET

20

An unsigned byte offset, or the address of an SGPR holding the offset. Writes and atomics: M0 or immediate only, not SGPR.

NV

1

Non-volatile.

SOE

1

Scalar Offset Enable.

Table: SMEM Encoding Field Descriptions

Operations

S_LOAD_DWORD, S_STORE_DWORD

These instructions load 1-16 Dwords or store 1-4 Dwords between SGPRs and memory. The data in SGPRs is specified in SDATA, and the address is composed of the SBASE, OFFSET, and SOFFSET fields.

Scalar Memory Addressing

S_LOAD / S_STORE / S_DACHE_DISCARD:

ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero }

S_SCRATCH_LOAD / S_SCRATCH_STORE:

ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero } * 64

Use of offset fields:

IMM

SOFFSET_EN (SOE)

Address

0

0

SGPR[base] + (SGPR[offset] or M0)

0

1

SGPR[base] + (SGPR[soffset] or M0)

1

0

SGPR[base] + inst_offset

1

1

SGPR[base] + inst_offset + (SGPR[soffset] or M0)

All components of the address (base, offset, inst_offset, M0) are in bytes, but the two LSBs are ignored and treated as if they were zero. S_DCACHE_DISCARD ignores the six LSBs to make the address 64-byte-aligned.

It is illegal and undefined if the inst_offset is negative and the resulting
(inst_offset + (M0 or SGPR[offset])) is negative.

Scalar access to private space must either use a buffer constant or manually convert the address:

Addr = Addr - private_base + private_base_addr + scratch_baseOffset_for_this_wave

“Hidden private base” is not available to the shader through hardware: It must be preloaded into an SGPR or made available through a constant buffer. This is equivalent to what the driver must do to calculate the base address from scratch for buffer constants.

A scalar instruction must not overwrite its own source registers because the possibility of the instruction being replayed due to an ATC XNACK. Similarly, instructions in scalar memory clauses must not overwrite the sources of any of the instructions in the clause. A clause is defined as a string of memory instructions of the same type. A clause is broken by any non-memory instruction.

Atomics are a special case because they are always naturally aligned and they must be in a single-instruction clause. By definition, an atomic that returns the pre-op value overwrites its data source, which is acceptable.

Reads/Writes/Atomics using Buffer Constant

Buffer constant fields used: base_address, stride, num_records, NV. Other fields are ignored.

Scalar memory read/write does not support “swizzled” buffers. Stride is used only for memory address bounds checking, not for computing the address to access.

The SMEM supplies only a SBASE address (byte) and an offset (byte or Dword). Any “index * stride” must be calculated manually in shader code and added to the offset prior to the SMEM.

The two LSBs of V#.base and of the final address are ignored to force Dword alignment.

"m_*" components come from the buffer constant (V#):
  offset     = IMM ? OFFSET : SGPR[OFFSET]
  m_base     = { SGPR[SBASE * 2 +1][15:0], SGPR[SBASE] }
  m_stride   = SGPR[SBASE * 2 +1][31:16]
  m_num_records = SGPR[SBASE * 2 + 2]
  m_size     = (m_stride == 0) ? 1 : m_num_records
  m_addr     = (SGPR[SBASE * 2] + offset) & ~0x3
  SGPR[SDST] = read_Dword_from_dcache(m_base, offset, m_size)

  If more than 1 dword is being read, it is returned to SDST+1, SDST+2, etc,
  and the offset is incremented by 4 bytes per DWORD.

Scalar Atomic Operations

The scalar memory unit supports the same set of memory atomics as the vector memory unit. Addressing is the same as for scalar memory loads and stores. Like the vector memory atomics, scalar atomic operations can return the “pre-operation value” to the SDATA SGPRs. This is enabled by setting the microcode GLC bit to 1.

S_DCACHE_INV, S_DCACHE_WB

This instruction invalidates, or does a “write back” of dirty data, for the entire data cache. It does not return anything to SDST.

S_MEMTIME

This instruction reads a 64-bit clock counter into a pair of SGPRs: SDST and SDST+1.

S_MEMREALTIME

This instruction reads a 64-bit “real time-counter” and returns the value into a pair of SGPRS: SDST and SDST+1. The time value is from a clock for which the frequency is constant (not affected by power modes or core clock frequency changes).

Dependency Checking

Scalar memory reads and writes can return data out-of-order from how they were issued; they can return partial results at different times when the read crosses two cache lines. The shader program uses the LGKM_CNT counter to determine when the data has been returned to the SDST SGPRs. This is done as follows.

  • LGKM_CNT is incremented by 1 for every fetch of a single Dword.

  • LGKM_CNT is incremented by 2 for every fetch of two or more Dwords.

  • LGKM_CNT is decremented by an equal amount when each instruction completes.

Because the instructions can return out-of-order, the only sensible way to use this counter is to implement S_WAITCNT 0; this imposes a wait for all data to return from previous SMEMs before continuing.

Alignment and Bounds Checking

SDST

The value of SDST must be even for fetches of two Dwords (including S_MEMTIME), or a multiple of four for larger fetches. If this rule is not followed, invalid data can result. If SDST is out-of-range, the instruction is not executed.

SBASE

The value of SBASE must be even for S_BUFFER_LOAD (specifying the address of an SGPR which is a multiple of four). If SBASE is out-of-range, the value from SGPR0 is used.

OFFSET

The value of OFFSET has no alignment restrictions.

Memory Address : If the memory address is out-of-range (clamped), the operation is not performed for any Dwords that are out-of-range.

Vector Memory Operations

Vector Memory (VMEM) instructions read or write one piece of data separately for each work-item in a wavefront into, or out of, VGPRs. This is in contrast to Scalar Memory instructions, which move a single piece of data that is shared by all threads in the wavefront. All Vector Memory (VM) operations are processed by the texture cache system (level 1 and level 2 caches).

Software initiates a load, store or atomic operation through the texture cache through one of three types of VMEM instructions:

  • MTBUF: Memory typed-buffer operations.

  • MUBUF: Memory untyped-buffer operations.

  • MIMG: Memory image operations.

The instruction defines which VGPR(s) supply the addresses for the operation, which VGPRs supply or receive data from the operation, and a series of SGPRs that contain the memory buffer descriptor (V# or T#). Also, MIMG operations supply a texture sampler from a series of four SGPRs; this sampler defines texel filtering operations to be performed on data read from the image.

Vector Memory Buffer Instructions

Vector-memory (VM) operations transfer data between the VGPRs and buffer objects in memory through the texture cache (TC). Vector means that one or more piece of data is transferred uniquely for every thread in the wavefront, in contrast to scalar memory reads, which transfer only one value that is shared by all threads in the wavefront.

Buffer reads have the option of returning data to VGPRs or directly into LDS.

Examples of buffer objects are vertex buffers, raw buffers, stream-out buffers, and structured buffers.

Buffer objects support both homogeneous and heterogeneous data, but no filtering of read-data (no samplers). Buffer instructions are divided into two groups:

  • MUBUF: Untyped buffer objects.

    • Data format is specified in the resource constant.

    • Load, store, atomic operations, with or without data format conversion.

  • MTBUF: Typed buffer objects.

    • Data format is specified in the instruction.

    • The only operations are Load and Store, both with data format conversion.

Atomic operations take data from VGPRs and combine them arithmetically with data already in memory. Optionally, the value that was in memory before the operation took place can be returned to the shader.

All VM operations use a buffer resource constant (V#) which is a 128-bit value in SGPRs. This constant is sent to the texture cache when the instruction is executed. This constant defines the address and characteristics of the buffer in memory. Typically, these constants are fetched from memory using scalar memory reads prior to executing VM instructions, but these constants also can be generated within the shader.

Simplified Buffer Addressing

The equation below shows how the hardware calculates the memory address for a buffer access.

fig 8 1

Buffer Instructions

Buffer instructions (MTBUF and MUBUF) allow the shader program to read from, and write to, linear buffers in memory. These operations can operate on data as small as one byte, and up to four Dwords per work-item. Atomic arithmetic operations are provided that can operate on the data values in memory and, optionally, return the value that was in memory before the arithmetic operation was performed.

The D16 instruction variants convert the results to packed 16-bit values. For example, BUFFER_LOAD_FORMAT_D16_XYZW will write two VGPRs.

Instruction

Description

MTBUF Instructions

TBUFFER_LOAD_FORMAT_{x,x y,xyz,xyzw}
TBUFFER_STORE_FORMAT_{x, xy,xyz,xyzw}

Read from, or write to, a typed buffer object. Also used for a vertex fetch.

MUBUF Instructions

BUFFER_LOAD_FORMAT_{x,xy ,xyz,xyzw}
BUFFER_STORE_FORMAT_{x,x y,xyz,xyzw}
BUFFER_LOAD_<size>
BUFFER_STORE_<size>
Read to, or write from, an untyped buffer object.
<size> = byte, ubyte, short, ushort, Dword, Dwordx2, Dwordx3, Dwordx4 BUFFER_ATOMIC_<op>
BUFFER_ATOMIC_<op>_ x2

Table: Buffer Instructions

Field

Bit Size

Description

OP

4
7
MTBUF: Opcode for Typed buffer instructions.
MUBUF: Opcode for Untyped buffer instructions.

VADDR

8

Address of VGPR to supply first component of address (offset or index). When both index and offset are used, index is in the first VGPR, offset in the second.

VDATA

8

Address of VGPR to supply first component of write data or receive first component of read-data.

SOFFSET

8

SGPR to supply unsigned byte offset. Must be an SGPR, M0, or inline constant.

SRSRC

5

Specifies which SGPR supplies T# (resource constant) in four or eight consecutive SGPRs. This field is missing the two LSBs of the SGPR address, since this address must be aligned to a multiple of four SGPRs.

DFMT

4

Data Format of data in memory buffer:
0 invalid
1 8
2 16
3 8_8
4 32
5 16_16
6 10_11_11
7 11_11_10
8 10_10_10_2
9 2_10_10_10
10 8_8_8_8
11 32_32
12 16_16_16_16
13 32_32_32
14 32_32_32_32
15 reserved

NFMT

3

Numeric format of data in memory:
0 unorm
1 snorm
2 uscaled
3 sscaled
4 uint
5 sint
6 reserved
7 float

OFFSET

12

Unsigned byte offset.

OFFEN

1

1 = Supply an offset from VGPR (VADDR). 0 = Do not (offset = 0).

IDXEN

1

1 = Supply an index from VGPR (VADDR). 0 = Do not (index = 0).

GLC

1

Globally Coherent. Controls how reads and writes are handled by the L1 texture cache.
READ
GLC = 0 Reads can hit on the L1 and persist across wavefronts
GLC = 1 Reads always miss the L1 and force fetch to L2. No L1 persistence across waves.
WRITE
GLC = 0 Writes miss the L1, write through to L2, and persist in L1 across wavefronts.
GLC = 1 Writes miss the L1, write through to L2. No persistence across wavefronts.
ATOMIC
GLC = 0 Previous data value is not returned. No L1 persistence across wavefronts.
GLC = 1 Previous data value is returned. No L1 persistence across wavefronts.
Note: GLC means “return pre-op value” for atomics.

SLC

1

System Level Coherent. When set, accesses are forced to miss in level 2 texture cache and are coherent with system memory.

TFE

1

Texel Fail Enable for PRT (partially resident textures). When set to 1, fetch can return a NACK that causes a VGPR write into DST+1 (first GPR after all fetch-dest GPRs).

LDS

1

MUBUF-ONLY: 0 = Return read-data to VGPRs. 1 = Return read-data to LDS instead of VGPRs.

Table: Microcode Formats

VGPR Usage

VGPRs supply address and write-data; also, they can be the destination for return data (the other option is LDS).

Address

Zero, one or two VGPRs are used, depending of the offset-enable (OFFEN) and index-enable (IDXEN) in the instruction word, as shown in the table below:

IDXEN

OFFEN

VGPRn

VGPRn+1

0

0

nothing

0

1

uint offset

1

0

uint index

1

1

uint index

uint offset

Table: Address VGPRs

Write Data : N consecutive VGPRs, starting at VDATA. The data format specified in the instruction word (NFMT, DFMT for MTBUF, or encoded in the opcode field for MUBUF) determines how many Dwords to write.

Read Data : Same as writes. Data is returned to consecutive GPRs.

Read Data Format : Read data is always 32 bits, based on the data format in the instruction or resource. Float or normalized data is returned as floats; integer formats are returned as integers (signed or unsigned, same type as the memory storage format). Memory reads of data in memory that is 32 or 64 bits do not undergo any format conversion.

Atomics with Return : Data is read out of the VGPR(s) starting at VDATA to supply to the atomic operation. If the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at VDATA.

Buffer Data

The amount and type of data that is read or written is controlled by the following: data-format (dfmt), numeric-format (nfmt), destination-component-selects (dst_sel), and the opcode. Dfmt and nfmt can come from the resource, instruction fields, or the opcode itself. Dst_sel comes from the resource, but is ignored for many operations.

Instruction

Data Format

Num Format

DST SEL

TBUFFER_LOAD_FOR MAT_*

instruction

instruction

identity

TBUFFER_STORE_FO RMAT_*

instruction

instruction

identity

BUFFER_LOAD_<typ e>

derived

derived

identity

BUFFER_STORE_<ty pe>

derived

derived

identity

BUFFER_LOAD_FORM AT_*

resource

resource

resource

BUFFER_STORE_FOR MAT_*

resource

resource

resource

BUFFER_ATOMIC_*

derived

derived

identity

Table: Buffer Instructions

Instruction : The instruction’s dfmt and nfmt fields are used instead of the resource’s fields.

Data format derived : The data format is derived from the opcode and ignores the resource definition. For example, buffer_load_ubyte sets the data-format to 8 and number-format to uint.

Note

The resource’s data format must not be INVALID; that format has special meaning (unbound resource), and for that case the data format is not replaced by the instruction’s implied data format.

DST_SEL identity : Depending on the number of components in the data-format, this is: X000, XY00, XYZ0, or XYZW.

The MTBUF derives the data format from the instruction. The MUBUF BUFFER_LOAD_FORMAT and BUFFER_STORE_FORMAT instructions use dst_sel from the resource; other MUBUF instructions derive data-format from the instruction itself.

D16 Instructions : Load-format and store-format instructions also come in a “d16” variant. For stores, each 32-bit VGPR holds two 16-bit data elements that are passed to the texture unit. This texture unit converts them to the texture format before writing to memory. For loads, data returned from the texture unit is converted to 16 bits, and a pair of data are stored in each 32-bit VGPR (LSBs first, then MSBs). Control over int vs. float is controlled by NFMT.

Buffer Addressing

A buffer is a data structure in memory that is addressed with an index and an offset. The index points to a particular record of size stride bytes, and the offset is the byte-offset within the record. The stride comes from the resource, the index from a VGPR (or zero), and the offset from an SGPR or VGPR and also from the instruction itself.

Field

Size

Description

inst_offset

12

Literal byte offset from the instruction.

inst_idxen

1

Boolean: get index from VGPR when true, or no index when false.

inst_offen

1

Boolean: get offset from VGPR when true, or no offset when false. Note that inst_offset is always present, regardless of this bit.

Table: BUFFER Instruction Fields for Addressing

The “element size” for a buffer instruction is the amount of data the instruction transfers. It is determined by the DFMT field for MTBUF instructions, or from the opcode for MUBUF instructions. It can be 1, 2, 4, 8, or 16 bytes.

Field

Size

Description

const_base

48

Base address, in bytes, of the buffer resource.

const_stride

14
or
18
Stride of the record in bytes (0 to 16,383 bytes, or 0 to 262,143 bytes). Normally 14 bits, but is extended to 18-bits when:
const_add_tid_enabl e = true used with MUBUF instructions which are not format types (or cache invalidate/WB).
This is extension intended for use with scratch (private) buffers.
If (const_add_tid_en
able && MUBUF-non-
format instr.)
    const_stride [17:0
] = { V#.DFMT[3:0],

    V#.const_stride[13
:0] }
  else
    const_stride is 14
bits: {4'b0, V#.const_s
tride[13:0]}

const_num_records

32

Number of records in the buffer.
In units of Bytes for raw buffers, units of Stride for structured buffers, and ignored for private (scratch) buffers.
In units of: (inst_idxen == 1) ? Bytes : Stride

const_add_tid_enable

1

Boolean. Add thread_ID within the wavefront to the index when true.

const_swizzle_enable

1

Boolean. Indicates that the surface is swizzled when true.

const_element_size

2

Used only when const_swizzle_en = true. Number of contiguous bytes of a record for a given index (2, 4, 8, or 16 bytes).
Must be >= the maximum element size in the structure. const_stride must be an integer multiple of const_element_size.

const_index_stride

2

Used only when const_swizzle_en = true. Number of contiguous indices for a single element (of const_element_size) before switching to the next element. There are 8, 16, 32, or 64 indices.

Table: V# Buffer Resource Constant Fields for Addressing

Field

Size

Description

SGPR_offset

32

An unsigned byte-offset to the address. Comes from an SGPR or M0.

VGPR_offset

32

An optional unsigned byte-offset. It is per-thread, and comes from a VGPR.

VGPR_index

32

An optional index value. It is per-thread and comes from a VGPR.

Table: Address Components from GPRs

The final buffer memory address is composed of three parts:

  • the base address from the buffer resource (V#),

  • the offset from the SGPR, and

  • a buffer-offset that is calculated differently, depending on whether the buffer is linearly addressed (a simple Array-of-Structures calculation) or is swizzled.

Address Calculation for a Linear Buffer

Address Calculation for a Linear Buffer

Range Checking

Addresses can be checked to see if they are in or out of range. When an address is out of range, reads will return zero, and writes and atomics will be dropped. The address range check algorithm depends on the buffer type.

Private (Scratch) Buffer
Used when: AddTID==1 && IdxEn==0
For this buffer, there is no range checking.
Raw Buffer
Used when: AddTID==0 && SWizzleEn==0 && IdxEn==0
Out of Range if: (InstOffset + (OffEN ? vgpr_offset : 0)) >= NumRecords
Structured Buffer
Used when: AddTID==0 && Stride!=0 && IdxEn==1
Out of Range if: Index(vgpr) >= NumRecords

Notes:

  1. Reads that go out-of-range return zero (except for components with V#.dst_sel = SEL_1 that return 1).

  2. Writes that are out-of-range do not write anything.

  3. Load/store-format-* instruction and atomics are range-checked “all or nothing” - either entirely in or out.

  4. Load/store-Dword-x{2,3,4} and range-check per component.

Swizzled Buffer Addressing

Swizzled addressing rearranges the data in the buffer to help provide improved cache locality for arrays of structures. Swizzled addressing also requires Dword-aligned accesses. A single fetch instruction cannot attempt to fetch a unit larger than const-element-size. The buffer’s STRIDE must be a multiple of element_size.

Index = (inst_idxen ? vgpr_index : 0) +
        (const_add_tid_enable ? thread_id[5:0] : 0)

Offset = (inst_offen ? vgpr_offset : 0) + inst_offset

index_msb = index / const_index_stride
index_lsb = index % const_index_stride
offset_msb = offset / const_element_size
offset_lsb = offset % const_element_size

buffer_offset = (index_msb * const_stride + offset_msb *
                  const_element_size) * const_index_stride + index_lsb *
                  const_element_size + offset_lsb

Final Address = const_base + sgpr_offset + buffer_offset

Remember that the “sgpr_offset” is not a part of the “offset” term in the above equations.

Example of Buffer Swizzling

Example of Buffer Swizzling

Proposed Use Cases for Swizzled Addressing

Here are few proposed uses of swizzled addressing in common graphics buffers.

DX11 Raw Uav OpenCL Buffer Object

Dx11 Structured (literal offset)

Dx11 Structured (gpr offset)

Scratch

Ring / stream- out

Const Buffer

inst_vgpr_offset_en

T

F

T

T

T

T

inst_vgpr_index_en

F

T

T

F

F

F

const_stri de

na

<api>

<api>

scratch Size

na

na

const_add_tid_enabl e

F

F

F

T

T

F

const_buff er_swizzle

F

T

T

T

F

F

const_elem _size

na

4

4

4 or 16

na

4

const_inde x_stride

na

16

16

64

Table: Swizzled Buffer Use Cases

16-bit Memory Operations

The D16 buffer instructions allow a kernel to load or store just 16 bits per work item between VGPRs and memory. There are two variants of these instructions:

  • D16 loads data into or stores data from the lower 16 bits of a VGPR.

  • D16_HI loads data into or stores data from the upper 16 bits of a VGPR.

For example, BUFFER_LOAD_UBYTE_D16 reads a byte per work-item from memory, converts it to a 16-bit integer, then loads it into the lower 16 bits of the data VGPR.

Alignment

For Dword or larger reads or writes, the two LSBs of the byte-address are ignored, thus forcing Dword alignment.

Buffer Resource

The buffer resource describes the location of a buffer in memory and the format of the data in the buffer. It is specified in four consecutive SGPRs (four aligned SGPRs) and sent to the texture cache with each buffer instruction.

The table below details the fields that make up the buffer resource descriptor.

Bits

Size

Name

Description

47:0

48

Base address

Byte address.

61:48

14

Stride

Bytes 0 to 16383

62

1

Cache swizzle

Buffer access. Optionally, swizzle texture cache TC L1 cache banks.

63

1

Swizzle enable

Swizzle AOS according to stride, index_stride, and element_size, else linear (stride * index offset).

95:64

32

Num_records

In units of stride or bytes.

98:96

3

Dst_sel_x

Destination channel select:
0=0, 1=1, 4=R, 5=G, 6=B, 7=A

101:99

3

Dst_sel_y

104:102

3

Dst_sel_z

107:105

3

Dst_sel_w

110:108

3

Num format

Numeric data type (float, int, …. ). See instruction encoding for values.

114:111

4

Data format

Number of fields and size of each field. See instruction encoding for values. For MUBUF instructions with ADD_TID_EN = 1 This field holds Stride [17:14].

115

1

User VM Enable

Resource is mapped via tiled pool / heap.

116

1

User VM mode

Unmapped behavior: 0: null (return 0/drop,write); 1:invalid (results in error)

118:117

2

Index stride

8, 16, 32, or 64. Used for swizzled buffer addressing.

119

1

Add tid enable

Add thread ID to the index for to calculate the address.

122:120

3

RSVD

Reserved. Must be set to zero.

123

1

NV

Nonvolatile (0=volatile)

125:124

2

RSVD

Reserved. Must be set to zero.

127:126

2

Type

Value 0 for buffer. Overlaps upper two bits of fourbit TYPE field in 128bit T# resource.

Table: Buffer Resource Descriptor

A resource set to all zeros acts as an unbound texture or buffer (return 0,0,0,0).

Memory Buffer Load to LDS

The MUBUF instruction format allows reading data from a memory buffer directly into LDS without passing through VGPRs. This is supported for the following subset of MUBUF instructions.

  • BUFFER_LOAD_{ubyte, sbyte, ushort, sshort, dword, format_x}.

  • It is illegal to set the instruction’s TFE bit for loads to LDS.

LDS_offset = 16-bit unsigned byte offset from M0[15:0].
Mem_offset = 32-bit unsigned byte offset from an SGPR (the SOFFSET SGPR).
idx_vgpr = index value from a VGPR (located at VADDR). (Zero if idxen=0.)
off_vgpr = offset value from a VGPR (located at VADDR or VADDR+1). (Zero if offen=0.)

The figure below shows the components of the LDS and memory address calculation:

fig 8 5

TIDinWave is only added if the resource (T#) has the ADD_TID_ENABLE field set to 1, whereas LDS always adds it. The MEM_ADDR M# is in the VDATA field; it specifies M0.

Clamping Rules

Memory address clamping follows the same rules as any other buffer fetch. LDS address clamping: the return data must not be written outside the LDS space allocated to this wave.

  • Set the active-mask to limit buffer reads to those threads that return data to a legal LDS location.

  • The LDSbase (alloc) is in units of 32 Dwords, as is LDSsize.

  • M0[15:0] is in bytes.

GLC Bit Explained

The GLC bit means different things for loads, stores, and atomic ops.

GLC Meaning for Loads

  • For GLC==0

    • The load can read data from the GPU L1.

    • Typically, all loads (except load-acquire) use GLC==0.

  • For GLC==1

    • The load intentionally misses the GPU L1 and reads from L2. If there was a line in the GPU L1 that matched, it is invalidated; L2 is reread.

    • NOTE: L2 is not re-read for every work-item in the same wave-front for a single load instruction. For example: b=uav[N+tid] // assume this is a byte read w/ glc==1 and N is aligned to 64B In the above op, the first Tid of the wavefront brings in the line from L2 or beyond, and all 63 of the other Tids read from same 64 B cache line in the L1.

GLC Meaning for Stores

  • For GLC==0 This causes a write-combine across work-items of the wavefront store op; dirtied lines are written to the L2 automatically.

    • If the store operation dirtied all bytes of the 64 B line, it is left clean and valid in the L1; subsequent accesses to the cache are allowed to hit on this cache line.

    • Else do not leave write-combined lines in L1.

  • For GLC==1 Same as GLC==0, except the write-combined lines are not left in the line, even if all bytes are dirtied.

Atomics

  • For GLC == 0 No return data (this is “write-only” atomic op).

  • For GLC == 1 Returns previous value in memory (before the atomic operation).

Vector Memory (VM) Image Instructions

Vector Memory (VM) operations transfer data between the VGPRs and memory through the texture cache (TC). Vector means the transfer of one or more pieces of data uniquely for every work-item in the wavefront. This is in contrast to scalar memory reads, which transfer only one value that is shared by all work-items in the wavefront.

Examples of image objects are texture maps and typed surfaces.

Image objects are accessed using from one to four dimensional addresses; they are composed of homogeneous data of one to four elements. These image objects are read from, or written to, using IMAGE_* or SAMPLE_* instructions, all of which use the MIMG instruction format. IMAGE_LOAD instructions read an element from the image buffer directly into VGPRS, and SAMPLE instructions use sampler constants (S#) and apply filtering to the data after it is read. IMAGE_ATOMIC instructions combine data from VGPRs with data already in memory, and optionally return the value that was in memory before the operation.

All VM operations use an image resource constant (T#) that is a 256-bit value in SGPRs. This constant is sent to the texture cache when the instruction is executed. This constant defines the address, data format, and characteristics of the surface in memory. Some image instructions also use a sampler constant that is a 128-bit constant in SGPRs. Typically, these constants are fetched from memory using scalar memory reads prior to executing VM instructions, but these constants can also be generated within the shader.

Texture fetch instructions have a data mask (DMASK) field. DMASK specifies how many data components it receives. If DMASK is less than the number of components in the texture, the texture unit only sends DMASK components, starting with R, then G, B, and A. if DMASK specifies more than the texture format specifies, the shader receives zero for the missing components.

Image Instructions

This section describes the image instruction set, and the microcode fields available to those instructions.

MIMG

Description

SAMPLE_*

Read and filter data from a image object.

IMAGE_LOAD_<op>

Read data from an image object using one of the following: image_load, image_load_mip, image_load_{pck, pck_sgn, mip_pck, mip_pck_sgn}.

IMAGE_STORE
IMAGE_STORE_MIP

Store data to an image object. Store data to a specific mipmap level.

IMAGE_ATOMIC_<op>

Image atomic operation, which is one of the following: swap, cmpswap, add, sub, rsub, {u,s}{min,max}, and, or, xor, inc, dec, fcmpswap, fmin, fmax.

Table: Image Instructions

Field

Bit Size

Description

OP

7

Opcode.

VADDR

8

Address of VGPR to supply first component of address.

VDATA

8

Address of VGPR to supply first component of write data or receive first component of read-data.

SSAMP

5

SGPR to supply S# (sampler constant) in four consecutive SGPRs. Missing two LSBs of SGPR-address since must be aligned to a multiple of four SGPRs.

SRSRC

5

SGPR to supply T# (resource constant) in four or eight consecutive SGPRs. Missing two LSBs of SGPR-address since must be aligned to a multiple of four SGPRs.

UNRM

1

Force address to be un-normalized regardless of T#. Must be set to 1 for image stores and atomics.

DA

1

Shader declared an array resource to be used with this fetch.
When 1, the shader provides an array-index with the instruction.
When 0, no array index is provided.

DMASK

4

Data VGPR enable mask: one to four consecutive VGPRs. Reads: defines which components are returned.
0 = red, 1 = green, 2 = blue, 3 = alpha
Writes: defines which components are written with data from VGPRs (missing components get 0). Enabled components come from consecutive VGPRs.
For example: DMASK=1001: Red is in VGPRn and alpha in VGPRn+1. For D16 writes, DMASK is used only as a word count: each bit represents 16 bits of data to be written, starting at the LSBs of VADDR, the MSBs, VADDR+1, etc. Bit position is ignored.

GLC

1

Globally Coherent. Controls how reads and writes are handled by the L1 texture cache.
READ:
GLC = 0 Reads can hit on the L1 and persist across waves.
GLC = 1 Reads always miss the L1 and force fetch to L2. No L1 persistence across waves.
WRITE:
GLC = 0 Writes miss the L1, write through to L2, and persist in L1 across wavefronts.
GLC = 1 Writes miss the L1, write through to L2. No persistence across wavefronts.
ATOMIC:
GLC = 0 Previous data value is not returned. No L1 persistence across wavefronts.
GLC = 1 Previous data value is returned. No L1 persistence across wavefronts.

SLC

1

System Level Coherent. When set, accesses are forced to miss in level 2 texture cache and are coherent with system memory.

TFE

1

Texel Fail Enable for PRT (partially resident textures). When set, a fetch can return a NACK, which causes a VGPR write into DST+1 (first GPR after all fetch-dest GPRs).

LWE

1

Force data to be un-normalized, regardless of T#.

A16

1

Address components are 16-bits (instead of the usual 32 bits). When set, all address components are 16 bits (packed into two per Dword), except:
Texel offsets (three 6-bit uint packed into one Dword).
PCF reference (for _C instructions).
Address components are 16-bit uint for image ops without sampler; 16-bit float with sampler.

D16

1

VGPR-Data-16bit. On loads, convert data in memory to 16-bit format before storing it in VGPRs. For stores, convert 16-bit data in VGPRs to 32 bits before going to memory. Whether the data is treated as float or int is decided by NFMT. Allowed only with these opcodes:
IMAGE_SAMPLE*
IMAGE_GATHER4*, but not GATHER4H_PCK
IMAGE_LOAD
IMAGE_LOAD_MIP
IMAGE_STORE
IMAGE_STORE_MIP

Table: Instruction Fields

Image Opcodes with No Sampler

For image opcodes with no sampler, all VGPR address values are taken as uint. For cubemaps, face_id = slice * 6 + face.

The table below shows the contents of address VGPRs for the various image opcodes.

Image Opcode (Resource w/o Sampler)

Acnt

dim

VGPRn

VGPRn+1

VGPRn+2

VGPRn+3

get_resinfo

0

Any

mipid

load / store / atomics

0

1D

x

1

1D Array

x

slice

1

2D

x

y

2

2D MSAA

x

y

fragid

2

2D Array

x

y

slice

3

2D Array MSAA

x

y

slice

fragid

2

3D

x

y

z

2

Cube

x

y

face_id

load_mip / store_mip

1

1D

x

mipid

2

1D Array

x

slice

mipid

2

2D

x

y

mipid

3

2D Array

x

y

slice

mipid

3

3D

x

y

z

mipid

3

Cube

x

y

face_id

mipid

Table: Image Opcodes with No Sampler

Image Opcodes with a Sampler

For image opcodes with a sampler, all VGPR address values are taken as float. For cubemaps, face_id = slice * 8 + face.

Certain sample and gather opcodes require additional values from VGPRs beyond what is shown. These values are: offset, bias, z-compare, and gradients.

Image Opcode (w/ Sampler)

Acnt

dim

VGPRn

VGPRn+1

VGPRn+2

VGPRn+3

sample

0

1D

x

1

1D Array

x

slice

1

2D

x

y

2

2D interl aced

x

y

field

2

2D Array

x

y

slice

2

3D

x

y

z

2

Cube

x

y

face_id

sample_l

1

1D

x

lod

2

1D Array

x

slice

lod

2

2D

x

y

lod

3

2D interl aced

x

y

field

lod

3

2D Array

x

y

slice

lod

3

3D

x

y

z

lod

3

Cube

x

y

face_id

lod

sample_cl

1

1D

x

clamp

2

2

1D Array 2D

x

x

slice

y

clamp

clamp

3

2D interl aced

x

y

field

clamp

3

2D Array

x

y

slice

clamp

3

3D

x

y

z

clamp

3

Cube

x

y

face_id

clamp

gather4

1

2D

x

y

2

2D interl aced

x

y

field

2

2D Array

x

y

slice

2

Cube

x

y

face_id

gather4_l

2

2D

x

y

lod

3

2D interl aced

x

y

field

lod

3

2D Array

x

y

slice

lod

3

Cube

x

y

face_id

lod

gather4_cl

2

2D

x

y

clamp

3

2D interl aced

x

y

field

clamp

3

2D Array

x

y

slice

clamp

3

Cube

x

y

face_id

clamp

Table: Image Opcodes with Sampler

  1. Sample includes sample, sample_d, sample_b, sample_lz, sample_c, sample_c_d, sample_c_b, sample_c_lz, and getlod.

  2. Sample_l includes sample_l and sample_c_l.

  3. Sample_cl includes sample_cl, sample_d_cl, sample_b_cl, sample_c_cl, sample_c_d_cl, and sample_c_b_cl.

  4. Gather4 includes gather4, gather4_lz, gather4_c, and gather4_c_lz.

The table below lists and briefly describes the legal suffixes for image instructions:

Suffix

Meaning

Extra Addresses

Description

_L

LOD

LOD is used instead of TA computed LOD.

_B

LOD BIAS

1: lod bias

Add this BIAS to the LOD TA computes.

_CL

LOD CLAMP

Clamp the LOD to be no larger than this value.

_D

Derivative

2,4 or 6: slopes

Send dx/dv, dx/dy, etc. slopes to TA for it to used in LOD computation.

_CD

Coarse Derivative

Send dx/dv, dx/dy, etc. slopes to TA for it to used in LOD computation.

_LZ

Level 0

Force use of MIP level 0.

_C

PCF

1: z-comp

Percentage closer filtering.

_O

Offset

1: offsets

Send X, Y, Z integer offsets (packed into 1 Dword) to offset XYZ address.

Table: Sample Instruction Suffix Key

VGPR Usage

Address: The address consists of up to four parts:

{ offset } { bias } { z-compare } { derivative } { body }

These are all packed into consecutive VGPRs.

  • Offset: SAMPLE*O*, GATHER*O*
    One Dword of offset_xyz. The offsets are six-bit signed integers: X=[5:0], Y=[13:8], and Z=[21:16].
  • Bias: SAMPLE*B*, GATHER*B*. One Dword float.

  • Z-compare: SAMPLE*C*, GATHER*C*. One Dword.

  • Derivatives (sample_d, sample_cd): 2, 4, or 6 Dwords, packed one Dword per derivative as:

Image Dim

Vgpr N

N+1

N+2

N+3

N+4

N+5

1D

DX/DH

DX/DV

2D

DX/DH

DY/DH

DX/DV

DY/DV

3D

DX/DH

DY/DH

DZ/DH

DX/DV

DY/DV

DZ/DV

  • Body: One to four Dwords, as defined by the table: Address components are X,Y,Z,W with X in VGPR_M, Y in VGPR_M+1, etc. The number of components in “body” is the value of the ACNT field in the table, plus one.

  • Data: Written from, or returned to, one to four consecutive VGPRs. The amount of data read or written is determined by the DMASK field of the instruction.

  • Reads: DMASK specifies which elements of the resource are returned to consecutive VGPRs. The texture system reads data from memory and based on the data format expands it to a canonical RGBA form, filling in zero or one for missing components. Then, DMASK is applied, and only those components selected are returned to the shader.

  • Writes: When writing an image object, it is only possible to write an entire element (all components), not just individual components. The components come from consecutive VGPRs, and the texture system fills in the value zero for any missing components of the image’s data format; it ignores any values that are not part of the stored data format. For example, if the DMASK=1001, the shader sends Red from VGPR_N, and Alpha from VGPR_N+1, to the texture unit. If the image object is RGB, the texel is overwritten with Red from the VGPR_N, Green and Blue set to zero, and Alpha from the shader ignored.

  • Atomics: Image atomic operations are supported only on 32- and 64-bit-per pixel surfaces. The surface data format is specified in the resource constant. Atomic operations treat the element as a single component of 32- or 64-bits. For atomic operations, DMASK is set to the number of VGPRs (Dwords) to send to the texture unit. DMASK legal values for atomic image operations: no other values of DMASK are legal.
    0x1 = 32-bit atomics except cmpswap.
    0x3 = 32-bit atomic cmpswap.
    0x3 = 64-bit atomics except cmpswap.
    0xf = 64-bit atomic cmpswap.
  • Atomics with Return: Data is read out of the VGPR(s), starting at VDATA, to supply to the atomic operation. If the atomic returns a value to VGPRs, that data is returned to those same VGPRs starting at VDATA.

  • D16 Instructions: Load-format and store-format instructions also come in a “d16” variant. For stores, each 32-bit VGPR holds two 16-bit data elements that are passed to the texture unit. The texture unit converts them to the texture format before writing to memory. For loads, data returned from the texture unit is converted to 16 bits, and a pair of data are stored in each 32- bit VGPR (LSBs first, then MSBs). The DMASK bit represents individual 16- bit elements; so, when DMASK=0011 for an image-load, two 16-bit components are loaded into a single 32-bit VGPR.

Image Resource

The image resource (also referred to as T#) defines the location of the image buffer in memory, its dimensions, tiling, and data format. These resources are stored in four or eight consecutive SGPRs and are read by MIMG instructions.

Bits

Size

Name

Comments

128-bi t Resource : 1D-tex, 2d-tex, 2d-msaa (multi-s ample auto-ali asing)

39:0

40

base address

256-byte aligned. Also used for fmask-ptr.

51:40

12

min lod

4.8 (four uint bits, eight fraction bits) format.

57:52

6

data format

Number of comps, number of bits/comp.

61:58

4

num format

Numeric format.

62

1

NV

Non-volatile (0=volatile)

77:64

14

width

width-1 of mip0 in texels

91:78

14

height

height-1 of mip0 in texels

94:92

3

perf modulation

Scales sampler’s perf_z, perf_mip, aniso_bias, lod_bias_sec.

98:96

3

dst_sel_x

0 = 0, 1 = 1, 4 = R, 5 = G, 6 = B, 7 = A.

101:99

3

dst_sel_y

104:102

3

dst_sel_z

107:105

3

dst_sel_w

111:108

4

base level

largest mip level in the resource view. For msaa, set to zero.

115:112

4

last level

For msaa, holds number of samples

120:116

5

Tiling index

Lookuptable: 32 x 16
bank_width[2], bank_height[2], num_banks[2], tile_split[2], macro_tile_aspect[2], micro_tile_mode[2], array_mode[4].

127:124

4

type

0 = buf, 8 = 1d, 9 = 2d, 10 = 3d, 11 = cube, 12 = 1d-array, 13 = 2d-array, 14 = 2d-msaa, 15 = 2d-msaa-array. 1-7 are reserved.

256-bi t Resource : 1d-array , 2d-array , 3d, cubemap, MSAA

140:128

13

depth

depth-1 of mip0 for 3d map

156:141

16

pitch

In texel units.

159:157

3

border color swizzle

Specifies the channel ordering for border color independent of the T# dst_sel fields. 0=xyzw, 1=xwyz, 2=wqyx, 3=wxyz, 4=zyxw, 5=yxwz

176:173

4

Array Pitch

array pitch for quilts, encoded as: trunc(log2(array_pitch))+1

184:177

8

meta data address

bits[47:40]

185

1

meta_linear

forces metadata surface to be linear

186

1

meta_pipe_a ligned

maintain pipe alignment in metadata addressing

187

1

meta_rb_ali gned

maintain RB alignment in metadata addressing

191:188

4

Max Mip

Resource mipLevel-1. Describes the resource, as opposed to base_level and last_level, which describes the resouce view. For MSAA, holds log2(number of samples).

203:192

12

min LOD warn

Feedback trigger for LOD, in U4.8 format.

211:204

8

counter bank ID

PRT counter ID

212

1

LOD hardware count enable

PRT hardware counter enable

213

1

Compression Enable

enable delta color compression

214

1

Alpha is on MSB

Set to 1 if the surface’s component swap is not reversed (DCC)

215

1

Color Transform

Auto=0, none=1 (DCC)

255:216

40

Meta Data Address

Upper bits of meta-data address (DCC) [47:8]

Table: Image Resource Definition

All image resource view descriptors (T#’s) are written by the driver as 256 bits.

The MIMG-format instructions have a DeclareArray (DA) bit that reflects whether the shader was expecting an array-texture or simple texture to be bound. When DA is zero, the hardware does not send an array index to the texture cache. If the texture map was indexed, the hardware supplies an index value of zero. Indices sent for non-indexed texture maps are ignored.

Image Sampler

The sampler resource (also referred to as S#) defines what operations to perform on texture map data read by sample instructions. These are primarily address clamping and filter options. Sampler resources are defined in four consecutive SGPRs and are supplied to the texture cache with every sample instruction.

Bits

Size

Name

Description

2:0

3

clamp x

Clamp/wrap mode.

5:3

3

clamp y

8:6

3

clamp z

11:9

3

max aniso ratio

14:12

3

depth compare func

15

1

force unnormalized

Force address cords to be unorm.

18:16

3

aniso threshold

19

1

mc coord trunc

20

1

force degamma

26:21

6

aniso bias

u1.5.

27

1

trunc coord

28

1

disable cube wrap

30:29

2

filter_mode

Normal lerp, min, or max filter.

31

1

compat_mode

1 = new mode; 0 = legacy

43:32

12

min lod

u4.8.

55:44

12

max lod

u4.8.

59:56

4

perf_mip

63:60

4

perf z

77:64

14

lod bias

s5.8.

83:78

6

lod bias sec

s1.4.

85:84

2

xy mag filter

Magnification filter.

87:86

2

xy min filter

Minification filter.

89:88

2

z filter

91:90

2

mip filter

92

1

mip_point_precla mp

When mipfilter = point, add 0.5 before clamping.

93

1

disable_lsb_ceil

Disable ceiling logic in filter (rounds up).

94

1

Filter_Prec_Fix

95

1

Aniso_override

Disable Aniso filtering if base_level = last_level

107:96

12

border color ptr

125:108

18

unused

127:126

2

border color type

Opaque-black, transparent-black, white, use border color ptr.

Table: Image Sampler Definition

Data Formats

Data formats 0-15 are available to buffer resources, and all formats are available to image formats. The table below details all the data formats that can be used by image and buffer resources.

gfx9 valid texture formats

Vector Memory Instruction Data Dependencies

When a VM instruction is issued, the address is immediately read out of VGPRs and sent to the texture cache. Any texture or buffer resources and samplers are also sent immediately. However, write-data is not immediately sent to the texture cache.

The shader developer’s responsibility to avoid data hazards associated with VMEM instructions include waiting for VMEM read instruction completion before reading data fetched from the TC (VMCNT).

This is explained in the section:

Vector Memory Operations

Flat Memory Instructions

Flat Memory instructions read, or write, one piece of data into, or out of, VGPRs; they do this separately for each work-item in a wavefront. Unlike buffer or image instructions, Flat instructions do not use a resource constant to define the base address of a surface. Instead, Flat instructions use a single flat address from the VGPR; this addresses memory as a single flat memory space. This memory space includes video memory, system memory, LDS memory, and scratch (private) memory. It does not include GDS memory. Parts of the flat memory space may not map to any real memory, and accessing these regions generates a memory-violation error. The determination of the memory space to which an address maps is controlled by a set of “memory aperture” base and size registers.

Flat Memory Instruction

Flat memory instructions let the kernel read or write data in memory, or perform atomic operations on data already in memory. These operations occur through the texture L2 cache. The instruction declares which VGPR holds the address (either 32- or 64-bit, depending on the memory configuration), the VGPR which sends and the VGPR which receives data. Flat instructions also use M0 as described in the table below:

Field

Bit Size

Description

OP

7

Opcode. Can be Flat, Scratch or Global instruction. See next table.

ADDR

8

VGPR which holds the address. For 64-bit addresses, ADDR has the LSBs, and ADDR+1 has the MSBs.

DATA

8

VGPR which holds the first Dword of data. Instructions can use 0-4 Dwords.

VDST

8

VGPR destination for data returned to the kernel, either from LOADs or Atomics with GLC=1 (return pre-op value).

SLC

1

System Level Coherent. Used in conjunction with GLC to determine cache policies.

GLC

1

Global Level Coherent. For Atomics, GLC: 1 means return pre-op value, 0 means do not return pre-op value.

SEG

2

Memory Segment: 0=FLAT, 1=SCRATCH, 2=GLOBAL, 3=reserved.

LDS

1

When set, data is moved between LDS and memory instead of VGPRs and memory. For Global and Scratch only; must be zero for Flat.

NV

1

Non-volatile. When set, the read/write is operating on non-volatile memory.

OFFSET

13

Address offset.
Scratch, Global: 13-bit signed byte offset.
Flat: 12-bit unsigned offset (MSB is ignored).

SADDR

7

Scalar SGPR that provides an offset address. To disable, set this field to 0x7F. Meaning of this field is different for Scratch and Global:
Flat: Unused.
Scratch: Use an SGPR (instead of VGPR) for the address.
Global: Use the SGPR to provide a base address; the VGPR provides a 32-bit offset.

M0

16

Implied use of M0 for SCRATCH and GLOBAL only when LDS=1. Provides the LDS address-offset.

Table: Flat, Global and Scratch Microcode Formats

Flat Opcodes

Global Opcodes

Scratch Opcodes

FLAT

GLOBAL

SCRATCH

FLAT_LOAD_UBYTE

GLOBAL_LOAD_UBYTE

SCRATCH_LOAD_UBYTE

FLAT_LOAD_UBYTE_D16

GLOBAL_LOAD_UBYTE_D1 6

SCRATCH_LOAD_UBYTE_D1 6

FLAT_LOAD_UBYTE_D16_HI

GLOBAL_LOAD_UBYTE_D1 6_HI

SCRATCH_LOAD_UBYTE_D1 6_HI

FLAT_LOAD_SBYTE

GLOBAL_LOAD_SBYTE

SCRATCH_LOAD_SBYTE

FLAT_LOAD_SBYTE_D16

GLOBAL_LOAD_SBYTE_D1 6

SCRATCH_LOAD_SBYTE_D1 6

FLAT_LOAD_SBYTE_D16_HI

GLOBAL_LOAD_SBYTE_D1 6_HI

SCRATCH_LOAD_SBYTE_D1 6_HI

FLAT_LOAD_USHORT

GLOBAL_LOAD_USHORT

SCRATCH_LOAD_USHORT

FLAT_LOAD_SSHORT

GLOBAL_LOAD_SSHORT

SCRATCH_LOAD_SSHORT

FLAT_LOAD_SHORT_D16

GLOBAL_LOAD_SHORT_D1 6

SCRATCH_LOAD_SHORT_D1 6

FLAT_LOAD_SHORT_D16_HI

GLOBAL_LOAD_SHORT_D1 6_HI

SCRATCH_LOAD_SHORT_D1 6_HI

FLAT_LOAD_DWORD

GLOBAL_LOAD_DWORD

SCRATCH_LOAD_DWORD

FLAT_LOAD_DWORDX2

GLOBAL_LOAD_DWORDX2

SCRATCH_LOAD_DWORDX2

FLAT_LOAD_DWORDX3

GLOBAL_LOAD_DWORDX3

SCRATCH_LOAD_DWORDX3

FLAT_LOAD_DWORDX4

GLOBAL_LOAD_DWORDX4

SCRATCH_LOAD_DWORDX4

FLAT_STORE_BYTE

GLOBAL_STORE_BYTE

SCRATCH_STORE_BYTE

FLAT_STORE_BYTE_D16_HI

GLOBAL_STORE_BYTE_D1 6_HI

SCRATCH_STORE_BYTE_D1 6_HI

FLAT_STORE_SHORT

GLOBAL_STORE_SHORT

SCRATCH_STORE_SHORT

FLAT_STORE_SHORT_D16 _HI

GLOBAL_STORE_SHORT_D 16_HI

SCRATCH_STORE_SHORT_D 16_HI

FLAT_STORE_DWORD

GLOBAL_STORE_DWORD

SCRATCH_STORE_DWORD

FLAT_STORE_DWORDX2

GLOBAL_STORE_DWORDX2

SCRATCH_STORE_DWORDX2

FLAT_STORE_DWORDX3

GLOBAL_STORE_DWORDX3

SCRATCH_STORE_DWORDX3

FLAT_STORE_DWORDX4

GLOBAL_STORE_DWORDX4

SCRATCH_STORE_DWORDX4

FLAT_ATOMIC_SWAP

GLOBAL_ATOMIC_SWAP

none

FLAT_ATOMIC_CMPSWAP

GLOBAL_ATOMIC_CMPSWAP

none

FLAT_ATOMIC_ADD

GLOBAL_ATOMIC_ADD

none

FLAT_ATOMIC_SUB

GLOBAL_ATOMIC_SUB

none

FLAT_ATOMIC_SMIN

GLOBAL_ATOMIC_SMIN

none

FLAT_ATOMIC_UMIN

GLOBAL_ATOMIC_UMIN

none

FLAT_ATOMIC_SMAX

GLOBAL_ATOMIC_SMAX

none

FLAT_ATOMIC_UMAX

GLOBAL_ATOMIC_UMAX

none

FLAT_ATOMIC_AND

GLOBAL_ATOMIC_AND

none

FLAT_ATOMIC_OR

GLOBAL_ATOMIC_OR

none

FLAT_ATOMIC_XOR

GLOBAL_ATOMIC_XOR

none

FLAT_ATOMIC_INC

GLOBAL_ATOMIC_INC

none

FLAT_ATOMIC_DEC

GLOBAL_ATOMIC_DEC

none

The atomic instructions above are also available in “_X2” versions (64-bit).

Table: Flat, Global and Scratch Opcodes

Instructions

The FLAT instruction set is nearly identical to the Buffer instruction set, but without the FORMAT reads and writes. Unlike Buffer instructions, FLAT instructions cannot return data directly to LDS, but only to VGPRs.

FLAT instructions do not use a resource constant (V#) or sampler (S#); however, they do require a special SGPR-pair to hold scratch-space information in case any threads’ address resolves to scratch space. See the Scratch section for details.

Internally, FLAT instruction are executed as both an LDS and a Buffer instruction; so, they increment both VM_CNT and LGKM_CNT and are not considered done until both have been decremented. There is no way beforehand to determine whether a FLAT instruction uses only LDS or TA memory space.

Ordering

Flat instructions can complete out of order with each other. If one flat instruction finds all of its data in Texture cache, and the next finds all of its data in LDS, the second instruction might complete first. If the two fetches return data to the same VGPR, the result are unknown.

Importing Timing Consideration

Since the data for a FLAT load can come from either LDS or the texture cache, and because these units have different latencies, there is a potential race condition with respect to the VM_CNT and LGKM_CNT counters. Because of this, the only sensible S_WAITCNT value to use after FLAT instructions is zero.

Addressing

FLAT instructions support both 64- and 32-bit addressing. The address size is set using a mode register (PTR32), and a local copy of the value is stored per wave.

The addresses for the aperture check differ in 32- and 64-bit mode; however, this is not covered here.

64-bit addresses are stored with the LSBs in the VGPR at ADDR, and the MSBs in the VGPR at ADDR+1.

For scratch space, the texture unit takes the address from the VGPR and does the following.

Address = VGPR[addr] + TID_in_wave * Size
          - private aperture base (in SH_MEM_BASES)
          + offset (from flat_scratch)

Global

Global instructions are similar to Flat instructions, but the programmer must ensure that no threads access LDS space; thus, no LDS bandwidth is used by global instructions.

Global instructions offer two types of addressing:

  • Memory_addr = VGPR-address + instruction offset.

  • Memory_addr = SGPR-address + VGPR-offset + instruction offset.

The size of the address component is dependent on ADDRESS_MODE: 32-bits or 64-bit pointers. The VGPR-offset is always 32 bits.

These instructions also allow direct data movement between LDS and memory without going through VGPRs.

Since these instructions do not access LDS, only VM_CNT is used, not LGKM_CNT. If a global instruction does attempt to access LDS, the instruction returns MEM_VIOL.

Scratch

Scratch instructions are similar to Flat, but the programmer must ensure that no threads access LDS space, and the memory space is swizzled. Thus, no LDS bandwidth is used by scratch instructions.

Scratch instructions also support multi-Dword access and mis-aligned access (although mis-aligned is slower).

Scratch instructions use the following addressing:

  • Memory_addr = flat_scratch.addr + swizzle(V/SGPR_offset + inst_offset, threadID)

  • The offset can come from either an SGPR or a VGPR, and is always a 32- bit unsigned byte.

The size of the address component is dependent on the ADDRESS_MODE: 32-bits or 64-bit pointers. The VGPR-offset is always 32 bits.

These instructions also allow direct data movement between LDS and memory without going through VGPRs.

Since these instructions do not access LDS, only VM_CNT is used, not LGKM_CNT. It is not possible for a Scratch instruction to access LDS; thus, no error or aperture checking is done.

Memory Error Checking

Both TA and LDS can report that an error occurred due to a bad address. This can occur for the following reasons:

  • invalid address (outside any aperture)

  • write to read-only surface

  • misaligned data

  • out-of-range address:

    • LDS access with an address outside the range: [ 0, MIN(M0, LDS_SIZE)-1 ]

    • Scratch access with an address outside the range: [0, scratch-size -1 ]

The policy for threads with bad addresses is: writes outside this range do not write a value, and reads return zero.

Addressing errors from either LDS or TA are returned on their respective “instruction done” busses as MEM_VIOL. This sets the wave’s MEM_VIOL TrapStatus bit and causes an exception (trap) if the corresponding EXCPEN bit is set.

Data

FLAT instructions can use zero to four consecutive Dwords of data in VGPRs and/or memory. The DATA field determines which VGPR(s) supply source data (if any), and the VDST VGPRs hold return data (if any). No data-format conversion is done.

Scratch Space (Private)

Scratch (thread-private memory) is an area of memory defined by the aperture registers. When an address falls in scratch space, additional address computation is automatically performed by the hardware. The kernel must provide additional information for this computation to occur in the form of the FLAT_SCRATCH register.

The FLAT_SCRATCH address is automatically sent with every FLAT request.

FLAT_SCRATCH is a 64-bit, byte address. The shader composes the value by adding together two separate values: the base address, which can be passed in via an initialized SGPR, or perhaps through a constant buffer, and the per-wave allocation offset (also initialized in an SGPR).

Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for temporary data with at least one order of magnitude higher effective bandwidth than direct, uncached global memory. It permits sharing of data between work-items in a work-group, as well as holding parameters for pixel shader parameter interpolation. Unlike read-only caches, the LDS permits high-speed write-to-read re-use of the memory space (full gather/read/load and scatter/write/store operations).

Overview

The figure below shows the conceptual framework of the LDS is integration into the memory of AMD GPUs using OpenCL.

../_images/fig_10_1.png
alt

High-Level Memory Configuration

High-Level Memory Configuration

Physically located on-chip, directly next to the ALUs, the LDS is approximately one order of magnitude faster than global memory (assuming no bank conflicts).

There are 64 kB memory per compute unit, segmented into 32 of 512 Dwords. Each bank is a 256x32 two-port RAM (1R/1W per clock cycle). Dwords are placed in the banks serially, but all banks can execute a store or load simultaneously. One work-group can request up to 64 kB memory. Reads across wavefront are dispatched over four cycles in waterfall.

The high bandwidth of the LDS memory is achieved not only through its proximity to the ALUs, but also through simultaneous access to its memory banks. Thus, it is possible to concurrently execute 32 write or read instructions, each nominally 32-bits; extended instructions, read2/write2, can be 64-bits each. If, however, more than one access attempt is made to the same bank at the same time, a bank conflict occurs. In this case, for indexed and atomic operations, hardware prevents the attempted concurrent accesses to the same bank by turning them into serial accesses. This decreases the effective bandwidth of the LDS. For maximum throughput (optimal efficiency), therefore, it is important to avoid bank conflicts. A knowledge of request scheduling and address mapping is key to achieving this.

Dataflow in Memory Hierarchy

The figure below is a conceptual diagram of the dataflow withing the memory structure.

fig 10 2

To load data into LDS from global memory, it is read from global memory and placed into the work-item’s registers; then, a store is performed to LDS. Similarly, to store data into global memory, data is read from LDS and placed into the workitem’s registers, then placed into global memory. To make effective use of the LDS, an algorithm must perform many operations on what is transferred between global memory and LDS. It also is possible to load data from a memory buffer directly into LDS, bypassing VGPRs.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are not directly used for these operations, latency is incurred by the LDS executing this function.)

LDS Access

The LDS is accessed in one of three ways:

  • Direct Read

  • Parameter Read

  • Indexed or Atomic

The following subsections describe these methods.

LDS Direct Reads

Direct reads are only available in LDS, not in GDS.

LDS Direct reads occur in vector ALU (VALU) instructions and allow the LDS to supply a single DWORD value which is broadcast to all threads in the wavefront and is used as the SRC0 input to the ALU operations. A VALU instruction indicates that input is to be supplied by LDS by using the LDS_DIRECT for the SRC0 field.

The LDS address and data-type of the data to be read from LDS comes from the M0 register:

LDS_addr = M0[15:0] (byte address and must be Dword aligned)
DataType = M0[18:16]
    0 unsigned byte
    1 unsigned short
    2 Dword
    3 unused
    4 signed byte
    5 signed short

LDS Parameter Reads

Parameter reads are only available in LDS, not in GDS.

Pixel shaders use LDS to read vertex parameter values; the pixel shader then interpolates them to find the per-pixel parameter values. LDS parameter reads occur when the following opcodes are used.

  • V_INTERP_P1_F32 D = P10 * S + P0 Parameter interpolation, first step.

  • V_INTERP_P2_F32D = P20 * S + DParameter interpolation, second step.

  • V_INTERP_MOV_F32D = {P10,P20,P0}[S]Parameter load.

The typical parameter interpolation operations involves reading three parameters: P0, P10, and P20, and using the two barycentric coordinates, I and J, to determine the final per-pixel value:

Final value = P0 + P10 * I + P20 * J

Parameter interpolation instructions indicate the parameter attribute number (0 to 32) and the component number (0=x, 1=y, 2=z and 3=w).

Field

Size

Description

VDST

8

Destination VGPR. Also acts as source for v_interp_p2_f32.

OP

2

Opcode:
0: v_interp_p1_f32 VDST = P10 * VSRC + P0
1: v_interp_p2_f32 VDST = P20 * VSRC + VDST
2: v_interp_mov_f32 VDST = (P0, P10 or P20 selected by VSRC[1:0])
P0, P10 and P20 are parameter values read from LDS

ATTR

6

Attribute number: 0 to 32.

ATTRCHAN

2

0=X, 1=Y, 2=Z, 3=W

VSRC

8

Source VGPR supplies interpolation “I” or “J” value. For OP==v_interp_mov_f32: 0=P10, 1=P20, 2=P0. VSRC must not be the same register as VDST because 16-bank LDS chips implement v_interp_p1 as a macro of two instructions.

( M0 )

32

Use of the M0 register is automatic. M0 must contain: { 1’b0, new_prim_mask[15:1], lds_param_offset[15:0] }

Table: Parameter Instruction Fields

Parameter interpolation and parameter move instructions must initialize the M0 register before using it. The lds_param_offset[15:0] is an address offset from the beginning of LDS storage allocated to this wavefront to where parameters begin in LDS memory for this wavefront. The new_prim_mask is a 15-bit mask with one bit per quad; a one in this mask indicates that this quad begins a new primitive, a zero indicates it uses the same primitive as the previous quad. The mask is 15 bits, not 16, since the first quad in a wavefront always begins a new primitive and so it is not included in the mask.

Data Share Indexed and Atomic Access

Both LDS and GDS can perform indexed and atomic data share operations. For brevity, “LDS” is used in the text below and, except where noted, also applies to GDS.

Indexed and atomic operations supply a unique address per work-item from the VGPRs to the LDS, and supply or return unique data per work-item back to VGPRs. Due to the internal banked structure of LDS, operations can complete in as little as two cycles, or take as many 64 cycles, depending upon the number of bank conflicts (addresses that map to the same memory bank).

Indexed operations are simple LDS load and store operations that read data from, and return data to, VGPRs.

Atomic operations are arithmetic operations that combine data from VGPRs and data in LDS, and write the result back to LDS. Atomic operations have the option of returning the LDS “pre-op” value to VGPRs.

The table below lists and briefly describes the LDS instruction fields.

Field

Size

Description

OP

7

LDS opcode.

GDS

1

0 = LDS, 1 = GDS.

OFFSET0

8

Immediate offset, in bytes. Instructions with one address combine the offset fields into a single 16-bit unsigned offset: {offset1, offset0}. Instructions with two addresses (for example: READ2) use the offsets separately as two 8- bit unsigned offsets. DS_*_SRC2_* ops treat the offset as a 16-bit signed Dword offset.

OFFSET1

8

VDST

8

VGPR to which result is written: either from LDS-load or atomic return value.

ADDR

8

VGPR that supplies the byte address offset.

DATA0

8

VGPR that supplies first data source.

DATA1

8

VGPR that supplies second data source.

Table: LDS Instruction Fields

All LDS operations require that M0 be initialized prior to use. M0 contains a size value that can be used to restrict access to a subset of the allocated LDS range. If no clamping is wanted, set M0 to 0xFFFFFFFF.

Load / Store

Description

DS_READ_{B32 ,B64,B96,B128, U8,I8,U16,I16}

Read one value per thread; sign extend to Dword, if signed.

DS_READ2_{B3 2,B64}

Read two values at unique addresses.

DS_READ2ST64_{B32,B64}

Read 2 values at unique addresses; offset *= 64.

DS_WRITE_{B3 2,B64,B96,B128 ,B8,B16}

Write one value.

DS_WRITE2_{B 32,B64}

Write two values.

DS_WRITE2ST64 _{B32,B64}

Write two values, offset *= 64.

DS_WRXCHG2_R TN_{B32,B64}

Exchange GPR with LDS-memory.

DS_WRXCHG2ST6 4_RTN_{B32,B 64}

Exchange GPR with LDS-memory; offset *= 64.

DS_PERMUTE_B 32

Forward permute. Does not write any LDS memory.
LDS[dst] = src0
returnVal = LDS[thread_id]
where thread_id is 0..63.

DS_BPERMUTE_ B32

Backward permute. Does not actually write any LDS memory.
LDS[thread_id] = src0
where thread_id is 0..63, and returnVal = LDS[dst].

Table: LDS Indexed Load/Store

Single Address Instructions
LDS_Addr = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}
Double Address Instructions
LDS_Addr0 = LDS_BASE + VGPR[ADDR] + InstrOffset0*ADJ +
LDS_Addr1 = LDS_BASE + VGPR[ADDR] + InstrOffset1*ADJ
   Where ADJ = 4 for 8, 16 and 32-bit data types; and ADJ = 8 for 64-bit.

Note that LDS_ADDR1 is used only for READ2*, WRITE2*, and WREXCHG2*.

M0[15:0] provides the size in bytes for this access. The size sent to LDS is MIN(M0, LDS_SIZE), where LDS_SIZE is the amount of LDS space allocated by the shader processor interpolator, SPI, at the time the wavefront was created.

The address comes from VGPR, and both ADDR and InstrOffset are byte addresses.

At the time of wavefront creation, LDS_BASE is assigned to the physical LDS region owned by this wavefront or work-group.

Specify only one address by setting both offsets to the same value. This causes only one read or write to occur and uses only the first DATA0.

SRC2 Ops The ds_<op>_src2_<type> opcodes are different. These operands perform an atomic operation on 2 operands from the LDS memory: one is viewed as the data and the other is the second source operand and the final destination. The addressing for these can operate in two different modes depending on the MSB of offset1[7]: If it is 0, the offset for the data term is derived by the offset fields as a SIGNED dword offset:

LDS_Addr0 = LDS_BASE + VGPR(ADDR) + SIGNEXTEND(InstrOffset1[6:0],InstrOffset0))<<2    // data term
LDS_Addr1 = LDS_BASE + VGPR(ADDR)                 // second source and final destination address

If the bit is 1, the offset for the data term becomes per thread and is a SIGNED dword offset derived from the msbs read from the VGPR for the index. The addressing becomes:

LDS_Addr0 = LDS_BASE + VGPR(ADDR)[16:0] + SIGNEXTEND(VGPR(ADDR)[31:17])<<2      // data term
LDS_Addr1 = LDS_BASE + VGPR(ADDR)[16:0]     // second source and final destination address

LDS Atomic Ops DS_<atomicOp> OP, GDS=0, OFFSET0, OFFSET1, VDST, ADDR, Data0, Data1

Data size is encoded in atomicOp: byte, word, Dword, or double.

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}

ADDR is a Dword address. VGPRs 0,1 and dst are double-GPRs for doubles data.

VGPR data sources can only be VGPRs or constant values, not SGPRs.

Exporting Pixel and Vertex Data

The export instruction copies pixel or vertex shader data from VGPRs into a dedicated output buffer. The export instruction outputs the following types of data.

  • Vertex Position

  • Vertex Parameter

  • Pixel color

  • Pixel depth (Z)

Microcode Encoding

The export instruction uses the EXP microcode format.

microcode exp

Field

Size

Description

VM

1

Valid Mask. When set to 1, this indicates that the EXEC mask represents the valid-mask for this wavefront. It can be sent multiple times per shader (the final value is used), but must be sent at least once per pixel shader.

DONE

1

This is the final pixel shader or vertex-position export of the program. Used only for pixel and position exports. Set to zero for parameters.

COMPR

1

Compressed data. When set, indicates that the data being exported is 16-bits per component rather than the usual 32-bit.

TARGET

6

Indicates type of data exported.
0..7 MRT 0..7
8 Z
9 Null (no data)
12-15 Position 0..3
32-63 Param 0..31

EN

4

COMPR==1: export half-Dword enable. Valid values are: 0x0,3,C,F.
[0] enables VSRC0 : R,G from one VGPGR
[2] enables VSRC1 : B,A from one VGPR
COMPR==0: [0-3] = enables for VSRC0..3.
EN can be zero (used when exporting only valid mask to NULL target).

VSRC3

8

VGPR from which to read data.
Pos & Param: vsrc0=X, 1=Y, 2=Z, 3=W
MRT: vsrc0=R, 1=G, 2=B, 3=A

VSRC2

8

VSRC1

8

VSRC0

8

Table: EXP Encoding Field Descriptions

Operations

Pixel Shader Exports

Export instructions copy color data to the MRTs. Data always has four components (R, G, B, A). Optionally, export instructions also output depth (Z) data.

Every pixel shader must have at least one export instruction. The last export instruction executed must have the DONE bit set to one.

The EXEC mask is applied to all exports. Only pixels with the corresponding EXEC bit set to 1 export data to the output buffer. Results from multiple exports are accumulated in the output buffer.

At least one export must have the VM bit set to 1. This export, in addition to copying data to the color or depth output buffer, also informs the color buffer which pixels are valid and which have been discarded. The value of the EXEC mask communicates the pixel valid mask. If multiple exports are sent with VM set to 1, the mask from the final export is used. If the shader program wants to only update the valid mask but not send any new data, the program can do an export to the NULL target.

Vertex Shader Exports

The vertex shader uses export instructions to output vertex position data and vertex parameter data to the output buffer. This data is passed on to subsequent pixel shaders.

Every vertex shader must output at least one position vector (x, y, z; w is optional) to the POS0 target. The last position export must have the DONE bit set to 1. A vertex shader can export zero or more parameters. For best performance, it is best to output all position data as early as possible in the vertex shader.

Dependency Checking

Export instructions are executed by the hardware in two phases. First, the instruction is selected to be executed, and EXPCNT is incremented by 1. At this time, the hardware requests the use of internal busses needed to complete the instruction.

When access to the bus is granted, the EXEC mask is read and the VGPR data sent out. After the last of the VGPR data is sent, the EXPCNT counter is decremented by 1.

Use S_WAITCNT on EXPCNT to prevent the shader program from overwriting EXEC or the VGPRs holding the data to be exported before the export operation has completed.

Multiple export instructions can be outstanding at one time. Exports of the same type (for example: position) are completed in order, but exports of different types can be completed out of order.

If the STATUS register’s SKIP_EXPORT bit is set to one, the hardware treats all EXPORT instructions as if they were NOPs.

Instructions

This chapter lists, and provides descriptions for, all instructions in the GCN Vega Generation environment. Instructions are grouped according to their format.

Instruction suffixes have the following definitions:

  • B32 Bitfield (untyped data) 32-bit
  • B64 Bitfield (untyped data) 64-bit
  • F32 floating-point 32-bit (IEEE 754 single-precision float)
  • F64 floating-point 64-bit (IEEE 754 double-precision float)
  • I32 signed 32-bit integer
  • I64 signed 64-bit integer
  • U32 unsigned 32-bit integer
  • U64 unsigned 64-bit integer

If an instruction has two suffixes (for example, _I32_F32), the first suffix indicates the destination type, the second the source type.

The following abbreviations are used in instruction definitions:

  • D = destination
  • U = unsigned integer
  • S = source
  • SCC = scalar condition code
  • I = signed integer
  • B = bitfield

Note: .u or .i specifies to interpret the argument as an unsigned or signed float.

Note: Rounding and Denormal modes apply to all floating-point operations unless otherwise specified in the instruction description.

SOP2 Instructions

microcode sop2

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

S_ADD_U32

D.u = S0.u + S1.u; SCC = (S0.u + S1.u >= 0x100000000ULL ? 1 : 0). // unsigned overflow/carry-out, S_ADDC_U32

1

S_SUB_U32

D.u = S0.u - S1.u; SCC = (S1.u > S0.u ? 1 : 0). // unsigned overflow or carry-out for S_SUBB_U32.

2

S_ADD_I32

D.i = S0.i + S1.i; SCC = (S0.u[31] == S1.u[31] && S0.u[31] != D.u[31]). // signed overflow. This opcode is not suitable for use with S_ADDC_U32 for implementing 64-bit operations.

3

S_SUB_I32

D.i = S0.i - S1.i; SCC = (S0.u[31] != S1.u[31] && S0.u[31] != D.u[31]). // signed overflow. This opcode is not suitable for use with S_SUBB_U32 for implementing 64-bit operations.

4

S_ADDC_U32

D.u = S0.u + S1.u + SCC; SCC = (S0.u + S1.u + SCC >= 0x100000000ULL ? 1 : 0). // unsigned overflow.

5

S_SUBB_U32

D.u = S0.u - S1.u - SCC; SCC = (S1.u + SCC > S0.u ? 1 : 0). // unsigned overflow.

6

S_MIN_I32

D.i = (S0.i < S1.i) ? S0.i : S1.i; SCC = (S0.i < S1.i).

7

S_MIN_U32

D.u = (S0.u < S1.u) ? S0.u : S1.u; SCC = (S0.u < S1.u).

8

S_MAX_I32

D.i = (S0.i > S1.i) ? S0.i : S1.i; SCC = (S0.i > S1.i).

9

S_MAX_U32

D.u = (S0.u > S1.u) ? S0.u : S1.u; SCC = (S0.u > S1.u).

10

S_CSELECT_B3 2

D.u = SCC ? S0.u : S1.u. Conditional select.

11

S_CSELECT_B6 4

D.u64 = SCC ? S0.u64 : S1.u64. Conditional select.

12

S_AND_B32

D = S0 & S1; SCC = (D != 0).

13

S_AND_B64

D = S0 & S1; SCC = (D != 0).

14

S_OR_B32

D = S0 | S1; SCC = (D != 0).

15

S_OR_B64

D = S0 | S1; SCC = (D != 0).

16

S_XOR_B32

D = S0 ^ S1; SCC = (D != 0).

17

S_XOR_B64

D = S0 ^ S1; SCC = (D != 0).

18

S_ANDN2_B32

D = S0 & ~S1; SCC = (D != 0).

19

S_ANDN2_B64

D = S0 & ~S1; SCC = (D != 0).

20

S_ORN2_B32

D = S0 | ~S1; SCC = (D != 0).

21

S_ORN2_B64

D = S0 | ~S1; SCC = (D != 0).

22

S_NAND_B32

D = ~(S0 & S1); SCC = (D != 0).

23

S_NAND_B64

D = ~(S0 & S1); SCC = (D != 0).

24

S_NOR_B32

D = ~(S0 | S1); SCC = (D != 0).

25

S_NOR_B64

D = ~(S0 | S1); SCC = (D != 0).

26

S_XNOR_B32

D = ~(S0 ^ S1); SCC = (D != 0).

27

S_XNOR_B64

D = ~(S0 ^ S1); SCC = (D != 0).

28

S_LSHL_B32

D.u = S0.u << S1.u[4:0]; SCC = (D.u != 0).

29

S_LSHL_B64

D.u64 = S0.u64 << S1.u[5:0]; SCC = (D.u64 != 0).

30

S_LSHR_B32

D.u = S0.u >> S1.u[4:0]; SCC = (D.u != 0).

31

S_LSHR_B64

D.u64 = S0.u64 >> S1.u[5:0]; SCC = (D.u64 != 0).

32

S_ASHR_I32

D.i = signext(S0.i) >> S1.u[4:0]; SCC = (D.i != 0).

33

S_ASHR_I64

D.i64 = signext(S0.i64) >> S1.u[5:0]; SCC = (D.i64 != 0).

34

S_BFM_B32

D.u = ((1 << S0.u[4:0]) - 1) << S1.u[4:0]. Bitfield mask.

35

S_BFM_B64

D.u64 = ((1ULL << S0.u[5:0]) - 1) << S1.u[5:0]. Bitfield mask.

36

S_MUL_I32

D.i = S0.i * S1.i.

37

S_BFE_U32

D.u = (S0.u >> S1.u[4:0]) & ((1 << S1.u[22:16]) - 1); SCC = (D.u != 0). Bit field extract. S0 is Data, S1[4:0] is field offset, S1[22:16] is field width.

38

S_BFE_I32

D.i = signext((S0.i >> S1.u[4:0]) & ((1 << S1.u[22:16]) - 1)); SCC = (D.i != 0). Bit field extract. S0 is Data, S1[4:0] is field offset, S1[22:16] is field width.

39

S_BFE_U64

D.u64 = (S0.u64 >> S1.u[5:0]) & ((1 << S1.u[22:16]) - 1); SCC = (D.u64 != 0). Bit field extract. S0 is Data, S1[5:0] is field offset, S1[22:16] is field width.

40

S_BFE_I64

D.i64 = signext((S0.i64 >> S1.u[5:0]) & ((1 << S1.u[22:16]) - 1)); SCC = (D.i64 != 0). Bit field extract. S0 is Data, S1[5:0] is field offset, S1[22:16] is field width.

41

S_CBRANCH_G_FORK

mask_pass = S0.u64 & EXEC; mask_fail = ~S0.u64 & EXEC; if(mask_pass == EXEC) then PC = S1.u64; elsif(mask_fail == EXEC) then PC += 4; elsif(bitcount(mask_fail) < bitcount(mask_pass)) EXEC = mask_fail; SGPR[CSP*4] = { S1.u64, mask_pass }; CSP += 1; PC += 4; else EXEC = mask_pass; SGPR[CSP*4] = { PC + 4, mask_fail }; CSP += 1; PC = S1.u64; endif. Conditional branch using branch-stack. S0 = compare mask(vcc or any sgpr) and S1 = 64-bit byte address of target instruction. See also S_CBRANCH_JOIN.

42

S_ABSDIFF_I3 2

D.i = S0.i - S1.i; if(D.i < 0) then D.i = -D.i; endif; SCC = (D.i != 0). Compute the absolute value of difference between two values. Examples: S_ABSDIFF_I32(0x00000002, 0x00000005) => 0x00000003 S_ABSDIFF_I32(0xffffffff, 0x00000000) => 0x00000001 S_ABSDIFF_I32(0x80000000, 0x00000000) => 0x80000000 // Note: result is negative! S_ABSDIFF_I32(0x80000000, 0x00000001) => 0x7fffffff S_ABSDIFF_I32(0x80000000, 0xffffffff) => 0x7fffffff S_ABSDIFF_I32(0x80000000, 0xfffffffe) => 0x7ffffffe

43

S_RFE_RESTOR E_B64

PRIV = 0; PC = S0.u64. Return from exception handler and continue. This instruction may only be used within a trap handler. This instruction is provided for compatibility with older ASICs. New shader code must use S_RFE_B64. The second argument is ignored.

44

S_MUL_HI_U3 2

D.u = (S0.u * S1.u) >> 32.

45

S_MUL_HI_I3 2

D.i = (S0.i * S1.i) >> 32.

46

S_LSHL1_ADD_U32

D.u = (S0.u << 1) + S1.u; SCC = (((S0.u << 1) + S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned overflow.

47

S_LSHL2_ADD_U32

D.u = (S0.u << 2) + S1.u; SCC = (((S0.u << 2) + S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned overflow.

48

S_LSHL3_ADD_U32

D.u = (S0.u << 3) + S1.u; SCC = (((S0.u << 3) + S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned overflow.

49

S_LSHL4_ADD_U32

D.u = (S0.u << 4) + S1.u; SCC = (((S0.u << 4) + S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned overflow.

50

S_PACK_LL_B 32_B16

D.u[31:0] = { S1.u[15:0], S0.u[15:0] }.

51

S_PACK_LH_B 32_B16

D.u[31:0] = { S1.u[31:16], S0.u[15:0] }.

52

S_PACK_HH_B 32_B16

D.u[31:0] = { S1.u[31:16], S0.u[31:16] }.

SOPK Instructions

microcode sopk

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

S_MOVK_I32

D.i = signext(SIMM16). Sign extension from a 16-bit constant.

1

S_CMOVK_I32

if(SCC) then D.i = signext(SIMM16); endif. Conditional move with sign extension.

2

S_CMPK_EQ_I 32

SCC = (S0.i == signext(SIMM16)).

3

S_CMPK_LG_I 32

SCC = (S0.i != signext(SIMM16)).

4

S_CMPK_GT_I 32

SCC = (S0.i > signext(SIMM16)).

5

S_CMPK_GE_I 32

SCC = (S0.i >= signext(SIMM16)).

6

S_CMPK_LT_I 32

SCC = (S0.i < signext(SIMM16)).

7

S_CMPK_LE_I 32

SCC = (S0.i <= signext(SIMM16)).

8

S_CMPK_EQ_U 32

SCC = (S0.u == SIMM16).

9

S_CMPK_LG_U 32

SCC = (S0.u != SIMM16).

10

S_CMPK_GT_U 32

SCC = (S0.u > SIMM16).

11

S_CMPK_GE_U 32

SCC = (S0.u >= SIMM16).

12

S_CMPK_LT_U 32

SCC = (S0.u < SIMM16).

13

S_CMPK_LE_U 32

SCC = (S0.u <= SIMM16).

14

S_ADDK_I32

tmp = D.i; // save value so we can check sign bits for overflow later. D.i = D.i + signext(SIMM16); SCC = (tmp[31] == SIMM16[15] && tmp[31] != D.i[31]). // signed overflow.

15

S_MULK_I32

D.i = D.i * signext(SIMM16).

16

S_CBRANCH_I_FORK

mask_pass = S0.u64 & EXEC; mask_fail = ~S0.u64 & EXEC; target_addr = PC + signext(SIMM16 * 4) + 4; if(mask_pass == EXEC) PC = target_addr; elsif(mask_fail == EXEC) PC += 4; elsif(bitcount(mask_fail) < bitcount(mask_pass)) EXEC = mask_fail; SGPR[CSP*4] = { target_addr, mask_pass }; CSP += 1; PC += 4; else EXEC = mask_pass; SGPR[CSP*4] = { PC + 4, mask_fail }; CSP += 1; PC = target_addr; endif. Conditional branch using branch-stack. S0 = compare mask(vcc or any sgpr), and SIMM16 = signed DWORD branch offset relative to next instruction. See also S_CBRANCH_JOIN.

17

S_GETREG_B32

D.u = hardware-reg. Read some or all of a hardware register into the LSBs of D. SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is 0..31, size is 1..32.

18

S_SETREG_B32

hardware-reg = S0.u. Write some or all of the LSBs of D into a hardware register. SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is 0..31, size is 1..32.

20

S_SETREG_IMM 32_B32

Write some or all of the LSBs of IMM32 into a hardware register; this instruction requires a 32-bit literal constant. SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is 0..31, size is 1..32.

21

S_CALL_B64

D.u64 = PC + 4; PC = PC + signext(SIMM16 * 4) + 4. Implements a short call, where the return address (the next instruction after the S_CALL_B64) is saved to D. Long calls should consider S_SWAPPC_B64 instead. Note that this instruction is always 4 bytes.

SOP1 Instructions

microcode sop1

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

S_MOV_B32

D.u = S0.u.

1

S_MOV_B64

D.u64 = S0.u64.

2

S_CMOV_B32

if(SCC) then D.u = S0.u; endif. Conditional move.

3

S_CMOV_B64

if(SCC) then D.u64 = S0.u64; endif. Conditional move.

4

S_NOT_B32

D = ~S0; SCC = (D != 0). Bitwise negation.

5

S_NOT_B64

D = ~S0; SCC = (D != 0). Bitwise negation.

6

S_WQM_B32

for i in 0 … opcode_size_in_bits - 1 do D[i] = (S0[(i & ~3):(i | 3)] != 0); endfor; SCC = (D != 0). Computes whole quad mode for an active/valid mask. If any pixel in a quad is active, all pixels of the quad are marked active.

7

S_WQM_B64

for i in 0 … opcode_size_in_bits - 1 do D[i] = (S0[(i & ~3):(i | 3)] != 0); endfor; SCC = (D != 0). Computes whole quad mode for an active/valid mask. If any pixel in a quad is active, all pixels of the quad are marked active.

8

S_BREV_B32

D.u[31:0] = S0.u[0:31]. Reverse bits.

9

S_BREV_B64

D.u64[63:0] = S0.u64[0:63]. Reverse bits.

10

S_BCNT0_I32_B32

D = 0; for i in 0 … opcode_size_in_bits - 1 do D += (S0[i] == 0 ? 1 : 0) endfor; SCC = (D != 0). Examples: S_BCNT0_I32_B32(0x00000000) => 32 S_BCNT0_I32_B32(0xcccccccc) => 16 S_BCNT0_I32_B32(0xffffffff) => 0

11

S_BCNT0_I32_B64

D = 0; for i in 0 … opcode_size_in_bits - 1 do D += (S0[i] == 0 ? 1 : 0) endfor; SCC = (D != 0). Examples: S_BCNT0_I32_B32(0x00000000) => 32 S_BCNT0_I32_B32(0xcccccccc) => 16 S_BCNT0_I32_B32(0xffffffff) => 0

12

S_BCNT1_I32_B32

D = 0; for i in 0 … opcode_size_in_bits - 1 do D += (S0[i] == 1 ? 1 : 0) endfor; SCC = (D != 0). Examples: S_BCNT1_I32_B32(0x00000000) => 0 S_BCNT1_I32_B32(0xcccccccc) => 16 S_BCNT1_I32_B32(0xffffffff) => 32

13

S_BCNT1_I32_B64

D = 0; for i in 0 … opcode_size_in_bits - 1 do D += (S0[i] == 1 ? 1 : 0) endfor; SCC = (D != 0). Examples: S_BCNT1_I32_B32(0x00000000) => 0 S_BCNT1_I32_B32(0xcccccccc) => 16 S_BCNT1_I32_B32(0xffffffff) => 32

14

S_FF0_I32_B 32

D.i = -1; // Set if no zeros are found for i in 0 … opcode_size_in_bits - 1 do // Search from LSB if S0[i] == 0 then D.i = i; break for; endif; endfor. Returns the bit position of the first zero from the LSB, or -1 if there are no zeros. Examples: S_FF0_I32_B32(0xaaaaaaaa) => 0 S_FF0_I32_B32(0x55555555) => 1 S_FF0_I32_B32(0x00000000) => 0 S_FF0_I32_B32(0xffffffff) => 0xffffffff S_FF0_I32_B32(0xfffeffff) => 16

15

S_FF0_I32_B 64

D.i = -1; // Set if no zeros are found for i in 0 … opcode_size_in_bits - 1 do // Search from LSB if S0[i] == 0 then D.i = i; break for; endif; endfor. Returns the bit position of the first zero from the LSB, or -1 if there are no zeros. Examples: S_FF0_I32_B32(0xaaaaaaaa) => 0 S_FF0_I32_B32(0x55555555) => 1 S_FF0_I32_B32(0x00000000) => 0 S_FF0_I32_B32(0xffffffff) => 0xffffffff S_FF0_I32_B32(0xfffeffff) => 16

16

S_FF1_I32_B 32

D.i = -1; // Set if no ones are found for i in 0 … opcode_size_in_bits - 1 do // Search from LSB if S0[i] == 1 then D.i = i; break for; endif; endfor. Returns the bit position of the first one from the LSB, or -1 if there are no ones. Examples: S_FF1_I32_B32(0xaaaaaaaa) => 1 S_FF1_I32_B32(0x55555555) => 0 S_FF1_I32_B32(0x00000000) => 0xffffffff S_FF1_I32_B32(0xffffffff) => 0 S_FF1_I32_B32(0x00010000) => 16

17

S_FF1_I32_B 64

D.i = -1; // Set if no ones are found for i in 0 … opcode_size_in_bits - 1 do // Search from LSB if S0[i] == 1 then D.i = i; break for; endif; endfor. Returns the bit position of the first one from the LSB, or -1 if there are no ones. Examples: S_FF1_I32_B32(0xaaaaaaaa) => 1 S_FF1_I32_B32(0x55555555) => 0 S_FF1_I32_B32(0x00000000) => 0xffffffff S_FF1_I32_B32(0xffffffff) => 0 S_FF1_I32_B32(0x00010000) => 16

18

S_FLBIT_I32_B32

D.i = -1; // Set if no ones are found for i in 0 … opcode_size_in_bits - 1 do // Note: search is from the MSB if S0[opcode_size_in_bits - 1 - i] == 1 then D.i = i; break for; endif; endfor. Counts how many zeros before the first one starting from the MSB. Returns -1 if there are no ones. Examples: S_FLBIT_I32_B32(0x00000000) => 0xffffffff S_FLBIT_I32_B32(0x0000cccc) => 16 S_FLBIT_I32_B32(0xffff3333) => 0 S_FLBIT_I32_B32(0x7fffffff) => 1 S_FLBIT_I32_B32(0x80000000) => 0 S_FLBIT_I32_B32(0xffffffff) => 0

19

S_FLBIT_I32_B64

D.i = -1; // Set if no ones are found for i in 0 … opcode_size_in_bits - 1 do // Note: search is from the MSB if S0[opcode_size_in_bits - 1 - i] == 1 then D.i = i; break for; endif; endfor. Counts how many zeros before the first one starting from the MSB. Returns -1 if there are no ones. Examples: S_FLBIT_I32_B32(0x00000000) => 0xffffffff S_FLBIT_I32_B32(0x0000cccc) => 16 S_FLBIT_I32_B32(0xffff3333) => 0 S_FLBIT_I32_B32(0x7fffffff) => 1 S_FLBIT_I32_B32(0x80000000) => 0 S_FLBIT_I32_B32(0xffffffff) => 0

20

S_FLBIT_I32

D.i = -1; // Set if all bits are the same for i in 1 … opcode_size_in_bits - 1 do // Note: search is from the MSB if S0[opcode_size_in_bits - 1 - i] != S0[opcode_size_in_bits - 1] then D.i = i; break for; endif; endfor. Counts how many bits in a row (from MSB to LSB) are the same as the sign bit. Returns -1 if all bits are the same. Examples: S_FLBIT_I32(0x00000000) => 0xffffffff S_FLBIT_I32(0x0000cccc) => 16 S_FLBIT_I32(0xffff3333) => 16 S_FLBIT_I32(0x7fffffff) => 1 S_FLBIT_I32(0x80000000) => 1 S_FLBIT_I32(0xffffffff) => 0xffffffff

21

S_FLBIT_I32_I64

D.i = -1; // Set if all bits are the same for i in 1 … opcode_size_in_bits - 1 do // Note: search is from the MSB if S0[opcode_size_in_bits - 1 - i] != S0[opcode_size_in_bits - 1] then D.i = i; break for; endif; endfor. Counts how many bits in a row (from MSB to LSB) are the same as the sign bit. Returns -1 if all bits are the same. Examples: S_FLBIT_I32(0x00000000) => 0xffffffff S_FLBIT_I32(0x0000cccc) => 16 S_FLBIT_I32(0xffff3333) => 16 S_FLBIT_I32(0x7fffffff) => 1 S_FLBIT_I32(0x80000000) => 1 S_FLBIT_I32(0xffffffff) => 0xffffffff

22

S_SEXT_I32_ I8

D.i = signext(S0.i[7:0]). Sign extension.

23

S_SEXT_I32_ I16

D.i = signext(S0.i[15:0]). Sign extension.

24

S_BITSET0_B3 2

D.u[S0.u[4:0]] = 0.

25

S_BITSET0_B6 4

D.u64[S0.u[5:0]] = 0.

26

S_BITSET1_B3 2

D.u[S0.u[4:0]] = 1.

27

S_BITSET1_B6 4

D.u64[S0.u[5:0]] = 1.

28

S_GETPC_B64

D.u64 = PC + 4. Destination receives the byte address of the next instruction. Note that this instruction is always 4 bytes.

29

S_SETPC_B64

PC = S0.u64. S0.u64 is a byte address of the instruction to jump to.

30

S_SWAPPC_B64

D.u64 = PC + 4; PC = S0.u64. S0.u64 is a byte address of the instruction to jump to. Destination receives the byte address of the instruction immediately following the SWAPPC instruction. Note that this instruction is always 4 bytes.

31

S_RFE_B64

PRIV = 0; PC = S0.u64. Return from exception handler and continue. This instruction may only be used within a trap handler.

32

S_AND_SAVEEX EC_B64

D.u64 = EXEC; EXEC = S0.u64 & EXEC; SCC = (EXEC != 0).

33

S_OR_SAVEEXE C_B64

D.u64 = EXEC; EXEC = S0.u64 | EXEC; SCC = (EXEC != 0).

34

S_XOR_SAVEEX EC_B64

D.u64 = EXEC; EXEC = S0.u64 ^ EXEC; SCC = (EXEC != 0).

35

S_ANDN2_SAVE EXEC_B64

D.u64 = EXEC; EXEC = S0.u64 & ~EXEC; SCC = (EXEC != 0).

36

S_ORN2_SAVEE XEC_B64

D.u64 = EXEC; EXEC = S0.u64 | ~EXEC; SCC = (EXEC != 0).

37

S_NAND_SAVEE XEC_B64

D.u64 = EXEC; EXEC = ~(S0.u64 & EXEC); SCC = (EXEC != 0).

38

S_NOR_SAVEEX EC_B64

D.u64 = EXEC; EXEC = ~(S0.u64 | EXEC); SCC = (EXEC != 0).

39

S_XNOR_SAVEE XEC_B64

D.u64 = EXEC; EXEC = ~(S0.u64 ^ EXEC); SCC = (EXEC != 0).

40

S_QUADMASK_B 32

D = 0; for i in 0 … (opcode_size_in_bits / 4) - 1 do D[i] = (S0[i * 4 + 3:i * 4] != 0); endfor; SCC = (D != 0). Reduce a pixel mask to a quad mask. To perform the inverse operation see S_BITREPLICATE_B64_B32.

41

S_QUADMASK_B 64

D = 0; for i in 0 … (opcode_size_in_bits / 4) - 1 do D[i] = (S0[i * 4 + 3:i * 4] != 0); endfor; SCC = (D != 0). Reduce a pixel mask to a quad mask. To perform the inverse operation see S_BITREPLICATE_B64_B32.

42

S_MOVRELS_B3 2

addr = SGPR address appearing in instruction SRC0 field; addr += M0.u; D.u = SGPR[addr].u. Move from a relative source address. For example, the following instruction sequence will perform a move s5 <== s17: s_mov_b32 m0, 10 s_movrels_b32 s5, s7

43

S_MOVRELS_B6 4

addr = SGPR address appearing in instruction SRC0 field; addr += M0.u; D.u64 = SGPR[addr].u64. Move from a relative source address. The index in M0.u must be even for this operation.

44

S_MOVRELD_B3 2

addr = SGPR address appearing in instruction DST field; addr += M0.u; SGPR[addr].u = S0.u. Move to a relative destination address. For example, the following instruction sequence will perform a move s15 <== s7: s_mov_b32 m0, 10 s_movreld_b32 s5, s7

45

S_MOVRELD_B6 4

addr = SGPR address appearing in instruction DST field; addr += M0.u; SGPR[addr].u64 = S0.u64. Move to a relative destination address. The index in M0.u must be even for this operation.

46

S_CBRANCH_JO IN

saved_csp = S0.u; if(CSP == saved_csp) then PC += 4; // Second time to JOIN: continue with program. else CSP -= 1; // First time to JOIN; jump to other FORK path. {PC, EXEC} = SGPR[CSP * 4]; // Read 128 bits from 4 consecutive SGPRs. endif. Conditional branch join point (end of conditional branch block). S0 is saved CSP value. See S_CBRANCH_G_FORK and S_CBRANCH_I_FORK for related instructions.

48

S_ABS_I32

D.i = (S.i < 0 ? -S.i : S.i); SCC = (D.i != 0). Integer absolute value. Examples: S_ABS_I32(0x00000001) => 0x00000001 S_ABS_I32(0x7fffffff) => 0x7fffffff S_ABS_I32(0x80000000) => 0x80000000 // Note this is negative! S_ABS_I32(0x80000001) => 0x7fffffff S_ABS_I32(0x80000002) => 0x7ffffffe S_ABS_I32(0xffffffff) => 0x00000001

50

S_SET_GPR_I DX_IDX

M0[7:0] = S0.u[7:0]. Modify the index used in vector GPR indexing. S_SET_GPR_IDX_ON, S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and S_SET_GPR_IDX_IDX are related instructions.

51

S_ANDN1_SAVE EXEC_B64

D.u64 = EXEC; EXEC = ~S0.u64 & EXEC; SCC = (EXEC != 0).

52

S_ORN1_SAVEE XEC_B64

D.u64 = EXEC; EXEC = ~S0.u64 | EXEC; SCC = (EXEC != 0).

53

S_ANDN1_WREX EC_B64

EXEC = ~S0.u64 & EXEC; D.u64 = EXEC; SCC = (EXEC != 0).

54

S_ANDN2_WREX EC_B64

EXEC = S0.u64 & ~EXEC; D.u64 = EXEC; SCC = (EXEC != 0).

55

S_BITREPLICAT E_B64_B32

for i in 0 … 31 do D.u64[i * 2 + 0] = S0.u32[i] D.u64[i * 2 + 1] = S0.u32[i] endfor. Replicate the low 32 bits of S0 by ‘doubling’ each bit. This opcode can be used to convert a quad mask into a pixel mask; given quad mask in s0, the following sequence will produce a pixel mask in s1: s_bitreplicate_b64 s1, s0 s_bitreplicate_b64 s1, s1 To perform the inverse operation see S_QUADMASK_B64.

SOPC Instructions

microcode sopc

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

S_CMP_EQ_I3 2

SCC = (S0 == S1). Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

1

S_CMP_LG_I3 2

SCC = (S0 != S1). Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

2

S_CMP_GT_I3 2

SCC = (S0.i > S1.i).

3

S_CMP_GE_I3 2

SCC = (S0.i >= S1.i).

4

S_CMP_LT_I3 2

SCC = (S0.i < S1.i).

5

S_CMP_LE_I3 2

SCC = (S0.i <= S1.i).

6

S_CMP_EQ_U3 2

SCC = (S0 == S1). Note that S_CMP_EQ_I32 and S_CMP_EQ_U32 are identical opcodes, but both are provided for symmetry.

7

S_CMP_LG_U3 2

SCC = (S0 != S1). Note that S_CMP_LG_I32 and S_CMP_LG_U32 are identical opcodes, but both are provided for symmetry.

8

S_CMP_GT_U3 2

SCC = (S0.u > S1.u).

9

S_CMP_GE_U3 2

SCC = (S0.u >= S1.u).

10

S_CMP_LT_U3 2

SCC = (S0.u < S1.u).

11

S_CMP_LE_U3 2

SCC = (S0.u <= S1.u).

12

S_BITCMP0_B3 2

SCC = (S0.u[S1.u[4:0]] == 0).

13

S_BITCMP1_B3 2

SCC = (S0.u[S1.u[4:0]] == 1).

14

S_BITCMP0_B6 4

SCC = (S0.u64[S1.u[5:0]] == 0).

15

S_BITCMP1_B6 4

SCC = (S0.u64[S1.u[5:0]] == 1).

16

S_SETVSKIP

VSKIP = S0.u[S1.u[4:0]]. Enables and disables VSKIP mode. When VSKIP is enabled, no VOP*/M*BUF/MIMG/DS/FLAT/EXP instuctions are issued. Note that VSKIPped memory instructions do not manipulate the waitcnt counters; as a result, if you have outstanding memory requests you may want to issue S_WAITCNT 0 prior to enabling VSKIP, otherwise you’ll need to be careful not to count VSKIPped instructions in your waitcnt calculations. Examples: s_setvskip 1, 0 // Enable vskip mode. s_setvskip 0, 0 // Disable vskip mode.

17

S_SET_GPR_I DX_ON

MODE.gpr_idx_en = 1; M0[7:0] = S0.u[7:0]; M0[15:12] = SIMM4; // this is the direct content of S1 field // Remaining bits of M0 are unmodified. Enable GPR indexing mode. Vector operations after this will perform relative GPR addressing based on the contents of M0. The structure SQ_M0_GPR_IDX_WORD may be used to decode M0. The raw contents of the S1 field are read and used to set the enable bits. S1[0] = VSRC0_REL, S1[1] = VSRC1_REL, S1[2] = VSRC2_REL and S1[3] = VDST_REL. S_SET_GPR_IDX_ON, S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and S_SET_GPR_IDX_IDX are related instructions.

18

S_CMP_EQ_U6 4

SCC = (S0.i64 == S1.i64).

19

S_CMP_LG_U6 4

SCC = (S0.i64 != S1.i64).

SOPP Instructions

microcode sopp

Opcode

Name

Description

0

S_NOP

Do nothing. Repeat NOP 1..16 times based on SIMM16[3:0] – 0x0 = 1 time, 0xf = 16 times. This instruction may be used to introduce wait states to resolve hazards. Compare with S_SLEEP.

1

S_ENDPGM

End of program; terminate wavefront. The hardware implicitly executes S_WAITCNT 0 before executing this instruction. See S_ENDPGM_SAVED for the context-switch version of this instruction and S_ENDPGM_ORDERED_PS_DONE for the POPS critical region version of this instruction.

2

S_BRANCH

PC = PC + signext(SIMM16 * 4) + 4. // short jump. For a long jump, use S_SETPC_B64.

3

S_WAKEUP

Allow a wave to ‘ping’ all the other waves in its threadgroup to force them to wake up immediately from an S_SLEEP instruction. The ping is ignored if the waves are not sleeping. This allows for efficient polling on a memory location. The waves which are polling can sit in a long S_SLEEP between memory reads, but the wave which writes the value can tell them all to wake up early now that the data is available. This is useful for fBarrier implementations (speedup). This method is also safe from races because if any wave misses the ping, everything still works fine (waves which missed it just completes their normal S_SLEEP). If the wave executing S_WAKEUP is in a threadgroup (in_tg set), then it will wake up all waves associated with the same threadgroup ID. Otherwise, S_WAKEUP is treated as an S_NOP.

4

S_CBRANCH_SCC0

if(SCC == 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

5

S_CBRANCH_SCC1

if(SCC == 1) then PC = PC + signext(SIMM16 * 4) + 4; endif.

6

S_CBRANCH_VCCZ

if(VCC == 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

7

S_CBRANCH_VCCN Z

if(VCC != 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

8

S_CBRANCH_EXEC Z

if(EXEC == 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

9

S_CBRANCH_EXEC NZ

if(EXEC != 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

10

S_BARRIER

Synchronize waves within a threadgroup. If not all waves of the threadgroup have been created yet, waits for entire group before proceeding. If some waves in the threadgroup have already terminated, this waits on only the surviving waves. Barriers are legal inside trap handlers.

11

S_SETKILL

Set KILL bit to value of SIMM16[0]. Used primarily for debugging kill wave host command behavior.

12

S_WAITCNT

Wait for the counts of outstanding lds, vector-memory and export/vmem-write-data to be at or below the specified levels. SIMM16[3:0] = vmcount (vector memory operations) lower bits [3:0], SIMM16[6:4] = export/mem-write-data count, SIMM16[11:8] = LGKM_cnt (scalar-mem/GDS/LDS count), SIMM16[15:14] = vmcount (vector memory operations) upper bits [5:4],

13

S_SETHALT

Set HALT bit to value of SIMM16[0]; 1 = halt, 0 = resume. The halt flag is ignored while PRIV == 1 (inside trap handlers) but the shader will halt immediately after the handler returns if HALT is still set at that time.

14

S_SLEEP

Cause a wave to sleep for (64 * SIMM16[6:0] + 1..64) clocks. The exact amount of delay is approximate. Compare with S_NOP.

15

S_SETPRIO

User settable wave priority is set to SIMM16[1:0]. 0 = lowest, 3 = highest. The overall wave priority is {SPIPrio[1:0] + UserPrio[1:0], WaveAge[3:0]}.

16

S_SENDMSG

Send a message upstream to VGT or the interrupt handler. SIMM16[9:0] contains the message type.

17

S_SENDMSGHALT

Send a message and then HALT the wavefront; see S_SENDMSG for details.

18

S_TRAP

TrapID = SIMM16[7:0]; Wait for all instructions to complete; {TTMP1, TTMP0} = {3’h0, PCRewind[3:0], HT[0], TrapID[7:0], PC[47:0]}; PC = TBA; // trap base address PRIV = 1. Enter the trap handler. This instruction may be generated internally as well in response to a host trap (HT = 1) or an exception. TrapID 0 is reserved for hardware use and should not be used in a shader-generated trap.

19

S_ICACHE_INV

Invalidate entire L1 instruction cache. You must have 16 separate S_NOP instructions or a jump/branch instruction after this instruction to ensure the SQ instruction buffer is purged. NOTE: The number of S_NOPs required depends on the size of the shader instruction buffer, which in current generations is 16 DWORDs long. Older architectures had a 12 DWORD instruction buffer and in those architectures, 12 S_NOP instructions were sufficient.

20

S_INCPERFLEVEL

Increment performance counter specified in SIMM16[3:0] by 1.

21

S_DECPERFLEVEL

Decrement performance counter specified in SIMM16[3:0] by 1.

22

S_TTRACEDATA

Send M0 as user data to the thread trace stream.

23

S_CBRANCH_CDBG SYS

if(conditional_debug_system != 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

24

S_CBRANCH_CDBG USER

if(conditional_debug_user != 0) then PC = PC + signext(SIMM16 * 4) + 4; endif.

25

S_CBRANCH_CDBG SYS_OR_USER

if(conditional_debug_system || conditional_debug_user) then PC = PC + signext(SIMM16 * 4) + 4; endif.

26

S_CBRANCH_CDBG SYS_AND_USER

if(conditional_debug_system && conditional_debug_user) then PC = PC + signext(SIMM16 * 4) + 4; endif.

27

S_ENDPGM_SAVED

End of program; signal that a wave has been saved by the context-switch trap handler and terminate wavefront. The hardware implicitly executes S_WAITCNT 0 before executing this instruction. See S_ENDPGM for additional variants.

28

S_SET_GPR_IDX _OFF

MODE.gpr_idx_en = 0. Clear GPR indexing mode. Vector operations after this will not perform relative GPR addressing regardless of the contents of M0. This instruction does not modify M0. S_SET_GPR_IDX_ON, S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and S_SET_GPR_IDX_IDX are related instructions.

29

S_SET_GPR_IDX _MODE

M0[15:12] = SIMM16[3:0]. Modify the mode used for vector GPR indexing. The raw contents of the source field are read and used to set the enable bits. SIMM16[0] = VSRC0_REL, SIMM16[1] = VSRC1_REL, SIMM16[2] = VSRC2_REL and SIMM16[3] = VDST_REL. S_SET_GPR_IDX_ON, S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and S_SET_GPR_IDX_IDX are related instructions.

30

S_ENDPGM_ORDER ED_PS_DONE

End of program; signal that a wave has exited its POPS critical section and terminate wavefront. The hardware implicitly executes S_WAITCNT 0 before executing this instruction. This instruction is an optimization that combines S_SENDMSG(MSG_ORDERED_PS_DONE) and S_ENDPGM; there may be cases where you still need to send the message separately, in which case you can end the shader with a normal S_ENDPGM instruction. See S_ENDPGM for additional variants.

Send Message

The S_SENDMSG instruction encodes the message type in M0, and can also send data from the SIMM16 field and in some cases from EXEC.

Message

SIMM16[3:0 ]

SIMM16[6:4 ]

Payload

none

0

illegal

GS

2

0=nop, 1=cut, 2=emit, 3=emit-cut

GS output. M0[4:0]=gs-waveID, SIMM[9:8] = stream-id

GS-done

3

save wave

4

used in context switching

Stall Wave Gen

5

stop new wave generation

Halt Waves

6

halt all running waves of this vmid

Ordered PS Done

7

POPS ordered section done

Early Prim Dealloc

8

Deallocate primitives. This message is optional. EXEC[N*12+10:N*12] = number of verts to deallocate from buffer N (N=0..3). Exec[58:48] = number of vertices to deallocate.

GS alloc req

9

Request GS space in parameter cache. M0[9:0] = number of vertices

SMEM Instructions

microcode smem

Opcode

Name

Description

0

S_LOAD_DWORD

Read 1 dword from scalar data cache. If the offset is specified as an SGPR, the SGPR contains an UNSIGNED BYTE offset (the 2 LSBs are ignored). If the offset is specified as an immediate 21-bit constant, the constant is a SIGNED BYTE offset.

1

S_LOAD_DWORDX2

Read 2 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

2

S_LOAD_DWORDX4

Read 4 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

3

S_LOAD_DWORDX8

Read 8 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

4

S_LOAD_DWORDX16

Read 16 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

5

S_SCRATCH_LOAD_DW ORD

Read 1 dword from scalar data cache. If the offset is specified as an SGPR, the SGPR contains an UNSIGNED 64-byte offset, consistent with other scratch operations. If the offset is specified as an immediate 21-bit constant, the constant is a SIGNED BYTE offset.

6

S_SCRATCH_LOAD_DW ORDX2

Read 2 dwords from scalar data cache. See S_SCRATCH_LOAD_DWORD for details on the offset input.

7

S_SCRATCH_LOAD_DW ORDX4

Read 4 dwords from scalar data cache. See S_SCRATCH_LOAD_DWORD for details on the offset input.

8

S_BUFFER_LOAD_DWO RD

Read 1 dword from scalar data cache. See S_LOAD_DWORD for details on the offset input.

9

S_BUFFER_LOAD_DWO RDX2

Read 2 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

10

S_BUFFER_LOAD_DWO RDX4

Read 4 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

11

S_BUFFER_LOAD_DWO RDX8

Read 8 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

12

S_BUFFER_LOAD_DWO RDX16

Read 16 dwords from scalar data cache. See S_LOAD_DWORD for details on the offset input.

16

S_STORE_DWORD

Write 1 dword to scalar data cache. If the offset is specified as an SGPR, the SGPR contains an UNSIGNED BYTE offset (the 2 LSBs are ignored). If the offset is specified as an immediate 21-bit constant, the constant is an SIGNED BYTE offset.

17

S_STORE_DWORDX2

Write 2 dwords to scalar data cache. See S_STORE_DWORD for details on the offset input.

18

S_STORE_DWORDX4

Write 4 dwords to scalar data cache. See S_STORE_DWORD for details on the offset input.

21

S_SCRATCH_STORE_D WORD

Write 1 dword from scalar data cache. If the offset is specified as an SGPR, the SGPR contains an UNSIGNED 64-byte offset, consistent with other scratch operations. If the offset is specified as an immediate 21-bit constant, the constant is a SIGNED BYTE offset.

22

S_SCRATCH_STORE_D WORDX2

Write 2 dwords from scalar data cache. See S_SCRATCH_STORE_DWORD for details on the offset input.

23

S_SCRATCH_STORE_D WORDX4

Write 4 dwords from scalar data cache. See S_SCRATCH_STORE_DWORD for details on the offset input.

24

S_BUFFER_STORE_DW ORD

Write 1 dword to scalar data cache. See S_STORE_DWORD for details on the offset input.

25

S_BUFFER_STORE_DW ORDX2

Write 2 dwords to scalar data cache. See S_STORE_DWORD for details on the offset input.

26

S_BUFFER_STORE_DW ORDX4

Write 4 dwords to scalar data cache. See S_STORE_DWORD for details on the offset input.

32

S_DCACHE_INV

Invalidate the scalar data cache.

33

S_DCACHE_WB

Write back dirty data in the scalar data cache.

34

S_DCACHE_INV_VOL

Invalidate the scalar data cache volatile lines.

35

S_DCACHE_WB_VOL

Write back dirty data in the scalar data cache volatile lines.

36

S_MEMTIME

Return current 64-bit timestamp.

37

S_MEMREALTIME

Return current 64-bit RTC.

38

S_ATC_PROBE

Probe or prefetch an address into the SQC data cache.

39

S_ATC_PROBE_BUFFE R

Probe or prefetch an address into the SQC data cache.

40

S_DCACHE_DISCARD

Discard one dirty scalar data cache line. A cache line is 64 bytes. Normally, dirty cachelines (one which have been written by the shader) are written back to memory, but this instruction allows the shader to invalidate and not write back cachelines which it has previously written. This is a performance optimization to be used when the shader knows it no longer needs that data. Address is calculated the same as S_STORE_DWORD, except the 6 LSBs are ignored to get the 64 byte aligned address. LGKM count is incremented by 1 for this opcode.

41

S_DCACHE_DISCARD_ X2

Discard two consecutive dirty scalar data cache lines. A cache line is 64 bytes. Normally, dirty cachelines (one which have been written by the shader) are written back to memory, but this instruction allows the shader to invalidate and not write back cachelines which it has previously written. This is a performance optimization to be used when the shader knows it no longer needs that data. Address is calculated the same as S_STORE_DWORD, except the 6 LSBs are ignored to get the 64 byte aligned address. LGKM count is incremented by 2 for this opcode.

64

S_BUFFER_ATOMIC_S WAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

65

S_BUFFER_ATOMIC_C MPSWAP

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

66

S_BUFFER_ATOMIC_A DD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

67

S_BUFFER_ATOMIC_S UB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

68

S_BUFFER_ATOMIC_S MIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

69

S_BUFFER_ATOMIC_U MIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

70

S_BUFFER_ATOMIC_S MAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

71

S_BUFFER_ATOMIC_U MAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

72

S_BUFFER_ATOMIC_A ND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

73

S_BUFFER_ATOMIC_O R

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

74

S_BUFFER_ATOMIC_X OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

75

S_BUFFER_ATOMIC_I NC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

76

S_BUFFER_ATOMIC_D EC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

96

S_BUFFER_ATOMIC_S WAP_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA[0:1]; RETURN_DATA[0:1] = tmp.

97

S_BUFFER_ATOMIC_C MPSWAP_X2

// 64bit tmp = MEM[ADDR]; src = DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0:1] = tmp.

98

S_BUFFER_ATOMIC_A DD_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

99

S_BUFFER_ATOMIC_S UB_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

100

S_BUFFER_ATOMIC_S MIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

101

S_BUFFER_ATOMIC_U MIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

102

S_BUFFER_ATOMIC_S MAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

103

S_BUFFER_ATOMIC_U MAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

104

S_BUFFER_ATOMIC_A ND_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

105

S_BUFFER_ATOMIC_O R_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

106

S_BUFFER_ATOMIC_X OR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

107

S_BUFFER_ATOMIC_I NC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

108

S_BUFFER_ATOMIC_D EC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

128

S_ATOMIC_SWAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

129

S_ATOMIC_CMPSWAP

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

130

S_ATOMIC_ADD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

131

S_ATOMIC_SUB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

132

S_ATOMIC_SMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

133

S_ATOMIC_UMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

134

S_ATOMIC_SMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

135

S_ATOMIC_UMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

136

S_ATOMIC_AND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

137

S_ATOMIC_OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

138

S_ATOMIC_XOR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

139

S_ATOMIC_INC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

140

S_ATOMIC_DEC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

160

S_ATOMIC_SWAP_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA[0:1]; RETURN_DATA[0:1] = tmp.

161

S_ATOMIC_CMPSWAP_ X2

// 64bit tmp = MEM[ADDR]; src = DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0:1] = tmp.

162

S_ATOMIC_ADD_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

163

S_ATOMIC_SUB_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

164

S_ATOMIC_SMIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

165

S_ATOMIC_UMIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

166

S_ATOMIC_SMAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

167

S_ATOMIC_UMAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

168

S_ATOMIC_AND_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

169

S_ATOMIC_OR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

170

S_ATOMIC_XOR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

171

S_ATOMIC_INC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

172

S_ATOMIC_DEC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

VOP2 Instructions

microcode vop2

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

V_CNDMASK_B32

D.u = (VCC[threadId] ? S1.u : S0.u). Conditional mask on each thread. In VOP3 the VCC source may be a scalar GPR specified in S2.u.

1

V_ADD_F32

D.f = S0.f + S1.f. 0.5ULP precision, denormals are supported.

2

V_SUB_F32

D.f = S0.f - S1.f.

3

V_SUBREV_F32

D.f = S1.f - S0.f.

4

V_MUL_LEGACY_F32

D.f = S0.f * S1.f. // DX9 rules, 0.0*x = 0.0

5

V_MUL_F32

D.f = S0.f * S1.f. 0.5ULP precision, denormals are supported.

6

V_MUL_I32_I2 4

D.i = S0.i[23:0] * S1.i[23:0].

7

V_MUL_HI_I32 _I24

D.i = (S0.i[23:0] * S1.i[23:0])>>32.

8

V_MUL_U32_U2 4

D.u = S0.u[23:0] * S1.u[23:0].

9

V_MUL_HI_U32 _U24

D.i = (S0.u[23:0] * S1.u[23:0])>>32.

10

V_MIN_F32

if (IEEE_MODE && S0.f == sNaN) D.f = Quiet(S0.f); else if (IEEE_MODE && S1.f == sNaN) D.f = Quiet(S1.f); else if (S0.f == NaN) D.f = S1.f; else if (S1.f == NaN) D.f = S0.f; else if (S0.f == +0.0 && S1.f == -0.0) D.f = S1.f; else if (S0.f == -0.0 && S1.f == +0.0) D.f = S0.f; else // Note: there’s no IEEE special case here like there is for V_MAX_F32. D.f = (S0.f < S1.f ? S0.f : S1.f); endif.

11

V_MAX_F32

if (IEEE_MODE && S0.f == sNaN) D.f = Quiet(S0.f); else if (IEEE_MODE && S1.f == sNaN) D.f = Quiet(S1.f); else if (S0.f == NaN) D.f = S1.f; else if (S1.f == NaN) D.f = S0.f; else if (S0.f == +0.0 && S1.f == -0.0) D.f = S0.f; else if (S0.f == -0.0 && S1.f == +0.0) D.f = S1.f; else if (IEEE_MODE) D.f = (S0.f >= S1.f ? S0.f : S1.f); else D.f = (S0.f > S1.f ? S0.f : S1.f); endif.

12

V_MIN_I32

D.i = (S0.i < S1.i ? S0.i : S1.i).

13

V_MAX_I32

D.i = (S0.i >= S1.i ? S0.i : S1.i).

14

V_MIN_U32

D.u = (S0.u < S1.u ? S0.u : S1.u).

15

V_MAX_U32

D.u = (S0.u >= S1.u ? S0.u : S1.u).

16

V_LSHRREV_B32

D.u = S1.u >> S0.u[4:0].

17

V_ASHRREV_I32

D.i = signext(S1.i) >> S0.i[4:0].

18

V_LSHLREV_B32

D.u = S1.u << S0.u[4:0].

19

V_AND_B32

D.u = S0.u & S1.u. Input and output modifiers not supported.

20

V_OR_B32

D.u = S0.u | S1.u. Input and output modifiers not supported.

21

V_XOR_B32

D.u = S0.u ^ S1.u. Input and output modifiers not supported.

22

V_MAC_F32

D.f = S0.f * S1.f + D.f.

23

V_MADMK_F32

D.f = S0.f * K + S1.f. // K is a 32-bit literal constant. This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.

24

V_MADAK_F32

D.f = S0.f * S1.f + K. // K is a 32-bit literal constant. This opcode cannot use the VOP3 encoding and cannot use input/output modifiers.

25

V_ADD_CO_U32

D.u = S0.u + S1.u; VCC[threadId] = (S0.u + S1.u >= 0x100000000ULL ? 1 : 0). // VCC is an UNSIGNED overflow/carry-out for V_ADDC_CO_U32. In VOP3 the VCC destination may be an arbitrary SGPR-pair.

26

V_SUB_CO_U32

D.u = S0.u - S1.u; VCC[threadId] = (S1.u > S0.u ? 1 : 0). // VCC is an UNSIGNED overflow/carry-out for V_SUBB_CO_U32. In VOP3 the VCC destination may be an arbitrary SGPR-pair.

27

V_SUBREV_CO_ U32

D.u = S1.u - S0.u; VCC[threadId] = (S0.u > S1.u ? 1 : 0). // VCC is an UNSIGNED overflow/carry-out for V_SUBB_CO_U32. In VOP3 the VCC destination may be an arbitrary SGPR-pair.

28

V_ADDC_CO_U3 2

D.u = S0.u + S1.u + VCC[threadId]; VCC[threadId] = (S0.u + S1.u + VCC[threadId] >= 0x100000000ULL ? 1 : 0). // VCC is an UNSIGNED overflow. In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at S2.u.

29

V_SUBB_CO_U3 2

D.u = S0.u - S1.u - VCC[threadId]; VCC[threadId] = (S1.u + VCC[threadId] > S0.u ? 1 : 0). // VCC is an UNSIGNED overflow. In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at S2.u.

30

V_SUBBREV_CO_U32

D.u = S1.u - S0.u - VCC[threadId]; VCC[threadId] = (S1.u + VCC[threadId] > S0.u ? 1 : 0). // VCC is an UNSIGNED overflow. In VOP3 the VCC destination may be an arbitrary SGPR-pair, and the VCC source comes from the SGPR-pair at S2.u.

31

V_ADD_F16

D.f16 = S0.f16 + S1.f16. Supports denormals, round mode, exception flags, saturation. 0.5ULP precision, denormals are supported.

32

V_SUB_F16

D.f16 = S0.f16 - S1.f16. Supports denormals, round mode, exception flags, saturation.

33

V_SUBREV_F16

D.f16 = S1.f16 - S0.f16. Supports denormals, round mode, exception flags, saturation.

34

V_MUL_F16

D.f16 = S0.f16 * S1.f16. Supports denormals, round mode, exception flags, saturation. 0.5ULP precision, denormals are supported.

35

V_MAC_F16

D.f16 = S0.f16 * S1.f16 + D.f16. Supports round mode, exception flags, saturation.

36

V_MADMK_F16

D.f16 = S0.f16 * K.f16 + S1.f16. // K is a 16-bit literal constant stored in the following literal DWORD. This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode, exception flags, saturation.

37

V_MADAK_F16

D.f16 = S0.f16 * S1.f16 + K.f16. // K is a 16-bit literal constant stored in the following literal DWORD. This opcode cannot use the VOP3 encoding and cannot use input/output modifiers. Supports round mode, exception flags, saturation.

38

V_ADD_U16

D.u16 = S0.u16 + S1.u16. Supports saturation (unsigned 16-bit integer domain).

39

V_SUB_U16

D.u16 = S0.u16 - S1.u16. Supports saturation (unsigned 16-bit integer domain).

40

V_SUBREV_U16

D.u16 = S1.u16 - S0.u16. Supports saturation (unsigned 16-bit integer domain).

41

V_MUL_LO_U16

D.u16 = S0.u16 * S1.u16. Supports saturation (unsigned 16-bit integer domain).

42

V_LSHLREV_B16

D.u[15:0] = S1.u[15:0] << S0.u[3:0].

43

V_LSHRREV_B16

D.u[15:0] = S1.u[15:0] >> S0.u[3:0].

44

V_ASHRREV_I16

D.i[15:0] = signext(S1.i[15:0]) >> S0.i[3:0].

45

V_MAX_F16

if (IEEE_MODE && S0.f16 == sNaN) D.f16 = Quiet(S0.f16); else if (IEEE_MODE && S1.f16 == sNaN) D.f16 = Quiet(S1.f16); else if (S0.f16 == NaN) D.f16 = S1.f16; else if (S1.f16 == NaN) D.f16 = S0.f16; else if (S0.f16 == +0.0 && S1.f16 == -0.0) D.f16 = S0.f16; else if (S0.f16 == -0.0 && S1.f16 == +0.0) D.f16 = S1.f16; else if (IEEE_MODE) D.f16 = (S0.f16 >= S1.f16 ? S0.f16 : S1.f16); else D.f16 = (S0.f16 > S1.f16 ? S0.f16 : S1.f16); endif. IEEE compliant. Supports denormals, round mode, exception flags, saturation.

46

V_MIN_F16

if (IEEE_MODE && S0.f16 == sNaN) D.f16 = Quiet(S0.f16); else if (IEEE_MODE && S1.f16 == sNaN) D.f16 = Quiet(S1.f16); else if (S0.f16 == NaN) D.f16 = S1.f16; else if (S1.f16 == NaN) D.f16 = S0.f16; else if (S0.f16 == +0.0 && S1.f16 == -0.0) D.f16 = S1.f16; else if (S0.f16 == -0.0 && S1.f16 == +0.0) D.f16 = S0.f16; else // Note: there’s no IEEE special case here like there is for V_MAX_F16. D.f16 = (S0.f16 < S1.f16 ? S0.f16 : S1.f16); endif. IEEE compliant. Supports denormals, round mode, exception flags, saturation.

47

V_MAX_U16

D.u16 = (S0.u16 >= S1.u16 ? S0.u16 : S1.u16).

48

V_MAX_I16

D.i16 = (S0.i16 >= S1.i16 ? S0.i16 : S1.i16).

49

V_MIN_U16

D.u16 = (S0.u16 < S1.u16 ? S0.u16 : S1.u16).

50

V_MIN_I16

D.i16 = (S0.i16 < S1.i16 ? S0.i16 : S1.i16).

51

V_LDEXP_F16

D.f16 = S0.f16 * (2 ** S1.i16). Note that the S1 has a format of f16 since floating point literal constants are interpreted as 16 bit value for this opcode

52

V_ADD_U32

D.u = S0.u + S1.u.

53

V_SUB_U32

D.u = S0.u - S1.u.

54

V_SUBREV_U32

D.u = S1.u - S0.u.

VOP2 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. This allows access to the extra control bits (e.g. ABS, OMOD) in exchange for not being able to use a literal constant. The VOP3 opcode is: VOP2 opcode + 0x100.

microcode vop3a

microcode vop3b

VOP1 Instructions

microcode vop1

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Opcode

Name

Description

0

V_NOP

Do nothing.

1

V_MOV_B32

D.u = S0.u. Input and output modifiers not supported; this is an untyped operation.

2

V_READFIRSTLAN E_B32

Copy one VGPR value to one SGPR. D = SGPR destination, S0 = source data (VGPR# or M0 for lds direct access), Lane# = FindFirst1fromLSB(exec) (Lane# = 0 if exec is zero). Ignores exec mask for the access. Input and output modifiers not supported; this is an untyped operation.

3

V_CVT_I32_F6 4

D.i = (int)S0.d. 0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NaN is converted to 0. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

4

V_CVT_F64_I3 2

D.d = (double)S0.i. 0ULP accuracy.

5

V_CVT_F32_I3 2

D.f = (float)S0.i. 0.5ULP accuracy.

6

V_CVT_F32_U3 2

D.f = (float)S0.u. 0.5ULP accuracy.

7

V_CVT_U32_F3 2

D.u = (unsigned)S0.f. 1ULP accuracy, out-of-range floating point values (including infinity) saturate. NaN is converted to 0. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

8

V_CVT_I32_F3 2

D.i = (int)S0.f. 1ULP accuracy, out-of-range floating point values (including infinity) saturate. NaN is converted to 0. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

10

V_CVT_F16_F3 2

D.f16 = flt32_to_flt16(S0.f). 0.5ULP accuracy, supports input modifiers and creates FP16 denormals when appropriate.

11

V_CVT_F32_F1 6

D.f = flt16_to_flt32(S0.f16). 0ULP accuracy, FP16 denormal inputs are accepted.

12

V_CVT_RPI_I3 2_F32

D.i = (int)floor(S0.f + 0.5). 0.5ULP accuracy, denormals are supported.

13

V_CVT_FLR_I3 2_F32

D.i = (int)floor(S0.f). 1ULP accuracy, denormals are supported.

14

V_CVT_OFF_F3 2_I4

4-bit signed int to 32-bit float. Used for interpolation in shader. S0 Result 1000 -0.5f 1001 -0.4375f 1010 -0.375f 1011 -0.3125f 1100 -0.25f 1101 -0.1875f 1110 -0.125f 1111 -0.0625f 0000 0.0f 0001 0.0625f 0010 0.125f 0011 0.1875f 0100 0.25f 0101 0.3125f 0110 0.375f 0111 0.4375f

15

V_CVT_F32_F6 4

D.f = (float)S0.d. 0.5ULP accuracy, denormals are supported.

16

V_CVT_F64_F3 2

D.d = (double)S0.f. 0ULP accuracy, denormals are supported.

17

V_CVT_F32_UB YTE0

D.f = (float)(S0.u[7:0]).

18

V_CVT_F32_UB YTE1

D.f = (float)(S0.u[15:8]).

19

V_CVT_F32_UB YTE2

D.f = (float)(S0.u[23:16]).

20

V_CVT_F32_UB YTE3

D.f = (float)(S0.u[31:24]).

21

V_CVT_U32_F6 4

D.u = (unsigned)S0.d. 0.5ULP accuracy, out-of-range floating point values (including infinity) saturate. NaN is converted to 0. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

22

V_CVT_F64_U3 2

D.d = (double)S0.u. 0ULP accuracy.

23

V_TRUNC_F64

D.d = trunc(S0.d). Return integer part of S0.d, round-to-zero semantics.

24

V_CEIL_F64

D.d = trunc(S0.d); if(S0.d > 0.0 && S0.d != D.d) then D.d += 1.0; endif. Round up to next whole integer.

25

V_RNDNE_F64

D.d = floor(S0.d + 0.5); if(floor(S0.d) is even && fract(S0.d) == 0.5) then D.d -= 1.0; endif. Round-to-nearest-even semantics.

26

V_FLOOR_F64

D.d = trunc(S0.d); if(S0.d < 0.0 && S0.d != D.d) then D.d += -1.0; endif. Round down to previous whole integer.

27

V_FRACT_F32

D.f = S0.f + -floor(S0.f). Return fractional portion of a number. 0.5ULP accuracy, denormals are accepted.

28

V_TRUNC_F32

D.f = trunc(S0.f). Return integer part of S0.f, round-to-zero semantics.

29

V_CEIL_F32

D.f = trunc(S0.f); if(S0.f > 0.0 && S0.f != D.f) then D.f += 1.0; endif. Round up to next whole integer.

30

V_RNDNE_F32

D.f = floor(S0.f + 0.5); if(floor(S0.f) is even && fract(S0.f) == 0.5) then D.f -= 1.0; endif. Round-to-nearest-even semantics.

31

V_FLOOR_F32

D.f = trunc(S0.f); if(S0.f < 0.0 && S0.f != D.f) then D.f += -1.0; endif. Round down to previous whole integer.

32

V_EXP_F32

D.f = pow(2.0, S0.f). Base 2 exponentiation. 1ULP accuracy, denormals are flushed. Examples: V_EXP_F32(0xff800000) => 0x00000000 // exp(-INF) = 0 V_EXP_F32(0x80000000) => 0x3f800000 // exp(-0.0) = 1 V_EXP_F32(0x7f800000) => 0x7f800000 // exp(+INF) = +INF

33

V_LOG_F32

D.f = log2(S0.f). Base 2 logarithm. 1ULP accuracy, denormals are flushed. Examples: V_LOG_F32(0xff800000) => 0xffc00000 // log(-INF) = NAN V_LOG_F32(0xbf800000) => 0xffc00000 // log(-1.0) = NAN V_LOG_F32(0x80000000) => 0xff800000 // log(-0.0) = -INF V_LOG_F32(0x00000000) => 0xff800000 // log(+0.0) = -INF V_LOG_F32(0x3f800000) => 0x00000000 // log(+1.0) = 0 V_LOG_F32(0x7f800000) => 0x7f800000 // log(+INF) = +INF

34

V_RCP_F32

D.f = 1.0 / S0.f. Reciprocal with IEEE rules and 1ULP accuracy. Accuracy converges to < 0.5ULP when using the Newton-Raphson method and 2 FMA operations. Denormals are flushed. Examples: V_RCP_F32(0xff800000) => 0x80000000 // rcp(-INF) = -0 V_RCP_F32(0xc0000000) => 0xbf000000 // rcp(-2.0) = -0.5 V_RCP_F32(0x80000000) => 0xff800000 // rcp(-0.0) = -INF V_RCP_F32(0x00000000) => 0x7f800000 // rcp(+0.0) = +INF V_RCP_F32(0x7f800000) => 0x00000000 // rcp(+INF) = +0

35

V_RCP_IFLAG_ F32

D.f = 1.0 / S0.f. Reciprocal intended for integer division, can raise integer DIV_BY_ZERO exception but cannot raise floating-point exceptions. To be used in an integer reciprocal macro by the compiler with one of the following sequences: Unsigned: CVT_F32_U32 RCP_IFLAG_F32 MUL_F32 (2**32 - 1) CVT_U32_F32 Signed: CVT_F32_I32 RCP_IFLAG_F32 MUL_F32 (2**31 - 1) CVT_I32_F32

36

V_RSQ_F32

D.f = 1.0 / sqrt(S0.f). Reciprocal square root with IEEE rules. 1ULP accuracy, denormals are flushed. Examples: V_RSQ_F32(0xff800000) => 0xffc00000 // rsq(-INF) = NAN V_RSQ_F32(0x80000000) => 0xff800000 // rsq(-0.0) = -INF V_RSQ_F32(0x00000000) => 0x7f800000 // rsq(+0.0) = +INF V_RSQ_F32(0x40800000) => 0x3f000000 // rsq(+4.0) = +0.5 V_RSQ_F32(0x7f800000) => 0x00000000 // rsq(+INF) = +0

37

V_RCP_F64

D.d = 1.0 / S0.d. Reciprocal with IEEE rules and perhaps not the accuracy you were hoping for – (2**29)ULP accuracy. On the upside, denormals are supported.

38

V_RSQ_F64

D.f16 = 1.0 / sqrt(S0.f16). Reciprocal square root with IEEE rules and perhaps not the accuracy you were hoping for – (2**29)ULP accuracy. On the upside, denormals are supported.

39

V_SQRT_F32

D.f = sqrt(S0.f). Square root. 1ULP accuracy, denormals are flushed. Examples: V_SQRT_F32(0xff800000) => 0xffc00000 // sqrt(-INF) = NAN V_SQRT_F32(0x80000000) => 0x80000000 // sqrt(-0.0) = -0 V_SQRT_F32(0x00000000) => 0x00000000 // sqrt(+0.0) = +0 V_SQRT_F32(0x40800000) => 0x40000000 // sqrt(+4.0) = +2.0 V_SQRT_F32(0x7f800000) => 0x7f800000 // sqrt(+INF) = +INF

40

V_SQRT_F64

D.d = sqrt(S0.d). Square root with perhaps not the accuracy you were hoping for – (2**29)ULP accuracy. On the upside, denormals are supported.

41

V_SIN_F32

D.f = sin(S0.f * 2 * PI). Trigonometric sine. Denormals are supported. Examples: V_SIN_F32(0xff800000) => 0xffc00000 // sin(-INF) = NAN V_SIN_F32(0xff7fffff) => 0x00000000 // -MaxFloat, finite V_SIN_F32(0x80000000) => 0x80000000 // sin(-0.0) = -0 V_SIN_F32(0x3e800000) => 0x3f800000 // sin(0.25) = 1 V_SIN_F32(0x7f800000) => 0xffc00000 // sin(+INF) = NAN

42

V_COS_F32

D.f = cos(S0.f * 2 * PI). Trigonometric cosine. Denormals are supported. Examples: V_COS_F32(0xff800000) => 0xffc00000 // cos(-INF) = NAN V_COS_F32(0xff7fffff) => 0x3f800000 // -MaxFloat, finite V_COS_F32(0x80000000) => 0x3f800000 // cos(-0.0) = 1 V_COS_F32(0x3e800000) => 0x00000000 // cos(0.25) = 0 V_COS_F32(0x7f800000) => 0xffc00000 // cos(+INF) = NAN

43

V_NOT_B32

D.u = ~S0.u. Bitwise negation. Input and output modifiers not supported.

44

V_BFREV_B32

D.u[31:0] = S0.u[0:31]. Bitfield reverse. Input and output modifiers not supported.

45

V_FFBH_U32

D.i = -1; // Set if no ones are found for i in 0 … 31 do // Note: search is from the MSB if S0.u[31 - i] == 1 then D.i = i; break for; endif; endfor. Counts how many zeros before the first one starting from the MSB. Returns -1 if there are no ones. Examples: V_FFBH_U32(0x00000000) => 0xffffffff V_FFBH_U32(0x800000ff) => 0 V_FFBH_U32(0x100000ff) => 3 V_FFBH_U32(0x0000ffff) => 16 V_FFBH_U32(0x00000001) => 31

46

V_FFBL_B32

D.i = -1; // Set if no ones are found for i in 0 … 31 do // Search from LSB if S0.u[i] == 1 then D.i = i; break for; endif; endfor. Returns the bit position of the first one from the LSB, or -1 if there are no ones. Examples: V_FFBL_B32(0x00000000) => 0xffffffff V_FFBL_B32(0xff000001) => 0 V_FFBL_B32(0xff000008) => 3 V_FFBL_B32(0xffff0000) => 16 V_FFBL_B32(0x80000000) => 31

47

V_FFBH_I32

D.i = -1; // Set if all bits are the same for i in 1 … 31 do // Note: search is from the MSB if S0.i[31 - i] != S0.i[31] then D.i = i; break for; endif; endfor. Counts how many bits in a row (from MSB to LSB) are the same as the sign bit. Returns -1 if all bits are the same. Examples: V_FFBH_I32(0x00000000) => 0xffffffff V_FFBH_I32(0x40000000) => 1 V_FFBH_I32(0x80000000) => 1 V_FFBH_I32(0x0fffffff) => 4 V_FFBH_I32(0xffff0000) => 16 V_FFBH_I32(0xfffffffe) => 31 V_FFBH_I32(0xffffffff) => 0xffffffff

48

V_FREXP_EXP_ I32_F64

if(S0.d == +-INF || S0.d == NAN) then D.i = 0; else D.i = TwosComplement(Exponent(S0.d) - 1023 + 1); endif. Returns exponent of single precision float input, such that S0.d = significand * (2 ** exponent). See also V_FREXP_MANT_F64, which returns the significand. See the C library function frexp() for more information.

49

V_FREXP_MANT_F64

if(S0.d == +-INF || S0.d == NAN) then D.d = S0.d; else D.d = Mantissa(S0.d); endif. Result range is in (-1.0,-0.5][0.5,1.0) in typical cases. Returns binary significand of double precision float input, such that S0.d = significand * (2 ** exponent). See also V_FREXP_EXP_I32_F64, which returns integer exponent. See the C library function frexp() for more information.

50

V_FRACT_F64

D.d = S0.d + -floor(S0.d). Return fractional portion of a number. 0.5ULP accuracy, denormals are accepted.

51

V_FREXP_EXP_ I32_F32

if(S0.f == +-INF || S0.f == NAN) then D.i = 0; else D.i = TwosComplement(Exponent(S0.f) - 127 + 1); endif. Returns exponent of single precision float input, such that S0.f = significand * (2 ** exponent). See also V_FREXP_MANT_F32, which returns the significand. See the C library function frexp() for more information.

52

V_FREXP_MANT_F32

if(S0.f == +-INF || S0.f == NAN) then D.f = S0.f; else D.f = Mantissa(S0.f); endif. Result range is in (-1.0,-0.5][0.5,1.0) in typical cases. Returns binary significand of single precision float input, such that S0.f = significand * (2 ** exponent). See also V_FREXP_EXP_I32_F32, which returns integer exponent. See the C library function frexp() for more information.

53

V_CLREXCP

Clear wave’s exception state in SIMD (SP).

55

V_SCREEN_PART ITION_4SE_B32

D.u = TABLE[S0.u[7:0]]. TABLE: 0x1, 0x3, 0x7, 0xf, 0x5, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x2, 0x6, 0xe, 0xf, 0xa, 0xf, 0xf, 0xf, 0xb, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xd, 0xf, 0x4, 0xc, 0xf, 0xf, 0x5, 0xf, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf, 0xf, 0xf, 0x9, 0xb, 0xf, 0x8, 0xf, 0xf, 0xf, 0xa, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x4, 0xc, 0xd, 0xf, 0x6, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x8, 0x9, 0xb, 0xf, 0x9, 0x9, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0x1, 0x3, 0xf, 0xf, 0x9, 0xf, 0xf, 0xf, 0xb, 0xf, 0xf, 0xf, 0xf, 0xf, 0x6, 0xe, 0xf, 0x2, 0x6, 0xf, 0xf, 0x6, 0xf, 0xf, 0xf, 0x7, 0xb, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x2, 0x3, 0xb, 0xf, 0xa, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x1, 0x9, 0xd, 0xf, 0x5, 0xf, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xe, 0xf, 0x8, 0xc, 0xf, 0xf, 0xa, 0xf, 0xf, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf, 0xf, 0x6, 0x7, 0xf, 0x4, 0xf, 0xf, 0xf, 0x5, 0x9, 0xf, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x8, 0xc, 0xe, 0xf, 0xf, 0x6, 0x6, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x4, 0x6, 0x7, 0xf, 0xf, 0x6, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xb, 0xf, 0x2, 0x3, 0x9, 0xf, 0xf, 0x9, 0xf, 0xf, 0xf, 0xb, 0xf, 0xf, 0xf, 0xf, 0x9, 0xd, 0xf, 0x1 4SE version of LUT instruction for screen partitioning/filtering. This opcode is intended to accelerate screen partitioning in the 4SE case only. 2SE and 1SE cases use normal ALU instructions. This opcode returns a 4-bit bitmask indicating which SE backends are covered by a rectangle from (x_min, y_min) to (x_max, y_max). With 32-pixel tiles the SE for (x, y) is given by { x[5] ^ y[6], y[5] ^ x[6] } . Using this formula we can determine which SEs are covered by a larger rectangle. The primitive shader must perform the following operation before the opcode is called. 1. Compute the bounding box of the primitive (x_min, y_min) (upper left) and (x_max, y_max) (lower right), in pixels. 2. Check for any extents that do not need to use the opcode — if ((x_max/32 - x_min/32 >= 3) OR ((y_max/32 - y_min/32 >= 3) (tile size of 32) then all backends are covered. 3. Call the opcode with this 8 bit select: { x_min[6:5], y_min[6:5], x_max[6:5], y_max[6:5] } . 4. The opcode will return a 4 bit mask indicating which backends are covered, where bit 0 indicates SE0 is covered and bit 3 indicates SE3 is covered. Example: 1. The calculated bounding box is (0, 0) to (25, 35). 2. Observe the bounding box is not large enough to trivially cover all backends. 3. Divide by tile size 32 and concatenate bits to produce a selector of binary 00000001. 4. Opcode will return 0x3 which means backend 0 and 1 are covered.

57

V_CVT_F16_U1 6

D.f16 = uint16_to_flt16(S.u16). 0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

58

V_CVT_F16_I1 6

D.f16 = int16_to_flt16(S.i16). 0.5ULP accuracy, supports denormals, rounding, exception flags and saturation.

59

V_CVT_U16_F1 6

D.u16 = flt16_to_uint16(S.f16). 1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion is done with truncation. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

60

V_CVT_I16_F1 6

D.i16 = flt16_to_int16(S.f16). 1ULP accuracy, supports rounding, exception flags and saturation. FP16 denormals are accepted. Conversion is done with truncation. Generation of the INEXACT exception is controlled by the CLAMP bit. INEXACT exceptions are enabled for this conversion iff CLAMP == 1.

61

V_RCP_F16

D.f16 = 1.0 / S0.f16. Reciprocal with IEEE rules and 0.51ULP accuracy. Examples: V_RCP_F16(0xfc00) => 0x8000 // rcp(-INF) = -0 V_RCP_F16(0xc000) => 0xb800 // rcp(-2.0) = -0.5 V_RCP_F16(0x8000) => 0xfc00 // rcp(-0.0) = -INF V_RCP_F16(0x0000) => 0x7c00 // rcp(+0.0) = +INF V_RCP_F16(0x7c00) => 0x0000 // rcp(+INF) = +0

62

V_SQRT_F16

D.f16 = sqrt(S0.f16). Square root. 0.51ULP accuracy, denormals are supported. Examples: V_SQRT_F16(0xfc00) => 0xfe00 // sqrt(-INF) = NAN V_SQRT_F16(0x8000) => 0x8000 // sqrt(-0.0) = -0 V_SQRT_F16(0x0000) => 0x0000 // sqrt(+0.0) = +0 V_SQRT_F16(0x4400) => 0x4000 // sqrt(+4.0) = +2.0 V_SQRT_F16(0x7c00) => 0x7c00 // sqrt(+INF) = +INF

63

V_RSQ_F16

D.f16 = 1.0 / sqrt(S0.f16). Reciprocal square root with IEEE rules. 0.51ULP accuracy, denormals are supported. Examples: V_RSQ_F16(0xfc00) => 0xfe00 // rsq(-INF) = NAN V_RSQ_F16(0x8000) => 0xfc00 // rsq(-0.0) = -INF V_RSQ_F16(0x0000) => 0x7c00 // rsq(+0.0) = +INF V_RSQ_F16(0x4400) => 0x3800 // rsq(+4.0) = +0.5 V_RSQ_F16(0x7c00) => 0x0000 // rsq(+INF) = +0

64

V_LOG_F16

D.f16 = log2(S0.f). Base 2 logarithm. 0.51ULP accuracy, denormals are supported. Examples: V_LOG_F16(0xfc00) => 0xfe00 // log(-INF) = NAN V_LOG_F16(0xbc00) => 0xfe00 // log(-1.0) = NAN V_LOG_F16(0x8000) => 0xfc00 // log(-0.0) = -INF V_LOG_F16(0x0000) => 0xfc00 // log(+0.0) = -INF V_LOG_F16(0x3c00) => 0x0000 // log(+1.0) = 0 V_LOG_F16(0x7c00) => 0x7c00 // log(+INF) = +INF

65

V_EXP_F16

D.f16 = pow(2.0, S0.f16). Base 2 exponentiation. 0.51ULP accuracy, denormals are supported. Examples: V_EXP_F16(0xfc00) => 0x0000 // exp(-INF) = 0 V_EXP_F16(0x8000) => 0x3c00 // exp(-0.0) = 1 V_EXP_F16(0x7c00) => 0x7c00 // exp(+INF) = +INF

66

V_FREXP_MANT_F16

if(S0.f16 == +-INF || S0.f16 == NAN) then D.f16 = S0.f16; else D.f16 = Mantissa(S0.f16); endif. Result range is in (-1.0,-0.5][0.5,1.0) in typical cases. Returns binary significand of half precision float input, such that S0.f16 = significand * (2 ** exponent). See also V_FREXP_EXP_I16_F16, which returns integer exponent. See the C library function frexp() for more information.

67

V_FREXP_EXP_ I16_F16

if(S0.f16 == +-INF || S0.f16 == NAN) then D.i = 0; else D.i = TwosComplement(Exponent(S0.f16) - 15 + 1); endif. Returns exponent of half precision float input, such that S0.f16 = significand * (2 ** exponent). See also V_FREXP_MANT_F16, which returns the significand. See the C library function frexp() for more information.

68

V_FLOOR_F16

D.f16 = trunc(S0.f16); if(S0.f16 < 0.0f && S0.f16 != D.f16) then D.f16 -= 1.0; endif. Round down to previous whole integer.

69

V_CEIL_F16

D.f16 = trunc(S0.f16); if(S0.f16 > 0.0f && S0.f16 != D.f16) then D.f16 += 1.0; endif. Round up to next whole integer.

70

V_TRUNC_F16

D.f16 = trunc(S0.f16). Return integer part of S0.f16, round-to-zero semantics.

71

V_RNDNE_F16

D.f16 = floor(S0.f16 + 0.5); if(floor(S0.f16) is even && fract(S0.f16) == 0.5) then D.f16 -= 1.0; endif. Round-to-nearest-even semantics.

72

V_FRACT_F16

D.f16 = S0.f16 + -floor(S0.f16). Return fractional portion of a number. 0.5ULP accuracy, denormals are accepted.

73

V_SIN_F16

D.f16 = sin(S0.f16 * 2 * PI). Trigonometric sine. Denormals are supported. Examples: V_SIN_F16(0xfc00) => 0xfe00 // sin(-INF) = NAN V_SIN_F16(0xfbff) => 0x0000 // Most negative finite FP16 V_SIN_F16(0x8000) => 0x8000 // sin(-0.0) = -0 V_SIN_F16(0x3400) => 0x3c00 // sin(0.25) = 1 V_SIN_F16(0x7bff) => 0x0000 // Most positive finite FP16 V_SIN_F16(0x7c00) => 0xfe00 // sin(+INF) = NAN

74

V_COS_F16

D.f16 = cos(S0.f16 * 2 * PI). Trigonometric cosine. Denormals are supported. Examples: V_COS_F16(0xfc00) => 0xfe00 // cos(-INF) = NAN V_COS_F16(0xfbff) => 0x3c00 // Most negative finite FP16 V_COS_F16(0x8000) => 0x3c00 // cos(-0.0) = 1 V_COS_F16(0x3400) => 0x0000 // cos(0.25) = 0 V_COS_F16(0x7bff) => 0x3c00 // Most positive finite FP16 V_COS_F16(0x7c00) => 0xfe00 // cos(+INF) = NAN

75

V_EXP_LEGACY_F32

D.f = pow(2.0, S0.f). Power with legacy semantics.

76

V_LOG_LEGACY_F32

D.f = log2(S0.f). Base 2 logarithm with legacy semantics.

77

V_CVT_NORM_I 16_F16

D.i16 = flt16_to_snorm16(S.f16). 0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

78

V_CVT_NORM_U 16_F16

D.u16 = flt16_to_unorm16(S.f16). 0.5ULP accuracy, supports rounding, exception flags and saturation, denormals are supported.

79

V_SAT_PK_U8_I16

D.u32 = {16’b0, sat8(S.u[31:16]), sat8(S.u[15:0])}.

81

V_SWAP_B32

tmp = D.u; D.u = S0.u; S0.u = tmp. Swap operands. Input and output modifiers not supported; this is an untyped operation.

VOP1 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. This allows access to the extra control bits (e.g. ABS, OMOD) in exchange for not being able to use a literal constant. The VOP3 opcode is: VOP2 opcode + 0x140.

microcode vop3a

microcode vop3b

VOPC Instructions

The bitfield map for VOPC is:

microcode vopc

where:

SRC0  = First operand for instruction.
VSRC1 = Second operand for instruction.
OP    = Instructions.
All VOPC instructions are also part of VOP3a microcode format,
for which the bitfield is:

Compare instructions perform the same compare operation on each lane (workItem or thread) using that lane’s private data, and producing a 1 bit result per lane into VCC or EXEC.

Instructions in this format may use a 32-bit literal constant which occurs immediately after the instruction.

Most compare instructions fall into one of two categories:

  • Those which can use one of 16 compare operations (floating point types). “{COMPF}”

  • Those which can use one of 8 compare operations (integer types). “{COMPI}”

The opcode number is such that for these the opcode number can be calculated from a base opcode number for the data type, plus an offset for the specific compare operation.

Compare Operation

Opcode Offset

Description

F

0

D.u = 0

LT

1

D.u = (S0 < S1)

EQ

2

D.u = (S0 == S1)

LE

3

D.u = (S0 <= S1)

GT

4

D.u = (S0 > S1)

LG

5

D.u = (S0 <> S1)

GE

6

D.u = (S0 >= S1)

O

7

D.u = (!isNaN(S0) && !isNaN(S1))

U

8

D.u = (!isNaN(S0) || !isNaN(S1))

NGE

9

D.u = !(S0 >= S1)

NLG

10

D.u = !(S0 <> S1)

NGT

11

D.u = !(S0 > S1)

NLE

12

D.u = !(S0 <= S1)

NEQ

13

D.u = !(S0 == S1)

NLT

14

D.u = !(S0 < S1)

TRU

15

D.u = 1

Table: Instructions with Sixteen Compare Operations

Instruction

Description

Hex Range

V_CMP_{COMPF}_F16

16-bit float compare.

0x20 to 0x2F

V_CMPX_{COMPF}_F16

16-bit float compare. Also writes EXEC.

0x30 to 0x3F

V_CMP_{COMPF}_F32

32-bit float compare.

0x40 to 0x4F

V_CMPX_{COMPF}_F32

32-bit float compare. Also writes EXEC.

0x50 to 0x5F

V_CMPS_{COMPF}_F64

64-bit float compare.

0x60 to 0x6F

V_CMPSX_{COMPF}_F64

64-bit float compare. Also writes EXEC.

0x70 to 0x7F

Table: Instructions with Sixteen Compare Operations

Compare Operation

Opcode Offset

Description

F

0

D.u = 0

LT

1

D.u = (S0 < S1)

EQ

2

D.u = (S0 == S1)

LE

3

D.u = (S0 <= S1)

GT

4

D.u = (S0 > S1)

LG

5

D.u = (S0 <> S1)

GE

6

D.u = (S0 >= S1)

TRU

7

D.u = 1

Table: Instructions with Sixteen Compare Operations

Instruction

Description

Hex Range

V_CMP_{COMPI}_I16

16-bit signed integer compare.

0xA0 - 0xA7

V_CMP_{COMPI}_U16

16-bit signed integer compare. Also writes EXEC.

0xA8 - 0xAF

V_CMPX_{COMPI}_I16

16-bit unsigned integer compare.

0xB0 - 0xB7

V_CMPX_{COMPI}_U16

16-bit unsigned integer compare. Also writes EXEC.

0xB8 - 0xBF

V_CMP_{COMPI}_I32

32-bit signed integer compare.

0xC0 - 0xC7

V_CMP_{COMPI}_U32

32-bit signed integer compare. Also writes EXEC.

0xC8 - 0xCF

V_CMPX_{COMPI}_I32

32-bit unsigned integer compare.

0xD0 - 0xD7

V_CMPX_{COMPI}_U32

32-bit unsigned integer compare. Also writes EXEC.

0xD8 - 0xDF

V_CMP_{COMPI}_I64

64-bit signed integer compare.

0xE0 - 0xE7

V_CMP_{COMPI}_U64

64-bit signed integer compare. Also writes EXEC.

0xE8 - 0xEF

V_CMPX_{COMPI}_I64

64-bit unsigned integer compare.

0xF0 - 0xF7

V_CMPX_{COMPI}_U64

64-bit unsigned integer compare. Also writes EXEC.

0xF8 - 0xFF

Table: Instructions with Eight Compare Operations

Opcode

Name

Description

16

V_CMP_CLASS_F32

VCC = IEEE numeric class function specified in S1.u, performed on S0.f The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

17

V_CMPX_CLASS _F32

EXEC = VCC = IEEE numeric class function specified in S1.u, performed on S0.f The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

18

V_CMP_CLASS_F64

VCC = IEEE numeric class function specified in S1.u, performed on S0.d The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

19

V_CMPX_CLASS _F64

EXEC = VCC = IEEE numeric class function specified in S1.u, performed on S0.d The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

20

V_CMP_CLASS_F16

VCC = IEEE numeric class function specified in S1.u, performed on S0.f16. Note that the S1 has a format of f16 since floating point literal constants are interpreted as 16 bit value for this opcode The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

21

V_CMPX_CLASS _F16

EXEC = VCC = IEEE numeric class function specified in S1.u, performed on S0.f16 Note that the S1 has a format of f16 since floating point literal constants are interpreted as 16 bit value for this opcode The function reports true if the floating point value is *any* of the numeric types selected in S1.u according to the following list: S1.u[0] – value is a signaling NaN. S1.u[1] – value is a quiet NaN. S1.u[2] – value is negative infinity. S1.u[3] – value is a negative normal value. S1.u[4] – value is a negative denormal value. S1.u[5] – value is negative zero. S1.u[6] – value is positive zero. S1.u[7] – value is a positive denormal value. S1.u[8] – value is a positive normal value. S1.u[9] – value is positive infinity.

32

V_CMP_F_F16

D.u64[threadId] = 0.

33

V_CMP_LT_F1 6

D.u64[threadId] = (S0 < S1).

34

V_CMP_EQ_F1 6

D.u64[threadId] = (S0 == S1).

35

V_CMP_LE_F1 6

D.u64[threadId] = (S0 <= S1).

36

V_CMP_GT_F1 6

D.u64[threadId] = (S0 > S1).

37

V_CMP_LG_F1 6

D.u64[threadId] = (S0 <> S1).

38

V_CMP_GE_F1 6

D.u64[threadId] = (S0 >= S1).

39

V_CMP_O_F16

D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

40

V_CMP_U_F16

D.u64[threadId] = (isNan(S0) || isNan(S1)).

41

V_CMP_NGE_F 16

D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

42

V_CMP_NLG_F 16

D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

43

V_CMP_NGT_F 16

D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

44

V_CMP_NLE_F 16

D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

45

V_CMP_NEQ_F 16

D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

46

V_CMP_NLT_F 16

D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

47

V_CMP_TRU_F 16

D.u64[threadId] = 1.

48

V_CMPX_F_F1 6

EXEC[threadId] = D.u64[threadId] = 0.

49

V_CMPX_LT_F 16

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

50

V_CMPX_EQ_F 16

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

51

V_CMPX_LE_F 16

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

52

V_CMPX_GT_F 16

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

53

V_CMPX_LG_F 16

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

54

V_CMPX_GE_F 16

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

55

V_CMPX_O_F1 6

EXEC[threadId] = D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

56

V_CMPX_U_F1 6

EXEC[threadId] = D.u64[threadId] = (isNan(S0) || isNan(S1)).

57

V_CMPX_NGE_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

58

V_CMPX_NLG_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

59

V_CMPX_NGT_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

60

V_CMPX_NLE_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

61

V_CMPX_NEQ_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

62

V_CMPX_NLT_ F16

EXEC[threadId] = D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

63

V_CMPX_TRU_ F16

EXEC[threadId] = D.u64[threadId] = 1.

64

V_CMP_F_F32

D.u64[threadId] = 0.

65

V_CMP_LT_F3 2

D.u64[threadId] = (S0 < S1).

66

V_CMP_EQ_F3 2

D.u64[threadId] = (S0 == S1).

67

V_CMP_LE_F3 2

D.u64[threadId] = (S0 <= S1).

68

V_CMP_GT_F3 2

D.u64[threadId] = (S0 > S1).

69

V_CMP_LG_F3 2

D.u64[threadId] = (S0 <> S1).

70

V_CMP_GE_F3 2

D.u64[threadId] = (S0 >= S1).

71

V_CMP_O_F32

D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

72

V_CMP_U_F32

D.u64[threadId] = (isNan(S0) || isNan(S1)).

73

V_CMP_NGE_F 32

D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

74

V_CMP_NLG_F 32

D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

75

V_CMP_NGT_F 32

D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

76

V_CMP_NLE_F 32

D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

77

V_CMP_NEQ_F 32

D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

78

V_CMP_NLT_F 32

D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

79

V_CMP_TRU_F 32

D.u64[threadId] = 1.

80

V_CMPX_F_F3 2

EXEC[threadId] = D.u64[threadId] = 0.

81

V_CMPX_LT_F 32

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

82

V_CMPX_EQ_F 32

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

83

V_CMPX_LE_F 32

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

84

V_CMPX_GT_F 32

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

85

V_CMPX_LG_F 32

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

86

V_CMPX_GE_F 32

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

87

V_CMPX_O_F3 2

EXEC[threadId] = D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

88

V_CMPX_U_F3 2

EXEC[threadId] = D.u64[threadId] = (isNan(S0) || isNan(S1)).

89

V_CMPX_NGE_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

90

V_CMPX_NLG_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

91

V_CMPX_NGT_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

92

V_CMPX_NLE_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

93

V_CMPX_NEQ_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

94

V_CMPX_NLT_ F32

EXEC[threadId] = D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

95

V_CMPX_TRU_ F32

EXEC[threadId] = D.u64[threadId] = 1.

96

V_CMP_F_F64

D.u64[threadId] = 0.

97

V_CMP_LT_F6 4

D.u64[threadId] = (S0 < S1).

98

V_CMP_EQ_F6 4

D.u64[threadId] = (S0 == S1).

99

V_CMP_LE_F6 4

D.u64[threadId] = (S0 <= S1).

100

V_CMP_GT_F6 4

D.u64[threadId] = (S0 > S1).

101

V_CMP_LG_F6 4

D.u64[threadId] = (S0 <> S1).

102

V_CMP_GE_F6 4

D.u64[threadId] = (S0 >= S1).

103

V_CMP_O_F64

D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

104

V_CMP_U_F64

D.u64[threadId] = (isNan(S0) || isNan(S1)).

105

V_CMP_NGE_F 64

D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

106

V_CMP_NLG_F 64

D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

107

V_CMP_NGT_F 64

D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

108

V_CMP_NLE_F 64

D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

109

V_CMP_NEQ_F 64

D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

110

V_CMP_NLT_F 64

D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

111

V_CMP_TRU_F 64

D.u64[threadId] = 1.

112

V_CMPX_F_F6 4

EXEC[threadId] = D.u64[threadId] = 0.

113

V_CMPX_LT_F 64

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

114

V_CMPX_EQ_F 64

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

115

V_CMPX_LE_F 64

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

116

V_CMPX_GT_F 64

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

117

V_CMPX_LG_F 64

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

118

V_CMPX_GE_F 64

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

119

V_CMPX_O_F6 4

EXEC[threadId] = D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

120

V_CMPX_U_F6 4

EXEC[threadId] = D.u64[threadId] = (isNan(S0) || isNan(S1)).

121

V_CMPX_NGE_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) // With NAN inputs this is not the same operation as <.

122

V_CMPX_NLG_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) // With NAN inputs this is not the same operation as ==.

123

V_CMPX_NGT_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 > S1) // With NAN inputs this is not the same operation as <=.

124

V_CMPX_NLE_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) // With NAN inputs this is not the same operation as >.

125

V_CMPX_NEQ_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 == S1) // With NAN inputs this is not the same operation as !=.

126

V_CMPX_NLT_ F64

EXEC[threadId] = D.u64[threadId] = !(S0 < S1) // With NAN inputs this is not the same operation as >=.

127

V_CMPX_TRU_ F64

EXEC[threadId] = D.u64[threadId] = 1.

160

V_CMP_F_I16

D.u64[threadId] = 0.

161

V_CMP_LT_I1 6

D.u64[threadId] = (S0 < S1).

162

V_CMP_EQ_I1 6

D.u64[threadId] = (S0 == S1).

163

V_CMP_LE_I1 6

D.u64[threadId] = (S0 <= S1).

164

V_CMP_GT_I1 6

D.u64[threadId] = (S0 > S1).

165

V_CMP_NE_I1 6

D.u64[threadId] = (S0 <> S1).

166

V_CMP_GE_I1 6

D.u64[threadId] = (S0 >= S1).

167

V_CMP_T_I16

D.u64[threadId] = 1.

168

V_CMP_F_U16

D.u64[threadId] = 0.

169

V_CMP_LT_U1 6

D.u64[threadId] = (S0 < S1).

170

V_CMP_EQ_U1 6

D.u64[threadId] = (S0 == S1).

171

V_CMP_LE_U1 6

D.u64[threadId] = (S0 <= S1).

172

V_CMP_GT_U1 6

D.u64[threadId] = (S0 > S1).

173

V_CMP_NE_U1 6

D.u64[threadId] = (S0 <> S1).

174

V_CMP_GE_U1 6

D.u64[threadId] = (S0 >= S1).

175

V_CMP_T_U16

D.u64[threadId] = 1.

176

V_CMPX_F_I1 6

EXEC[threadId] = D.u64[threadId] = 0.

177

V_CMPX_LT_I 16

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

178

V_CMPX_EQ_I 16

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

179

V_CMPX_LE_I 16

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

180

V_CMPX_GT_I 16

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

181

V_CMPX_NE_I 16

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

182

V_CMPX_GE_I 16

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

183

V_CMPX_T_I1 6

EXEC[threadId] = D.u64[threadId] = 1.

184

V_CMPX_F_U1 6

EXEC[threadId] = D.u64[threadId] = 0.

185

V_CMPX_LT_U 16

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

186

V_CMPX_EQ_U 16

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

187

V_CMPX_LE_U 16

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

188

V_CMPX_GT_U 16

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

189

V_CMPX_NE_U 16

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

190

V_CMPX_GE_U 16

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

191

V_CMPX_T_U1 6

EXEC[threadId] = D.u64[threadId] = 1.

192

V_CMP_F_I32

D.u64[threadId] = 0.

193

V_CMP_LT_I3 2

D.u64[threadId] = (S0 < S1).

194

V_CMP_EQ_I3 2

D.u64[threadId] = (S0 == S1).

195

V_CMP_LE_I3 2

D.u64[threadId] = (S0 <= S1).

196

V_CMP_GT_I3 2

D.u64[threadId] = (S0 > S1).

197

V_CMP_NE_I3 2

D.u64[threadId] = (S0 <> S1).

198

V_CMP_GE_I3 2

D.u64[threadId] = (S0 >= S1).

199

V_CMP_T_I32

D.u64[threadId] = 1.

200

V_CMP_F_U32

D.u64[threadId] = 0.

201

V_CMP_LT_U3 2

D.u64[threadId] = (S0 < S1).

202

V_CMP_EQ_U3 2

D.u64[threadId] = (S0 == S1).

203

V_CMP_LE_U3 2

D.u64[threadId] = (S0 <= S1).

204

V_CMP_GT_U3 2

D.u64[threadId] = (S0 > S1).

205

V_CMP_NE_U3 2

D.u64[threadId] = (S0 <> S1).

206

V_CMP_GE_U3 2

D.u64[threadId] = (S0 >= S1).

207

V_CMP_T_U32

D.u64[threadId] = 1.

208

V_CMPX_F_I3 2

EXEC[threadId] = D.u64[threadId] = 0.

209

V_CMPX_LT_I 32

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

210

V_CMPX_EQ_I 32

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

211

V_CMPX_LE_I 32

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

212

V_CMPX_GT_I 32

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

213

V_CMPX_NE_I 32

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

214

V_CMPX_GE_I 32

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

215

V_CMPX_T_I3 2

EXEC[threadId] = D.u64[threadId] = 1.

216

V_CMPX_F_U3 2

EXEC[threadId] = D.u64[threadId] = 0.

217

V_CMPX_LT_U 32

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

218

V_CMPX_EQ_U 32

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

219

V_CMPX_LE_U 32

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

220

V_CMPX_GT_U 32

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

221

V_CMPX_NE_U 32

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

222

V_CMPX_GE_U 32

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

223

V_CMPX_T_U3 2

EXEC[threadId] = D.u64[threadId] = 1.

224

V_CMP_F_I64

D.u64[threadId] = 0.

225

V_CMP_LT_I6 4

D.u64[threadId] = (S0 < S1).

226

V_CMP_EQ_I6 4

D.u64[threadId] = (S0 == S1).

227

V_CMP_LE_I6 4

D.u64[threadId] = (S0 <= S1).

228

V_CMP_GT_I6 4

D.u64[threadId] = (S0 > S1).

229

V_CMP_NE_I6 4

D.u64[threadId] = (S0 <> S1).

230

V_CMP_GE_I6 4

D.u64[threadId] = (S0 >= S1).

231

V_CMP_T_I64

D.u64[threadId] = 1.

232

V_CMP_F_U64

D.u64[threadId] = 0.

233

V_CMP_LT_U6 4

D.u64[threadId] = (S0 < S1).

234

V_CMP_EQ_U6 4

D.u64[threadId] = (S0 == S1).

235

V_CMP_LE_U6 4

D.u64[threadId] = (S0 <= S1).

236

V_CMP_GT_U6 4

D.u64[threadId] = (S0 > S1).

237

V_CMP_NE_U6 4

D.u64[threadId] = (S0 <> S1).

238

V_CMP_GE_U6 4

D.u64[threadId] = (S0 >= S1).

239

V_CMP_T_U64

D.u64[threadId] = 1.

240

V_CMPX_F_I6 4

EXEC[threadId] = D.u64[threadId] = 0.

241

V_CMPX_LT_I 64

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

242

V_CMPX_EQ_I 64

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

243

V_CMPX_LE_I 64

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

244

V_CMPX_GT_I 64

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

245

V_CMPX_NE_I 64

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

246

V_CMPX_GE_I 64

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

247

V_CMPX_T_I6 4

EXEC[threadId] = D.u64[threadId] = 1.

248

V_CMPX_F_U6 4

EXEC[threadId] = D.u64[threadId] = 0.

249

V_CMPX_LT_U 64

EXEC[threadId] = D.u64[threadId] = (S0 < S1).

250

V_CMPX_EQ_U 64

EXEC[threadId] = D.u64[threadId] = (S0 == S1).

251

V_CMPX_LE_U 64

EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

252

V_CMPX_GT_U 64

EXEC[threadId] = D.u64[threadId] = (S0 > S1).

253

V_CMPX_NE_U 64

EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

254

V_CMPX_GE_U 64

EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

255

V_CMPX_T_U6 4

EXEC[threadId] = D.u64[threadId] = 1.

Table: VOPC Compare Opcodes

VOPC using VOP3A encoding

Instructions in this format may also be encoded as VOP3A. This allows access to the extra control bits (e.g. ABS, OMOD) in exchange for not being able to use a literal constant. The VOP3 opcode is: VOP2 opcode + 0x000.

When the CLAMP microcode bit is set to 1, these compare instructions signal an exception when either of the inputs is NaN. When CLAMP is set to zero, NaN does not signal an exception. The second eight VOPC instructions have {OP8} embedded in them. This refers to each of the compare operations listed below.

microcode vop3a

where:

  VDST = Destination for instruction in the VGPR.
  ABS = Floating-point absolute value.
  CLMP = Clamp output.
  OP = Instructions.
  SRC0 = First operand for instruction.
  SRC1 = Second operand for instruction.
  SRC2 = Third operand for instruction. Unused in VOPC instructions.
  OMOD = Output modifier for instruction. Unused in VOPC instructions.
  NEG = Floating-point negation.

VOP3P Instructions

microcode vop3p

Opcode

Name

Description

0

V_PK_MAD_I16

D.i[31:16] = S0.i[31:16] * S1.i[31:16] + S2.i[31:16] . D.i[15:0] = S0.i[15:0] * S1.i[15:0] + S2.i[15:0] .

1

V_PK_MUL_LO_U16

D.u[31:16] = S0.u[31:16] * S1.u[31:16] . D.u[15:0] = S0.u[15:0] * S1.u[15:0] .

2

V_PK_ADD_I16

D.i[31:16] = S0.i[31:16] + S1.i[31:16] . D.i[15:0] = S0.i[15:0] + S1.i[15:0] .

3

V_PK_SUB_I16

D.i[31:16] = S0.i[31:16] - S1.i[31:16] . D.i[15:0] = S0.i[15:0] - S1.i[15:0] .

4

V_PK_LSHLREV_B16

D.u[31:16] = S1.u[31:16] << S0.u[19:16] . D.u[15:0] = S1.u[15:0] << S0.u[3:0] .

5

V_PK_LSHRREV_B16

D.u[31:16] = S1.u[31:16] >> S0.u[19:16] . D.u[15:0] = S1.u[15:0] >> S0.u[3:0] .

6

V_PK_ASHRREV_I16

D.i[31:16] = S1.i[31:16] >> S0.i[19:16] . D.i[15:0] = S1.i[15:0] >> S0.i[3:0] .

7

V_PK_MAX_I16

D.i[31:16] = (S0.i[31:16] >= S1.i[31:16]) ? S0.i[31:16] : S1.i[31:16] . D.i[15:0] = (S0.i[15:0] >= S1.i[15:0]) ? S0.i[15:0] : S1.i[15:0] .

8

V_PK_MIN_I16

D.i[31:16] = (S0.i[31:16] < S1.i[31:16]) ? S0.i[31:16] : S1.i[31:16] . D.i[15:0] = (S0.i[15:0] < S1.i[15:0]) ? S0.i[15:0] : S1.i[15:0]

9

V_PK_MAD_U16

D.u[31:16] = S0.u[31:16] * S1.u[31:16] + S2.u[31:16] . D.u[15:0] = S0.u[15:0] * S1.u[15:0] + S2.u[15:0] .

10

V_PK_ADD_U16

D.u[31:16] = S0.u[31:16] + S1.u[31:16] . D.u[15:0] = S0.u[15:0] + S1.u[15:0] .

11

V_PK_SUB_U16

D.u[31:16] = S0.u[31:16] - S1.u[31:16] . D.u[15:0] = S0.u[15:0] - S1.u[15:0] .

12

V_PK_MAX_U16

D.u[31:16] = (S0.u[31:16] >= S1.u[31:16]) ? S0.u[31:16] : S1.u[31:16] . D.u[15:0] = (S0.u[15:0] >= S1.u[15:0]) ? S0.u[15:0] : S1.u[15:0] .

13

V_PK_MIN_U16

D.u[31:16] = (S0.u[31:16] < S1.u[31:16]) ? S0.u[31:16] : S1.u[31:16] . D.u[15:0] = (S0.u[15:0] < S1.u[15:0]) ? S0.u[15:0] : S1.u[15:0] .

14

V_PK_FMA_F16

D.f[31:16] = S0.f[31:16] * S1.f[31:16] + S2.f[31:16] . D.f[15:0] = S0.f[15:0] * S1.f[15:0] + S2.f[15:0] . Fused half-precision multiply add.

15

V_PK_ADD_F16

D.f[31:16] = S0.f[31:16] + S1.f[31:16] . D.f[15:0] = S0.f[15:0] + S1.f[15:0] .

16

V_PK_MUL_F16

D.f[31:16] = S0.f[31:16] * S1.f[31:16] . D.f[15:0] = S0.f[15:0] * S1.f[15:0] .

17

V_PK_MIN_F16

D.f[31:16] = min(S0.f[31:16], S1.f[31:16]) . D.f[15:0] = min(S0.f[15:0], S1.u[15:0]) .

18

V_PK_MAX_F16

D.f[31:16] = max(S0.f[31:16], S1.f[31:16]) . D.f[15:0] = max(S0.f[15:0], S1.f[15:0]) .

32

V_MAD_MIX_F3 2

D.f[31:0] = S0.f * S1.f + S2.f. Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also, for MAD_MIX, the NEG_HI field acts instead as an absolute-value modifier.

33

V_MAD_MIXLO_ F16

D.f[15:0] = S0.f * S1.f + S2.f. Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also, for MAD_MIX, the NEG_HI field acts instead as an absolute-value modifier.

34

V_MAD_MIXHI_ F16

D.f[31:16] = S0.f * S1.f + S2.f. Size and location of S0, S1 and S2 controlled by OPSEL: 0=src[31:0], 1=src[31:0], 2=src[15:0], 3=src[31:16]. Also, for MAD_MIX, the NEG_HI field acts instead as an absolute-value modifier.

VINTERP Instructions

microcode vintrp

Opcode

Name

Description

0

V_INTERP_P1_F32

D.f = P10 * S.f + P0. Parameter interpolation. CAUTION: when in HALF_LDS mode, D must not be the same GPR as S; if D == S then data corruption will occur. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field.

1

V_INTERP_P2_F32

D.f = P20 * S.f + D.f. Parameter interpolation. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field.

2

V_INTERP_MOV _F32

D.f = {P10,P20,P0}[S.u]. Parameter load. Used for custom interpolation in the shader.

VINTERP using VOP3 encoding

Instructions in this format may also be encoded as VOP3A. This allows access to the extra control bits (e.g. ABS, OMOD) in exchange for not being able to use a literal constant. The VOP3 opcode is: VOP2 opcode + 0x270.

microcode vop3a

VOP3A & VOP3B Instructions

VOP3 instructions use one of two encodings:

microcode vop3a

microcode vop3b

VOP3B

this encoding allows specifying a unique scalar destination, and is used only for:
V_ADD_CO_U32
V_SUB_CO_U32
V_SUBREV_CO_U32
V_ADDC_CO_U32
V_SUBB_CO_U32
V_SUBBREV_CO_U32
V_DIV_SCALE_F32
V_DIV_SCALE_F64
V_MAD_U64_U32
V_MAD_I64_I32

VOP3A

all other VALU instructions use this encoding

Opcode

Name

Description

448

V_MAD_LEGACY _F32

D.f = S0.f * S1.f + S2.f. // DX9 rules, 0.0 * x = 0.0

449

V_MAD_F32

D.f = S0.f * S1.f + S2.f. 1ULP accuracy, denormals are flushed.

450

V_MAD_I32_I 24

D.i = S0.i[23:0] * S1.i[23:0] + S2.i.

451

V_MAD_U32_U 24

D.u = S0.u[23:0] * S1.u[23:0] + S2.u.

452

V_CUBEID_F32

D.f = cubemap face ID ({0.0, 1.0, …, 5.0}). XYZ coordinate is given in (S0.f, S1.f, S2.f). Cubemap Face ID determination. Result is a floating point face ID. S0.f = x S1.f = y S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f) >= Abs(S1.f)) If (S2.f < 0) D.f = 5.0 Else D.f = 4.0 Else if (Abs(S1.f) >= Abs(S0.f)) If (S1.f < 0) D.f = 3.0 Else D.f = 2.0 Else If (S0.f < 0) D.f = 1.0 Else D.f = 0.0

453

V_CUBESC_F32

D.f = cubemap S coordinate. XYZ coordinate is given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f) >= Abs(S1.f)) If (S2.f < 0) D.f = -S0.f Else D.f = S0.f Else if (Abs(S1.f) >= Abs(S0.f)) D.f = S0.f Else If (S0.f < 0) D.f = S2.f Else D.f = -S2.f

454

V_CUBETC_F32

D.f = cubemap T coordinate. XYZ coordinate is given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f) >= Abs(S1.f)) D.f = -S1.f Else if (Abs(S1.f) >= Abs(S0.f)) If (S1.f < 0) D.f = -S2.f Else D.f = S2.f Else D.f = -S1.f

455

V_CUBEMA_F32

D.f = 2.0 * cubemap major axis. XYZ coordinate is given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f) >= Abs(S1.f)) D.f = 2.0*S2.f Else if (Abs(S1.f) >= Abs(S0.f)) D.f = 2.0 * S1.f Else D.f = 2.0 * S0.f

456

V_BFE_U32

D.u = (S0.u >> S1.u[4:0]) & ((1 << S2.u[4:0]) - 1). Bitfield extract with S0 = data, S1 = field_offset, S2 = field_width.

457

V_BFE_I32

D.i = (S0.i >> S1.u[4:0]) & ((1 << S2.u[4:0]) - 1). Bitfield extract with S0 = data, S1 = field_offset, S2 = field_width.

458

V_BFI_B32

D.u = (S0.u & S1.u) | (~S0.u & S2.u). Bitfield insert.

459

V_FMA_F32

D.f = S0.f * S1.f + S2.f. Fused single precision multiply add. 0.5ULP accuracy, denormals are supported.

460

V_FMA_F64

D.d = S0.d * S1.d + S2.d. Fused double precision multiply add. 0.5ULP precision, denormals are supported.

461

V_LERP_U8

D.u = ((S0.u[31:24] + S1.u[31:24] + S2.u[24]) >> 1) << 24 D.u += ((S0.u[23:16] + S1.u[23:16] + S2.u[16]) >> 1) << 16; D.u += ((S0.u[15:8] + S1.u[15:8] + S2.u[8]) >> 1) << 8; D.u += ((S0.u[7:0] + S1.u[7:0] + S2.u[0]) >> 1). Unsigned 8-bit pixel average on packed unsigned bytes (linear interpolation). S2 acts as a round mode; if set, 0.5 rounds up, otherwise 0.5 truncates.

462

V_ALIGNBIT_B 32

D.u = ({S0,S1} >> S2.u[4:0]) & 0xffffffff.

463

V_ALIGNBYTE_ B32

D.u = ({S0,S1} >> (8*S2.u[4:0])) & 0xffffffff.

464

V_MIN3_F32

D.f = V_MIN_F32(V_MIN_F32(S0.f, S1.f), S2.f).

465

V_MIN3_I32

D.i = V_MIN_I32(V_MIN_I32(S0.i, S1.i), S2.i).

466

V_MIN3_U32

D.u = V_MIN_U32(V_MIN_U32(S0.u, S1.u), S2.u).

467

V_MAX3_F32

D.f = V_MAX_F32(V_MAX_F32(S0.f, S1.f), S2.f).

468

V_MAX3_I32

D.i = V_MAX_I32(V_MAX_I32(S0.i, S1.i), S2.i).

469

V_MAX3_U32

D.u = V_MAX_U32(V_MAX_U32(S0.u, S1.u), S2.u).

470

V_MED3_F32

if (isNan(S0.f) || isNan(S1.f) || isNan(S2.f)) D.f = V_MIN3_F32(S0.f, S1.f, S2.f); else if (V_MAX3_F32(S0.f, S1.f, S2.f) == S0.f) D.f = V_MAX_F32(S1.f, S2.f); else if (V_MAX3_F32(S0.f, S1.f, S2.f) == S1.f) D.f = V_MAX_F32(S0.f, S2.f); else D.f = V_MAX_F32(S0.f, S1.f); endif.

471

V_MED3_I32

if (V_MAX3_I32(S0.i, S1.i, S2.i) == S0.i) D.i = V_MAX_I32(S1.i, S2.i); else if (V_MAX3_I32(S0.i, S1.i, S2.i) == S1.i) D.i = V_MAX_I32(S0.i, S2.i); else D.i = V_MAX_I32(S0.i, S1.i); endif.

472

V_MED3_U32

if (V_MAX3_U32(S0.u, S1.u, S2.u) == S0.u) D.u = V_MAX_U32(S1.u, S2.u); else if (V_MAX3_U32(S0.u, S1.u, S2.u) == S1.u) D.u = V_MAX_U32(S0.u, S2.u); else D.u = V_MAX_U32(S0.u, S1.u); endif.

473

V_SAD_U8

D.u = abs(S0.i[31:24] - S1.i[31:24]); D.u += abs(S0.i[23:16] - S1.i[23:16]); D.u += abs(S0.i[15:8] - S1.i[15:8]); D.u += abs(S0.i[7:0] - S1.i[7:0]) + S2.u. Sum of absolute differences with accumulation, overflow into upper bits is allowed.

474

V_SAD_HI_U8

D.u = (SAD_U8(S0, S1, 0) << 16) + S2.u. Sum of absolute differences with accumulation, overflow is lost.

475

V_SAD_U16

D.u = abs(S0.i[31:16] - S1.i[31:16]) + abs(S0.i[15:0] - S1.i[15:0]) + S2.u. Word SAD with accumulation.

476

V_SAD_U32

D.u = abs(S0.i - S1.i) + S2.u. Dword SAD with accumulation.

477

V_CVT_PK_U8 _F32

D.u = (S2.u & ~(0xff << (8 * S1.u[1:0]))); D.u = D.u | ((flt32_to_uint8(S0.f) & 0xff) << (8 * S1.u[1:0])). Convert floating point value S0 to 8-bit unsigned integer and pack the result into byte S1 of dword S2.

478

V_DIV_FIXUP_F32

sign_out = sign(S1.f)^sign(S2.f); if (S2.f == NAN) D.f = Quiet(S2.f); else if (S1.f == NAN) D.f = Quiet(S1.f); else if (S1.f == S2.f == 0) // 0/0 D.f = 0xffc0_0000; else if (abs(S1.f) == abs(S2.f) == +-INF) // inf/inf D.f = 0xffc0_0000; else if (S1.f == 0 || abs(S2.f) == +-INF) // x/0, or inf/y D.f = sign_out ? -INF : +INF; else if (abs(S1.f) == +-INF || S2.f == 0) // x/inf, 0/y D.f = sign_out ? -0 : 0; else if ((exponent(S2.f) - exponent(S1.f)) < -150) D.f = sign_out ? -underflow : underflow; else if (exponent(S1.f) == 255) D.f = sign_out ? -overflow : overflow; else D.f = sign_out ? -abs(S0.f) : abs(S0.f); endif. Single precision division fixup. S0 = Quotient, S1 = Denominator, S2 = Numerator. Given a numerator, denominator, and quotient from a divide, this opcode will detect and apply special case numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by zero exceptions caused by the division.

479

V_DIV_FIXUP_F64

sign_out = sign(S1.d)^sign(S2.d); if (S2.d == NAN) D.d = Quiet(S2.d); else if (S1.d == NAN) D.d = Quiet(S1.d); else if (S1.d == S2.d == 0) // 0/0 D.d = 0xfff8_0000_0000_0000; else if (abs(S1.d) == abs(S2.d) == +-INF) // inf/inf D.d = 0xfff8_0000_0000_0000; else if (S1.d == 0 || abs(S2.d) == +-INF) // x/0, or inf/y D.d = sign_out ? -INF : +INF; else if (abs(S1.d) == +-INF || S2.d == 0) // x/inf, 0/y D.d = sign_out ? -0 : 0; else if ((exponent(S2.d) - exponent(S1.d)) < -1075) D.d = sign_out ? -underflow : underflow; else if (exponent(S1.d) == 2047) D.d = sign_out ? -overflow : overflow; else D.d = sign_out ? -abs(S0.d) : abs(S0.d); endif. Double precision division fixup. S0 = Quotient, S1 = Denominator, S2 = Numerator. Given a numerator, denominator, and quotient from a divide, this opcode will detect and apply special case numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by zero exceptions caused by the division.

480

V_DIV_SCALE_F32

VCC = 0; if (S2.f == 0 || S1.f == 0) D.f = NAN else if (exponent(S2.f) - exponent(S1.f) >= 96) // N/D near MAX_FLOAT VCC = 1; if (S0.f == S1.f) // Only scale the denominator D.f = ldexp(S0.f, 64); end if else if (S1.f == DENORM) D.f = ldexp(S0.f, 64); else if (1 / S1.f == DENORM && S2.f / S1.f == DENORM) VCC = 1; if (S0.f == S1.f) // Only scale the denominator D.f = ldexp(S0.f, 64); end if else if (1 / S1.f == DENORM) D.f = ldexp(S0.f, -64); else if (S2.f / S1.f==DENORM) VCC = 1; if (S0.f == S2.f) // Only scale the numerator D.f = ldexp(S0.f, 64); end if else if (exponent(S2.f) <= 23) // Numerator is tiny D.f = ldexp(S0.f, 64); end if. Single precision division pre-scale. S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator. Given a numerator and denominator, this opcode will appropriately scale inputs for division to avoid subnormal terms during Newton-Raphson correction algorithm. S0 must be the same value as either S1 or S2. This opcode producses a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_F32).

481

V_DIV_SCALE_F64

VCC = 0; if (S2.d == 0 || S1.d == 0) D.d = NAN else if (exponent(S2.d) - exponent(S1.d) >= 768) // N/D near MAX_FLOAT VCC = 1; if (S0.d == S1.d) // Only scale the denominator D.d = ldexp(S0.d, 128); end if else if (S1.d == DENORM) D.d = ldexp(S0.d, 128); else if (1 / S1.d == DENORM && S2.d / S1.d == DENORM) VCC = 1; if (S0.d == S1.d) // Only scale the denominator D.d = ldexp(S0.d, 128); end if else if (1 / S1.d == DENORM) D.d = ldexp(S0.d, -128); else if (S2.d / S1.d==DENORM) VCC = 1; if (S0.d == S2.d) // Only scale the numerator D.d = ldexp(S0.d, 128); end if else if (exponent(S2.d) <= 53) // Numerator is tiny D.d = ldexp(S0.d, 128); end if. Double precision division pre-scale. S0 = Input to scale (either denominator or numerator), S1 = Denominator, S2 = Numerator. Given a numerator and denominator, this opcode will appropriately scale inputs for division to avoid subnormal terms during Newton-Raphson correction algorithm. S0 must be the same value as either S1 or S2. This opcode producses a VCC flag for post-scaling of the quotient (using V_DIV_FMAS_F64).

482

V_DIV_FMAS_ F32

if (VCC[threadId]) D.f = 2**32 * (S0.f * S1.f + S2.f); else D.f = S0.f * S1.f + S2.f; end if. Single precision FMA with fused scale. This opcode performs a standard Fused Multiply-Add operation and will conditionally scale the resulting exponent if VCC is set. Input denormals are not flushed, but output flushing is allowed.

483

V_DIV_FMAS_ F64

if (VCC[threadId]) D.d = 2**64 * (S0.d * S1.d + S2.d); else D.d = S0.d * S1.d + S2.d; end if. Double precision FMA with fused scale. This opcode performs a standard Fused Multiply-Add operation and will conditionally scale the resulting exponent if VCC is set. Input denormals are not flushed, but output flushing is allowed.

484

V_MSAD_U8

D.u = Masked Byte SAD with accum_lo(S0.u, S1.u, S2.u).

485

V_QSAD_PK_U 16_U8

D.u = Quad-Byte SAD with 16-bit packed accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[63:0])

486

V_MQSAD_PK_ U16_U8

D.u = Masked Quad-Byte SAD with 16-bit packed accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[63:0])

487

V_MQSAD_U32_U8

D.u128 = Masked Quad-Byte SAD with 32-bit accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[127:0])

488

V_MAD_U64_U 32

{vcc_out,D.u64} = S0.u32 * S1.u32 + S2.u64.

489

V_MAD_I64_I 32

{vcc_out,D.i64} = S0.i32 * S1.i32 + S2.i64.

490

V_MAD_LEGACY _F16

D.f16 = S0.f16 * S1.f16 + S2.f16. Supports round mode, exception flags, saturation. If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are written as 0 (this is different from V_MAD_F16). If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

491

V_MAD_LEGACY _U16

D.u16 = S0.u16 * S1.u16 + S2.u16. Supports saturation (unsigned 16-bit integer domain). If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are written as 0 (this is different from V_MAD_U16). If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

492

V_MAD_LEGACY _I16

D.i16 = S0.i16 * S1.i16 + S2.i16. Supports saturation (signed 16-bit integer domain). If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are written as 0 (this is different from V_MAD_I16). If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

493

V_PERM_B32

D.u[31:24] = byte_permute({S0.u, S1.u}, S2.u[31:24]); D.u[23:16] = byte_permute({S0.u, S1.u}, S2.u[23:16]); D.u[15:8] = byte_permute({S0.u, S1.u}, S2.u[15:8]); D.u[7:0] = byte_permute({S0.u, S1.u}, S2.u[7:0]); byte permute(byte in[8], byte sel) { if(sel>=13) then return 0xff; elsif(sel==12) then return 0x00; elsif(sel==11) then return in[7][7] * 0xff; elsif(sel==10) then return in[5][7] * 0xff; elsif(sel==9) then return in[3][7] * 0xff; elsif(sel==8) then return in[1][7] * 0xff; else return in[sel]; } Byte permute.

494

V_FMA_LEGACY _F16

D.f16 = S0.f16 * S1.f16 + S2.f16. Fused half precision multiply add.

495

V_DIV_FIXUP_LEGACY_F16

sign_out = sign(S1.f16)^sign(S2.f16); if (S2.f16 == NAN) D.f16 = Quiet(S2.f16); else if (S1.f16 == NAN) D.f16 = Quiet(S1.f16); else if (S1.f16 == S2.f16 == 0) // 0/0 D.f16 = 0xfe00; else if (abs(S1.f16) == abs(S2.f16) == +-INF) // inf/inf D.f16 = 0xfe00; else if (S1.f16 ==0 || abs(S2.f16) == +-INF) // x/0, or inf/y D.f16 = sign_out ? -INF : +INF; else if (abs(S1.f16) == +-INF || S2.f16 == 0) // x/inf, 0/y D.f16 = sign_out ? -0 : 0; else D.f16 = sign_out ? -abs(S0.f16) : abs(S0.f16); end if. Half precision division fixup. S0 = Quotient, S1 = Denominator, S2 = Numerator. Given a numerator, denominator, and quotient from a divide, this opcode will detect and apply special case numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by zero exceptions caused by the division.

496

V_CVT_PKACCU M_U8_F32

byte = S1.u[1:0]; bit = byte * 8; D.u[bit+7:bit] = flt32_to_uint8(S0.f). Pack converted value of S0.f into byte S1 of the destination. Note: this opcode uses src_c to pass destination in as a source.

497

V_MAD_U32_U 16

D.u32 = S0.u16 * S1.u16 + S2.u32.

498

V_MAD_I32_I 16

D.i32 = S0.i16 * S1.i16 + S2.i32.

499

V_XAD_U32

D.u32 = (S0.u32 ^ S1.u32) + S2.u32. No carryin/carryout and no saturation. This opcode exists to accelerate the SHA256 hash algorithm.

500

V_MIN3_F16

D.f16 = V_MIN_F16(V_MIN_F16(S0.f16, S1.f16), S2.f16).

501

V_MIN3_I16

D.i16 = V_MIN_I16(V_MIN_I16(S0.i16, S1.i16), S2.i16).

502

V_MIN3_U16

D.u16 = V_MIN_U16(V_MIN_U16(S0.u16, S1.u16), S2.u16).

503

V_MAX3_F16

D.f16 = V_MAX_F16(V_MAX_F16(S0.f16, S1.f16), S2.f16).

504

V_MAX3_I16

D.i16 = V_MAX_I16(V_MAX_I16(S0.i16, S1.i16), S2.i16).

505

V_MAX3_U16

D.u16 = V_MAX_U16(V_MAX_U16(S0.u16, S1.u16), S2.u16).

506

V_MED3_F16

if (isNan(S0.f16) || isNan(S1.f16) || isNan(S2.f16)) D.f16 = V_MIN3_F16(S0.f16, S1.f16, S2.f16); else if (V_MAX3_F16(S0.f16, S1.f16, S2.f16) == S0.f16) D.f16 = V_MAX_F16(S1.f16, S2.f16); else if (V_MAX3_F16(S0.f16, S1.f16, S2.f16) == S1.f16) D.f16 = V_MAX_F16(S0.f16, S2.f16); else D.f16 = V_MAX_F16(S0.f16, S1.f16); endif.

507

V_MED3_I16

if (V_MAX3_I16(S0.i16, S1.i16, S2.i16) == S0.i16) D.i16 = V_MAX_I16(S1.i16, S2.i16); else if (V_MAX3_I16(S0.i16, S1.i16, S2.i16) == S1.i16) D.i16 = V_MAX_I16(S0.i16, S2.i16); else D.i16 = V_MAX_I16(S0.i16, S1.i16); endif.

508

V_MED3_U16

if (V_MAX3_U16(S0.u16, S1.u16, S2.u16) == S0.u16) D.u16 = V_MAX_U16(S1.u16, S2.u16); else if (V_MAX3_U16(S0.u16, S1.u16, S2.u16) == S1.u16) D.u16 = V_MAX_U16(S0.u16, S2.u16); else D.u16 = V_MAX_U16(S0.u16, S1.u16); endif.

509

V_LSHL_ADD_ U32

D.u = (S0.u << S1.u[4:0]) + S2.u.

510

V_ADD_LSHL_ U32

D.u = (S0.u + S1.u) << S2.u[4:0].

511

V_ADD3_U32

D.u = S0.u + S1.u + S2.u.

512

V_LSHL_OR_B 32

D.u = (S0.u << S1.u[4:0]) | S2.u.

513

V_AND_OR_B3 2

D.u = (S0.u & S1.u) | S2.u.

514

V_OR3_B32

D.u = S0.u | S1.u | S2.u.

515

V_MAD_F16

D.f16 = S0.f16 * S1.f16 + S2.f16. Supports round mode, exception flags, saturation. 1ULP accuracy, denormals are flushed. If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

516

V_MAD_U16

D.u16 = S0.u16 * S1.u16 + S2.u16. Supports saturation (unsigned 16-bit integer domain). If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

517

V_MAD_I16

D.i16 = S0.i16 * S1.i16 + S2.i16. Supports saturation (signed 16-bit integer domain). If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

518

V_FMA_F16

D.f16 = S0.f16 * S1.f16 + S2.f16. Fused half precision multiply add. 0.5ULP accuracy, denormals are supported. If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

519

V_DIV_FIXUP_F16

sign_out = sign(S1.f16)^sign(S2.f16); if (S2.f16 == NAN) D.f16 = Quiet(S2.f16); else if (S1.f16 == NAN) D.f16 = Quiet(S1.f16); else if (S1.f16 == S2.f16 == 0) // 0/0 D.f16 = 0xfe00; else if (abs(S1.f16) == abs(S2.f16) == +-INF) // inf/inf D.f16 = 0xfe00; else if (S1.f16 ==0 || abs(S2.f16) == +-INF) // x/0, or inf/y D.f16 = sign_out ? -INF : +INF; else if (abs(S1.f16) == +-INF || S2.f16 == 0) // x/inf, 0/y D.f16 = sign_out ? -0 : 0; else D.f16 = sign_out ? -abs(S0.f16) : abs(S0.f16); end if. Half precision division fixup. S0 = Quotient, S1 = Denominator, S2 = Numerator. Given a numerator, denominator, and quotient from a divide, this opcode will detect and apply special case numerics, touching up the quotient if necessary. This opcode also generates invalid, denorm and divide by zero exceptions caused by the division. If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

628

V_INTERP_P1L L_F16

D.f32 = P10.f16 * S0.f32 + P0.f16. `LL’ stands for `two LDS arguments’. attr_word selects the high or low half 16 bits of each LDS dword accessed. This opcode is available for 32-bank LDS only. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field.

629

V_INTERP_P1L V_F16

D.f32 = P10.f16 * S0.f32 + (S2.u32 >> (attr_word * 16)).f16. `LV’ stands for `One LDS and one VGPR argument’. S2 holds two parameters, attr_word selects the high or low word of the VGPR for this calculation, as well as the high or low half of the LDS data. Meant for use with 16-bank LDS. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field.

630

V_INTERP_P2_LEGACY_F16

D.f16 = P20.f16 * S0.f32 + S2.f32. Final computation. attr_word selects LDS high or low 16bits. Used for both 16- and 32-bank LDS. Result is written to the 16 LSBs of the destination VGPR. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field.

631

V_INTERP_P2_F16

D.f16 = P20.f16 * S0.f32 + S2.f32. Final computation. attr_word selects LDS high or low 16bits. Used for both 16- and 32-bank LDS. NOTE: In textual representations the I/J VGPR is the first source and the attribute is the second source; however in the VOP3 encoding the attribute is stored in the src0 field and the VGPR is stored in the src1 field. If op_sel[3] is 0 Result is written to 16 LSBs of destination VGPR and hi 16 bits are preserved. If op_sel[3] is 1 Result is written to 16 MSBs of destination VGPR and lo 16 bits are preserved.

640

V_ADD_F64

D.d = S0.d + S1.d. 0.5ULP precision, denormals are supported.

641

V_MUL_F64

D.d = S0.d * S1.d. 0.5ULP precision, denormals are supported.

642

V_MIN_F64

if (IEEE_MODE && S0.d == sNaN) D.d = Quiet(S0.d); else if (IEEE_MODE && S1.d == sNaN) D.d = Quiet(S1.d); else if (S0.d == NaN) D.d = S1.d; else if (S1.d == NaN) D.d = S0.d; else if (S0.d == +0.0 && S1.d == -0.0) D.d = S1.d; else if (S0.d == -0.0 && S1.d == +0.0) D.d = S0.d; else // Note: there’s no IEEE special case here like there is for V_MAX_F64. D.d = (S0.d < S1.d ? S0.d : S1.d); endif.

643

V_MAX_F64

if (IEEE_MODE && S0.d == sNaN) D.d = Quiet(S0.d); else if (IEEE_MODE && S1.d == sNaN) D.d = Quiet(S1.d); else if (S0.d == NaN) D.d = S1.d; else if (S1.d == NaN) D.d = S0.d; else if (S0.d == +0.0 && S1.d == -0.0) D.d = S0.d; else if (S0.d == -0.0 && S1.d == +0.0) D.d = S1.d; else if (IEEE_MODE) D.d = (S0.d >= S1.d ? S0.d : S1.d); else D.d = (S0.d > S1.d ? S0.d : S1.d); endif.

644

V_LDEXP_F64

D.d = S0.d * (2 ** S1.i).

645

V_MUL_LO_U3 2

D.u = S0.u * S1.u.

646

V_MUL_HI_U3 2

D.u = (S0.u * S1.u) >> 32.

647

V_MUL_HI_I3 2

D.i = (S0.i * S1.i) >> 32.

648

V_LDEXP_F32

D.f = S0.f * (2 ** S1.i).

649

V_READLANE_B 32

Copy one VGPR value to one SGPR. D = SGPR-dest, S0 = Source Data (VGPR# or M0(lds-direct)), S1 = Lane Select (SGPR or M0). Ignores exec mask. Input and output modifiers not supported; this is an untyped operation.

650

V_WRITELANE_ B32

Write value into one VGPR in one lane. D = VGPR-dest, S0 = Source Data (sgpr, m0, exec or constants), S1 = Lane Select (SGPR or M0). Ignores exec mask. Input and output modifiers not supported; this is an untyped operation.

651

V_BCNT_U32_ B32

D.u = 0; for i in 0 … 31 do D.u += (S0.u[i] == 1 ? 1 : 0); endfor. Bit count.

652

V_MBCNT_LO_ U32_B32

ThreadMask = (1LL << ThreadPosition) - 1; MaskedValue = (S0.u & ThreadMask[31:0]); D.u = S1.u; for i in 0 … 31 do D.u += (MaskedValue[i] == 1 ? 1 : 0); endfor. Masked bit count, ThreadPosition is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_HI_U32_B32.

653

V_MBCNT_HI_ U32_B32

ThreadMask = (1LL << ThreadPosition) - 1; MaskedValue = (S0.u & ThreadMask[63:32]); D.u = S1.u; for i in 0 … 31 do D.u += (MaskedValue[i] == 1 ? 1 : 0); endfor. Masked bit count, ThreadPosition is the position of this thread in the wavefront (in 0..63). See also V_MBCNT_LO_U32_B32. Example to compute each thread’s position in 0..63: v_mbcnt_lo_u32_b32 v0, -1, 0 v_mbcnt_hi_u32_b32 v0, -1, v0 // v0 now contains ThreadPosition

655

V_LSHLREV_B6 4

D.u64 = S1.u64 << S0.u[5:0].

656

V_LSHRREV_B6 4

D.u64 = S1.u64 >> S0.u[5:0].

657

V_ASHRREV_I6 4

D.u64 = signext(S1.u64) >> S0.u[5:0].

658

V_TRIG_PREOP _F64

shift = S1.u * 53; if exponent(S0.d) > 1077 then shift += exponent(S0.d) - 1077; endif result = (double) ((2/PI[1200:0] << shift) & 0x1fffff_ffffffff); scale = (-53 - shift); if exponent(S0.d) >= 1968 then scale += 128; endif D.d = ldexp(result, scale). Look Up 2/PI (S0.d) with segment select S1.u[4:0]. This operation returns an aligned, double precision segment of 2/PI needed to do range reduction on S0.d (double-precision value). Multiple segments can be specified through S1.u[4:0]. Rounding uses round-to-zero. Large inputs (exp > 1968) are scaled to avoid loss of precision through denormalization.

659

V_BFM_B32

D.u = ((1<<S0.u[4:0])-1) << S1.u[4:0]. Bitfield modify. S0 is the bitfield width and S1 is the bitfield offset.

660

V_CVT_PKNORM _I16_F32

D = {(snorm)S1.f, (snorm)S0.f}.

661

V_CVT_PKNORM _U16_F32

D = {(unorm)S1.f, (unorm)S0.f}.

662

V_CVT_PKRTZ_F16_F32

D = {flt32_to_flt16(S1.f),flt32_to_flt16(S0.f)}. // Round-toward-zero regardless of current round mode setting in hardware. This opcode is intended for use with 16-bit compressed exports. See V_CVT_F16_F32 for a version that respects the current rounding mode.

663

V_CVT_PK_U1 6_U32

D = {uint32_to_uint16(S1.u), uint32_to_uint16(S0.u)}.

664

V_CVT_PK_I1 6_I32

D = {int32_to_int16(S1.i), int32_to_int16(S0.i)}.

665

V_CVT_PKNORM _I16_F16

D = {(snorm)S1.f16, (snorm)S0.f16}.

666

V_CVT_PKNORM _U16_F16

D = {(unorm)S1.f16, (unorm)S0.f16}.

668

V_ADD_I32

D.i = S0.i + S1.i. Supports saturation (signed 32-bit integer domain).

669

V_SUB_I32

D.i = S0.i - S1.i. Supports saturation (signed 32-bit integer domain).

670

V_ADD_I16

D.i16 = S0.i16 + S1.i16. Supports saturation (signed 16-bit integer domain).

671

V_SUB_I16

D.i16 = S0.i16 - S1.i16. Supports saturation (signed 16-bit integer domain).

672

V_PACK_B32_ F16

D[31:16].f16 = S1.f16; D[15:0].f16 = S0.f16.

LDS & GDS Instructions

This suite of instructions operates on data stored within the data share memory. The instructions transfer data between VGPRs and data share memory.
The bitfield map for the LDS/GDS is:

microcode ds

where:
OFFSET0 = Unsigned byte offset added to the address from the ADDR VGPR.
OFFSET1 = Unsigned byte offset added to the address from the ADDR VGPR.
GDS = Set if GDS, cleared if LDS.
OP = DS instructions.
ADDR = Source LDS address VGPR 0 - 255.
DATA0 = Source data0 VGPR 0 - 255.
DATA1 = Source data1 VGPR 0 - 255.
VDST = Destination VGPR 0- 255.

**Note**

All instructions with RTN in the name return the value that was in
memory before the operation was performed.

Opcode

Name

Description

0

DS_ADD_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

1

DS_SUB_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

2

DS_RSUB_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA - MEM[ADDR]; RETURN_DATA = tmp. Subtraction with reversed operands.

3

DS_INC_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

4

DS_DEC_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

5

DS_MIN_I32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

6

DS_MAX_I32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

7

DS_MIN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

8

DS_MAX_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

9

DS_AND_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

10

DS_OR_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

11

DS_XOR_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

12

DS_MSKOR_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2; RETURN_DATA = tmp. Masked dword OR, D0 contains the mask and D1 contains the new value.

13

DS_WRITE_B32

// 32bit MEM[ADDR] = DATA. Write dword.

14

DS_WRITE2_B32

// 32bit MEM[ADDR_BASE + OFFSET0 * 4] = DATA; MEM[ADDR_BASE + OFFSET1 * 4] = DATA2. Write 2 dwords.

15

DS_WRITE2ST64_B 32

// 32bit MEM[ADDR_BASE + OFFSET0 * 4 * 64] = DATA; MEM[ADDR_BASE + OFFSET1 * 4 * 64] = DATA2. Write 2 dwords.

16

DS_CMPST_B32

// 32bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Compare and store. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_CMPSWAP opcode.

17

DS_CMPST_F32

// 32bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Floating point compare and store that handles NaN/INF/denormal values. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_FCMPSWAP opcode.

18

DS_MIN_F32

// 32bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp. Floating point minimum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMIN.

19

DS_MAX_F32

// 32bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp. Floating point maximum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMAX.

20

DS_NOP

Do nothing.

21

DS_ADD_F32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp. Floating point add that handles NaN/INF/denormal values.

29

DS_WRITE_ADDTID _B32

// 32bit MEM[ADDR_BASE + OFFSET + M0.OFFSET + TID*4] = DATA. Write dword.

30

DS_WRITE_B8

MEM[ADDR] = DATA[7:0]. Byte write.

31

DS_WRITE_B16

MEM[ADDR] = DATA[15:0]. Short write.

32

DS_ADD_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

33

DS_SUB_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

34

DS_RSUB_RTN_U3 2

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA - MEM[ADDR]; RETURN_DATA = tmp. Subtraction with reversed operands.

35

DS_INC_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

36

DS_DEC_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

37

DS_MIN_RTN_I32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

38

DS_MAX_RTN_I32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

39

DS_MIN_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

40

DS_MAX_RTN_U32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

41

DS_AND_RTN_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

42

DS_OR_RTN_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

43

DS_XOR_RTN_B32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

44

DS_MSKOR_RTN_B 32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2; RETURN_DATA = tmp. Masked dword OR, D0 contains the mask and D1 contains the new value.

45

DS_WRXCHG_RTN_ B32

tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp. Write-exchange operation.

46

DS_WRXCHG2_RTN_B32

Write-exchange 2 separate dwords.

47

DS_WRXCHG2ST64_ RTN_B32

Write-exchange 2 separate dwords with a stride of 64 dwords.

48

DS_CMPST_RTN_B 32

// 32bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Compare and store. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_CMPSWAP opcode.

49

DS_CMPST_RTN_F 32

// 32bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Floating point compare and store that handles NaN/INF/denormal values. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_FCMPSWAP opcode.

50

DS_MIN_RTN_F32

// 32bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp. Floating point minimum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMIN.

51

DS_MAX_RTN_F32

// 32bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp. Floating point maximum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMAX.

52

DS_WRAP_RTN_B3 2

tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? tmp - DATA : tmp + DATA2; RETURN_DATA = tmp.

53

DS_ADD_RTN_F32

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp. Floating point add that handles NaN/INF/denormal values.

54

DS_READ_B32

RETURN_DATA = MEM[ADDR]. Dword read.

55

DS_READ2_B32

RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 4]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1 * 4]. Read 2 dwords.

56

DS_READ2ST64_B3 2

RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 4 * 64]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1 * 4 * 64]. Read 2 dwords.

57

DS_READ_I8

RETURN_DATA = signext(MEM[ADDR][7:0]). Signed byte read.

58

DS_READ_U8

RETURN_DATA = {24’h0,MEM[ADDR][7:0]}. Unsigned byte read.

59

DS_READ_I16

RETURN_DATA = signext(MEM[ADDR][15:0]). Signed short read.

60

DS_READ_U16

RETURN_DATA = {16’h0,MEM[ADDR][15:0]}. Unsigned short read.

61

DS_SWIZZLE_B32

RETURN_DATA = swizzle(vgpr_data, offset1:offset0). Dword swizzle, no data is written to LDS memory.

62

DS_PERMUTE_B32

// VGPR[index][thread_id] is the VGPR RAM // VDST, ADDR and DATA0 are from the microcode DS encoding tmp[0..63] = 0 for i in 0..63 do // If a source thread is disabled, it will not propagate data. next if !EXEC[i] // ADDR needs to be divided by 4. // High-order bits are ignored. dst_lane = floor((VGPR[ADDR][i] + OFFSET) / 4) mod 64 tmp[dst_lane] = VGPR[DATA0][i] endfor // Copy data into destination VGPRs. If multiple sources // select the same destination thread, the highest-numbered // source thread wins. for i in 0..63 do next if !EXEC[i] VGPR[VDST][i] = tmp[i] endfor Forward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to the wave. It uses LDS hardware to implement an arbitrary swizzle across threads in a wavefront. Note the address passed in is the thread ID multiplied by 4. This is due to a limitation in the DS hardware design. If multiple sources map to the same destination lane, standard LDS arbitration rules determine which write wins. See also DS_BPERMUTE_B32. Examples (simplified 4-thread wavefronts): VGPR[SRC0] = { A, B, C, D } VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xF, OFFSET = 0 VGPR[VDST] := { B, D, 0, C } VGPR[SRC0] = { A, B, C, D } VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xA, OFFSET = 0 VGPR[VDST] := { -, D, -, 0 }

63

DS_BPERMUTE_B32

// VGPR[index][thread_id] is the VGPR RAM // VDST, ADDR and DATA0 are from the microcode DS encoding tmp[0..63] = 0 for i in 0..63 do // ADDR needs to be divided by 4. // High-order bits are ignored. src_lane = floor((VGPR[ADDR][i] + OFFSET) / 4) mod 64 // EXEC is applied to the source VGPR reads. next if !EXEC[src_lane] tmp[i] = VGPR[DATA0][src_lane] endfor // Copy data into destination VGPRs. Some source // data may be broadcast to multiple lanes. for i in 0..63 do next if !EXEC[i] VGPR[VDST][i] = tmp[i] endfor Backward permute. This does not access LDS memory and may be called even if no LDS memory is allocated to the wave. It uses LDS hardware to implement an arbitrary swizzle across threads in a wavefront. Note the address passed in is the thread ID multiplied by 4. This is due to a limitation in the DS hardware design. Note that EXEC mask is applied to both VGPR read and write. If src_lane selects a disabled thread, zero will be returned. See also DS_PERMUTE_B32. Examples (simplified 4-thread wavefronts): VGPR[SRC0] = { A, B, C, D } VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xF, OFFSET = 0 VGPR[VDST] := { A, A, D, B } VGPR[SRC0] = { A, B, C, D } VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xA, OFFSET = 0 VGPR[VDST] := { -, 0, -, B }

64

DS_ADD_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

65

DS_SUB_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

66

DS_RSUB_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA - MEM[ADDR]; RETURN_DATA = tmp. Subtraction with reversed operands.

67

DS_INC_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

68

DS_DEC_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

69

DS_MIN_I64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

70

DS_MAX_I64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

71

DS_MIN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

72

DS_MAX_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

73

DS_AND_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

74

DS_OR_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

75

DS_XOR_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

76

DS_MSKOR_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2; RETURN_DATA = tmp. Masked dword OR, D0 contains the mask and D1 contains the new value.

77

DS_WRITE_B64

// 64bit MEM[ADDR] = DATA. Write qword.

78

DS_WRITE2_B64

// 64bit MEM[ADDR_BASE + OFFSET0 * 8] = DATA; MEM[ADDR_BASE + OFFSET1 * 8] = DATA2. Write 2 qwords.

79

DS_WRITE2ST64_B 64

// 64bit MEM[ADDR_BASE + OFFSET0 * 8 * 64] = DATA; MEM[ADDR_BASE + OFFSET1 * 8 * 64] = DATA2. Write 2 qwords.

80

DS_CMPST_B64

// 64bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Compare and store. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_CMPSWAP_X2 opcode.

81

DS_CMPST_F64

// 64bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Floating point compare and store that handles NaN/INF/denormal values. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_FCMPSWAP_X2 opcode.

82

DS_MIN_F64

// 64bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp. Floating point minimum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMIN_X2.

83

DS_MAX_F64

// 64bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp. Floating point maximum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMAX_X2.

84

DS_WRITE_B8_D1 6_HI

MEM[ADDR] = DATA[23:16]. Byte write in to high word.

85

DS_WRITE_B16_D 16_HI

MEM[ADDR] = DATA[31:16]. Short write in to high word.

86

DS_READ_U8_D16

RETURN_DATA[15:0] = {8’h0,MEM[ADDR][7:0]}. Unsigned byte read with masked return to lower word.

87

DS_READ_U8_D16 _HI

RETURN_DATA[31:16] = {8’h0,MEM[ADDR][7:0]}. Unsigned byte read with masked return to upper word.

88

DS_READ_I8_D16

RETURN_DATA[15:0] = signext(MEM[ADDR][7:0]). Signed byte read with masked return to lower word.

89

DS_READ_I8_D16 _HI

RETURN_DATA[31:16] = signext(MEM[ADDR][7:0]). Signed byte read with masked return to upper word.

90

DS_READ_U16_D1 6

RETURN_DATA[15:0] = MEM[ADDR][15:0]. Unsigned short read with masked return to lower word.

91

DS_READ_U16_D1 6_HI

RETURN_DATA[31:0] = MEM[ADDR][15:0]. Unsigned short read with masked return to upper word.

96

DS_ADD_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

97

DS_SUB_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

98

DS_RSUB_RTN_U6 4

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA - MEM[ADDR]; RETURN_DATA = tmp. Subtraction with reversed operands.

99

DS_INC_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

100

DS_DEC_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

101

DS_MIN_RTN_I64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

102

DS_MAX_RTN_I64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

103

DS_MIN_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

104

DS_MAX_RTN_U64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

105

DS_AND_RTN_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

106

DS_OR_RTN_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

107

DS_XOR_RTN_B64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

108

DS_MSKOR_RTN_B 64

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR] & ~DATA) | DATA2; RETURN_DATA = tmp. Masked dword OR, D0 contains the mask and D1 contains the new value.

109

DS_WRXCHG_RTN_ B64

tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp. Write-exchange operation.

110

DS_WRXCHG2_RTN_B64

Write-exchange 2 separate qwords.

111

DS_WRXCHG2ST64_ RTN_B64

Write-exchange 2 qwords with a stride of 64 qwords.

112

DS_CMPST_RTN_B 64

// 64bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Compare and store. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_CMPSWAP_X2 opcode.

113

DS_CMPST_RTN_F 64

// 64bit tmp = MEM[ADDR]; src = DATA2; cmp = DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp. Floating point compare and store that handles NaN/INF/denormal values. Caution, the order of src and cmp are the *opposite* of the BUFFER_ATOMIC_FCMPSWAP_X2 opcode.

114

DS_MIN_RTN_F64

// 64bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp. Floating point minimum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMIN_X2.

115

DS_MAX_RTN_F64

// 64bit tmp = MEM[ADDR]; src = DATA; cmp = DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp. Floating point maximum that handles NaN/INF/denormal values. Note that this opcode is slightly more general-purpose than BUFFER_ATOMIC_FMAX_X2.

118

DS_READ_B64

RETURN_DATA = MEM[ADDR]. Read 1 qword.

119

DS_READ2_B64

RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 8]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1 * 8]. Read 2 qwords.

120

DS_READ2ST64_B6 4

RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 8 * 64]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1 * 8 * 64]. Read 2 qwords.

126

DS_CONDXCHG32_R TN_B64

Conditional write exchange.

128

DS_ADD_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] + MEM[B].

129

DS_SUB_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] - MEM[B].

130

DS_RSUB_SRC2_U 32

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[B] - MEM[A].

131

DS_INC_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[A] >= MEM[B] ? 0 : MEM[A] + 1).

132

DS_DEC_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[A] == 0 || MEM[A] > MEM[B] ? MEM[B] : MEM[A] - 1). Uint decrement.

133

DS_MIN_SRC2_I3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = min(MEM[A], MEM[B]).

134

DS_MAX_SRC2_I3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = max(MEM[A], MEM[B]).

135

DS_MIN_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = min(MEM[A], MEM[B]).

136

DS_MAX_SRC2_U3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = max(MEM[A], MEM[B]).

137

DS_AND_SRC2_B3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] & MEM[B].

138

DS_OR_SRC2_B32

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] | MEM[B].

139

DS_XOR_SRC2_B3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] ^ MEM[B].

141

DS_WRITE_SRC2_ B32

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[B]. Write dword.

146

DS_MIN_SRC2_F3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[B] < MEM[A]) ? MEM[B] : MEM[A]. Float, handles NaN/INF/denorm.

147

DS_MAX_SRC2_F3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[B] > MEM[A]) ? MEM[B] : MEM[A]. Float, handles NaN/INF/denorm.

149

DS_ADD_SRC2_F3 2

//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[B] + MEM[A]. Float, handles NaN/INF/denorm.

152

DS_GWS_SEMA_RE LEASE_ALL

GDS Only: The GWS resource (rid) indicated will process this opcode by updating the counter and labeling the specified resource as a semaphore. // Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0]; // Incr the state counter of the resource state.counter[rid] = state.wave_in_queue; state.type = SEMAPHORE; return rd_done; //release calling wave This action will release ALL queued waves; it Will have no effect if no waves are present.

153

DS_GWS_INIT

GDS Only: Initialize a barrier or semaphore resource. // Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0]; // Get the value to use in init index = find_first_valid(vector mask) value = DATA[thread: index] // Set the state of the resource state.counter[rid] = lsb(value); //limit #waves state.flag[rid] = 0; return rd_done; //release calling wave

154

DS_GWS_SEMA_V

GDS Only: The GWS resource indicated will process this opcode by updating the counter and labeling the resource as a semaphore. //Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0]; //Incr the state counter of the resource state.counter[rid] += 1; state.type = SEMAPHORE; return rd_done; //release calling wave This action will release one waved if any are queued in this resource.

155

DS_GWS_SEMA_BR

GDS Only: The GWS resource indicated will process this opcode by updating the counter by the bulk release delivered count and labeling the resource as a semaphore. //Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0]; index = find first valid (vector mask) count = DATA[thread: index]; //Add count to the resource state counter state.counter[rid] += count; state.type = SEMAPHORE; return rd_done; //release calling wave This action will release count number of waves, immediately if queued, or as they arrive from the noted resource.

156

DS_GWS_SEMA_P

GDS Only: The GWS resource indicated will process this opcode by queueing it until counter enables a release and then decrementing the counter of the resource as a semaphore. //Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0]; state.type = SEMAPHORE; ENQUEUE until(state[rid].counter > 0) state[rid].counter -= 1; return rd_done;

157

DS_GWS_BARRIER

GDS Only: The GWS resource indicated will process this opcode by queueing it until barrier is satisfied. The number of waves needed is passed in as DATA of first valid thread. //Determine the GWS resource to work on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] + OFFSET0[5:0]; index = find first valid (vector mask); value = DATA[thread: index]; // Input Decision Machine state.type[rid] = BARRIER; if(state[rid].counter <= 0) then thread[rid].flag = state[rid].flag; ENQUEUE; state[rid].flag = !state.flag; state[rid].counter = value; return rd_done; else state[rid].counter -= 1; thread.flag = state[rid].flag; ENQUEUE; endif. Since the waves deliver the count for the next barrier, this function can have a different size barrier for each occurrence. // Release Machine if(state.type == BARRIER) then if(state.flag != thread.flag) then return rd_done; endif; endif.

182

DS_READ_ADDTID_B32

RETURN_DATA = MEM[ADDR_BASE + OFFSET + M0.OFFSET + TID*4]. Dword read.

189

DS_CONSUME

LDS & GDS. Subtract (count_bits(exec_mask)) from the value stored in DS memory at (M0.base + instr_offset). Return the pre-operation value to VGPRs.

190

DS_APPEND

LDS & GDS. Add (count_bits(exec_mask)) to the value stored in DS memory at (M0.base + instr_offset). Return the pre-operation value to VGPRs.

191

DS_ORDERED_COUN T

GDS-only. Add (count_bits(exec_mask)) to one of 4 dedicated ordered-count counters (aka ‘packers’). Additional bits of instr.offset field are overloaded to hold packer-id, ‘last’.

192

DS_ADD_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] + MEM[B].

193

DS_SUB_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] - MEM[B].

194

DS_RSUB_SRC2_U 64

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[B] - MEM[A].

195

DS_INC_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[A] >= MEM[B] ? 0 : MEM[A] + 1).

196

DS_DEC_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[A] == 0 || MEM[A] > MEM[B] ? MEM[B] : MEM[A] - 1). Uint decrement.

197

DS_MIN_SRC2_I6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = min(MEM[A], MEM[B]).

198

DS_MAX_SRC2_I6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = max(MEM[A], MEM[B]).

199

DS_MIN_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = min(MEM[A], MEM[B]).

200

DS_MAX_SRC2_U6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = max(MEM[A], MEM[B]).

201

DS_AND_SRC2_B6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] & MEM[B].

202

DS_OR_SRC2_B64

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] | MEM[B].

203

DS_XOR_SRC2_B6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[A] ^ MEM[B].

205

DS_WRITE_SRC2_ B64

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = MEM[B]. Write qword.

210

DS_MIN_SRC2_F6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[B] < MEM[A]) ? MEM[B] : MEM[A]. Float, handles NaN/INF/denorm.

211

DS_MAX_SRC2_F6 4

//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ? {A[31],A[31:17]} : {offset1[6],offset1[6:0],offset0}); MEM[A] = (MEM[B] > MEM[A]) ? MEM[B] : MEM[A]. Float, handles NaN/INF/denorm.

222

DS_WRITE_B96

{MEM[ADDR + 8], MEM[ADDR + 4], MEM[ADDR]} = DATA[95:0]. Tri-dword write.

223

DS_WRITE_B128

{MEM[ADDR + 12], MEM[ADDR + 8], MEM[ADDR + 4], MEM[ADDR]} = DATA[127:0]. Quad-dword write.

254

DS_READ_B96

Tri-dword read.

255

DS_READ_B128

Quad-dword read.

LDS Instruction Limitations

Some of the DS instructions are available only to GDS, not LDS. These are:

  • DS_GWS_SEMA_RELEASE_ALL

  • DS_GWS_INIT

  • DS_GWS_SEMA_V

  • DS_GWS_SEMA_BR

  • DS_GWS_SEMA_P

  • DS_GWS_BARRIER

  • DS_ORDERED_COUNT

MUBUF Instructions

The bitfield map of the MUBUF format is:

microcode mubuf

where:

OFFSET  = Unsigned immediate byte offset.
OFFEN   = Send offset either as VADDR or as zero..
IDXEN   = Send index either as VADDR or as zero.
GLC     = Global coherency.
ADDR64  = Buffer address of 64 bits.
LDS     = Data read from/written to LDS or VGPR.
OP      = Opcode instructions.
VADDR   = VGPR address source.
VDATA   = Destination vector GPR.
SRSRC   = Scalar GPR that specifies resource constant.
SLC     = System level coherent.
TFE     = Texture fail enable.
SOFFSET = Byte offset added to the memory address of an SGPR.

Opcode

Name

Description

0

BUFFER_LOAD_FORMAT_X

Untyped buffer load 1 dword with format conversion.

1

BUFFER_LOAD_FORMAT_X Y

Untyped buffer load 2 dwords with format conversion.

2

BUFFER_LOAD_FORMAT_X YZ

Untyped buffer load 3 dwords with format conversion.

3

BUFFER_LOAD_FORMAT_X YZW

Untyped buffer load 4 dwords with format conversion.

4

BUFFER_STORE_FORMAT_ X

Untyped buffer store 1 dword with format conversion.

5

BUFFER_STORE_FORMAT_ XY

Untyped buffer store 2 dwords with format conversion.

6

BUFFER_STORE_FORMAT_ XYZ

Untyped buffer store 3 dwords with format conversion.

7

BUFFER_STORE_FORMAT_ XYZW

Untyped buffer store 4 dwords with format conversion.

8

BUFFER_LOAD_FORMAT_D 16_X

Untyped buffer load 1 dword with format conversion. D0[15:0] = {8’h0, MEM[ADDR]}.

9

BUFFER_LOAD_FORMAT_D 16_XY

Untyped buffer load 1 dword with format conversion.

10

BUFFER_LOAD_FORMAT_D 16_XYZ

Untyped buffer load 2 dwords with format conversion.

11

BUFFER_LOAD_FORMAT_D 16_XYZW

Untyped buffer load 2 dwords with format conversion.

12

BUFFER_STORE_FORMAT_ D16_X

Untyped buffer store 1 dword with format conversion.

13

BUFFER_STORE_FORMAT_ D16_XY

Untyped buffer store 1 dword with format conversion.

14

BUFFER_STORE_FORMAT_ D16_XYZ

Untyped buffer store 2 dwords with format conversion.

15

BUFFER_STORE_FORMAT_ D16_XYZW

Untyped buffer store 2 dwords with format conversion.

16

BUFFER_LOAD_UBYTE

Untyped buffer load unsigned byte (zero extend to VGPR destination).

17

BUFFER_LOAD_SBYTE

Untyped buffer load signed byte (sign extend to VGPR destination).

18

BUFFER_LOAD_USHORT

Untyped buffer load unsigned short (zero extend to VGPR destination).

19

BUFFER_LOAD_SSHORT

Untyped buffer load signed short (sign extend to VGPR destination).

20

BUFFER_LOAD_DWORD

Untyped buffer load dword.

21

BUFFER_LOAD_DWORDX2

Untyped buffer load 2 dwords.

22

BUFFER_LOAD_DWORDX3

Untyped buffer load 3 dwords.

23

BUFFER_LOAD_DWORDX4

Untyped buffer load 4 dwords.

24

BUFFER_STORE_BYTE

Untyped buffer store byte. Stores S0[7:0].

25

BUFFER_STORE_BYTE_D1 6_HI

Untyped buffer store byte. Stores S0[23:16].

26

BUFFER_STORE_SHORT

Untyped buffer store short. Stores S0[15:0].

27

BUFFER_STORE_SHORT_D 16_HI

Untyped buffer store short. Stores S0[31:16].

28

BUFFER_STORE_DWORD

Untyped buffer store dword.

29

BUFFER_STORE_DWORDX2

Untyped buffer store 2 dwords.

30

BUFFER_STORE_DWORDX3

Untyped buffer store 3 dwords.

31

BUFFER_STORE_DWORDX4

Untyped buffer store 4 dwords.

32

BUFFER_LOAD_UBYTE_D1 6

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

33

BUFFER_LOAD_UBYTE_D1 6_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

34

BUFFER_LOAD_SBYTE_D1 6

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

35

BUFFER_LOAD_SBYTE_D1 6_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

36

BUFFER_LOAD_SHORT_D1 6

D0[15:0] = MEM[ADDR]. Untyped buffer load short.

37

BUFFER_LOAD_SHORT_D1 6_HI

D0[31:16] = MEM[ADDR]. Untyped buffer load short.

38

BUFFER_LOAD_FORMAT_D 16_HI_X

D0[31:16] = MEM[ADDR]. Untyped buffer load 1 dword with format conversion.

39

BUFFER_STORE_FORMAT_ D16_HI_X

Untyped buffer store 1 dword with format conversion.

61

BUFFER_STORE_LDS_DWO RD

Store one DWORD from LDS memory to system memory without utilizing VGPRs.

62

BUFFER_WBINVL1

Write back and invalidate the shader L1. Returns ACK to shader.

63

BUFFER_WBINVL1_VOL

Write back and invalidate the shader L1 only for lines that are marked volatile. Returns ACK to shader.

64

BUFFER_ATOMIC_SWAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

65

BUFFER_ATOMIC_CMPSWAP

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

66

BUFFER_ATOMIC_ADD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

67

BUFFER_ATOMIC_SUB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

68

BUFFER_ATOMIC_SMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

69

BUFFER_ATOMIC_UMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

70

BUFFER_ATOMIC_SMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

71

BUFFER_ATOMIC_UMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

72

BUFFER_ATOMIC_AND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

73

BUFFER_ATOMIC_OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

74

BUFFER_ATOMIC_XOR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

75

BUFFER_ATOMIC_INC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

76

BUFFER_ATOMIC_DEC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

96

BUFFER_ATOMIC_SWAP_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA[0:1]; RETURN_DATA[0:1] = tmp.

97

BUFFER_ATOMIC_CMPSWAP _X2

// 64bit tmp = MEM[ADDR]; src = DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0:1] = tmp.

98

BUFFER_ATOMIC_ADD_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

99

BUFFER_ATOMIC_SUB_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

100

BUFFER_ATOMIC_SMIN_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

101

BUFFER_ATOMIC_UMIN_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

102

BUFFER_ATOMIC_SMAX_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

103

BUFFER_ATOMIC_UMAX_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

104

BUFFER_ATOMIC_AND_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

105

BUFFER_ATOMIC_OR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

106

BUFFER_ATOMIC_XOR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

107

BUFFER_ATOMIC_INC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

108

BUFFER_ATOMIC_DEC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

MTBUF Instructions

The bitfield map of the MTBUF format is:

microcode mtbuf

where:

OFFSET  = Unsigned immediate byte offset.
OFFEN   = Send offset either as VADDR or as zero.
IDXEN   = Send index either as VADDR or as zero.
GLC     = Global coherency.
ADDR64  = Buffer address of 64 bits.
OP      = Opcode instructions.
DFMT    = Data format for typed buffer.
NFMT    = Number format for typed buffer.
VADDR   = VGPR address source.
VDATA   = Vector GPR for read/write result.
SRSRC   = Scalar GPR that specifies resource constant.
SOFFSET = Unsigned byte offset from an SGPR.

Opcode

Name

Description

0

TBUFFER_LOAD_FORMAT_X

Typed buffer load 1 dword with format conversion.

1

TBUFFER_LOAD_FORMAT_X Y

Typed buffer load 2 dwords with format conversion.

2

TBUFFER_LOAD_FORMAT_X YZ

Typed buffer load 3 dwords with format conversion.

3

TBUFFER_LOAD_FORMAT_X YZW

Typed buffer load 4 dwords with format conversion.

4

TBUFFER_STORE_FORMAT_ X

Typed buffer store 1 dword with format conversion.

5

TBUFFER_STORE_FORMAT_ XY

Typed buffer store 2 dwords with format conversion.

6

TBUFFER_STORE_FORMAT_ XYZ

Typed buffer store 3 dwords with format conversion.

7

TBUFFER_STORE_FORMAT_ XYZW

Typed buffer store 4 dwords with format conversion.

8

TBUFFER_LOAD_FORMAT_D 16_X

Typed buffer load 1 dword with format conversion.

9

TBUFFER_LOAD_FORMAT_D 16_XY

Typed buffer load 1 dword with format conversion.

10

TBUFFER_LOAD_FORMAT_D 16_XYZ

Typed buffer load 2 dwords with format conversion.

11

TBUFFER_LOAD_FORMAT_D 16_XYZW

Typed buffer load 2 dwords with format conversion.

12

TBUFFER_STORE_FORMAT_ D16_X

Typed buffer store 1 dword with format conversion.

13

TBUFFER_STORE_FORMAT_ D16_XY

Typed buffer store 1 dword with format conversion.

14

TBUFFER_STORE_FORMAT_ D16_XYZ

Typed buffer store 2 dwords with format conversion.

15

TBUFFER_STORE_FORMAT_ D16_XYZW

Typed buffer store 2 dwords with format conversion.

MIMG Instructions

The bitfield map of the MIMG format is:

microcode mimg

where:

DMASK = Enable mask for image read/write data components.
UNRM  = Force address to be unnormalized.
GLC   = Global coherency.
DA    = Declare an array.
A16   = Texture address component size.
TFE   = Texture fail enable.
LWE   = LOD warning enable.
OP    = Opcode instructions.
SLC   = System level coherent.
VADDR = VGPR address source.
VDATA = Vector GPR for read/write result.
SRSRC = Scalar GPR that specifies resource constant.
SSAMP = Scalar GPR that specifies sampler constant.
D16   = Data in VGPRs is 16 bits, not 32 bits.

Opcode

Name

Description

0

IMAGE_LOAD

Image memory load with format conversion specified in T#. No sampler.

1

IMAGE_LOAD_MIP

Image memory load with user-supplied mip level. No sampler.

2

IMAGE_LOAD_PCK

Image memory load with no format conversion. No sampler.

3

IMAGE_LOAD_PCK_SGN

Image memory load with with no format conversion and sign extension. No sampler.

4

IMAGE_LOAD_MIP_PCK

Image memory load with user-supplied mip level, no format conversion. No sampler.

5

IMAGE_LOAD_MIP_PCK _SGN

Image memory load with user-supplied mip level, no format conversion and with sign extension. No sampler.

8

IMAGE_STORE

Image memory store with format conversion specified in T#. No sampler.

9

IMAGE_STORE_MIP

Image memory store with format conversion specified in T# to user specified mip level. No sampler.

10

IMAGE_STORE_PCK

Image memory store of packed data without format conversion . No sampler.

11

IMAGE_STORE_MIP_PC K

Image memory store of packed data without format conversion to user-supplied mip level. No sampler.

14

IMAGE_GET_RESINFO

return resource info for a given mip level specified in the address vgpr. No sampler. Returns 4 integer values into VGPRs 3-0: {num_mip_levels, depth, height, width}.

16

IMAGE_ATOMIC_SWAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

17

IMAGE_ATOMIC_CMPSWA P

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

18

IMAGE_ATOMIC_ADD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

19

IMAGE_ATOMIC_SUB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

20

IMAGE_ATOMIC_SMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

21

IMAGE_ATOMIC_UMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

22

IMAGE_ATOMIC_SMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

23

IMAGE_ATOMIC_UMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

24

IMAGE_ATOMIC_AND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

25

IMAGE_ATOMIC_OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

26

IMAGE_ATOMIC_XOR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

27

IMAGE_ATOMIC_INC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

28

IMAGE_ATOMIC_DEC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

32

IMAGE_SAMPLE

sample texture map.

33

IMAGE_SAMPLE_CL

sample texture map, with LOD clamp specified in shader.

34

IMAGE_SAMPLE_D

sample texture map, with user derivatives

35

IMAGE_SAMPLE_D_CL

sample texture map, with LOD clamp specified in shader, with user derivatives.

36

IMAGE_SAMPLE_L

sample texture map, with user LOD.

37

IMAGE_SAMPLE_B

sample texture map, with lod bias.

38

IMAGE_SAMPLE_B_CL

sample texture map, with LOD clamp specified in shader, with lod bias.

39

IMAGE_SAMPLE_LZ

sample texture map, from level 0.

40

IMAGE_SAMPLE_C

sample texture map, with PCF.

41

IMAGE_SAMPLE_C_CL

SAMPLE_C, with LOD clamp specified in shader.

42

IMAGE_SAMPLE_C_D

SAMPLE_C, with user derivatives.

43

IMAGE_SAMPLE_C_D_ CL

SAMPLE_C, with LOD clamp specified in shader, with user derivatives.

44

IMAGE_SAMPLE_C_L

SAMPLE_C, with user LOD.

45

IMAGE_SAMPLE_C_B

SAMPLE_C, with lod bias.

46

IMAGE_SAMPLE_C_B_ CL

SAMPLE_C, with LOD clamp specified in shader, with lod bias.

47

IMAGE_SAMPLE_C_LZ

SAMPLE_C, from level 0.

48

IMAGE_SAMPLE_O

sample texture map, with user offsets.

49

IMAGE_SAMPLE_CL_O

SAMPLE_O with LOD clamp specified in shader.

50

IMAGE_SAMPLE_D_O

SAMPLE_O, with user derivatives.

51

IMAGE_SAMPLE_D_CL_O

SAMPLE_O, with LOD clamp specified in shader, with user derivatives.

52

IMAGE_SAMPLE_L_O

SAMPLE_O, with user LOD.

53

IMAGE_SAMPLE_B_O

SAMPLE_O, with lod bias.

54

IMAGE_SAMPLE_B_CL_O

SAMPLE_O, with LOD clamp specified in shader, with lod bias.

55

IMAGE_SAMPLE_LZ_O

SAMPLE_O, from level 0.

56

IMAGE_SAMPLE_C_O

SAMPLE_C with user specified offsets.

57

IMAGE_SAMPLE_C_CL_O

SAMPLE_C_O, with LOD clamp specified in shader.

58

IMAGE_SAMPLE_C_D_ O

SAMPLE_C_O, with user derivatives.

59

IMAGE_SAMPLE_C_D_ CL_O

SAMPLE_C_O, with LOD clamp specified in shader, with user derivatives.

60

IMAGE_SAMPLE_C_L_ O

SAMPLE_C_O, with user LOD.

61

IMAGE_SAMPLE_C_B_ O

SAMPLE_C_O, with lod bias.

62

IMAGE_SAMPLE_C_B_ CL_O

SAMPLE_C_O, with LOD clamp specified in shader, with lod bias.

63

IMAGE_SAMPLE_C_LZ_O

SAMPLE_C_O, from level 0.

64

IMAGE_GATHER4

gather 4 single component elements (2x2).

65

IMAGE_GATHER4_CL

gather 4 single component elements (2x2) with user LOD clamp.

66

IMAGE_GATHER4H

Same as Gather4, but fetches one component per texel, from a 4x1 group of texels.

68

IMAGE_GATHER4_L

gather 4 single component elements (2x2) with user LOD.

69

IMAGE_GATHER4_B

gather 4 single component elements (2x2) with user bias.

70

IMAGE_GATHER4_B_CL

gather 4 single component elements (2x2) with user bias and clamp.

71

IMAGE_GATHER4_LZ

gather 4 single component elements (2x2) at level 0.

72

IMAGE_GATHER4_C

gather 4 single component elements (2x2) with PCF.

73

IMAGE_GATHER4_C_CL

gather 4 single component elements (2x2) with user LOD clamp and PCF.

74

IMAGE_GATHER4H_PCK

Same as GATHER4H, but fetched elements are treated as a single component and packed into GPR(s).

75

IMAGE_GATHER8H_PCK

Simliar to GATHER4H_PCK, but packs eight elements from a 8x1 group of texels.

76

IMAGE_GATHER4_C_L

gather 4 single component elements (2x2) with user LOD and PCF.

77

IMAGE_GATHER4_C_B

gather 4 single component elements (2x2) with user bias and PCF.

78

IMAGE_GATHER4_C_B_CL

gather 4 single component elements (2x2) with user bias, clamp and PCF.

79

IMAGE_GATHER4_C_LZ

gather 4 single component elements (2x2) at level 0, with PCF.

80

IMAGE_GATHER4_O

GATHER4, with user offsets.

81

IMAGE_GATHER4_CL_O

GATHER4_CL, with user offsets.

84

IMAGE_GATHER4_L_O

GATHER4_L, with user offsets.

85

IMAGE_GATHER4_B_O

GATHER4_B, with user offsets.

86

IMAGE_GATHER4_B_CL _O

GATHER4_B_CL, with user offsets.

87

IMAGE_GATHER4_LZ_O

GATHER4_LZ, with user offsets.

88

IMAGE_GATHER4_C_O

GATHER4_C, with user offsets.

89

IMAGE_GATHER4_C_CL _O

GATHER4_C_CL, with user offsets.

92

IMAGE_GATHER4_C_L_O

GATHER4_C_L, with user offsets.

93

IMAGE_GATHER4_C_B_O

GATHER4_B, with user offsets.

94

IMAGE_GATHER4_C_B_CL_O

GATHER4_B_CL, with user offsets.

95

IMAGE_GATHER4_C_LZ _O

GATHER4_C_LZ, with user offsets.

96

IMAGE_GET_LOD

Return calculated LOD. Vdata gets 2 32bit integer values: { rawLOD, clampedLOD }.

104

IMAGE_SAMPLE_CD

sample texture map, with user derivatives (LOD per quad)

105

IMAGE_SAMPLE_CD_CL

sample texture map, with LOD clamp specified in shader, with user derivatives (LOD per quad).

106

IMAGE_SAMPLE_C_CD

SAMPLE_C, with user derivatives (LOD per quad).

107

IMAGE_SAMPLE_C_CD_CL

SAMPLE_C, with LOD clamp specified in shader, with user derivatives (LOD per quad).

108

IMAGE_SAMPLE_CD_O

SAMPLE_O, with user derivatives (LOD per quad).

109

IMAGE_SAMPLE_CD_CL _O

SAMPLE_O, with LOD clamp specified in shader, with user derivatives (LOD per quad).

110

IMAGE_SAMPLE_C_CD_O

SAMPLE_C_O, with user derivatives (LOD per quad).

111

IMAGE_SAMPLE_C_CD_CL_O

SAMPLE_C_O, with LOD clamp specified in shader, with user derivatives (LOD per quad).

EXPORT Instructions

Transfer vertex position, vertex parameter, pixel color, or pixel depth information to the output buffer. Every pixel shader must do at least one export to a color, depth or NULL target with the VM bit set to 1. This communicates the pixel-valid mask to the color and depth buffers. Every pixel does only one of the above export types with the DONE bit set to 1. Vertex shaders must do one or more position exports, and at least one parameter export. The final position export must have the DONE bit set to 1.

microcode exp

FLAT, Scratch and Global Instructions

The bitfield map of the FLAT format is:

microcode flat

where:

GLC    = Global coherency.
SLC    = System level coherency.
OP     = Opcode instructions.
ADDR   = Source of flat address VGPR.
DATA   = Source data.
VDST   = Destination VGPR.
NV     = Access to non-volatile memory.
SADDR  = SGPR holding address or offset
SEG    = Instruction type: Flat, Scratch, or Global
LDS    = Data is transferred between LDS and Memory, not VGPRs.
OFFSET = Immediate address byte-offset.

Flat Instructions

Flat instructions look at the per-workitem address and determine for each work item if the target memory address is in global, private or scratch memory.

Opcode

Name

Description

16

FLAT_LOAD_UBYTE

Untyped buffer load unsigned byte (zero extend to VGPR destination).

17

FLAT_LOAD_SBYTE

Untyped buffer load signed byte (sign extend to VGPR destination).

18

FLAT_LOAD_USHORT

Untyped buffer load unsigned short (zero extend to VGPR destination).

19

FLAT_LOAD_SSHORT

Untyped buffer load signed short (sign extend to VGPR destination).

20

FLAT_LOAD_DWORD

Untyped buffer load dword.

21

FLAT_LOAD_DWORDX2

Untyped buffer load 2 dwords.

22

FLAT_LOAD_DWORDX3

Untyped buffer load 3 dwords.

23

FLAT_LOAD_DWORDX4

Untyped buffer load 4 dwords.

24

FLAT_STORE_BYTE

Untyped buffer store byte. Stores S0[7:0].

25

FLAT_STORE_BYTE_D1 6_HI

Untyped buffer store byte. Stores S0[23:16].

26

FLAT_STORE_SHORT

Untyped buffer store short. Stores S0[15:0].

27

FLAT_STORE_SHORT_D 16_HI

Untyped buffer store short. Stores S0[31:16].

28

FLAT_STORE_DWORD

Untyped buffer store dword.

29

FLAT_STORE_DWORDX2

Untyped buffer store 2 dwords.

30

FLAT_STORE_DWORDX3

Untyped buffer store 3 dwords.

31

FLAT_STORE_DWORDX4

Untyped buffer store 4 dwords.

32

FLAT_LOAD_UBYTE_D1 6

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

33

FLAT_LOAD_UBYTE_D1 6_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

34

FLAT_LOAD_SBYTE_D1 6

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

35

FLAT_LOAD_SBYTE_D1 6_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

36

FLAT_LOAD_SHORT_D1 6

D0[15:0] = MEM[ADDR]. Untyped buffer load short.

37

FLAT_LOAD_SHORT_D1 6_HI

D0[31:16] = MEM[ADDR]. Untyped buffer load short.

64

FLAT_ATOMIC_SWAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

65

FLAT_ATOMIC_CMPSWAP

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

66

FLAT_ATOMIC_ADD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

67

FLAT_ATOMIC_SUB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

68

FLAT_ATOMIC_SMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

69

FLAT_ATOMIC_UMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

70

FLAT_ATOMIC_SMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

71

FLAT_ATOMIC_UMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

72

FLAT_ATOMIC_AND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

73

FLAT_ATOMIC_OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

74

FLAT_ATOMIC_XOR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

75

FLAT_ATOMIC_INC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

76

FLAT_ATOMIC_DEC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

96

FLAT_ATOMIC_SWAP_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA[0:1]; RETURN_DATA[0:1] = tmp.

97

FLAT_ATOMIC_CMPSWAP _X2

// 64bit tmp = MEM[ADDR]; src = DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0:1] = tmp.

98

FLAT_ATOMIC_ADD_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

99

FLAT_ATOMIC_SUB_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

100

FLAT_ATOMIC_SMIN_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

101

FLAT_ATOMIC_UMIN_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

102

FLAT_ATOMIC_SMAX_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

103

FLAT_ATOMIC_UMAX_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

104

FLAT_ATOMIC_AND_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

105

FLAT_ATOMIC_OR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

106

FLAT_ATOMIC_XOR_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

107

FLAT_ATOMIC_INC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

108

FLAT_ATOMIC_DEC_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

Scratch Instructions

Scratch instructions are like Flat, but assume all workitem addresses fall in scratch (private) space.

Opcode

Name

Description

16

SCRATCH_LOAD_UBYTE

Untyped buffer load unsigned byte (zero extend to VGPR destination).

17

SCRATCH_LOAD_SBYTE

Untyped buffer load signed byte (sign extend to VGPR destination).

18

SCRATCH_LOAD_USHORT

Untyped buffer load unsigned short (zero extend to VGPR destination).

19

SCRATCH_LOAD_SSHORT

Untyped buffer load signed short (sign extend to VGPR destination).

20

SCRATCH_LOAD_DWORD

Untyped buffer load dword.

21

SCRATCH_LOAD_DWORDX 2

Untyped buffer load 2 dwords.

22

SCRATCH_LOAD_DWORDX 3

Untyped buffer load 3 dwords.

23

SCRATCH_LOAD_DWORDX 4

Untyped buffer load 4 dwords.

24

SCRATCH_STORE_BYTE

Untyped buffer store byte. Stores S0[7:0].

25

SCRATCH_STORE_BYTE_D16_HI

Untyped buffer store byte. Stores S0[23:16].

26

SCRATCH_STORE_SHORT

Untyped buffer store short. Stores S0[15:0].

27

SCRATCH_STORE_SHORT _D16_HI

Untyped buffer store short. Stores S0[31:16].

28

SCRATCH_STORE_DWORD

Untyped buffer store dword.

29

SCRATCH_STORE_DWORD X2

Untyped buffer store 2 dwords.

30

SCRATCH_STORE_DWORD X3

Untyped buffer store 3 dwords.

31

SCRATCH_STORE_DWORD X4

Untyped buffer store 4 dwords.

32

SCRATCH_LOAD_UBYTE_D16

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

33

SCRATCH_LOAD_UBYTE_D16_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

34

SCRATCH_LOAD_SBYTE_D16

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

35

SCRATCH_LOAD_SBYTE_D16_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

36

SCRATCH_LOAD_SHORT_D16

D0[15:0] = MEM[ADDR]. Untyped buffer load short.

37

SCRATCH_LOAD_SHORT_D16_HI

D0[31:16] = MEM[ADDR]. Untyped buffer load short.

Global Instructions

Global instructions are like Flat, but assume all workitem addresses fall in global memory space.

Opcode

Name

Description

16

GLOBAL_LOAD_UBYTE

Untyped buffer load unsigned byte (zero extend to VGPR destination).

17

GLOBAL_LOAD_SBYTE

Untyped buffer load signed byte (sign extend to VGPR destination).

18

GLOBAL_LOAD_USHORT

Untyped buffer load unsigned short (zero extend to VGPR destination).

19

GLOBAL_LOAD_SSHORT

Untyped buffer load signed short (sign extend to VGPR destination).

20

GLOBAL_LOAD_DWORD

Untyped buffer load dword.

21

GLOBAL_LOAD_DWORDX2

Untyped buffer load 2 dwords.

22

GLOBAL_LOAD_DWORDX3

Untyped buffer load 3 dwords.

23

GLOBAL_LOAD_DWORDX4

Untyped buffer load 4 dwords.

24

GLOBAL_STORE_BYTE

Untyped buffer store byte. Stores S0[7:0].

25

GLOBAL_STORE_BYTE_ D16_HI

Untyped buffer store byte. Stores S0[23:16].

26

GLOBAL_STORE_SHORT

Untyped buffer store short. Stores S0[15:0].

27

GLOBAL_STORE_SHORT_D16_HI

Untyped buffer store short. Stores S0[31:16].

28

GLOBAL_STORE_DWORD

Untyped buffer store dword.

29

GLOBAL_STORE_DWORDX 2

Untyped buffer store 2 dwords.

30

GLOBAL_STORE_DWORDX 3

Untyped buffer store 3 dwords.

31

GLOBAL_STORE_DWORDX 4

Untyped buffer store 4 dwords.

32

GLOBAL_LOAD_UBYTE_ D16

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

33

GLOBAL_LOAD_UBYTE_ D16_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load unsigned byte.

34

GLOBAL_LOAD_SBYTE_ D16

D0[15:0] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

35

GLOBAL_LOAD_SBYTE_ D16_HI

D0[31:16] = {8’h0, MEM[ADDR]}. Untyped buffer load signed byte.

36

GLOBAL_LOAD_SHORT_ D16

D0[15:0] = MEM[ADDR]. Untyped buffer load short.

37

GLOBAL_LOAD_SHORT_ D16_HI

D0[31:16] = MEM[ADDR]. Untyped buffer load short.

64

GLOBAL_ATOMIC_SWAP

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA = tmp.

65

GLOBAL_ATOMIC_CMPSW AP

// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0] = tmp.

66

GLOBAL_ATOMIC_ADD

// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA; RETURN_DATA = tmp.

67

GLOBAL_ATOMIC_SUB

// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA; RETURN_DATA = tmp.

68

GLOBAL_ATOMIC_SMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

69

GLOBAL_ATOMIC_UMIN

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA < tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

70

GLOBAL_ATOMIC_SMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // signed compare RETURN_DATA = tmp.

71

GLOBAL_ATOMIC_UMAX

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA > tmp) ? DATA : tmp; // unsigned compare RETURN_DATA = tmp.

72

GLOBAL_ATOMIC_AND

// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA; RETURN_DATA = tmp.

73

GLOBAL_ATOMIC_OR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA; RETURN_DATA = tmp.

74

GLOBAL_ATOMIC_XOR

// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA; RETURN_DATA = tmp.

75

GLOBAL_ATOMIC_INC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? 0 : tmp + 1; // unsigned compare RETURN_DATA = tmp.

76

GLOBAL_ATOMIC_DEC

// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA) ? DATA : tmp - 1; // unsigned compare RETURN_DATA = tmp.

96

GLOBAL_ATOMIC_SWAP_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA[0:1]; RETURN_DATA[0:1] = tmp.

97

GLOBAL_ATOMIC_CMPSW AP_X2

// 64bit tmp = MEM[ADDR]; src = DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ? src : tmp; RETURN_DATA[0:1] = tmp.

98

GLOBAL_ATOMIC_ADD_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] += DATA[0:1]; RETURN_DATA[0:1] = tmp.

99

GLOBAL_ATOMIC_SUB_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA[0:1]; RETURN_DATA[0:1] = tmp.

100

GLOBAL_ATOMIC_SMIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

101

GLOBAL_ATOMIC_UMIN_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

102

GLOBAL_ATOMIC_SMAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed compare RETURN_DATA[0:1] = tmp.

103

GLOBAL_ATOMIC_UMAX_X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] -= (DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned compare RETURN_DATA[0:1] = tmp.

104

GLOBAL_ATOMIC_AND_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA[0:1]; RETURN_DATA[0:1] = tmp.

105

GLOBAL_ATOMIC_OR_X 2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA[0:1]; RETURN_DATA[0:1] = tmp.

106

GLOBAL_ATOMIC_XOR_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA[0:1]; RETURN_DATA[0:1] = tmp.

107

GLOBAL_ATOMIC_INC_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA[0:1]) ? 0 : tmp + 1; // unsigned compare RETURN_DATA[0:1] = tmp.

108

GLOBAL_ATOMIC_DEC_ X2

// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; // unsigned compare RETURN_DATA[0:1] = tmp.

Instruction Limitations

DPP

The following instructions cannot use DPP:

  • V_MADMK_F32

  • V_MADAK_F32

  • V_MADMK_F16

  • V_MADAK_F16

  • V_READFIRSTLANE_B32

  • V_CVT_I32_F64

  • V_CVT_F64_I32

  • V_CVT_F32_F64

  • V_CVT_F64_F32

  • V_CVT_U32_F64

  • V_CVT_F64_U32

  • V_TRUNC_F64

  • V_CEIL_F64

  • V_RNDNE_F64

  • V_FLOOR_F64

  • V_RCP_F64

  • V_RSQ_F64

  • V_SQRT_F64

  • V_FREXP_EXP_I32_F64

  • V_FREXP_MANT_F64

  • V_FRACT_F64

  • V_CLREXCP

  • V_SWAP_B32

  • V_CMP_CLASS_F64

  • V_CMPX_CLASS_F64

  • V_CMP_*_F64

  • V_CMPX_*_F64

  • V_CMP_*_I64

  • V_CMP_*_U64

  • V_CMPX_*_I64

  • V_CMPX_*_U64

SDWA

The following instructions cannot use SDWA:

  • V_MAC_F32

  • V_MADMK_F32

  • V_MADAK_F32

  • V_MAC_F16

  • V_MADMK_F16

  • V_MADAK_F16

  • V_FMAC_F32

  • V_READFIRSTLANE_B32

  • V_CLREXCP

  • V_SWAP_B32

Microcode Formats

This section specifies the microcode formats. The definitions can be used to simplify compilation by providing standard templates and enumeration names for the various instruction formats.

Endian Order - The GCN architecture addresses memory and registers using littleendian byte-ordering and bit-ordering. Multi-byte values are stored with their least-significant (low-order) byte (LSB) at the lowest byte address, and they are illustrated with their LSB at the right side. Byte values are stored with their least-significant (low-order) bit (lsb) at the lowest bit address, and they are illustrated with their lsb at the right side.

The table below summarizes the microcode formats and their widths. The sections that follow provide details

Microcode Formats

Reference

Width (bits)

Scalar ALU and Control Formats

SOP2

section_title

32

SOP1

section_title

SOPK

section_title

SOPP

section_title

SOPC

section_title

Scalar Memory Format

SMEM

section_title

64

Vector ALU Format

VOP1

section_title

32

VOP2

section_title

32

VOPC

section_title

32

VOP3A

section_title

64

VOP3B

section_title

64

VOP3P

section_title

64

DPP

section_title

32

SDWA

section_title

32

Vector Parameter Interpolation Format

VINTRP

section_title

32

LDS/GDS Format

DS

`section\_title <#_ds >`__

64

Vector Memory Buffer Formats

MTBUF

???

64

MUBUF

section_title

64

Vector Memory Image Format

MIMG

section_title

64

Export Format

EXP

section_title

64

Flat Formats

FLAT

section_title

64

GLOBAL

section_title

64

SCRATCH

section_title

64

Table: Summary of Microcode Formats

The field-definition tables that accompany the descriptions in the sections below use the following notation.

  • int(2) - A two-bit field that specifies an unsigned integer value.

  • enum(7) - A seven-bit field that specifies an enumerated set of values (in this case, a set of up to 27 values). The number of valid values can be less than the maximum.

The default value of all fields is zero. Any bitfield not identified is assumed to be reserved.

Instruction Suffixes

Most instructions include a suffix which indicates the data type the instruction handles. This suffix may also include a number which indicate the size of the data.

For example: “F32” indicates “32-bit floating point data”, or “B16” is “16-bit binary data”.

  • B = binary

  • F = floating point

  • U = unsigned integer

  • S = signed integer

When more than one data-type specifier occurs in an instruction, the last one is the result type and size, and the earlier one(s) is/are input data type and size.

Scalar ALU and Control Formats

SOP2

Scalar format with Two inputs, one output

microcode sop2

Format

SOP2

Descriptio n

This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit literal constant.

Field Name

Bits

Format or Description

SSRC0

[7:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 250
251
252
253
254
255
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.

SSRC1

[15:8]

Second scalar source operand.
Same codes as SSRC0, above.

SDST

[22:16]

Scalar destination.
Same codes as SSRC0, above except only codes 0-127 are valid.

OP

[29:23]

See Opcode table below.

ENCODING

[31:30]

Must be: 10

Table: SOP2 Fields

Opcode #

Name

0

S_ADD_U32

1

S_SUB_U32

2

S_ADD_I32

3

S_SUB_I32

4

S_ADDC_U32

5

S_SUBB_U32

6

S_MIN_I32

7

S_MIN_U32

8

S_MAX_I32

9

S_MAX_U32

10

S_CSELECT_B32

11

S_CSELECT_B64

12

S_AND_B32

13

S_AND_B64

14

S_OR_B32

15

S_OR_B64

16

S_XOR_B32

17

S_XOR_B64

18

S_ANDN2_B32

19

S_ANDN2_B64

20

S_ORN2_B32

21

S_ORN2_B64

22

S_NAND_B32

23

S_NAND_B64

24

S_NOR_B32

25

S_NOR_B64

26

S_XNOR_B32

27

S_XNOR_B64

28

S_LSHL_B32

29

S_LSHL_B64

30

S_LSHR_B32

31

S_LSHR_B64

32

S_ASHR_I32

33

S_ASHR_I64

34

S_BFM_B32

35

S_BFM_B64

36

S_MUL_I32

37

S_BFE_U32

38

S_BFE_I32

39

S_BFE_U64

40

S_BFE_I64

41

S_CBRANCH_G_FORK

42

S_ABSDIFF_I32

43

S_RFE_RESTORE_B64

44

S_MUL_HI_U32

45

S_MUL_HI_I32

46

S_LSHL1_ADD_U32

47

S_LSHL2_ADD_U32

48

S_LSHL3_ADD_U32

49

S_LSHL4_ADD_U32

50

S_PACK_LL_B32_B16

51

S_PACK_LH_B32_B16

52

S_PACK_HH_B32_B16

Table: SOP2 Opcodes

SOPK

microcode sopk

Format

SOPK

Descriptio n

This is a scalar instruction with one 16-bit signed immediate (SIMM16) input and a single destination. Instructions which take 2 inputs use the destination as the second input.

Field Name

Bits

Format or Description

SIMM16

[15:0]

Signed immediate 16-bit value.

SDST

[22:16]
0 - 101
102
103
104
105
106
107
108-123
124
125
126
127
Scalar destination, and can provide second source operand.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].

OP

[27:23]

See Opcode table below.

ENCODING

[31:28]

Must be: 1011

Table: SOPK Fields

Opcode #

Name

0

S_MOVK_I32

1

S_CMOVK_I32

2

S_CMPK_EQ_I32

3

S_CMPK_LG_I32

4

S_CMPK_GT_I32

5

S_CMPK_GE_I32

6

S_CMPK_LT_I32

7

S_CMPK_LE_I32

8

S_CMPK_EQ_U32

9

S_CMPK_LG_U32

10

S_CMPK_GT_U32

11

S_CMPK_GE_U32

12

S_CMPK_LT_U32

13

S_CMPK_LE_U32

14

S_ADDK_I32

15

S_MULK_I32

16

S_CBRANCH_I_FORK

17

S_GETREG_B32

18

S_SETREG_B32

20

S_SETREG_IMM32_B32

21

S_CALL_B64

Table: SOPK Opcodes

SOP1

microcode sop1

Format

SOP1

Descriptio n

This is a scalar instruction with two inputs and one output. Can be followed by a 32-bit literal constant.

Field Name

Bits

Format or Description

SSRC0

[7:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 250
251
252
253
254
255
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.

OP

[15:8]

See Opcode table below.

SDST

[22:16]

Scalar destination.
Same codes as SSRC0, above except only codes 0-127 are valid.

ENCODING

[31:23]

Must be: 10_1111101

Table: SOP1 Fields

Opcode #

Name

0

S_MOV_B32

1

S_MOV_B64

2

S_CMOV_B32

3

S_CMOV_B64

4

S_NOT_B32

5

S_NOT_B64

6

S_WQM_B32

7

S_WQM_B64

8

S_BREV_B32

9

S_BREV_B64

10

S_BCNT0_I32_B32

11

S_BCNT0_I32_B64

12

S_BCNT1_I32_B32

13

S_BCNT1_I32_B64

14

S_FF0_I32_B32

15

S_FF0_I32_B64

16

S_FF1_I32_B32

17

S_FF1_I32_B64

18

S_FLBIT_I32_B32

19

S_FLBIT_I32_B64

20

S_FLBIT_I32

21

S_FLBIT_I32_I64

22

S_SEXT_I32_I8

23

S_SEXT_I32_I16

24

S_BITSET0_B32

25

S_BITSET0_B64

26

S_BITSET1_B32

27

S_BITSET1_B64

28

S_GETPC_B64

29

S_SETPC_B64

30

S_SWAPPC_B64

31

S_RFE_B64

32

S_AND_SAVEEXEC_B64

33

S_OR_SAVEEXEC_B64

34

S_XOR_SAVEEXEC_B64

35

S_ANDN2_SAVEEXEC_B64

36

S_ORN2_SAVEEXEC_B64

37

S_NAND_SAVEEXEC_B64

38

S_NOR_SAVEEXEC_B64

39

S_XNOR_SAVEEXEC_B64

40

S_QUADMASK_B32

41

S_QUADMASK_B64

42

S_MOVRELS_B32

43

S_MOVRELS_B64

44

S_MOVRELD_B32

45

S_MOVRELD_B64

46

S_CBRANCH_JOIN

48

S_ABS_I32

50

S_SET_GPR_IDX_IDX

51

S_ANDN1_SAVEEXEC_B64

52

S_ORN1_SAVEEXEC_B64

53

S_ANDN1_WREXEC_B64

54

S_ANDN2_WREXEC_B64

55

S_BITREPLICATE_B64_B32

Table: SOP1 Opcodes

SOPC

microcode sop1

Format

SOPC

Descriptio n

This is a scalar instruction with two inputs which are compared and produce SCC as a result. Can be followed by a 32-bit literal constant.

Field Name

Bits

Format or Description

SSRC0

[7:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249 - 250
251
252
253
254
255
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
Reserved.
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.

SSRC1

[15:8]

Second scalar source operand.
Same codes as SSRC0, above.

OP

[22:16]

See Opcode table below.

ENCODING

[31:23]

Must be: 10_1111110

Table: SOPC Fields

Opcode #

Name

0

S_CMP_EQ_I32

1

S_CMP_LG_I32

2

S_CMP_GT_I32

3

S_CMP_GE_I32

4

S_CMP_LT_I32

5

S_CMP_LE_I32

6

S_CMP_EQ_U32

7

S_CMP_LG_U32

8

S_CMP_GT_U32

9

S_CMP_GE_U32

10

S_CMP_LT_U32

11

S_CMP_LE_U32

12

S_BITCMP0_B32

13

S_BITCMP1_B32

14

S_BITCMP0_B64

15

S_BITCMP1_B64

16

S_SETVSKIP

17

S_SET_GPR_IDX_ON

18

S_CMP_EQ_U64

19

S_CMP_LG_U64

Table: SOPC Opcodes

SOPP

microcode sopp

Format

SOPP

Descriptio n

This is a scalar instruction with one 16-bit signed immediate (SIMM16) input.

Field Name

Bits

Format or Description

SIMM16

[15:0]

Signed immediate 16-bit value.

OP

[22:16]

See Opcode table below.

ENCODING

[31:23]

Must be: 10_1111111

Table: SOPP Fields

Opcode #

Name

0

S_NOP

1

S_ENDPGM

2

S_BRANCH

3

S_WAKEUP

4

S_CBRANCH_SCC0

5

S_CBRANCH_SCC1

6

S_CBRANCH_VCCZ

7

S_CBRANCH_VCCNZ

8

S_CBRANCH_EXECZ

9

S_CBRANCH_EXECNZ

10

S_BARRIER

11

S_SETKILL

12

S_WAITCNT

13

S_SETHALT

14

S_SLEEP

15

S_SETPRIO

16

S_SENDMSG

17

S_SENDMSGHALT

18

S_TRAP

19

S_ICACHE_INV

20

S_INCPERFLEVEL

21

S_DECPERFLEVEL

22

S_TTRACEDATA

23

S_CBRANCH_CDBGSYS

24

S_CBRANCH_CDBGUSER

25

S_CBRANCH_CDBGSYS_OR_USER

26

S_CBRANCH_CDBGSYS_AND_USER

27

S_ENDPGM_SAVED

28

S_SET_GPR_IDX_OFF

29

S_SET_GPR_IDX_MODE

30

S_ENDPGM_ORDERED_PS_DONE

Table: SOPP Opcodes

Scalar Memory Format

SMEM

microcode smem

Format

SMEM

Descriptio n

Scalar Memory data load/store

Field Name

Bits

Format or Description

SBASE

[5:0]

SGPR-pair which provides base address or SGPR-quad which provides V#. (LSB of SGPR address is omitted).

SDATA

[12:6]

SGPR which provides write data or accepts return data.

SOE

[14]

Scalar offset enable.

NV

[15]

Non-volatile

GLC

[16]

Globally memory Coherent. Force bypass of L1 cache, or for atomics, cause pre-op value to be returned.

IMM

[17]

Immediate enable.

OP

[25:18]

See Opcode table below.

ENCODING

[31:26]

Must be: 110000

OFFSET

[52:32]

An immediate signed byte offset, or the address of an SGPR holding the unsigned byte offset. Signed offsets only work with S_LOAD/STORE.

SOFFSET

[63:57]

SGPR offset. Used only when SOFFSET_EN = 1 May only specify an SGPR or M0.

Table: SMEM Fields

Opcode #

Name

0

S_LOAD_DWORD

1

S_LOAD_DWORDX2

2

S_LOAD_DWORDX4

3

S_LOAD_DWORDX8

4

S_LOAD_DWORDX16

5

S_SCRATCH_LOAD_DWORD

6

S_SCRATCH_LOAD_DWORDX2

7

S_SCRATCH_LOAD_DWORDX4

8

S_BUFFER_LOAD_DWORD

9

S_BUFFER_LOAD_DWORDX2

10

S_BUFFER_LOAD_DWORDX4

11

S_BUFFER_LOAD_DWORDX8

12

S_BUFFER_LOAD_DWORDX16

16

S_STORE_DWORD

17

S_STORE_DWORDX2

18

S_STORE_DWORDX4

21

S_SCRATCH_STORE_DWORD

22

S_SCRATCH_STORE_DWORDX2

23

S_SCRATCH_STORE_DWORDX4

24

S_BUFFER_STORE_DWORD

25

S_BUFFER_STORE_DWORDX2

26

S_BUFFER_STORE_DWORDX4

32

S_DCACHE_INV

33

S_DCACHE_WB

34

S_DCACHE_INV_VOL

35

S_DCACHE_WB_VOL

36

S_MEMTIME

37

S_MEMREALTIME

38

S_ATC_PROBE

39

S_ATC_PROBE_BUFFER

40

S_DCACHE_DISCARD

41

S_DCACHE_DISCARD_X2

64

S_BUFFER_ATOMIC_SWAP

65

S_BUFFER_ATOMIC_CMPSWAP

66

S_BUFFER_ATOMIC_ADD

67

S_BUFFER_ATOMIC_SUB

68

S_BUFFER_ATOMIC_SMIN

69

S_BUFFER_ATOMIC_UMIN

70

S_BUFFER_ATOMIC_SMAX

71

S_BUFFER_ATOMIC_UMAX

72

S_BUFFER_ATOMIC_AND

73

S_BUFFER_ATOMIC_OR

74

S_BUFFER_ATOMIC_XOR

75

S_BUFFER_ATOMIC_INC

76

S_BUFFER_ATOMIC_DEC

96

S_BUFFER_ATOMIC_SWAP_X2

97

S_BUFFER_ATOMIC_CMPSWAP_X2

98

S_BUFFER_ATOMIC_ADD_X2

99

S_BUFFER_ATOMIC_SUB_X2

100

S_BUFFER_ATOMIC_SMIN_X2

101

S_BUFFER_ATOMIC_UMIN_X2

102

S_BUFFER_ATOMIC_SMAX_X2

103

S_BUFFER_ATOMIC_UMAX_X2

104

S_BUFFER_ATOMIC_AND_X2

105

S_BUFFER_ATOMIC_OR_X2

106

S_BUFFER_ATOMIC_XOR_X2

107

S_BUFFER_ATOMIC_INC_X2

108

S_BUFFER_ATOMIC_DEC_X2

128

S_ATOMIC_SWAP

129

S_ATOMIC_CMPSWAP

130

S_ATOMIC_ADD

131

S_ATOMIC_SUB

132

S_ATOMIC_SMIN

133

S_ATOMIC_UMIN

134

S_ATOMIC_SMAX

135

S_ATOMIC_UMAX

136

S_ATOMIC_AND

137

S_ATOMIC_OR

138

S_ATOMIC_XOR

139

S_ATOMIC_INC

140

S_ATOMIC_DEC

160

S_ATOMIC_SWAP_X2

161

S_ATOMIC_CMPSWAP_X2

162

S_ATOMIC_ADD_X2

163

S_ATOMIC_SUB_X2

164

S_ATOMIC_SMIN_X2

165

S_ATOMIC_UMIN_X2

166

S_ATOMIC_SMAX_X2

167

S_ATOMIC_UMAX_X2

168

S_ATOMIC_AND_X2

169

S_ATOMIC_OR_X2

170

S_ATOMIC_XOR_X2

171

S_ATOMIC_INC_X2

172

S_ATOMIC_DEC_X2

Table: SMEM Opcodes

Vector ALU Formats

VOP2

microcode vop2

Format

VOP2

Descriptio n

Vector ALU format with two operands

Field Name

Bits

Format or Description

SRC0

[8:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 - 511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

VSRC1

[16:9]

VGPR which provides the second operand.

VDST

[24:17]

Destination VGPR.

OP

[30:25]

See Opcode table below.

ENCODING

[31]

Must be: 0

Table: VOP2 Fields

Opcode #

Name

0

V_CNDMASK_B32

1

V_ADD_F32

2

V_SUB_F32

3

V_SUBREV_F32

4

V_MUL_LEGACY_F32

5

V_MUL_F32

6

V_MUL_I32_I24

7

V_MUL_HI_I32_I24

8

V_MUL_U32_U24

9

V_MUL_HI_U32_U24

10

V_MIN_F32

11

V_MAX_F32

12

V_MIN_I32

13

V_MAX_I32

14

V_MIN_U32

15

V_MAX_U32

16

V_LSHRREV_B32

17

V_ASHRREV_I32

18

V_LSHLREV_B32

19

V_AND_B32

20

V_OR_B32

21

V_XOR_B32

22

V_MAC_F32

23

V_MADMK_F32

24

V_MADAK_F32

25

V_ADD_CO_U32

26

V_SUB_CO_U32

27

V_SUBREV_CO_U32

28

V_ADDC_CO_U32

29

V_SUBB_CO_U32

30

V_SUBBREV_CO_U32

31

V_ADD_F16

32

V_SUB_F16

33

V_SUBREV_F16

34

V_MUL_F16

35

V_MAC_F16

36

V_MADMK_F16

37

V_MADAK_F16

38

V_ADD_U16

39

V_SUB_U16

40

V_SUBREV_U16

41

V_MUL_LO_U16

42

V_LSHLREV_B16

43

V_LSHRREV_B16

44

V_ASHRREV_I16

45

V_MAX_F16

46

V_MIN_F16

47

V_MAX_U16

48

V_MAX_I16

49

V_MIN_U16

50

V_MIN_I16

51

V_LDEXP_F16

52

V_ADD_U32

53

V_SUB_U32

54

V_SUBREV_U32

Table: VOP2 Opcodes

VOP1

microcode vop1

Format

VOP1

Descriptio n

Vector ALU format with one operand

Field Name

Bits

Format or Description

SRC0

[8:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 - 511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

OP

[16:9]

See Opcode table below.

VDST

[24:17]

Destination VGPR.

ENCODING

[31:25]

Must be: 0_111111

Table: VOP1 Fields

Opcode #

Name

0

V_NOP

1

V_MOV_B32

2

V_READFIRSTLANE_B32

3

V_CVT_I32_F64

4

V_CVT_F64_I32

5

V_CVT_F32_I32

6

V_CVT_F32_U32

7

V_CVT_U32_F32

8

V_CVT_I32_F32

10

V_CVT_F16_F32

11

V_CVT_F32_F16

12

V_CVT_RPI_I32_F32

13

V_CVT_FLR_I32_F32

14

V_CVT_OFF_F32_I4

15

V_CVT_F32_F64

16

V_CVT_F64_F32

17

V_CVT_F32_UBYTE0

18

V_CVT_F32_UBYTE1

19

V_CVT_F32_UBYTE2

20

V_CVT_F32_UBYTE3

21

V_CVT_U32_F64

22

V_CVT_F64_U32

23

V_TRUNC_F64

24

V_CEIL_F64

25

V_RNDNE_F64

26

V_FLOOR_F64

27

V_FRACT_F32

28

V_TRUNC_F32

29

V_CEIL_F32

30

V_RNDNE_F32

31

V_FLOOR_F32

32

V_EXP_F32

33

V_LOG_F32

34

V_RCP_F32

35

V_RCP_IFLAG_F32

36

V_RSQ_F32

37

V_RCP_F64

38

V_RSQ_F64

39

V_SQRT_F32

40

V_SQRT_F64

41

V_SIN_F32

42

V_COS_F32

43

V_NOT_B32

44

V_BFREV_B32

45

V_FFBH_U32

46

V_FFBL_B32

47

V_FFBH_I32

48

V_FREXP_EXP_I32_F64

49

V_FREXP_MANT_F64

50

V_FRACT_F64

51

V_FREXP_EXP_I32_F32

52

V_FREXP_MANT_F32

53

V_CLREXCP

55

V_SCREEN_PARTITION_4SE_B32

57

V_CVT_F16_U16

58

V_CVT_F16_I16

59

V_CVT_U16_F16

60

V_CVT_I16_F16

61

V_RCP_F16

62

V_SQRT_F16

63

V_RSQ_F16

64

V_LOG_F16

65

V_EXP_F16

66

V_FREXP_MANT_F16

67

V_FREXP_EXP_I16_F16

68

V_FLOOR_F16

69

V_CEIL_F16

70

V_TRUNC_F16

71

V_RNDNE_F16

72

V_FRACT_F16

73

V_SIN_F16

74

V_COS_F16

75

V_EXP_LEGACY_F32

76

V_LOG_LEGACY_F32

77

V_CVT_NORM_I16_F16

78

V_CVT_NORM_U16_F16

79

V_SAT_PK_U8_I16

81

V_SWAP_B32

Table: VOP1 Opcodes

VOPC

microcode vopc

Format

VOPC

Descriptio n

Vector instruction taking two inputs and producing a comparison result. Can be followed by a 32- bit literal constant. Vector Comparison operations are divided into three groups:

  • those which can use any one of 16 comparison operations,

  • those which can use any one of 8, and

  • those which have only a single comparison operation.

The final opcode number is determined by adding the base for the opcode family plus the offset from the compare op. Every compare instruction writes a result to VCC (for VOPC) or an SGPR (for VOP3). Additionally, every compare instruction has a variant that also writes to the EXEC mask. The destination of the compare result is always VCC when encoded using the VOPC format, and can be an arbitrary SGPR when encoded in the VOP3 format.

Comparison Operations

Compare Operation

Opcode Offset

Description

Sixteen Compare Operations (OP16)

F

0

D.u = 0

LT

1

D.u = (S0 < S1)

EQ

2

D.u = (S0 == S1)

LE

3

D.u = (S0 <= S1)

GT

4

D.u = (S0 > S1)

LG

5

D.u = (S0 <> S1)

GE

6

D.u = (S0 >= S1)

O

7

D.u = (!isNaN(S0) && !isNaN(S1))

U

8

D.u = (!isNaN(S0) || !isNaN(S1))

NGE

9

D.u = !(S0 >= S1)

NLG

10

D.u = !(S0 <> S1)

NGT

11

D.u = !(S0 > S1)

NLE

12

D.u = !(S0 <= S1)

NEQ

13

D.u = !(S0 == S1)

NLT

14

D.u = !(S0 < S1)

TRU

15

D.u = 1

Eight Compare Operations (OP8)

F

0

D.u = 0

LT

1

D.u = (S0 < S1)

EQ

2

D.u = (S0 == S1)

LE

3

D.u = (S0 <= S1)

GT

4

D.u = (S0 > S1)

LG

5

D.u = (S0 <> S1)

GE

6

D.u = (S0 >= S1)

TRU

7

D.u = 1

Table: Comparison Operations

Field Name

Bits

Format or Description

SRC0

[8:0]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 - 511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

VSRC1

[16:9]

VGPR which provides the second operand.

OP

[24:17]

See Opcode table below.

ENCODING

[31:25]

Must be: 0_111110

Table: VOPC Fields

Opcode #

Name

16

V_CMP_CLASS_F32

17

V_CMPX_CLASS_F32

18

V_CMP_CLASS_F64

19

V_CMPX_CLASS_F64

20

V_CMP_CLASS_F16

21

V_CMPX_CLASS_F16

32

V_CMP_F_F16

33

V_CMP_LT_F16

34

V_CMP_EQ_F16

35

V_CMP_LE_F16

36

V_CMP_GT_F16

37

V_CMP_LG_F16

38

V_CMP_GE_F16

39

V_CMP_O_F16

40

V_CMP_U_F16

41

V_CMP_NGE_F16

42

V_CMP_NLG_F16

43

V_CMP_NGT_F16

44

V_CMP_NLE_F16

45

V_CMP_NEQ_F16

46

V_CMP_NLT_F16

47

V_CMP_TRU_F16

48

V_CMPX_F_F16

49

V_CMPX_LT_F16

50

V_CMPX_EQ_F16

51

V_CMPX_LE_F16

52

V_CMPX_GT_F16

53

V_CMPX_LG_F16

54

V_CMPX_GE_F16

55

V_CMPX_O_F16

56

V_CMPX_U_F16

57

V_CMPX_NGE_F16

58

V_CMPX_NLG_F16

59

V_CMPX_NGT_F16

60

V_CMPX_NLE_F16

61

V_CMPX_NEQ_F16

62

V_CMPX_NLT_F16

63

V_CMPX_TRU_F16

64

V_CMP_F_F32

65

V_CMP_LT_F32

66

V_CMP_EQ_F32

67

V_CMP_LE_F32

68

V_CMP_GT_F32

69

V_CMP_LG_F32

70

V_CMP_GE_F32

71

V_CMP_O_F32

72

V_CMP_U_F32

73

V_CMP_NGE_F32

74

V_CMP_NLG_F32

75

V_CMP_NGT_F32

76

V_CMP_NLE_F32

77

V_CMP_NEQ_F32

78

V_CMP_NLT_F32

79

V_CMP_TRU_F32

80

V_CMPX_F_F32

81

V_CMPX_LT_F32

82

V_CMPX_EQ_F32

83

V_CMPX_LE_F32

84

V_CMPX_GT_F32

85

V_CMPX_LG_F32

86

V_CMPX_GE_F32

87

V_CMPX_O_F32

88

V_CMPX_U_F32

89

V_CMPX_NGE_F32

90

V_CMPX_NLG_F32

91

V_CMPX_NGT_F32

92

V_CMPX_NLE_F32

93

V_CMPX_NEQ_F32

94

V_CMPX_NLT_F32

95

V_CMPX_TRU_F32

96

V_CMP_F_F64

97

V_CMP_LT_F64

98

V_CMP_EQ_F64

99

V_CMP_LE_F64

100

V_CMP_GT_F64

101

V_CMP_LG_F64

102

V_CMP_GE_F64

103

V_CMP_O_F64

104

V_CMP_U_F64

105

V_CMP_NGE_F64

106

V_CMP_NLG_F64

107

V_CMP_NGT_F64

108

V_CMP_NLE_F64

109

V_CMP_NEQ_F64

110

V_CMP_NLT_F64

111

V_CMP_TRU_F64

112

V_CMPX_F_F64

113

V_CMPX_LT_F64

114

V_CMPX_EQ_F64

115

V_CMPX_LE_F64

116

V_CMPX_GT_F64

117

V_CMPX_LG_F64

118

V_CMPX_GE_F64

119

V_CMPX_O_F64

120

V_CMPX_U_F64

121

V_CMPX_NGE_F64

122

V_CMPX_NLG_F64

123

V_CMPX_NGT_F64

124

V_CMPX_NLE_F64

125

V_CMPX_NEQ_F64

126

V_CMPX_NLT_F64

127

V_CMPX_TRU_F64

160

V_CMP_F_I16

161

V_CMP_LT_I16

162

V_CMP_EQ_I16

163

V_CMP_LE_I16

164

V_CMP_GT_I16

165

V_CMP_NE_I16

166

V_CMP_GE_I16

167

V_CMP_T_I16

168

V_CMP_F_U16

169

V_CMP_LT_U16

170

V_CMP_EQ_U16

171

V_CMP_LE_U16

172

V_CMP_GT_U16

173

V_CMP_NE_U16

174

V_CMP_GE_U16

175

V_CMP_T_U16

176

V_CMPX_F_I16

177

V_CMPX_LT_I16

178

V_CMPX_EQ_I16

179

V_CMPX_LE_I16

180

V_CMPX_GT_I16

181

V_CMPX_NE_I16

182

V_CMPX_GE_I16

183

V_CMPX_T_I16

184

V_CMPX_F_U16

185

V_CMPX_LT_U16

186

V_CMPX_EQ_U16

187

V_CMPX_LE_U16

188

V_CMPX_GT_U16

189

V_CMPX_NE_U16

190

V_CMPX_GE_U16

191

V_CMPX_T_U16

192

V_CMP_F_I32

193

V_CMP_LT_I32

194

V_CMP_EQ_I32

195

V_CMP_LE_I32

196

V_CMP_GT_I32

197

V_CMP_NE_I32

198

V_CMP_GE_I32

199

V_CMP_T_I32

200

V_CMP_F_U32

201

V_CMP_LT_U32

202

V_CMP_EQ_U32

203

V_CMP_LE_U32

204

V_CMP_GT_U32

205

V_CMP_NE_U32

206

V_CMP_GE_U32

207

V_CMP_T_U32

208

V_CMPX_F_I32

209

V_CMPX_LT_I32

210

V_CMPX_EQ_I32

211

V_CMPX_LE_I32

212

V_CMPX_GT_I32

213

V_CMPX_NE_I32

214

V_CMPX_GE_I32

215

V_CMPX_T_I32

216

V_CMPX_F_U32

217

V_CMPX_LT_U32

218

V_CMPX_EQ_U32

219

V_CMPX_LE_U32

220

V_CMPX_GT_U32

221

V_CMPX_NE_U32

222

V_CMPX_GE_U32

223

V_CMPX_T_U32

224

V_CMP_F_I64

225

V_CMP_LT_I64

226

V_CMP_EQ_I64

227

V_CMP_LE_I64

228

V_CMP_GT_I64

229

V_CMP_NE_I64

230

V_CMP_GE_I64

231

V_CMP_T_I64

232

V_CMP_F_U64

233

V_CMP_LT_U64

234

V_CMP_EQ_U64

235

V_CMP_LE_U64

236

V_CMP_GT_U64

237

V_CMP_NE_U64

238

V_CMP_GE_U64

239

V_CMP_T_U64

240

V_CMPX_F_I64

241

V_CMPX_LT_I64

242

V_CMPX_EQ_I64

243

V_CMPX_LE_I64

244

V_CMPX_GT_I64

245

V_CMPX_NE_I64

246

V_CMPX_GE_I64

247

V_CMPX_T_I64

248

V_CMPX_F_U64

249

V_CMPX_LT_U64

250

V_CMPX_EQ_U64

251

V_CMPX_LE_U64

252

V_CMPX_GT_U64

253

V_CMPX_NE_U64

254

V_CMPX_GE_U64

255

V_CMPX_T_U64

Table: VOPC Opcodes

VOP3A

microcode vop3a

Format

VOP3A

Descriptio n

Vector ALU format with three operands

Field Name

Bits

Format or Description

VDST

[7:0]

Destination VGPR

ABS

[10:8]

Absolute value of input. [8] = src0, [9] = src1, [10] = src2

OPSEL

[14:11]

Operand select for 16-bit data. 0 = select low half, 1 = select high half. [11] = src0, [12] = src1, [13] = src2, [14] = dest.

CLMP

[15]

Clamp output

OP

[25:16]

Opcode. See next table.

ENCODING

[31:26]

Must be: 110100

SRC0

[40:3 2]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 - 511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1

[49:41]

Second input operand. Same options as SRC0.

SRC2

[58:50]

Third input operand. Same options as SRC0.

OMOD

[60:59]

Output Modifier: 0=none, 1=*2, 2=*4, 3=div-2

NEG

[63:61]

Negate input. [61] = src0, [62] = src1, [63] = src2

Table: VOP3A Fields

Opcode #

Name

448

V_MAD_LEGACY_F32

449

V_MAD_F32

450

V_MAD_I32_I24

451

V_MAD_U32_U24

452

V_CUBEID_F32

453

V_CUBESC_F32

454

V_CUBETC_F32

455

V_CUBEMA_F32

456

V_BFE_U32

457

V_BFE_I32

458

V_BFI_B32

459

V_FMA_F32

460

V_FMA_F64

461

V_LERP_U8

462

V_ALIGNBIT_B32

463

V_ALIGNBYTE_B32

464

V_MIN3_F32

465

V_MIN3_I32

466

V_MIN3_U32

467

V_MAX3_F32

468

V_MAX3_I32

469

V_MAX3_U32

470

V_MED3_F32

471

V_MED3_I32

472

V_MED3_U32

473

V_SAD_U8

474

V_SAD_HI_U8

475

V_SAD_U16

476

V_SAD_U32

477

V_CVT_PK_U8_F32

478

V_DIV_FIXUP_F32

479

V_DIV_FIXUP_F64

482

V_DIV_FMAS_F32

483

V_DIV_FMAS_F64

484

V_MSAD_U8

485

V_QSAD_PK_U16_U8

486

V_MQSAD_PK_U16_U8

487

V_MQSAD_U32_U8

490

V_MAD_LEGACY_F16

491

V_MAD_LEGACY_U16

492

V_MAD_LEGACY_I16

493

V_PERM_B32

494

V_FMA_LEGACY_F16

495

V_DIV_FIXUP_LEGACY_F16

496

V_CVT_PKACCUM_U8_F32

497

V_MAD_U32_U16

498

V_MAD_I32_I16

499

V_XAD_U32

500

V_MIN3_F16

501

V_MIN3_I16

502

V_MIN3_U16

503

V_MAX3_F16

504

V_MAX3_I16

505

V_MAX3_U16

506

V_MED3_F16

507

V_MED3_I16

508

V_MED3_U16

509

V_LSHL_ADD_U32

510

V_ADD_LSHL_U32

511

V_ADD3_U32

512

V_LSHL_OR_B32

513

V_AND_OR_B32

514

V_OR3_B32

515

V_MAD_F16

516

V_MAD_U16

517

V_MAD_I16

518

V_FMA_F16

519

V_DIV_FIXUP_F16

628

V_INTERP_P1LL_F16

629

V_INTERP_P1LV_F16

630

V_INTERP_P2_LEGACY_F16

631

V_INTERP_P2_F16

640

V_ADD_F64

641

V_MUL_F64

642

V_MIN_F64

643

V_MAX_F64

644

V_LDEXP_F64

645

V_MUL_LO_U32

646

V_MUL_HI_U32

647

V_MUL_HI_I32

648

V_LDEXP_F32

649

V_READLANE_B32

650

V_WRITELANE_B32

651

V_BCNT_U32_B32

652

V_MBCNT_LO_U32_B32

653

V_MBCNT_HI_U32_B32

655

V_LSHLREV_B64

656

V_LSHRREV_B64

657

V_ASHRREV_I64

658

V_TRIG_PREOP_F64

659

V_BFM_B32

660

V_CVT_PKNORM_I16_F32

661

V_CVT_PKNORM_U16_F32

662

V_CVT_PKRTZ_F16_F32

663

V_CVT_PK_U16_U32

664

V_CVT_PK_I16_I32

665

V_CVT_PKNORM_I16_F16

666

V_CVT_PKNORM_U16_F16

668

V_ADD_I32

669

V_SUB_I32

670

V_ADD_I16

671

V_SUB_I16

672

V_PACK_B32_F16

Table: VOP3A Opcodes

VOP3B

microcode vop3b

Format

VOP3B

Descriptio n

Vector ALU format with three operands and a scalar result. This encoding is used only for a few opcodes.

This encoding allows specifying a unique scalar destination, and is used only for the opcodes listed below. All other opcodes use VOP3A.

  • V_ADD_CO_U32
  • V_SUB_CO_U32
  • V_SUBREV_CO_U32
  • V_ADDC_CO_U32
  • V_SUBB_CO_U32
  • V_SUBBREV_CO_U32
  • V_DIV_SCALE_F32
  • V_DIV_SCALE_F64
  • V_MAD_U64_U32
  • V_MAD_I64_I32

Field Name

Bits

Format or Description

VDST

[7:0]

Destination VGPR

SDST

[14:8]

Scalar destination

CLMP

[15]

Clamp result

OP

[25:16]

Opcode. see next table.

ENCODING

[31:26]

Must be: 110100

SRC0

[40:3 2]
0 - 101
102
103
104
105
106
107
108-1 23
124
125
126
127
128
129-1 92
193-2 08
209-2 34
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 - 511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1

[49:41]

Second input operand. Same options as SRC0.

SRC2

[58:50]

Third input operand. Same options as SRC0.

OMOD

[60:59]

Output Modifier: 0=none, 1=*2, 2=*4, 3=div-2

NEG

[63:61]

Negate input. [61] = src0, [62] = src1, [63] = src2

Table: VOP3B Fields

Opcode #

Name

480

V_DIV_SCALE_F32

481

V_DIV_SCALE_F64

488

V_MAD_U64_U32

489

V_MAD_I64_I32

Table: VOP3B Opcodes

VOP3P

microcode vop3p

Format

VOP3P

Descriptio n

Vector ALU format taking one, two or three pairs of 16 bit inputs and producing two 16-bit outputs (packed into 1 dword).

Field Name

Bits

Format or Description

VDST

[7:0]

Destination VGPR

NEG_HI

[10:8]

Negate sources 0,1,2 of the high 16-bits.

OPSEL

[13:11]

Select low or high for low sources 0=[11], 1=[12], 2=[13].

OPSEL_HI2

[14]

Select low or high for high sources 0=[14], 1=[60], 2=[59].

CLMP

[15]

1 = clamp result.

OP

[22:16]

Opcode. see next table.

ENCODING

[31:24]

Must be: 11010011

SRC0

[40:32]
0 - 101
102
103
104
105
106
107
108-123
124
125
126
127
128
129-192
193-208
209-234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256-511
Source 0. First operand for the instruction.
SGPR0 to SGPR101: Scalar general-purpose registers.
FLAT_SCRATCH_LO.
FLAT_SCRATCH_HI.
XNACK_MASK_LO.
XNACK_MASK_HI.
VCC_LO: vcc[31:0].
VCC_HI: vcc[63:32].
TTMP0 - TTMP15: Trap handler temporary register.
M0. Memory register 0.
Reserved
EXEC_LO: exec[31:0].
EXEC_HI: exec[63:32].
0.
Signed integer 1 to 64.
Signed integer -1 to -16.
Reserved.
SHARED_BASE (Memory Aperture definition).
SHARED_LIMIT (Memory Aperture definition).
PRIVATE_BASE (Memory Aperture definition).
PRIVATE_LIMIT (Memory Aperture definition).
POPS_EXITING_WAVE_ID .
0.5.
-0.5.
1.0.
-1.0.
2.0.
-2.0.
4.0.
-4.0.
1/(2*PI).
SDWA
DPP
VCCZ.
EXECZ.
SCC.
Reserved.
Literal constant.
VGPR 0 - 255

SRC1

[49:41]

Second input operand. Same options as SRC0.

SRC2

[58:50]

Third input operand. Same options as SRC0.

OPSEL_HI

[60:59]

See OP_SEL_HI2.

NEG

[63:61]

Negate input for low 16-bits of sources. [61] = src0, [62] = src1, [63] = src2

Table: VOP3P Fields

Opcode #

Name

0

V_PK_MAD_I16

1

V_PK_MUL_LO_U16

2

V_PK_ADD_I16

3

V_PK_SUB_I16

4

V_PK_LSHLREV_B16

5

V_PK_LSHRREV_B16

6

V_PK_ASHRREV_I16

7

V_PK_MAX_I16

8

V_PK_MIN_I16

9

V_PK_MAD_U16

10

V_PK_ADD_U16

11

V_PK_SUB_U16

12

V_PK_MAX_U16

13

V_PK_MIN_U16

14

V_PK_FMA_F16

15

V_PK_ADD_F16

16

V_PK_MUL_F16

17

V_PK_MIN_F16

18

V_PK_MAX_F16

32

V_MAD_MIX_F32

33

V_MAD_MIXLO_F16

34

V_MAD_MIXHI_F16

Table: VOP3P Opcodes

SDWA

microcode sdwa

Format

SDWA

Descriptio n

Sub-Dword Addressing. This is a second dword which can follow VOP1 or VOP2 instructions (in place of a literal constant) to control selection of sub-dword (16-bit) operands. Use of SDWA is indicated by assigning the SRC0 field to SDWA, and then the actual VGPR used as source-zero is determined in SDWA instruction word.

Field Name

Bits

Format or Description

SRC0

[39:32]

Real SRC0 operand (VGPR).

DST_SEL

[42:40]

Select the data destination:
0 = data[7:0]
1 = data[15:8]
2 = data[23:16]
3 = data[31:24]
4 = data[15:0]
5 = data[31:16]
6 = data[31:0]
7 = reserved

DST_U

[44:43]

Destination format: what do with the bits in the VGPR that are not selected by DST_SEL:
0 = pad with zeros + 1 = sign extend upper / zero lower
2 = preserve (don’t modify)
3 = reserved

CLMP

[45]

1 = clamp result

OMOD

[47:46]

Output modifiers (see VOP3). [46] = low half, [47] = high half

SRC0_SEL

[50:48]

Source 0 select. Same options as DST_SEL.

SRC0_SEXT

[51]

Sign extend modifier for source 0.

SRC0_NEG

[52]

1 = negate source 0.

SRC0_ABS

[53]

1 = Absolute value of source 0.

S0

[55]

0 = source 0 is VGPR, 1 = is SGPR.

SRC1_SEL

[58:56]

Same options as SRC0_SEL.

SRC1_SEXT

[59]

Sign extend modifier for source 1.

SRC1_NEG

[60]

1 = negate source 1.

SRC1_ABS

[61]

1 = Absolute value of source 1.

S1

[63]

0 = source 1 is VGPR, 1 = is SGPR.

Table: SDWA Fields

SDWAB

microcode sdwab

Format

SDWAB

Descriptio n

Sub-Dword Addressing. This is a second dword which can follow VOPC instructions (in place of a literal constant) to control selection of sub-dword (16-bit) operands. Use of SDWA is indicated by assigning the SRC0 field to SDWA, and then the actual VGPR used as source-zero is determined in SDWA instruction word. This version has a scalar destination.

Field Name

Bits

Format or Description

SRC0

[39:32]

Real SRC0 operand (VGPR).

SDST

[46:40]

Scalar GPR destination.

SD

[47]

Scalar destination type: 0 = VCC, 1 = normal SGPR.

SRC0_SEL

[50:48]

Source 0 select. Same options as DST_SEL.

SRC0_SEXT

[51]

Sign extend modifier for source 0.

SRC0_NEG

[52]

1 = negate source 0.

SRC0_ABS

[53]

1 = Absolute value of source 0.

S0

[55]

0 = source 0 is VGPR, 1 = is SGPR.

SRC1_SEL

[58:56]

Same options as SRC0_SEL.

SRC1_SEXT

[59]

Sign extend modifier for source 1.

SRC1_NEG

[60]

1 = negate source 1.

SRC1_ABS

[61]

1 = Absolute value of source 1.

S1

[63]

0 = source 1 is VGPR, 1 = is SGPR.

Table: SDWAB Fields

DPP

microcode dpp16

Format

DPP

Descriptio n

Data Parallel Primitives. This is a second dword which can follow VOP1, VOP2 or VOPC instructions (in place of a literal constant) to control selection of data from other lanes.

Field Name

Bits

Format or Description

SRC0

[39:32]

Real SRC0 operand (VGPR).

DPP_CTRL

[48:40]

See next table: “DPP_CTRL Enumeration”

BC

[51]

Bounds Control: 0 = do not write when source is out of range, 1 = write.

SRC0_NEG

[52]

1 = negate source 0.

SRC0_ABS

[53]

1 = Absolute value of source 0.

SRC1_NEG

[54]

1 = negate source 1.

SRC1_ABS

[55]

1 = Absolute value of source 1.

BANK_MASK

[59:56]

Bank Mask Applies to the VGPR destination write only, does not impact the thread mask when fetching source VGPR data.
27==0: lanes[12:15, 28:31, 44:47, 60:63] are disabled
26==0: lanes[8:11, 24:27, 40:43, 56:59] are disabled
25==0: lanes[4:7, 20:23, 36:39, 52:55] are disabled
24==0: lanes[0:3, 16:19, 32:35, 48:51] are disabled
Notice: the term “bank” here is not the same as we used for the VGPR bank.

ROW_MASK

[63:60]

Row Mask Applies to the VGPR destination write only, does not impact the thread mask when fetching source VGPR data.
31==0: lanes[63:48] are disabled (wave 64 only)
30==0: lanes[47:32] are disabled (wave 64 only)
29==0: lanes[31:16] are disabled
28==0: lanes[15:0] are disabled

Table: DPP Fields

DPP_Cntl Enumeration

Hex Value

Function

Description

DPP_QUAD_PERM*

000-0FF

pix[n].srca = pix[(n&0x3c)+ dpp_cntl[n%4*2+1 : n%4*2]].srca

Full permute of four threads.

DPP_UNUSED

100

Undefined

Reserved.

DPP_ROW_SL*

101-10F

if n&0xf) < (16-cntl[3:0]n&0xf ) < (16-cntl[3:0] pix[n].srca = pix[n+ cntl[3:0]].srca else use bound_cntl

Row shift left by 1-15 threads.

DPP_ROW_SR*

111-11F

if ((n&0xf) >= cntl[3:0]) pix[n].srca = pix[n - cntl[3:0]].srca else use bound_cntl

Row shift right by 1-15 threads.

DPP_ROW_RR*

121-12F

if ((n&0xf) >= cnt[3:0]) pix[n].srca = pix[n - cntl[3:0]].srca else pix[n].srca = pix[n + 16 - cntl[3:0]].srca

Row rotate right by 1-15 threads.

DPP_WF_SL1*

130

if (n<63) pix[n].srca = pix[n+1].srca else use bound_cntl

Wavefront left shift by 1 thread.

DPP_WF_RL1*

134

if (n<63) pix[n].srca = pix[n+1].srca else pix[n].srca = pix[0].srca

Wavefront left rotate by 1 thread.

DPP_WF_SR1*

138

if (n>0) pix[n].srca = pix[n-1].srca else use bound_cntl

Wavefront right shift by 1 thread.

DPP_WF_RR1*

13C

if (n>0) pix[n].srca = pix[n-1].srca else pix[n].srca = pix[63].srca

Wavefront right rotate by 1 thread.

DPP_ROW_MIRROR*

140

pix[n].srca = pix[15-(n&f)].srca

Mirror threads within row.

DPP_ROW_HALF_MI RROR*

141

pix[n].srca = pix[7-(n&7)].srca

Mirror threads within row (8 threads).

DPP_ROW_BCAST15*

142

if (n>15) pix[n].srca = pix[n & 0x30 - 1].srca

Broadcast 15th thread of each row to next row.

DPP_ROW_BCAST31*

143

if (n>31) pix[n].srca = pix[n & 0x20 - 1].srca

Broadcast thread 31 to rows 2 and 3.

Table: DPP_CTRL Enumeration

Vector Parameter Interpolation Format

VINTRP

microcode vintrp

Format

VINTRP

Descriptio n

Vector Parameter Interpolation.
These opcodes perform parameter interpolation using vertex data in pixel shaders.

Field Name

Bits

Format or Description

VSRC

[7:0]

SRC0 operand (VGPR).

ATTR_CHAN

[9:8]

Attribute channel: 0=X, 1=Y, 2=Z, 3=W

ATTR

[15:10]

Attribute number: 0 - 32.

OP

[17:16]

Opcode:
0: v_interp_p1_f32 : VDST = P10 * VSRC + P0
1: v_interp_p2_f32: VDST = P20 * VSRC + VDST
2: v_interp_mov_f32: VDST = (P0, P10 or P20 selected by VSRC[1:0])

VDST

[25:18]

Destination VGPR

ENCODING

[31:26]

Must be: 110101

Table: VINTRP Fields

Note

VSRC must be different from VDST.

LDS and GDS format

DS

microcode ds

Format

LDS and GDS

Descriptio n

Local and Global Data Sharing instructions

Field Name

Bits

Format or Description

OFFSET0

[7:0]

First address offset

OFFSET1

[15:8]

Second address offset. For some opcodes this is concatenated with OFFSET0.

GDS

[16]

1=GDS, 0=LDS operation.

OP

[24:17]

See Opcode table below.

ENCODING

[31:26]

Must be: 110110

ADDR

[39:32]

VGPR which supplies the address.

DATA0

[47:40]

First data VGPR.

DATA1

[55:48]

Second data VGPR.

VDST

[63:56]

Destination VGPR when results returned to VGPRs.

Table: DS Fields

Opcode #

Name

0

DS_ADD_U32

1

DS_SUB_U32

2

DS_RSUB_U32

3

DS_INC_U32

4

DS_DEC_U32

5

DS_MIN_I32

6

DS_MAX_I32

7

DS_MIN_U32

8

DS_MAX_U32

9

DS_AND_B32

10

DS_OR_B32

11

DS_XOR_B32

12

DS_MSKOR_B32

13

DS_WRITE_B32

14

DS_WRITE2_B32

15

DS_WRITE2ST64_B32

16

DS_CMPST_B32

17

DS_CMPST_F32

18

DS_MIN_F32

19

DS_MAX_F32

20

DS_NOP

21

DS_ADD_F32

29

DS_WRITE_ADDTID_B32

30

DS_WRITE_B8

31

DS_WRITE_B16

32

DS_ADD_RTN_U32

33

DS_SUB_RTN_U32

34

DS_RSUB_RTN_U32

35

DS_INC_RTN_U32

36

DS_DEC_RTN_U32

37

DS_MIN_RTN_I32

38

DS_MAX_RTN_I32

39

DS_MIN_RTN_U32

40

DS_MAX_RTN_U32

41

DS_AND_RTN_B32

42

DS_OR_RTN_B32

43

DS_XOR_RTN_B32

44

DS_MSKOR_RTN_B32

45

DS_WRXCHG_RTN_B32

46

DS_WRXCHG2_RTN_B32

47

DS_WRXCHG2ST64_RTN_B32

48

DS_CMPST_RTN_B32

49

DS_CMPST_RTN_F32

50

DS_MIN_RTN_F32

51

DS_MAX_RTN_F32

52

DS_WRAP_RTN_B32

53

DS_ADD_RTN_F32

54

DS_READ_B32

55

DS_READ2_B32

56

DS_READ2ST64_B32

57

DS_READ_I8

58

DS_READ_U8

59

DS_READ_I16

60

DS_READ_U16

61

DS_SWIZZLE_B32

62

DS_PERMUTE_B32

63

DS_BPERMUTE_B32

64

DS_ADD_U64

65

DS_SUB_U64

66

DS_RSUB_U64

67

DS_INC_U64

68

DS_DEC_U64

69

DS_MIN_I64

70

DS_MAX_I64

71

DS_MIN_U64

72

DS_MAX_U64

73

DS_AND_B64

74

DS_OR_B64

75

DS_XOR_B64

76

DS_MSKOR_B64

77

DS_WRITE_B64

78

DS_WRITE2_B64

79

DS_WRITE2ST64_B64

80

DS_CMPST_B64

81

DS_CMPST_F64

82

DS_MIN_F64

83

DS_MAX_F64

84

DS_WRITE_B8_D16_HI

85

DS_WRITE_B16_D16_HI

86

DS_READ_U8_D16

87

DS_READ_U8_D16_HI

88

DS_READ_I8_D16

89

DS_READ_I8_D16_HI

90

DS_READ_U16_D16

91

DS_READ_U16_D16_HI

96

DS_ADD_RTN_U64

97

DS_SUB_RTN_U64

98

DS_RSUB_RTN_U64

99

DS_INC_RTN_U64

100

DS_DEC_RTN_U64

101

DS_MIN_RTN_I64

102

DS_MAX_RTN_I64

103

DS_MIN_RTN_U64

104

DS_MAX_RTN_U64

105

DS_AND_RTN_B64

106

DS_OR_RTN_B64

107

DS_XOR_RTN_B64

108

DS_MSKOR_RTN_B64

109

DS_WRXCHG_RTN_B64

110

DS_WRXCHG2_RTN_B64

111

DS_WRXCHG2ST64_RTN_B64

112

DS_CMPST_RTN_B64

113

DS_CMPST_RTN_F64

114

DS_MIN_RTN_F64

115

DS_MAX_RTN_F64

118

DS_READ_B64

119

DS_READ2_B64

120

DS_READ2ST64_B64

126

DS_CONDXCHG32_RTN_B64

128

DS_ADD_SRC2_U32

129

DS_SUB_SRC2_U32

130

DS_RSUB_SRC2_U32

131

DS_INC_SRC2_U32

132

DS_DEC_SRC2_U32

133

DS_MIN_SRC2_I32

134

DS_MAX_SRC2_I32

135

DS_MIN_SRC2_U32

136

DS_MAX_SRC2_U32

137

DS_AND_SRC2_B32

138

DS_OR_SRC2_B32

139

DS_XOR_SRC2_B32

141

DS_WRITE_SRC2_B32

146

DS_MIN_SRC2_F32

147

DS_MAX_SRC2_F32

149

DS_ADD_SRC2_F32

152

DS_GWS_SEMA_RELEASE_ALL

153

DS_GWS_INIT

154

DS_GWS_SEMA_V

155

DS_GWS_SEMA_BR

156

DS_GWS_SEMA_P

157

DS_GWS_BARRIER

182

DS_READ_ADDTID_B32

189

DS_CONSUME

190

DS_APPEND

191

DS_ORDERED_COUNT

192

DS_ADD_SRC2_U64

193

DS_SUB_SRC2_U64

194

DS_RSUB_SRC2_U64

195

DS_INC_SRC2_U64

196

DS_DEC_SRC2_U64

197

DS_MIN_SRC2_I64

198

DS_MAX_SRC2_I64

199

DS_MIN_SRC2_U64

200

DS_MAX_SRC2_U64

201

DS_AND_SRC2_B64

202

DS_OR_SRC2_B64

203

DS_XOR_SRC2_B64

205

DS_WRITE_SRC2_B64

210

DS_MIN_SRC2_F64

211

DS_MAX_SRC2_F64

222

DS_WRITE_B96

223

DS_WRITE_B128

254

DS_READ_B96

255

DS_READ_B128

Table: DS Opcodes

Vector Memory Buffer Formats

There are two memory buffer instruction formats:

MTBUF

typed buffer access (data type is defined by the instruction)

MUBUF

untyped buffer access (data type is defined by the buffer / resource-constant)

MTBUF

microcode mtbuf

Format

MTBUF

Descriptio n

Memory Typed-Buffer Instructions

Field Name

Bits

Format or Description

OFFSET

[11:0]

Address offset, unsigned byte.

OFFEN

[12]

1 = enable offset VGPR, 0 = use zero for address offset

IDXEN

[13]

1 = enable index VGPR, 0 = use zero for address index

GLC

[14]

0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op value to VGPR.

OP

[18:15]

Opcode. See table below.

DFMT

22:19

Data Format of data in memory buffer:
0 invalid
1 8
2 16
3 8_8
4 32
5 16_16
6 10_11_11
8 10_10_10_2
9 2_10_10_10
10 8_8_8_8
11 32_32
12 16_16_16_16
13 32_32_32
14 32_32_32_32

NFMT

25:23

Numeric format of data in memory:
0 unorm
1 snorm
2 uscaled
3 sscaled
4 uint
5 sint
6 reserved
7 float

ENCODING

[31:26]

Must be: 111010

VADDR

[39:32]

Address of VGPR to supply first component of address (offset or index). When both index and offset are used, index is in the first VGPR and offset in the second.

VDATA

[47:40]

Address of VGPR to supply first component of write data or receive first component of read-data.

SRSRC

[52:48]

SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2 LSB’s of SGPR-address since must be aligned to 4.

SLC

[54]

System level coherent: bypass L2 cache.

TFE

[55]

Partially resident texture, texture fail enable.

SOFFSET

[63:56]

Address offset, unsigned byte.

Table: MTBUF Fields

Opcode #

Name

0

TBUFFER_LOAD_FORMAT_X

1

TBUFFER_LOAD_FORMAT_XY

2

TBUFFER_LOAD_FORMAT_XYZ

3

TBUFFER_LOAD_FORMAT_XYZW

4

TBUFFER_STORE_FORMAT_X

5

TBUFFER_STORE_FORMAT_XY

6

TBUFFER_STORE_FORMAT_XYZ

7

TBUFFER_STORE_FORMAT_XYZW

8

TBUFFER_LOAD_FORMAT_D16_X

9

TBUFFER_LOAD_FORMAT_D16_XY

10

TBUFFER_LOAD_FORMAT_D16_XYZ

11

TBUFFER_LOAD_FORMAT_D16_XYZW

12

TBUFFER_STORE_FORMAT_D16_X

13

TBUFFER_STORE_FORMAT_D16_XY

14

TBUFFER_STORE_FORMAT_D16_XYZ

15

TBUFFER_STORE_FORMAT_D16_XYZW

Table: MTBUF Opcodes

MUBUF

microcode mubuf

Format

MUBUF

Descriptio n

Memory Untyped-Buffer Instructions

Field Name

Bits

Format or Description

OFFSET

[11:0]

Address offset, unsigned byte.

OFFEN

[12]

1 = enable offset VGPR, 0 = use zero for address offset

IDXEN

[13]

1 = enable index VGPR, 0 = use zero for address index

GLC

[14]

0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op value to VGPR.

LDS

[16]

0 = normal, 1 = transfer data between LDS and memory instead of VGPRs and memory.

SLC

[17]

System level coherent: bypass L2 cache.

OP

[24:18]

Opcode. See table below.

ENCODING

[31:26]

Must be: 111000

VADDR

[39:32]

Address of VGPR to supply first component of address (offset or index). When both index and offset are used, index is in the first VGPR and offset in the second.

VDATA

[47:40]

Address of VGPR to supply first component of write data or receive first component of read-data.

SRSRC

[52:48]

SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2 LSB’s of SGPR-address since must be aligned to 4.

TFE

[55]

Partially resident texture, texture fail enable.

SOFFSET

[63:56]

Address offset, unsigned byte.

Table: MUBUF Fields

Opcode #

Name

0

BUFFER_LOAD_FORMAT_X

1

BUFFER_LOAD_FORMAT_XY

2

BUFFER_LOAD_FORMAT_XYZ

3

BUFFER_LOAD_FORMAT_XYZW

4

BUFFER_STORE_FORMAT_X

5

BUFFER_STORE_FORMAT_XY

6

BUFFER_STORE_FORMAT_XYZ

7

BUFFER_STORE_FORMAT_XYZW

8

BUFFER_LOAD_FORMAT_D16_X

9

BUFFER_LOAD_FORMAT_D16_XY

10

BUFFER_LOAD_FORMAT_D16_XYZ

11

BUFFER_LOAD_FORMAT_D16_XYZW

12

BUFFER_STORE_FORMAT_D16_X

13

BUFFER_STORE_FORMAT_D16_XY

14

BUFFER_STORE_FORMAT_D16_XYZ

15

BUFFER_STORE_FORMAT_D16_XYZW

16

BUFFER_LOAD_UBYTE

17

BUFFER_LOAD_SBYTE

18

BUFFER_LOAD_USHORT

19

BUFFER_LOAD_SSHORT

20

BUFFER_LOAD_DWORD

21

BUFFER_LOAD_DWORDX2

22

BUFFER_LOAD_DWORDX3

23

BUFFER_LOAD_DWORDX4

24

BUFFER_STORE_BYTE

25

BUFFER_STORE_BYTE_D16_HI

26

BUFFER_STORE_SHORT

27

BUFFER_STORE_SHORT_D16_HI

28

BUFFER_STORE_DWORD

29

BUFFER_STORE_DWORDX2

30

BUFFER_STORE_DWORDX3

31

BUFFER_STORE_DWORDX4

32

BUFFER_LOAD_UBYTE_D16

33

BUFFER_LOAD_UBYTE_D16_HI

34

BUFFER_LOAD_SBYTE_D16

35

BUFFER_LOAD_SBYTE_D16_HI

36

BUFFER_LOAD_SHORT_D16

37

BUFFER_LOAD_SHORT_D16_HI

38

BUFFER_LOAD_FORMAT_D16_HI_X

39

BUFFER_STORE_FORMAT_D16_HI_X

61

BUFFER_STORE_LDS_DWORD

62

BUFFER_WBINVL1

63

BUFFER_WBINVL1_VOL

64

BUFFER_ATOMIC_SWAP

65

BUFFER_ATOMIC_CMPSWAP

66

BUFFER_ATOMIC_ADD

67

BUFFER_ATOMIC_SUB

68

BUFFER_ATOMIC_SMIN

69

BUFFER_ATOMIC_UMIN

70

BUFFER_ATOMIC_SMAX

71

BUFFER_ATOMIC_UMAX

72

BUFFER_ATOMIC_AND

73

BUFFER_ATOMIC_OR

74

BUFFER_ATOMIC_XOR

75

BUFFER_ATOMIC_INC

76

BUFFER_ATOMIC_DEC

96

BUFFER_ATOMIC_SWAP_X2

97

BUFFER_ATOMIC_CMPSWAP_X2

98

BUFFER_ATOMIC_ADD_X2

99

BUFFER_ATOMIC_SUB_X2

100

BUFFER_ATOMIC_SMIN_X2

101

BUFFER_ATOMIC_UMIN_X2

102

BUFFER_ATOMIC_SMAX_X2

103

BUFFER_ATOMIC_UMAX_X2

104

BUFFER_ATOMIC_AND_X2

105

BUFFER_ATOMIC_OR_X2

106

BUFFER_ATOMIC_XOR_X2

107

BUFFER_ATOMIC_INC_X2

108

BUFFER_ATOMIC_DEC_X2

Table: MUBUF Opcodes

Vector Memory Image Format

MIMG

microcode mimg

Format

MIMG

Descriptio n

Memory Image Instructions

Field Name

Bits

Format or Description

DMASK

[11:8]

Data VGPR enable mask: 1 .. 4 consecutive VGPRs
Reads: defines which components are returned:
0=red,1=green,2=blue,3=alpha
Writes: defines which components are written with data from VGPRs (missing components get 0).
Enabled components come from consecutive VGPRs.
E.G. dmask=1001 : Red is in VGPRn and alpha in VGPRn+1.
For D16 writes, DMASK is only used as a word count: each bit represents 16 bits of data to be written starting at the LSB’s of VADDR, then MSBs, then VADDR+1 etc. Bit position is ignored.

UNRM

[12]

1 = enable offset VGPR

GLC

[13]

0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op value to VGPR.

DA

[14]

Declare an Array.
1 Kernel has declared this resource to be an array of texture maps.
0 Kernel has declared this resource to be a single texture map.

A16

[15]

Address components are 16-bits (instead of the usual 32 bits).
When set, all address components are 16 bits (packed into 2 per dword), except:
Texel offsets (3 6bit UINT packed into 1 dword)
PCF reference (for “_C” instructions)
Address components are 16b uint for image ops without sampler; 16b float with sampler.

TFE

[16]

Partially resident texture, texture fail enable.

LWE

[17]

LOD Warning Enable. When set to 1, a texture fetch may return “LOD_CLAMPED = 1”.

OP

[0],[24 :18]

Opcode. See table below. (combine bits zero and 18-24 to form opcode).

SLC

[25]

System level coherent: bypass L2 cache.

ENCODING

[31:26]

Must be: 111100

VADDR

[39:32]

Address of VGPR to supply first component of address (offset or index). When both index and offset are used, index is in the first VGPR and offset in the second.

VDATA

[47:40]

Address of VGPR to supply first component of write data or receive first component of read-data.

SRSRC

[52:48]

SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2 LSB’s of SGPR-address since must be aligned to 4.

SSAMP

[57:53]

SGPR to supply V# (resource constant) in 4 or 8 consecutive SGPRs. It is missing 2 LSB’s of SGPR-address since must be aligned to 4.

D16

[63]

Address offset, unsigned byte.

Table: MIMG Fields

Opcode #

Name

0

IMAGE_LOAD

1

IMAGE_LOAD_MIP

2

IMAGE_LOAD_PCK

3

IMAGE_LOAD_PCK_SGN

4

IMAGE_LOAD_MIP_PCK

5

IMAGE_LOAD_MIP_PCK_SGN

8

IMAGE_STORE

9

IMAGE_STORE_MIP

10

IMAGE_STORE_PCK

11

IMAGE_STORE_MIP_PCK

14

IMAGE_GET_RESINFO

16

IMAGE_ATOMIC_SWAP

17

IMAGE_ATOMIC_CMPSWAP

18

IMAGE_ATOMIC_ADD

19

IMAGE_ATOMIC_SUB

20

IMAGE_ATOMIC_SMIN

21

IMAGE_ATOMIC_UMIN

22

IMAGE_ATOMIC_SMAX

23

IMAGE_ATOMIC_UMAX

24

IMAGE_ATOMIC_AND

25

IMAGE_ATOMIC_OR

26

IMAGE_ATOMIC_XOR

27

IMAGE_ATOMIC_INC

28

IMAGE_ATOMIC_DEC

32

IMAGE_SAMPLE

33

IMAGE_SAMPLE_CL

34

IMAGE_SAMPLE_D

35

IMAGE_SAMPLE_D_CL

36

IMAGE_SAMPLE_L

37

IMAGE_SAMPLE_B

38

IMAGE_SAMPLE_B_CL

39

IMAGE_SAMPLE_LZ

40

IMAGE_SAMPLE_C

41

IMAGE_SAMPLE_C_CL

42

IMAGE_SAMPLE_C_D

43

IMAGE_SAMPLE_C_D_CL

44

IMAGE_SAMPLE_C_L

45

IMAGE_SAMPLE_C_B

46

IMAGE_SAMPLE_C_B_CL

47

IMAGE_SAMPLE_C_LZ

48

IMAGE_SAMPLE_O

49

IMAGE_SAMPLE_CL_O

50

IMAGE_SAMPLE_D_O

51

IMAGE_SAMPLE_D_CL_O

52

IMAGE_SAMPLE_L_O

53

IMAGE_SAMPLE_B_O

54

IMAGE_SAMPLE_B_CL_O

55

IMAGE_SAMPLE_LZ_O

56

IMAGE_SAMPLE_C_O

57

IMAGE_SAMPLE_C_CL_O

58

IMAGE_SAMPLE_C_D_O

59

IMAGE_SAMPLE_C_D_CL_O

60

IMAGE_SAMPLE_C_L_O

61

IMAGE_SAMPLE_C_B_O

62

IMAGE_SAMPLE_C_B_CL_O

63

IMAGE_SAMPLE_C_LZ_O

64

IMAGE_GATHER4

65

IMAGE_GATHER4_CL

66

IMAGE_GATHER4H

68

IMAGE_GATHER4_L

69

IMAGE_GATHER4_B

70

IMAGE_GATHER4_B_CL

71

IMAGE_GATHER4_LZ

72

IMAGE_GATHER4_C

73

IMAGE_GATHER4_C_CL

74

IMAGE_GATHER4H_PCK

75

IMAGE_GATHER8H_PCK

76

IMAGE_GATHER4_C_L

77

IMAGE_GATHER4_C_B

78

IMAGE_GATHER4_C_B_CL

79

IMAGE_GATHER4_C_LZ

80

IMAGE_GATHER4_O

81

IMAGE_GATHER4_CL_O

84

IMAGE_GATHER4_L_O

85

IMAGE_GATHER4_B_O

86

IMAGE_GATHER4_B_CL_O

87

IMAGE_GATHER4_LZ_O

88

IMAGE_GATHER4_C_O

89

IMAGE_GATHER4_C_CL_O

92

IMAGE_GATHER4_C_L_O

93

IMAGE_GATHER4_C_B_O

94

IMAGE_GATHER4_C_B_CL_O

95

IMAGE_GATHER4_C_LZ_O

96

IMAGE_GET_LOD

104

IMAGE_SAMPLE_CD

105

IMAGE_SAMPLE_CD_CL

106

IMAGE_SAMPLE_C_CD

107

IMAGE_SAMPLE_C_CD_CL

108

IMAGE_SAMPLE_CD_O

109

IMAGE_SAMPLE_CD_CL_O

110

IMAGE_SAMPLE_C_CD_O

111

IMAGE_SAMPLE_C_CD_CL_O

Table: MIMG Opcodes

Flat Formats

Flat memory instruction come in three versions: FLAT:: memory address (per work-item) may be in global memory, scratch (private) memory or shared memory (LDS) GLOBAL:: same as FLAT, but assumes all memory addresses are global memory. SCRATCH:: same as FLAT, but assumes all memory addresses are scratch (private) memory.

The microcode format is identical for each, and only the value of the SEG (segment) field differs.

FLAT

microcode flat

Format

FLAT

Descriptio n

FLAT Memory Access

Field Name

Bits

Format or Description

OFFSET

[12:0]

Address offset
Scratch, Global: 13-bit signed byte offset
FLAT: 12-bit unsigned offset (MSB is ignored)

LDS

[13]

0 = normal, 1 = transfer data between LDS and memory instead of VGPRs and memory.

SEG

[15:14]

Memory Segment (instruction type): 0 = flat, 1 = scratch, 2 = global.

GLC

[16]

0 = normal, 1 = globally coherent (bypass L0 cache) or for atomics, return pre-op value to VGPR.

SLC

[17]

System level coherent: bypass L2 cache.

OP

[24:18]

Opcode. See tables below for FLAT, SCRATCH and GLOBAL opcodes.

ENCODING

[31:26]

Must be: 110111

ADDR

[39:32]

VGPR which holds address or offset. For 64-bit addresses, ADDR has the LSB’s and ADDR+1 has the MSBs. For offset a single VGPR has a 32 bit unsigned offset.
For FLAT_*: always specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is 0x7f: specifies an address.
For GLOBAL_* and SCRATCH_* when SADDR is not 0x7f: specifies an offset.

DATA

[47:40]

VGPR which supplies data.

SADDR

[54:48]

Scalar SGPR which provides an address of offset (unsigned). Set this field to 0x7f to disable use.
Meaning of this field is different for Scratch and Global:
FLAT: Unused
Scratch: use an SGPR for the address instead of a VGPR
Global: use the SGPR to provide a base address and the VGPR provides a 32-bit byte offset.

NV

[55]

Non-Volatile.

VDST

[63:56]

Destination VGPR for data returned from memory to VGPRs.

Table: FLAT Fields

Opcode #

Name

16

FLAT_LOAD_UBYTE

17

FLAT_LOAD_SBYTE

18

FLAT_LOAD_USHORT

19

FLAT_LOAD_SSHORT

20

FLAT_LOAD_DWORD

21

FLAT_LOAD_DWORDX2

22

FLAT_LOAD_DWORDX3

23

FLAT_LOAD_DWORDX4

24

FLAT_STORE_BYTE

25

FLAT_STORE_BYTE_D16_HI

26

FLAT_STORE_SHORT

27

FLAT_STORE_SHORT_D16_HI

28

FLAT_STORE_DWORD

29

FLAT_STORE_DWORDX2

30

FLAT_STORE_DWORDX3

31

FLAT_STORE_DWORDX4

32

FLAT_LOAD_UBYTE_D16

33

FLAT_LOAD_UBYTE_D16_HI

34

FLAT_LOAD_SBYTE_D16

35

FLAT_LOAD_SBYTE_D16_HI

36

FLAT_LOAD_SHORT_D16

37

FLAT_LOAD_SHORT_D16_HI

64

FLAT_ATOMIC_SWAP

65

FLAT_ATOMIC_CMPSWAP

66

FLAT_ATOMIC_ADD

67

FLAT_ATOMIC_SUB

68

FLAT_ATOMIC_SMIN

69

FLAT_ATOMIC_UMIN

70

FLAT_ATOMIC_SMAX

71

FLAT_ATOMIC_UMAX

72

FLAT_ATOMIC_AND

73

FLAT_ATOMIC_OR

74

FLAT_ATOMIC_XOR

75

FLAT_ATOMIC_INC

76

FLAT_ATOMIC_DEC

96

FLAT_ATOMIC_SWAP_X2

97

FLAT_ATOMIC_CMPSWAP_X2

98

FLAT_ATOMIC_ADD_X2

99

FLAT_ATOMIC_SUB_X2

100

FLAT_ATOMIC_SMIN_X2

101

FLAT_ATOMIC_UMIN_X2

102

FLAT_ATOMIC_SMAX_X2

103

FLAT_ATOMIC_UMAX_X2

104

FLAT_ATOMIC_AND_X2

105

FLAT_ATOMIC_OR_X2

106

FLAT_ATOMIC_XOR_X2

107

FLAT_ATOMIC_INC_X2

108

FLAT_ATOMIC_DEC_X2

Table: FLAT Opcodes

GLOBAL

Opcode #

Name

16

GLOBAL_LOAD_UBYTE

17

GLOBAL_LOAD_SBYTE

18

GLOBAL_LOAD_USHORT

19

GLOBAL_LOAD_SSHORT

20

GLOBAL_LOAD_DWORD

21

GLOBAL_LOAD_DWORDX2

22

GLOBAL_LOAD_DWORDX3

23

GLOBAL_LOAD_DWORDX4

24

GLOBAL_STORE_BYTE

25

GLOBAL_STORE_BYTE_D16_HI

26

GLOBAL_STORE_SHORT

27

GLOBAL_STORE_SHORT_D16_HI

28

GLOBAL_STORE_DWORD

29

GLOBAL_STORE_DWORDX2

30

GLOBAL_STORE_DWORDX3

31

GLOBAL_STORE_DWORDX4

32

GLOBAL_LOAD_UBYTE_D16

33

GLOBAL_LOAD_UBYTE_D16_HI

34

GLOBAL_LOAD_SBYTE_D16

35

GLOBAL_LOAD_SBYTE_D16_HI

36

GLOBAL_LOAD_SHORT_D16

37

GLOBAL_LOAD_SHORT_D16_HI

64

GLOBAL_ATOMIC_SWAP

65

GLOBAL_ATOMIC_CMPSWAP

66

GLOBAL_ATOMIC_ADD

67

GLOBAL_ATOMIC_SUB

68

GLOBAL_ATOMIC_SMIN

69

GLOBAL_ATOMIC_UMIN

70

GLOBAL_ATOMIC_SMAX

71

GLOBAL_ATOMIC_UMAX

72

GLOBAL_ATOMIC_AND

73

GLOBAL_ATOMIC_OR

74

GLOBAL_ATOMIC_XOR

75

GLOBAL_ATOMIC_INC

76

GLOBAL_ATOMIC_DEC

96

GLOBAL_ATOMIC_SWAP_X2

97

GLOBAL_ATOMIC_CMPSWAP_X2

98

GLOBAL_ATOMIC_ADD_X2

99

GLOBAL_ATOMIC_SUB_X2

100

GLOBAL_ATOMIC_SMIN_X2

101

GLOBAL_ATOMIC_UMIN_X2

102

GLOBAL_ATOMIC_SMAX_X2

103

GLOBAL_ATOMIC_UMAX_X2

104

GLOBAL_ATOMIC_AND_X2

105

GLOBAL_ATOMIC_OR_X2

106

GLOBAL_ATOMIC_XOR_X2

107

GLOBAL_ATOMIC_INC_X2

108

GLOBAL_ATOMIC_DEC_X2

Table: GLOBAL Opcodes

SCRATCH

Opcode #

Name

16

SCRATCH_LOAD_UBYTE

17

SCRATCH_LOAD_SBYTE

18

SCRATCH_LOAD_USHORT

19

SCRATCH_LOAD_SSHORT

20

SCRATCH_LOAD_DWORD

21

SCRATCH_LOAD_DWORDX2

22

SCRATCH_LOAD_DWORDX3

23

SCRATCH_LOAD_DWORDX4

24

SCRATCH_STORE_BYTE

25

SCRATCH_STORE_BYTE_D16_HI

26

SCRATCH_STORE_SHORT

27

SCRATCH_STORE_SHORT_D16_HI

28

SCRATCH_STORE_DWORD

29

SCRATCH_STORE_DWORDX2

30

SCRATCH_STORE_DWORDX3

31

SCRATCH_STORE_DWORDX4

32

SCRATCH_LOAD_UBYTE_D16

33

SCRATCH_LOAD_UBYTE_D16_HI

34

SCRATCH_LOAD_SBYTE_D16

35

SCRATCH_LOAD_SBYTE_D16_HI

36

SCRATCH_LOAD_SHORT_D16

37

SCRATCH_LOAD_SHORT_D16_HI

Table: SCRATCH Opcodes

Export Format

EXP

microcode mubuf

Format

EXP

Descriptio n

EXPORT instructions

The export format has only a single opcode, “EXPORT”.

Field Name

Bits

Format or Description

EN

[3:0]

COMPR==1: export half-dword enable. Valid values are: 0x0,3,c,f
[0] enables VSRC0 : R,G from one VGPR (R in low bits, G high)
[2] enables VSRC1 : B,A from one VGPR (B in low bits, A high)
COMPR==0: [0-3] = enables for VSRC0..3.
EN may be zero only for “NULL Pixel Shader” exports (used when exporting only valid mask to NULL target).

TARGET

[9:4]

Export destination:
0-7: MRT 0..7
8: Z
9: Null pixel shader export (no data)
12-15: Position 0..3
32-63: Parameter 0..31

COMPR

[10]

Indicates that data is float-16/short/byte (compressed). Data is written to consecutive components (rgba or xyzw).

DONE

[11]

Indicates that this is the last export from the shader. Used only for Position and Pixel/color data.

VM

[12]

1 = the exec mask IS the valid mask for this export. Can be sent multiple times, must be sent at least once per pixel shader. This bit is only used for Pixel Shaders.

ENCODING

[31:26]

Must be: 110001

VSRC0

[39:32]

VGPR for source 0.

VSRC1

[47:40]

VGPR for source 1.

VSRC2

[55:48]

VGPR for source 2.

VSRC3

[63:56]

VGPR for source 3.

Table: EXP Fields