
ROCm Documentation
Release 4.5.0

Advanced Micro Devices, Inc.

Nov 02, 2021

RELEASE DOCUMENTATION

1 The AMD ROCm Programming-Language Run-Time 3

2 Solid Compilation Foundation and Language Support 5

3 ROCm Learning Center 7
3.1 AMD ROCm™ Release Notes v4.5 . 7

3.1.1 List of Supported Operating Systems . 7
3.1.2 Enhanced Installation Process for ROCm v4.5 . 8
3.1.3 AMD ROCm v4.5 Documentation Updates . 8

3.1.3.1 AMD ROCm Installation Guide . 8
3.1.3.2 AMD Instinct™ High Performance Computing and Tuning 8
3.1.3.3 HIP Documentation Updates . 9
3.1.3.4 System Interface Management . 9
3.1.3.5 AMD ROCm Data Center Tool . 9
3.1.3.6 ROCm SMI API Guide . 9
3.1.3.7 ROC Debugger User and API Guide . 10
3.1.3.8 OpenMP Documentation . 10
3.1.3.9 AMD ROCm General Documentation Links . 10

3.1.4 What's New in This Release . 10
3.1.4.1 HIP Enhancements . 10

3.1.4.1.1 HIP Direct Dispatch . 10
3.1.4.1.2 Support for HIP Graph . 11
3.1.4.1.3 Enhanced launch_bounds Check Error Log Message 11
3.1.4.1.4 HIP Runtime Compilation . 11
3.1.4.1.5 New Flag for Backwards Compatibility on float/double atomicAdd Function 11
3.1.4.1.6 Updated HIP Version Definition . 12
3.1.4.1.7 Planned HIP Enhancements and Fixes 12

3.1.4.1.7.1 Changes to hiprtc implementation to match nvrtc behavior 12
3.1.4.1.7.2 HIP device attribute enumeration 12
3.1.4.1.7.3 Changes to behavior of hipGetLastError() and hipPeekAtLastEr-

ror() to match CUDA behavior available 12
3.1.4.2 Unified Memory Support in ROCm . 12

3.1.4.2.1 Supported Operating Systems and Versions 13
3.1.4.2.2 Unified Memory Support and XNACK 13

3.1.4.3 System Management Interface . 14
3.1.4.3.1 Enhanced ROCm SMI setpoweroverdrive Functionality 14

3.1.4.4 OpenMP Enhancements . 15
3.1.5 ROCm Math and Communication Libraries . 15
3.1.6 Known Issues in This Release . 17

3.1.6.1 Cache Issues with ROCProfiler . 17

i

3.1.6.2 Compiler Support for Function Pointers and Virtual Functions 17
3.1.6.3 Debugger Process Exit May Cause ROCgdb Internal Error 17
3.1.6.4 clinfo and rocminfo Do Not Display Marketing Name 17
3.1.6.5 Stability Issue on LAMMPS-KOKKOS Applications 18

3.1.7 Deprecations . 18
3.1.7.1 AMD Instinct MI25 End of Life . 18
3.1.7.2 Planned Deprecation for Code Object Versions 2 AND 3 18

3.1.8 DISCLAIMER . 18
3.2 Deprecations . 19

3.2.1 ROCm Release v4.5 . 19
3.2.1.1 AMD Instinct MI25 End of Life . 19
3.2.1.2 Planned Deprecation for Code Object Versions 2 AND 3 19

3.2.2 ROCm Release v4.1 . 19
3.2.2.1 COMPILER-GENERATED CODE OBJECT VERSION 2 DEPRECATION 19
3.2.2.2 Changed HIP Environment Variables in ROCm v4.1 Release 19

3.2.3 ROCm Release v4.0 . 20
3.2.3.1 ROCr Runtime Deprecations . 20
3.2.3.2 Deprecated ROCr Runtime Enumerations . 20
3.2.3.3 Deprecated ROCr Runtime Structs . 21
3.2.3.4 AOMP DEPRECATION . 21

3.2.4 ROCm Release v3.5 . 21
3.2.4.1 Heterogeneous Compute Compiler . 21

3.3 AMD ROCm Version History . 21
3.3.1 New features and enhancements in ROCm v4.3 . 22
3.3.2 New features and enhancements in ROCm v4.2 . 22
3.3.3 New features and enhancements in ROCm v4.1 . 22
3.3.4 New features and enhancements in ROCm v4.0 . 23
3.3.5 New features and enhancements in ROCm v3.10 . 23
3.3.6 New features and enhancements in ROCm v3.9 . 23
3.3.7 New features and enhancements in ROCm v3.8 . 24
3.3.8 New features and enhancements in ROCm v3.7 . 24
3.3.9 Patch Release - ROCm v3.5.1 . 24
3.3.10 New features and enhancements in ROCm v3.5 . 24
3.3.11 New features and enhancements in ROCm v3.3 . 25
3.3.12 New features and enhancements in ROCm v3.2 . 25
3.3.13 New features and enhancements in ROCm v3.1 . 26
3.3.14 New features and enhancements in ROCm v3.0 . 26
3.3.15 New features and enhancements in ROCm v2.10 . 27
3.3.16 New features and enhancements in ROCm 2.9 . 27
3.3.17 New features and enhancements in ROCm 2.8 . 28
3.3.18 New features and enhancements in ROCm 2.7.2 . 28
3.3.19 Issues fixed in ROCm 2.7.2 . 28
3.3.20 Upgrading from ROCm 2.7 to 2.7.2 . 28
3.3.21 New features and enhancements in ROCm 2.6 . 29
3.3.22 New features and enhancements in ROCm 2.5 . 30
3.3.23 New features and enhancements in ROCm 2.4 . 31
3.3.24 New features and enhancements in ROCm 2.3 . 31
3.3.25 New features and enhancements in ROCm 2.2 . 32
3.3.26 New features and enhancements in ROCm 2.1 . 32
3.3.27 New features and enhancements in ROCm 2.0 . 32
3.3.28 New features and enhancements in ROCm 1.9.2 . 33
3.3.29 New features and enhancements in ROCm 1.9.1 . 33
3.3.30 New features and enhancements in ROCm 1.9.0 . 33
3.3.31 New features as of ROCm 1.8.3 . 34

ii

3.3.32 New features as of ROCm 1.8 . 34
3.3.33 New Features as of ROCm 1.7 . 35
3.3.34 New Features as of ROCm 1.5 . 35

3.4 ROCm™ Learning Center and Knowledge Base - NEW!! . 35
3.4.1 ROCm Knowledge Base . 35
3.4.2 ROCm Learning Center . 36

3.4.2.1 Getting Started . 36
3.4.2.2 Fundamentals of HIP Programming . 36
3.4.2.3 From CUDA to HIP . 36
3.4.2.4 Deep Learning on ROCm . 36
3.4.2.5 Multi-GPU Programming . 36

3.5 DISCLAIMER . 36
3.6 ROCm Installation Guide v4.5 . 37

3.6.1 Overview of ROCm Installation Methods . 39
3.6.1.1 About This Document . 40
3.6.1.2 System Requirements . 40

3.6.2 Prerequisite Actions . 40
3.6.2.1 Confirm You Have a Supported Linux Distribution Version 41

3.6.2.1.1 How to Check Linux Distribution and Kernel Versions on Your System . . 41
3.6.2.1.1.1 Linux Distribution Information 41
3.6.2.1.1.2 Kernel Information . 41
3.6.2.1.1.3 OS and Kernel Version Match 41

3.6.2.2 Confirm You Have a ROCm-Capable GPU . 41
3.6.2.2.1 How to Verify Your System Has a ROCm-Capable GPU 42

3.6.2.3 Confirm the System Has the Required Tools and Packages Installed 42
3.6.2.3.1 How to Install and Configure Devtoolset-7 42
3.6.2.3.2 Required packages . 42
3.6.2.3.3 Setting Permissions for Groups . 43

3.6.3 Meta-packages in ROCm Programming Models . 43
3.6.3.1 ROCm Package Naming Conventions . 44
3.6.3.2 Components of ROCm Programming Models . 44
3.6.3.3 Packages in ROCm Programming Models . 45

3.6.4 Installation Methods . 46
3.6.4.1 Installer Script Method . 46

3.6.4.1.1 Downloading and Installing the Installer Script on Ubuntu 47
3.6.4.1.1.1 Ubuntu 18.04 . 47
3.6.4.1.1.2 Ubuntu 20.04 . 47

3.6.4.1.2 Downloading and Installing the Installer Script on RHEL/CentOS 47
3.6.4.1.2.1 RHEL/CentOS 7.9 . 47
3.6.4.1.2.2 RHEL 8.4/CentOS 8.3 . 47

3.6.4.1.3 Downloading and Installing the Installer Script on SLES 15 48
3.6.4.1.3.1 SLES 15 Service Pack 3 . 48

3.6.4.1.4 Using the Installer Script on Linux Distributions 48
3.6.4.2 Package Manager Method . 49

3.6.4.2.1 Installing ROCm on Linux Distributions 49
3.6.4.2.2 Understanding AMDGPU and ROCm Stack Repositories on Linux Dis-

tributions . 50
3.6.4.2.2.1 Repositories with Latest Packages 50
3.6.4.2.2.2 Repositories for Specific Releases 50

3.6.4.2.3 Using Package Manager on Ubuntu . 50
3.6.4.2.3.1 Installation Of Kernel Headers and Development Packages on

Ubuntu . 50
3.6.4.2.3.2 Base URLs For AMDGPU and ROCm Stack Repositories 51
3.6.4.2.3.3 Adding AMDGPU Stack Repository 51

iii

3.6.4.2.3.4 Install the Kernel Mode Driver and Reboot System 52
3.6.4.2.3.5 Add the ROCm Stack Repository 52
3.6.4.2.3.6 Install ROCm Meta-packages . 52

3.6.4.2.4 Using Package Manager on RHEL/CentOS 53
3.6.4.2.4.1 Installation Of Kernel Headers and Development Packages on

RHEL/CentOS . 53
3.6.4.2.4.2 Base URLs For AMDGPU and ROCm Stack Repositories 54
3.6.4.2.4.3 Adding the AMDGPU Stack Repository 54
3.6.4.2.4.4 Install the Kernel Mode Driver and Reboot System 55
3.6.4.2.4.5 Add the ROCm Stack Repository 55
3.6.4.2.4.6 Install ROCm Meta-Packages . 55

3.6.4.2.5 Using Package Manager on SLES/OpenSUSE 56
3.6.4.2.5.1 Installation of Kernel Headers and Development Packages 56
3.6.4.2.5.2 Base URLs For AMDGPU And ROCm Stack Repositories 56
3.6.4.2.5.3 Adding AMDGPU Stack Repository 56
3.6.4.2.5.4 Install the Kernel Mode Driver and Reboot System 57
3.6.4.2.5.5 Add the ROCm Stack Repository 57
3.6.4.2.5.6 Install ROCm Meta-Packages . 58

3.6.4.3 Verification Process . 58
3.6.4.3.1 Verifying ROCm Installation . 58
3.6.4.3.2 Verifying Package Installation . 58

3.6.5 ROCm Stack Uninstallation . 58
3.6.5.1 Uninstalling ROCm Stack . 59

3.6.5.1.1 Removing ROCm Toolkit and Driver . 59
3.6.5.1.2 Choosing an Uninstallation Method . 59

3.6.5.1.2.1 Uninstallation Using Uninstall Script 59
3.6.5.1.2.2 Uninstallation Using Package Manager 59

3.6.6 Troubleshooting . 61
3.6.7 Frequently Asked Questions . 62

3.7 HIP Installation v4.5 . 62
3.7.1 HIP Prerequisites . 63
3.7.2 AMD Platform . 63
3.7.3 NVIDIA Platform . 63
3.7.4 Building HIP from Source . 64

3.7.4.1 Get HIP source code . 64
3.7.4.2 Set the environment variables . 64
3.7.4.3 Build HIP . 64
3.7.4.4 Default paths and environment variables . 64
3.7.4.5 Verify your installation . 65

3.8 ROCm Installation v4.3 . 65
3.8.1 Deploying ROCm . 65

3.8.1.1 ROCm Repositories . 66
3.8.1.2 Base Operating System Kernel Upgrade . 66

3.8.2 Prerequisites . 66
3.8.2.1 Perl Modules for HIP-Base Package . 67
3.8.2.2 Complete Reinstallation OF AMD ROCm V4.3 Recommended 67
3.8.2.3 Multi-version Installation Updates . 67

3.8.3 Setting Permissions for Groups . 68
3.8.4 Supported Operating Systems . 68

3.8.4.1 Ubuntu . 68
3.8.4.1.1 Installing a ROCm Package from a Debian Repository 68
3.8.4.1.2 Uninstalling ROCm Packages from Ubuntu 70
3.8.4.1.3 Using Debian-based ROCm with Upstream Kernel Drivers 70

3.8.4.2 CentOS RHEL . 70

iv

3.8.4.2.1 Preparing RHEL for Installation . 70
3.8.4.2.1.1 Installing CentOS for DKMS . 71

3.8.4.2.2 Installing ROCm . 71
3.8.4.2.3 Testing the ROCm Installation . 72
3.8.4.2.4 Compiling Applications Using HCC, HIP, and Other ROCm Software . . 72
3.8.4.2.5 Uninstalling ROCm from CentOS/RHEL 72
3.8.4.2.6 Using ROCm on CentOS/RHEL with Upstream Kernel Drivers 72
3.8.4.2.7 Installing Development Packages for Cross Compilation 72

3.8.4.3 SLES 15 Service Pack 2 . 73
3.8.4.3.1 Performing an OpenCL-only Installation of ROCm 74

3.8.5 ROCm Installation Known Issues and Workarounds . 74
3.8.6 Getting the ROCm Source Code . 74
3.8.7 Downloading the ROCm Source Code . 75

3.9 Multi Version Installation . 75
3.9.1 Prerequisites . 75
3.9.2 Before You Begin . 76

3.10 Using CMake with AMD ROCm . 78
3.10.1 Finding Dependencies . 78
3.10.2 Using HIP in CMake . 78
3.10.3 Using AMD ROCm Libraries . 79
3.10.4 ROCm CMake Packages . 80

3.11 Mesa Multimedia Installation . 80
3.11.1 Prerequisites . 80

3.11.1.1 System Prerequisites . 81
3.11.1.2 Installation Prerequisites . 81

3.11.2 Installation Instructions . 81
3.11.3 Check Installation . 82

3.12 Tools Installation . 84
3.12.1 ROCTracer . 84

3.12.1.1 ROC-TX library: code annotation events API . 84
3.12.1.2 Usage . 84

3.12.1.2.1 rocTracer API . 84
3.12.1.2.2 rocTX API . 84
3.12.1.2.3 Library source tree . 85
3.12.1.2.4 API Description . 85
3.12.1.2.5 Code examples . 85
3.12.1.2.6 Build and run test . 85

3.13 Software Stack for AMD GPU . 86
3.13.1 Machine Learning and High Performance Computing Software Stack for AMD GPU v4.1 . 86

3.13.1.1 ROCm Binary Package Structure . 86
3.13.1.1.1 ROCm Core Components . 86
3.13.1.1.2 ROCm Support Software . 87
3.13.1.1.3 ROCm Compilers . 87
3.13.1.1.4 ROCm Device Libraries . 87
3.13.1.1.5 ROCm Development ToolChain . 87
3.13.1.1.6 ROCm Libraries . 87

3.13.1.1.6.1 ROCm Platform Packages . 89
3.13.1.1.7 Drivers, ToolChains, Libraries, and Source Code 89

3.13.1.1.7.1 List of ROCm Packages for Supported Operating Systems 90
3.13.1.1.7.2 ROCm-Library Meta Packages 90
3.13.1.1.7.3 Meta Packages . 91

3.14 Hardware and Software Support Information . 91
3.15 AMD Instinct™ High Performance Computing and Tuning Guide 91
3.16 HIP Programming Guide v4.5 . 92

v

3.16.1 Programming Guide (PDF) . 93
3.16.2 Related Topics . 93

3.16.2.1 HIP API Guide . 93
3.16.2.2 HIP_Supported_CUDA_API_Reference_Guide 93
3.16.2.3 AMD ROCm Compiler Reference Guide . 93
3.16.2.4 HIP Installation Instructions . 93
3.16.2.5 HIP FAQ . 93

3.17 HIP API Documentation v4.5 . 93
3.18 HIP-Supported CUDA API Reference Guide v4.5 . 94
3.19 AMD ROCm Compiler Reference Guide v4.5 . 94

3.19.1 Supported CUDA APIs . 94
3.19.2 Deprecated HIP APIs . 94

3.19.2.1 HIP Context Management APIs . 94
3.20 OpenCL Programming Guide . 95
3.21 OpenMP Support . 95

3.21.1 Overview . 95
3.21.2 Installation . 95
3.21.3 Usage . 96
3.21.4 Helpful Tips . 96

3.22 ROCm Libraries . 96
3.22.1 Deprecated Libraries . 97

3.22.1.1 hipeigen . 97
3.23 Deep Learning . 97

3.23.1 MIOpen API . 97
3.23.2 TensorFlow . 97

3.23.2.1 AMD ROCm Tensorflow v1.15 Release . 97
3.23.2.2 AMD ROCm Tensorflow v2.2.0-beta1 Release . 97
3.23.2.3 Tensorflow Installation . 97

3.23.2.3.1 Tensorflow ROCm port: Basic installation on RHEL 98
3.23.2.3.1.1 Install ROCm . 98

3.23.2.4 Tensorflow benchmarking . 99
3.23.2.5 Tensorflow Installation with Docker . 100
3.23.2.6 Tensorflow More Resources . 100

3.23.3 MIOpen . 100
3.23.3.1 ROCm MIOpen v2.0.1 Release . 100
3.23.3.2 Porting from cuDNN to MIOpen . 101
3.23.3.3 The ROCm 3.3 has prebuilt packages for MIOpen 101

3.23.4 PyTorch . 101
3.23.4.1 Building PyTorch for ROCm . 101
3.23.4.2 Recommended: Install using published PyTorch ROCm docker image: 102
3.23.4.3 Option 2: Install using PyTorch upstream docker file 102
3.23.4.4 Option 3: Install using minimal ROCm docker file 103
3.23.4.5 PyTorch examples . 104
3.23.4.6 Building Caffe2 for ROCm . 105
3.23.4.7 Option 1: Docker image with Caffe2 installed: . 105
3.23.4.8 Option 2: Install using Caffe2 ROCm docker image: 105
3.23.4.9 Test the Caffe2 Installation . 106
3.23.4.10 Run benchmarks . 106
3.23.4.11 Running example scripts . 106
3.23.4.12 Building own docker images . 106

3.24 MIVisionX . 106
3.25 AMD ROCm Profiler . 117

3.25.1 Overview . 117
3.25.2 Profiling Modes . 117

vi

3.25.2.1 GPU profiling . 118
3.25.2.1.1 Counters and metrics . 118

3.25.2.1.1.1 Metrics query . 119
3.25.2.1.1.2 Metrics collecting . 120
3.25.2.1.1.3 Blocks instancing . 120
3.25.2.1.1.4 HW limitations . 120

3.25.2.2 Application tracing . 121
3.25.2.2.1 HIP runtime trace . 121
3.25.2.2.2 ROCr runtime trace . 121
3.25.2.2.3 KFD driver trace . 121
3.25.2.2.4 Code annotation . 121

3.25.2.2.4.1 Start/stop API . 121
3.25.2.2.4.2 rocTX basic markers API . 122

3.25.2.3 Multiple GPUs profiling . 122
3.25.3 Profiling control . 122

3.25.3.1 Profiling scope . 122
3.25.3.2 Tracing control . 122

3.25.3.2.1 Filtering Traced APIs . 122
3.25.3.2.2 Tracing period . 123

3.25.3.3 Concurrent kernels . 123
3.25.3.4 Multi-processes profiling . 123
3.25.3.5 Errors logging . 123

3.25.4 3rd party visualization tools . 123
3.25.5 Runtime Environment Setup . 123
3.25.6 Command line options . 124
3.25.7 Publicly available counters and metrics . 126

3.26 AMD ROCProfiler API . 128
3.27 AMD ROCTracer API . 130
3.28 AMD ROCm Debugger . 131
3.29 AMD Debugger API . 131

3.29.1 Introduction . 131
3.29.2 Build the AMD Debugger API Library . 131
3.29.3 Build the AMD Debugger API Specification Documentation 132
3.29.4 Known Limitations and Restrictions . 133
3.29.5 Disclaimer . 133

3.30 ROCm™ Data Center Tool . 134
3.30.1 Objective . 134
3.30.2 Target Audience . 134
3.30.3 Download AMD ROCm Data Center Tool User Guide . 135
3.30.4 Download AMD ROCm Data Center Tool API Guide . 135

3.31 AMD ROCm Debug Agent Library . 135
3.31.1 Introduction . 135
3.31.2 Usage . 135
3.31.3 Options . 139
3.31.4 Build the ROCdebug-agent library . 139
3.31.5 Test the ROCdebug-agent library . 140
3.31.6 Known Limitations and Restrictions . 141
3.31.7 Disclaimer . 141

3.32 System Level Debug . 141
3.32.1 ROCm Language & System Level Debug, Flags, and Environment Variables 141

3.32.1.1 ROCr Error Code . 142
3.32.1.2 Command to dump firmware version and get Linux Kernel version 142
3.32.1.3 Debug Flags . 142
3.32.1.4 ROCr level env variable for debug . 142

vii

3.32.1.5 Turn Off Page Retry on GFX9/Vega devices . 143
3.32.1.6 HIP Environment Variables . 143
3.32.1.7 OpenCL Debug Flags . 143
3.32.1.8 PCIe-Debug . 143

3.33 ROCmValidationSuite . 143
3.33.1 ROCmValidationSuite Modules . 143
3.33.2 Prerequisites . 144
3.33.3 Install ROCm stack, rocblas and rocm_smi64 . 145
3.33.4 Building from Source . 145
3.33.5 Regression . 146

3.34 System Management Interface . 147
3.34.1 ROCm SMI library . 147
3.34.2 ROCm System Management Interface (ROCm SMI) Library 147

3.34.2.1 Important note about Versioning and Backward Compatibility 147
3.34.3 Building ROCm SMI . 147

3.34.3.1 Additional Required software for building . 147
3.34.3.2 Building Documentation . 148
3.34.3.3 Building Tests . 148

3.34.4 Usage Basics . 148
3.34.4.1 Device Indices . 148
3.34.4.2 Hello ROCm SMI . 149

3.34.5 SYSFS Interface . 149
3.34.5.1 Naming and data format standards for sysfs files 149

3.34.6 Global Attributes . 151
3.34.7 Voltages . 153
3.34.8 Fans . 156
3.34.9 Pulse with Modulation . 159
3.34.10 Temperatures . 162
3.34.11 Currents . 165
3.34.12 Power . 168
3.34.13 Energy . 169
3.34.14 Humidity . 169
3.34.15 Alarms . 169
3.34.16 Intrusion detection . 172
3.34.17 Average Sample Configuration . 172
3.34.18 sysfs attribute writes interpretation . 173
3.34.19 Performance . 173
3.34.20 KFD Topology . 174
3.34.21 HSA Agent Information . 174
3.34.22 Node Information . 174
3.34.23 Memory . 174
3.34.24 Cache . 174
3.34.25 IO-LINKS . 175
3.34.26 How to use topology information . 175
3.34.27 SMI Event Interface and Library . 177
3.34.28 ROCR_VISIBLE_DEVICES . 177

3.34.28.1 Interaction between ROCR_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES 177
3.34.29 Device cgroup . 178

3.35 ROCm Command Line Interface . 178
3.35.1 Clock and Temperature Management . 178
3.35.2 SDMA Usage Per-process . 185
3.35.3 Hardware Topology . 185

3.36 GCN ISA Manuals . 186
3.36.1 GCN 1.1 . 186

viii

3.36.2 GCN 2.0 . 186
3.36.3 Vega . 186
3.36.4 Inline GCN ISA Assembly Guide . 186

3.36.4.1 The Art of AMDGCN Assembly: How to Bend the Machine to Your Will 186
3.36.4.2 DS Permute Instructions . 186
3.36.4.3 Passing Parameters to a Kernel . 187
3.36.4.4 The GPR Counting . 189
3.36.4.5 Compiling GCN ASM Kernel Into Hsaco . 190

3.37 Remote Device Programming . 191
3.37.1 ROCmRDMA . 191

3.37.1.1 Restrictions and limitations . 191
3.37.1.2 ROCmRDMA interface specification . 191
3.37.1.3 API versions . 191
3.37.1.4 Data structures . 192
3.37.1.5 The function to query ROCmRDMA interface . 192
3.37.1.6 ROCmRDMA interface functions description . 193

3.37.2 UCX . 194
3.37.3 OpenMPI . 194
3.37.4 IPC API . 195

3.37.4.1 New Datatypes . 195
3.37.5 MPICH . 198

3.37.5.1 Building and Installing MPICH . 198
3.38 v4.1 ROCm Installation . 198

3.38.1 Deploying ROCm . 199
3.38.1.1 ROCm Repositories . 199
3.38.1.2 Base Operating System Kernel Upgrade . 199

3.38.2 Prerequisites . 199
3.38.2.1 Perl Modules for HIP-Base Package . 200
3.38.2.2 Complete Reinstallation OF AMD ROCm V4.1 Recommended 200
3.38.2.3 Multi-version Installation Updates . 200

3.38.3 Supported Operating Systems . 201
3.38.3.1 Ubuntu . 201

3.38.3.1.1 Installing a ROCm Package from a Debian Repository 201
3.38.3.1.2 Uninstalling ROCm Packages from Ubuntu 202
3.38.3.1.3 Using Debian-based ROCm with Upstream Kernel Drivers 202

3.38.3.2 CentOS RHEL . 203
3.38.3.2.1 Preparing RHEL for Installation . 203

3.38.3.2.1.1 Installing CentOS for DKMS . 203
3.38.3.2.2 Installing ROCm . 204
3.38.3.2.3 Testing the ROCm Installation . 204
3.38.3.2.4 Compiling Applications Using HCC, HIP, and Other ROCm Software . . 205
3.38.3.2.5 Uninstalling ROCm from CentOS/RHEL 205
3.38.3.2.6 Using ROCm on CentOS/RHEL with Upstream Kernel Drivers 205
3.38.3.2.7 Installing Development Packages for Cross Compilation 205

3.38.3.3 SLES 15 Service Pack 2 . 205
3.38.3.3.1 Performing an OpenCL-only Installation of ROCm 207

3.38.4 ROCm Installation Known Issues and Workarounds . 207
3.38.5 Getting the ROCm Source Code . 207
3.38.6 Downloading the ROCm Source Code . 207

ix

x

ROCm Documentation, Release 4.5.0

AMD ROCm is the first open-source software development platform for HPC/Hyperscale-class GPU computing.
AMD ROCm brings the UNIX philosophy of choice, minimalism and modular software development to GPU com-
puting.

Since the ROCm ecosystem is comprised of open technologies: frameworks (Tensorflow / PyTorch), libraries (MIOpen
/ Blas / RCCL), programming model (HIP), inter-connect (OCD) and up streamed Linux® Kernel support – the
platform is continually optimized for performance and extensibility. Tools, guidance and insights are shared freely
across the ROCm GitHub community and forums.

Note: The AMD ROCm™ open software platform is a compute stack for headless system deployments. GUI-based
software applications are currently not supported.

AMD ROCm is built for scale; it supports multi-GPU computing in and out of server-node communication through
RDMA. AMD ROCm also simplifies the stack when the driver directly incorporates RDMA peer-sync support.

RELEASE DOCUMENTATION 1

ROCm Documentation, Release 4.5.0

2 RELEASE DOCUMENTATION

CHAPTER

ONE

THE AMD ROCM PROGRAMMING-LANGUAGE RUN-TIME

The AMD ROCr System Runtime is language independent and makes heavy use of the Heterogeneous System Ar-
chitecture (HSA) Runtime API. This approach provides a rich foundation to execute programming languages, such as
HIP and OpenMP.

Important features include the following:

• Multi-GPU coarse-grain shared virtual memory

• Process concurrency and preemption

• Large memory allocations

• HSA signals and atomics

• User-mode queues and DMA

• Standardized loader and code-object format

• Dynamic and offline-compilation support

• Peer-to-peer multi-GPU operation with RDMA support

• Profiler trace and event-collection API

• Systems-management API and tools

3

ROCm Documentation, Release 4.5.0

4 Chapter 1. The AMD ROCm Programming-Language Run-Time

CHAPTER

TWO

SOLID COMPILATION FOUNDATION AND LANGUAGE SUPPORT

• LLVM compiler foundation

• HIP for application portability

• GCN assembler and disassembler

AMD ROCm gives developers the flexibility of choice for hardware and aids in the development of compute-intensive
applications.

5

ROCm Documentation, Release 4.5.0

6 Chapter 2. Solid Compilation Foundation and Language Support

CHAPTER

THREE

ROCM LEARNING CENTER

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.1 AMD ROCm™ Release Notes v4.5

October, 2021

This document describes the features, fixed issues, and information about downloading and installing the AMD
ROCm™ software.

It also covers known issues and deprecations in this release.

3.1.1 List of Supported Operating Systems

The AMD ROCm platform supports the following operating systems:

OS Kernel
SLES15 SP3 5.3.18-24.49
RHEL 7.9 3.10.0-1160.6.1.el7
CentOS 7.9 3.10.0-1127
RHEL 8.4 4.18.0-193.1.1.el8
CentOS 8.3 4.18.0-193.el8
Ubuntu 18.04.5 5.4.0-71-generic
Ubuntu 20.04.3HWE 5.8.0-48-generic
Host OS Azure RS1.86
Guest OS Ubuntu 20.04

7

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

ROCm Documentation, Release 4.5.0

3.1.2 Enhanced Installation Process for ROCm v4.5

In addition to the installation method using the native Package Manager, AMD ROCm v4.5 introduces added methods
to install ROCm. With this release, the ROCm installation uses the amdgpu-install and amdgpu-uninstall scripts.

The amdgpu-install script streamlines the installation process by:

• Abstracting the distribution-specific package installation logic

• Performing the repository set-up

• Allowing user to specify the use case and automating the installation of all the required packages,

• Performing post-install checks to verify whether the installation was performed successfully

• Installing the uninstallation script

The amdgpu-uninstall script allows the removal of the entire ROCm stack by using a single command.

Some of the ROCm-specific use cases that the installer currently supports are:

• OpenCL (ROCr/KFD based) runtime

• HIP runtimes

• ROCm libraries and applications

• ROCm Compiler and device libraries

• ROCr runtime and thunk

For more information, refer to the Installation Methods section in this guide.

Note: Graphics use cases are not supported in this release.

For more details, refer to the AMD ROCm Installation Guide v4.5 at,

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html

3.1.3 AMD ROCm v4.5 Documentation Updates

3.1.3.1 AMD ROCm Installation Guide

The AMD ROCm Installation Guide in this release includes the following updates:

• New - Installation Guide for ROCm v4.5

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html

3.1.3.2 AMD Instinct™ High Performance Computing and Tuning

• New - AMD Instinct™ High Performance Computing and Tuning Guide

see AMD Instinct™ High Performance Computing and Tuning Guide

8 Chapter 3. ROCm Learning Center

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD%20Instinct%E2%84%A2High%20Performance%20Computing%20and%20Tuning%20Guide.pdf

ROCm Documentation, Release 4.5.0

3.1.3.3 HIP Documentation Updates

• HIP installation instructions

https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html

• HIP Programming Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

• HIP API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

• HIP-Supported CUDA API Reference Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_
Guide.pdf

• AMD ROCm Compiler Reference Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

• HIP FAQ

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

3.1.3.4 System Interface Management

• System Interface Management (SMI)

https://rocmdocs.amd.com/en/latest/ROCm_System_Managment/ROCm-System-Managment.html

3.1.3.5 AMD ROCm Data Center Tool

• AMD ROCm Data Center Tool API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf

• AMD ROCm Data Center Tool User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_
v4.5.pdf

3.1.3.6 ROCm SMI API Guide

• ROCm SMI API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_Manual_4.5.pdf

3.1. AMD ROCm™ Release Notes v4.5 9

https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq
https://rocmdocs.amd.com/en/latest/ROCm_System_Managment/ROCm-System-Managment.html
https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_Manual_4.5.pdf

ROCm Documentation, Release 4.5.0

3.1.3.7 ROC Debugger User and API Guide

• ROCDebugger User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf

• Debugger API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf

3.1.3.8 OpenMP Documentation

• Updated OpenMP documentation

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

3.1.3.9 AMD ROCm General Documentation Links

• For AMD ROCm documentation, see

https://rocmdocs.amd.com/en/latest/

• For installation instructions on supported platforms, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

• For AMD ROCm binary structure, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html

• For AMD ROCm release history, see

https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html

3.1.4 What's New in This Release

3.1.4.1 HIP Enhancements

The ROCm v4.5 release consists of the following HIP enhancements:

3.1.4.1.1 HIP Direct Dispatch

The conventional producer-consumer model where the host thread(producer) enqueues commands to a command
queue (per stream), which is then processed by a separate, per-stream worker thread (consumer) created by the runtime,
is no longer applicable.

In this release, for Direct Dispatch, the runtime directly queues a packet to the AQL queue (user mode queue to GPU)
in Dispatch and some of the synchronization. This new functionality indicates the total latency of the HIP Dispatch
API and the latency to launch the first wave on the GPU.

In addition, eliminating the threads in runtime has reduced the variance in the dispatch numbers as the thread schedul-
ing delays and atomics/locks synchronization latencies are reduced.

This feature can be disabled by setting the following environment variable,

AMD_DIRECT_DISPATCH=0

10 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html
https://rocmdocs.amd.com/en/latest/
https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html
https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html
https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html

ROCm Documentation, Release 4.5.0

3.1.4.1.2 Support for HIP Graph

ROCm v4.5 extends support for HIP Graph. For details, refer to the HIP API Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.1.4.1.3 Enhanced launch_bounds Check Error Log Message

When a kernel is launched with HIP APIs, for example, hipModuleLaunchKernel(), HIP validates to check that input
kernel dimension size is not larger than specified launch_bounds.

If exceeded, HIP returns launch failure if AMD_LOG_LEVEL is set with the proper value. Users can find more
information in the error log message, including launch parameters of kernel dim size, launch bounds, and the name
of the faulting kernel. It is helpful to figure out the faulting kernel. Besides, the kernel dim size and launch bounds
values will also assist in debugging such failures.

For more details, refer to the HIP Programming Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

3.1.4.1.4 HIP Runtime Compilation

HIP now supports runtime compilation (hipRTC), the usage of which will provide the possibility of optimizations and
performance improvement compared with other APIs via regular offline static compilation.

hipRTC APIs accept HIP source files in character string format as input parameters and create handles of programs by
compiling the HIP source files without spawning separate processes.

For more details on hipRTC APIs, refer to the HIP API Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.1.4.1.5 New Flag for Backwards Compatibility on float/double atomicAdd Function

In the ROCm4.5 release, a new compilation flag is introduced as an option in the CMAKE file. This flag ensures
backwards compatibility in float/double atomicAdd functions.

__HIP_USE_CMPXCHG_FOR_FP_ATOMICS

This compilation flag is not set(âCœ0âC) by default, so the HIP runtime uses the current float/double atomicAdd
functions.

If this compilation flag is set to âCœ1âC with the CMAKE option, the existing float/double atomicAdd functions is
used for compatibility with compilers that do not support floating point atomics.

D__HIP_USE_CMPXCHG_FOR_FP_ATOMICS=1

For details on how to build the HIP runtime, refer to the HIP Programming Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

3.1. AMD ROCm™ Release Notes v4.5 11

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

ROCm Documentation, Release 4.5.0

3.1.4.1.6 Updated HIP Version Definition

The HIP version definition is updated as follows:

HIP_VERSION=HIP_VERSION_MAJOR * 10000000 + HIP_VERSION_MINOR * 100000
+ HIP_VERSION_PATCH)

The HIP version can be queried from the following HIP API call,

hipRuntimeGetVersion(&runtimeVersion);

The version returned is always greater than the versions in the previous ROCm releases.

Note: The version definition of the HIP runtime is different from that of CUDA. The function returns the HIP runtime
version on the AMD platform, while on the NVIDIA platform, it returns the CUDA runtime version. There is no
mapping or a correlation between the HIP and CUDA versions.

3.1.4.1.7 Planned HIP Enhancements and Fixes

3.1.4.1.7.1 Changes to hiprtc implementation to match nvrtc behavior

In this release, there are changes to the hiprtc implementation to match the nvrtc behavior.

Impact: Applications can no longer explicitly include HIP runtime header files. Minor code changes are required to
remove the HIP runtime header files.

3.1.4.1.7.2 HIP device attribute enumeration

In a future release, there will be a breaking change in the HIP device attribute enumeration. Enum values are being
rearranged to accommodate future enhancements and additions.

Impact: This will require users to rebuild their applications. No code changes are required.

3.1.4.1.7.3 Changes to behavior of hipGetLastError() and hipPeekAtLastError() to match CUDA be-
havior available

In a later release, changes to behavior of hipGetLastError() and hipPeekAtLastError() to match CUDA behavior will
be available.

Impact: Applications relying on the previous behavior will be impacted and may require some code changes.

3.1.4.2 Unified Memory Support in ROCm

Unified memory allows applications to map and migrate data between CPU and GPU seamlessly without explic-
itly copying it between different allocations. This enables a more complete implementation of hipMallocManaged,
hipMemAdvise, hipMemPrefetchAsync and related APIs. Without unified memory, these APIs only support system
memory. With unified memory, the driver can automatically migrate such memory to GPU memory for faster access.

12 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.1.4.2.1 Supported Operating Systems and Versions

This feature is only supported on recent Linux kernels. Currently, it works on Ubuntu versions with 5.6 or newer
kernels and the DKMS driver from ROCm. Current releases of RHEL and SLES do not support this feature yet.
Future releases of those distributions will add support for this. The unified memory feature is also supported in the
KFD driver included with upstream kernels starting from Linux 5.14.

Unified memory only works on GFXv9 and later GPUs, including Vega10 and MI100. Fiji, Polaris and older GPUs
are not supported. To check whether unified memory is enabled, look in the kernel log for this message:

$ dmesg \| grep "HMM registered"

If unified memory is enabled, there should be a “message like registered xyzMB device memory”. If unified memory
is not supported on your GPU or kernel version, this message is missing.

3.1.4.2.2 Unified Memory Support and XNACK

Unified memory support comes in two flavours, XNACK-enabled and XNACK-disabled. XNACK refers to the ability
of the GPU to handle page faults gracefully and retry a memory access. In XNACK-enabled mode, the GPU can handle
retry after page-faults, which enables mapping and migrating data on demand, as well as memory overcommitment. In
XNACK-disabled mode, all memory must be resident and mapped in the GPU page tables when the GPU is executing
application code. Any migrations involve temporary preemption of the GPU queues by the driver. Both page fault
handling and preemptions, happen automatically and are transparent to the applications.

XNACK-enabled mode only has experimental support. XNACK-enabled mode requires compiling shader code differ-
ently. By default, the ROCm compiler builds code that works in both modes. Code can be optimized for one specific
mode with compiler options:

OpenCL:

clang ... -mcpu=gfx908:**xnack+**:sramecc- ... // xnack on, sramecc
off
clangÂ ... -mcpu=gfx908:**xnack-**:sramecc+ ... // xnack off, sramecc
on

HIP:

clang ... --cuda-gpu-arch=gfx906:xnack+ ... // xnack on
clang ... --cuda-gpu-arch=gfx906:xnack- ... // xnack off

Not all the math libraries included in ROCm support XNACK-enabled mode on current hardware. Applications will
fail to run if their shaders are compiled in the incorrect mode.

On the current hardware, the XNACK mode can be chosen at boot-time by a module parameter amdgpu.noretry. The
default is XNACK-disabled (amdgpu.noretry=1).

3.1. AMD ROCm™ Release Notes v4.5 13

ROCm Documentation, Release 4.5.0

3.1.4.3 System Management Interface

3.1.4.3.1 Enhanced ROCm SMI setpoweroverdrive Functionality

The ROCm System Management Interface (SMI) setpoweroverdrive functionality is used to lower the power cap on a
device without needing to enable the OverDrive functionality in the driver. Similarly, even with the OverDrive driver
functionality enabled, it is possible to request a lower power cap than the card’s default.

Currently, any use of the “setpoweroverdrive* functionality in rocm-smi prints an out-of-spec warning to the screen
and requires the user to agree that using this functionality potentially voids their warranty. However, this warning
should only be printed when users are trying to set the power cap to higher than the cardâC™s default, which requires
the OverDrive driver functionality to be enabled.

For example:

The default power cap is 225.0W before any changes.

[atitest@rhel85 smi]$./rocm_smi.py âC“resetpoweroverdrive

======================= ROCm System Management Interface
==

========================== Reset GPU Power OverDrive
==

GPU[0] : Successfully reset Power OverDrive to: 225W

============================ End of ROCm SMI Log
==

Now, after using âC“setpoweroverdrive to lower the power cap to 123 watts:

[atitest@rhel85 smi]$./rocm_smi.py âC“setpoweroverdrive 123

.. _rocm-system-management-interface-1:

======================= ROCm System Management Interface
==

=========================== Set GPU Power OverDrive
===

GPU[0] : Successfully set power to: 123W

.. _end-of-rocm-smi-log-1:

======================= End of ROCm SMI Log
===

Setting a power cap lower than the default of 225.0W (in this case,
123W) does not give a warning.

To verify that the power is set to the correct value:

[atitest@rhel85 smi]$./rocm_smi.py âC“showmaxpower

.. _rocm-system-management-interface-2:

(continues on next page)

14 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

======================= ROCm System Management Interface
==

======================== Power Cap ===================================

GPU[0] : Max Graphics Package Power (W): 123.0

.. _end-of-rocm-smi-log-2:

========================End of ROCm SMI Log
===

3.1.4.4 OpenMP Enhancements

The ROCm installation includes an LLVM-based implementation, which fully supports OpenMP 4.5 standard and a
subset of the OpenMP 5.0 standard. Fortran and C/C++ compilers and corresponding runtime libraries are included.
Along with host APIs, the OpenMP compilers support offloading code and data onto GPU devices.

For more information, refer to

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

3.1.5 ROCm Math and Communication Libraries

In this release, ROCm Math and Communication Libraries consists of the following enhancements and fixes:

3.1. AMD ROCm™ Release Notes v4.5 15

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

ROCm Documentation, Release 4.5.0

Library Changes
rocBLAS Optimizations

• Improved performance of non-batched and
batched syr for all sizes and data types

• Improved performance of non-batched and
batched hemv for all sizes and data types

• Improved performance of non-batched and
batched symv for all sizes and data types

• Improved memory utilization in rocblas-bench,
rocblas-test gemm functions, increasing possible
runtime sizes.

Changes
• Update from C++14 to C++17.
• Packaging split into a runtime package (called

rocblas) and a development package (called
rocblas-dev for .deb packages, and rocblas-devel
for .rpm packages). The development package
depends on runtime. The runtime package sug-
gests the development package for all supported
OSes except CentOS 7 to aid in the transition.
The ‘suggests’ feature in packaging is a transi-
tional feature and will be removed in a future
ROCm release.

Fixed
• For function geam avoid overflow in offset calcu-

lation.
• For function syr avoid overflow in offset calcula-

tion.
• For function gemv (Transpose-case) avoid over-

flow in offset calculation.
• For functions ssyrk and dsyrk, allow conjugate-

transpose case to match legacy BLAS. Behavior
is the same as the transpose case.

hipBLAS Added
• More support for hipblas-bench

Fixed
• Avoid large offset overflow for gemv and hemv in

hipblas-test
Changed

• Packaging split into a runtime package called hip-
blas and a development package called hipblas-
devel. The development package depends on run-
time. The runtime package suggests the develop-
ment package for all supported OSes except Cen-
tOS 7 to aid in the transition. The ‘suggests’ fea-
ture in packaging is a transitional feature and will
be removed in a future rocm release.

rocFFT Optimizations
• Optimized SBCC kernels of length 52, 60, 72, 80,

84, 96, 104, 108, 112, 160, 168, 208, 216, 224,
240 with new kernel generator.

Added
• Split 2D device code into separate libraries.

Changed
• Packaging split into a runtime package called

rocfft and a development package called rocfft-
devel. The development package depends on run-
time. The runtime package suggests the develop-
ment package for all supported OSes except Cen-
tOS 7 to aid in the transition. The suggests feature
in packaging is a transitional feature and will be
removed in a future rocm release.

Fixed
• Fixed a few validation failures of even-length

R2C inplace. 2D, 3D cubics sizes such as 100^2
(or ^3), 200^2 (or ^3), 256^2 (or ^3). . . etc. We
don’t combine the three kernels (stockham-r2c-
transpose). We only combine two kernels (r2c-
transpose) instead.

hipFFT Changed
• Packaging split into a runtime package called

hipfft and a development package called hipfft-
devel. The development package depends on run-
time. The runtime package suggests the develop-
ment package for all supported OSes except Cen-
tOS 7 to aid in the transition. The ‘suggests’ fea-
ture in packaging is a tranistional feature and will
be removed in a future rocm release.

rocSPARSE Added
• Triangular solve for multiple right-hand sides us-

ing BSR format
• SpMV for BSRX format
• SpMM in CSR format enhanced to work with

transposed A
• Matrix coloring for CSR matrices
• Added batched tridiagonal solve

(gtsv_strided_batch)
Improved

• Fixed a bug with gemvi on Navi21
• Optimization for pivot based gtsv

hipSPARSE Added
• Triangular solve for multiple right-hand sides us-

ing BSR format
• SpMV for BSRX format
• SpMM in CSR format enhanced to work with

transposed A
• Matrix coloring for CSR matrices
• Added batched tridiagonal solve

(gtsv_strided_batch)
Improved

• Fixed a bug with gemvi on Navi21
• Optimization for pivot based gtsv

r ocALUTION Changed
• Packaging split into a runtime package called

rocalution and a development package called
rocalution-devel. The development package de-
pends on runtime. The runtime package suggests
the development package for all supported OSes
except CentOS 7 to aid in the transition. The ‘sug-
gests’ feature in packaging is a transitional feature
and will be removed in a future rocm release.

Improved
• (A)MG solving phase optimization

rocTHRUST Changed
• Packaging changed to a development package

(called rocthrust-dev for .deb packages, and
rocthrust-devel for .rpm packages). As rocThrust
is a header-only library, there is no runtime pack-
age. To aid in the transition, the development
package sets the “provides” field to provide the
package rocthrust, so that existing packages de-
pending on rocthrust can continue to work. This
provides feature is introduced as a deprecated fea-
ture and will be removed in a future ROCm re-
lease.

rocSOLVER Added
• RQ factorization routines:
• GERQ2, GERQF (with batched and

strided_batched versions)
• Linear solvers for general square systems:
• GESV (with batched and strided_batched ver-

sions)
• Linear solvers for symmetric/hermitian positive

definite systems:
• POTRS (with batched and strided_batched ver-

sions)
• POSV (with batched and strided_batched ver-

sions)
• Inverse of symmetric/hermitian positive definite

matrices:
• POTRI (with batched and strided_batched ver-

sions)
• General matrix inversion without pivoting:
• GETRI_NPVT (with batched and

strided_batched versions)
• GETRI_NPVT_OUTOFPLACE (with batched

and strided_batched versions)
Optimized

• Improved performance of LU factorization (espe-
cially for large matrix sizes)

• Changed
• Raised reference LAPACK version used for roc-

SOLVER test and benchmark clients to v3.9.1
• Minor CMake improvements for users building

from source without install.sh:
• Removed fmt::fmt from rocsolver’s public usage

requirements
• Enabled small-size optimizations by default
• Split packaging into a runtime package (‘roc-

solver’) and a development package (‘rocsolver-
devel’). The development package depends on
the runtime package. To aid in the transition, the
runtime package suggests the development pack-
age (except on CentOS 7). This use of the ‘sug-
gests’ feature is deprecated and will be removed
in a future ROCm release.

Fixed
• Use of the GCC / Clang __at-

tribute__((deprecated(. . .))) extension is now
guarded by compiler detection macros.

hipSOLVER The following functions were added in this release:
• gesv

– hipsolverSSgesv_bufferSize, hip-
solverDDgesv_bufferSize, hipsolver-
CCgesv_bufferSize, hipsolverZ-
Zgesv_bufferSize

– hipsolverSSgesv, hipsolverDDgesv, hip-
solverCCgesv, hipsolverZZgesv

• potrs
– hipsolverSpotrs_bufferSize, hip-

solverDpotrs_bufferSize, hip-
solverCpotrs_bufferSize, hip-
solverZpotrs_bufferSize

– hipsolverSpotrs, hipsolverDpotrs, hip-
solverCpotrs, hipsolverZpotrs

• potrsBatched
– hipsolverSpotrsBatched_bufferSize, hip-

solverDpotrsBatched_bufferSize, hip-
solverCpotrsBatched_bufferSize, hip-
solverZpotrsBatched_bufferSize

– hipsolverSpotrsBatched, hipsolverD-
potrsBatched, hipsolverCpotrsBatched,
hipsolverZpotrsBatched

• potri
– hipsolverSpotri_bufferSize, hip-

solverDpotri_bufferSize, hip-
solverCpotri_bufferSize, hip-
solverZpotri_bufferSize

– hipsolverSpotri, hipsolverDpotri, hipsolver-
Cpotri, hipsolverZpotri

RCCL Added
• Compatibility with NCCL 2.9.9

Changed
• Packaging split into a runtime package called rccl

and a development package called rccl-devel. The
development package depends on runtime. The
runtime package suggests the development pack-
age for all supported OSes except CentOS 7 to aid
in the transition. The suggests feature in packag-
ing is a transitional feature and will be removed
in a future rocm release.

hipCUB Changed
• Packaging changed to a development package

(called hipcub-dev for .deb packages, and hipcub-
devel for .rpm packages). As hipCUB is a header-
only library, there is no runtime package. To aid
in the transition, the development package sets the
“provides” field to provide the package hipcub, so
that existing packages depending on hipcub can
continue to work. This provides feature is intro-
duced as a deprecated feature and will be removed
in a future ROCm release.

rocPRIM Added
• bfloat16 support added.

Changed
• Packaging split into a runtime package called

rocprim and a development package called
rocprim-devel. The development package de-
pends on runtime. The runtime package suggests
the development package for all supported OSes
except CentOS 7 to aid in the transition. The sug-
gests feature in packaging is a transitional feature
and will be removed in a future rocm release.

• As rocPRIM is a header-only library, the runtime
package is an empty placeholder used to aid in the
transition. This package is also a deprecated fea-
ture and will be removed in a future rocm release.

Deprecated
• The warp_size() function is now deprecated;

please switch to host_warp_size() and de-
vice_warp_size() for host and device references
respectively.

rocRAND Changed
• Packaging split into a runtime package called ro-

crand and a development package called rocrand-
devel. The development package depends on run-
time. The runtime package suggests the develop-
ment package for all supported OSes except Cen-
tOS 7 to aid in the transition. The ‘suggests’ fea-
ture in packaging is a transitional feature and will
be removed in a future rocm release.

Fixed
• Fix for mrg_uniform_distribution_double gener-

ating incorrect range of values
• Fix for order of state calls for log_normal, nor-

mal, and uniform
Known issues

• kernel_xorwow test is failing for certain GPU ar-
chitectures.

16 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

For more information about ROCm Libraries, refer to the documentation at

https://rocmdocs.amd.com/en/latest/ROCm_Libraries/ROCm_Libraries.html

3.1.6 Known Issues in This Release

The following are the known issues in this release.

3.1.6.1 Cache Issues with ROCProfiler

When the same kernel is launched back-to-back multiple times on a GPU, a cache flush is executed each time the
kernel finishes when profiler data is collected. The cache flush is inserted by ROCprofiler for each kernel. This
prevents kernel from being cached, instead it is being read each time it is launched. As a result the cache hit rate from
rocprofiler is reported as 0% or very low.

This issue is under investigation and will be fixed in a future release.

3.1.6.2 Compiler Support for Function Pointers and Virtual Functions

A known issue in the compiler support for function pointers and virtual functions on the GPU may cause undefined
behavior due to register corruption.

A temporary workaround is to compile the affected application with

-mllvm -amdgpu-fixed-function-abi=1* option

Note: This is an internal compiler flag and may be removed without notice once the issue is addressed in a future
release.

3.1.6.3 Debugger Process Exit May Cause ROCgdb Internal Error

If the debugger process exits during debugging, ROCgdb may report internal errors. This issue occurs as it attempts
to access the AMD GPU state for the exited process. To recover, users must restart ROCgdb.

As a workaround, users can set breakpoints to prevent the debugged process from exiting. For example, users can set
breakpoints at the last statement of the main function and in the abort() and exit() functions. This temporary solution
allows the application to be re-run without restarting ROCgdb.

This issue is currently under investigation and will be fixed in a future release.

For more information, refer to the ROCgdb User Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCDebugger_User_Guide.pdf

3.1.6.4 clinfo and rocminfo Do Not Display Marketing Name

clinfo and rocminfo display a blank field for Marketing Name.

This is due to a missing package that is not yet available from ROCm. This package will be distributed in future
ROCm releases.

3.1. AMD ROCm™ Release Notes v4.5 17

https://rocmdocs.amd.com/en/latest/ROCm_Libraries/ROCm_Libraries.html
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCDebugger_User_Guide.pdf

ROCm Documentation, Release 4.5.0

3.1.6.5 Stability Issue on LAMMPS-KOKKOS Applications

On mGPU machines, lammps-kokkos applications experience a stability issue (AMD Instinct MI100™).

As a workaround, perform a Translation LookAside Buffer (TLB) flush.

The issue is under active investigation and will be resolved in a future release.

3.1.7 Deprecations

3.1.7.1 AMD Instinct MI25 End of Life

ROCm release v4.5 is the final release to support AMD Instinct MI25. AMD Instinct MI25 has reached End of Life
(EOL). ROCm 4.5 represents the last certified release for software and driver support. AMD will continue to provide
technical support and issue resolution for AMD Instinct MI25 on ROCm v4.5 for a period of 12 months from the
software GA date.

3.1.7.2 Planned Deprecation for Code Object Versions 2 AND 3

With the ROCm v4.5 release, the generation of code object versions 2 and 3 is being deprecated and may be removed
in a future release. This deprecation notice does not impact support for the execution of AMD GPU code object
versions.

The -mcode-object-version Clang option can be used to instruct the compiler to generate a specific AMD GPU code
object version. In ROCm v4.5, the compiler can generate AMD GPU code object version 2, 3, and 4, with version 4
being the default if not specified.

3.1.8 DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccura-
cies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered
inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
versionchanges, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that
cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time
to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFOR-
MATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS,
OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IM-
PLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICU-
LAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY IN-
FORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.AMD, the AMD Arrow logo,[insert all other AMD trademarks used in the material here perAMD
Trademarks]and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies. [Insert any
third party trademark attribution here per AMD’sThird Party Trademark List.]©[Insert year written*]Advanced Micro
Devices, Inc.All rights reserved.

Third-party Disclaimer

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by
AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY

18 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO
CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME
ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE
OF THIRD-PARTY CONTENT.

3.2 Deprecations

3.2.1 ROCm Release v4.5

3.2.1.1 AMD Instinct MI25 End of Life

ROCm release v4.5 is the final release to support AMD Instinct MI25. AMD Instinct MI25 has reached End of Life
(EOL). ROCm 4.5 represents the last certified release for software and driver support. AMD will continue to provide
technical support and issue resolution for AMD Instinct MI25 on ROCm v4.5 for a period of 12 months from the
software GA date.

3.2.1.2 Planned Deprecation for Code Object Versions 2 AND 3

With the ROCm v4.5 release, the generation of code object versions 2 and 3 is being deprecated and may be removed
in a future release. This deprecation notice does not impact support for the execution of AMD GPU code object
versions.

The -mcode-object-version Clang option can be used to instruct the compiler to generate a specific AMD GPU code
object version. In ROCm v4.5, the compiler can generate AMD GPU code object version 2, 3, and 4, with version 4
being the default if not specified.

3.2.2 ROCm Release v4.1

3.2.2.1 COMPILER-GENERATED CODE OBJECT VERSION 2 DEPRECATION

Compiler-generated code object version 2 is no longer supported and has been completely removed.

Support for loading code object version 2 is also deprecated with no announced removal release.

3.2.2.2 Changed HIP Environment Variables in ROCm v4.1 Release

In the ROCm v3.5 release, the Heterogeneous Compute Compiler (HCC) compiler was deprecated, and the HIP-Clang
compiler was introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs. Also, the
HIP runtime API was implemented on top of the Radeon Open Compute Common Language runtime (ROCclr).
ROCclr is an abstraction layer that provides the ability to interact with different runtime backends such as ROCr.

While the HIP_PLATFORM=hcc environment variable was functional in subsequent releases after ROCm v3.5, in the
ROCm v4.1 release, changes to the following environment variables were implemented:

• HIP_PLATFORM=hcc was changed to HIP_PLATFORM=amd

3.2. Deprecations 19

ROCm Documentation, Release 4.5.0

• HIP_PLATFORM=nvcc was changed to HIP_PLATFORM=nvidia

Therefore, any applications continuing to use the HIP_PLATFORM=hcc environment variable will fail.

Workaround: Update the environment variables to reflect the changes mentioned above.

3.2.3 ROCm Release v4.0

3.2.3.1 ROCr Runtime Deprecations

The following ROCr Runtime enumerations, functions, and structs are deprecated in the AMD ROCm v4.0 release.

Deprecated ROCr Runtime Functions

• hsa_isa_get_info

• hsa_isa_compatible

• hsa_executable_create

• hsa_executable_get_symbol

• hsa_executable_iterate_symbols

• hsa_code_object_serialize

• hsa_code_object_deserialize

• hsa_code_object_destroy

• hsa_code_object_get_info

• hsa_executable_load_code_object

• hsa_code_object_get_symbol

• hsa_code_object_get_symbol_from_name

• hsa_code_symbol_get_info

• hsa_code_object_iterate_symbols

3.2.3.2 Deprecated ROCr Runtime Enumerations

• HSA_ISA_INFO_CALL_CONVENTION_COUNT

• HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONT_SIZE

• HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONTS_PER_COMPUTE_UNIT

• HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH

• HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME

• HSA_EXECUTABLE_SYMBOL_INFO_AGENT

• HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION

• HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SEGMENT

• HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALIGNMENT

• HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE

• HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_IS_CONST

20 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

• HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_CALL_CONVENTION

• HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION

– hsa_code_object_type_t

– hsa_code_object_info_t

– hsa_code_symbol_info_t

3.2.3.3 Deprecated ROCr Runtime Structs

• hsa_code_object_t

• hsa_callback_data_t

• hsa_code_symbol_t

3.2.3.4 AOMP DEPRECATION

As of AMD ROCm v4.0, AOMP (aomp-amdgpu) is deprecated. OpenMP support has moved to the openmp-extras
auxiliary package, which leverages the ROCm compiler on LLVM 12.

For more information, refer to

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

3.2.4 ROCm Release v3.5

3.2.4.1 Heterogeneous Compute Compiler

In the ROCm v3.5 release, the Heterogeneous Compute Compiler (HCC) compiler was deprecated and the HIP-Clang
compiler was introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs.

For more information, download the HIP Programming Guide at:

https://github.com/RadeonOpenCompute/ROCm

3.3 AMD ROCm Version History

This file contains historical information for ROCm releases.

3.3. AMD ROCm Version History 21

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html
https://github.com/RadeonOpenCompute/ROCm

ROCm Documentation, Release 4.5.0

3.3.1 New features and enhancements in ROCm v4.3

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.3.x

• HIP Versioning Update

• Kernel Enqueue Serialization

• NUMA-aware Host Memory Allocation

• New Atomic System Scope Atomic Operations

• Indirect Function Call and C++ Virtual Functions

• Prometheus (Grafana) Integration with Automatic Node Detection

• Coarse Grain Utilization

• Add 64-bit Energy Accumulator In-band

• Support for Continuous Clocks Values

• Memory Utilization Counters

• Performance Determinism

• HBM Temperature Metric Per Stack

• Tracing Multiple MPI Ranks

• ROCm Math and Communication Libraries Enhancements and Fixes

3.3.2 New features and enhancements in ROCm v4.2

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.2.x

• HIP Target Platform Macro

• Updated HIP ‘Include’ Directories

• HIP Stream Memory Operations

• HIP Events in Kernel Dispatch

• Changed Environment Variables for HIP

• ROCm Data Center Tool - RAS Integration

• ROCm Math and Communication Libraries Enhancements and Fixes

3.3.3 New features and enhancements in ROCm v4.1

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.1.x

• TargetID for Multiple Configurations

• Grafana Integration in ROCm Data Center Tool

• ROCm Math and Communication Libraries Enhancements and Fixes

• HIP Enhancements

• OpenMP Enhancements and Fixes

• MIOpen Tensile Integration

22 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.3.x
https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.2.x
https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.1.x

ROCm Documentation, Release 4.5.0

3.3.4 New features and enhancements in ROCm v4.0

Release notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.0.x

• Introducing AMD Instinct™ MI100 accelerator

• Important features of the AMD Instinct™ MI100 accelerator

• Matrix Core Engines and GFX908 Considerations

• RAS (Reliability, Availability, and Accessibility) features

• Using CMake with AMD ROCm

• AMD ROCm and MESA Multimedia

• Support for Printing PCle Information on AMD Instinct™100

• New API for xGMI

3.3.5 New features and enhancements in ROCm v3.10

Release notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.10.x

• Prometheus Plugin for ROCm Data Center Tool

• Python Binding

• System DMA (SDMA) Utilization

• ROCm-SMI Command Line Interface

• Enhanced ROCm SMI Library for Events

• ROCm SMI – Command Line Interface Hardware Topology

• New rocSOLVER APIs

• RCCL Alltoallv Support in PyTorch

• AOMP Release 11.11-0

3.3.6 New features and enhancements in ROCm v3.9

Release Notes: https://github.com/RadeonOpenCompute/ROCm/blob/roc-3.9.x/README.md

• Compiler support for OpenMP

• ROCm-SMI Hardware Topology

• Compute Unit Occupancy

• Accessing Compute Unit Occupancy Directly Using SYSFS

• ‘rocfft_execution_info_set_stream’ API

• Improved GEMM Performance

• New Matrix Pruning Functions

• AOMP v11.9-0

• AOMP v11.08-0

3.3. AMD ROCm Version History 23

https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.0.x
https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.10.x
https://github.com/RadeonOpenCompute/ROCm/blob/roc-3.9.x/README.md

ROCm Documentation, Release 4.5.0

3.3.7 New features and enhancements in ROCm v3.8

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.8.x

• Hipfort-Interface for GPU Kernel Libraries

• ROCm Data Center Tool

• Error-Correcting Code Fields in ROCm Data Center Tool

• Static Linking Libraries

3.3.8 New features and enhancements in ROCm v3.7

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.7.x

• AOMP Enhancements

• Compatibility with NVIDIA Communications Collective Library v2.7 API

• Singular Value Decomposition of Bi-diagonal Matrices

• rocSPARSE_gemmi() Operations for Sparse Matrices

3.3.9 Patch Release - ROCm v3.5.1

AMD ROCm released a maintenance patch release v3.5.1. For more information about the release see,

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.1

3.3.10 New features and enhancements in ROCm v3.5

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.0

rocProf Command Line Tool Python Requirement SQLite3 is a required Python module for the rocprof command-
line tool. You can install the SQLite3 Python module using the pip utility and set env var ROCP_PYTHON_VERSION
to the Python version, which includes the SQLite3 module.

Heterogeneous-Compute Interface for Portability In this release, the Heterogeneous Compute Compiler (HCC)
compiler is deprecated and the HIP-Clang compiler is introduced for compiling Heterogeneous-Compute Interface for
Portability (HIP) programs.

Radeon Open Compute Common Language Runtime In this release, the HIP runtime API is implemented on top
of Radeon Open Compute Common Language Runtime (ROCclr). ROCclr is an abstraction layer that provides the
ability to interact with different runtime backends such as ROCr.

OpenCL Runtime The following OpenCL runtime changes are made in this release:

-AMD ROCm OpenCL Runtime extends support to OpenCL2.2 -The developer branch is changed from master to
master-next

AMD ROCm GNU Debugger (ROCgdb) The AMD ROCm Debugger (ROCgdb) is the AMD ROCm source-level
debugger for Linux based on the GNU Debugger (GDB). It enables heterogeneous debugging on the AMD ROCm
platform of an x86-based host architecture along with AMD GPU architectures and supported by the AMD Debugger
API Library (ROCdbgapi).

AMD ROCm Debugger API Library The AMD ROCm Debugger API Library (ROCdbgapi) implements an AMD
GPU debugger application programming interface (API) that provides the support necessary for a client of the library
to control the execution and inspect the state of AMD GPU devices.

24 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.8.x
https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.7.x
https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.1
https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.0

ROCm Documentation, Release 4.5.0

rocProfiler Dispatch Callbacks Start Stop API In this release, a new rocprofiler start/stop API is added
to enable/disable GPU kernel HSA dispatch callbacks. The callback can be registered with the ‘rocpro-
filer_set_hsa_callbacks’ API. The API helps you eliminate some profiling performance impact by invoking the profiler
only for kernel dispatches of interest. This optimization will result in significant performance gains.

ROCm Communications Collective Library The ROCm Communications Collective Library (RCCL) consists of
the following enhancements:

-Re-enable target 0x803 -Build time improvements for the HIP-Clang compiler

NVIDIA Communications Collective Library Version Compatibility AMD RCCL is now compatible with
NVIDIA Communications Collective Library (NCCL) v2.6.4 and provides the following features:

Network interface improvements with API v3 Network topology detection Improved CPU type detection Infiniband
adaptive routing support

MIOpen Optional Kernel Package Installation MIOpen provides an optional pre-compiled kernel package to reduce
startup latency.

New SMI Event Interface and Library An SMI event interface is added to the kernel and ROCm SMI lib for
system administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS
input/output control is enhanced to allow notifications propagation to user mode through the event channel.

API for CPU Affinity A new API is introduced for aiding applications to select the appropriate memory node for a
given accelerator(GPU).

Radeon Performance Primitives Library The new Radeon Performance Primitives (RPP) library is a comprehensive
high-performance computer vision library for AMD (CPU and GPU) with the HIP and OpenCL backend. The target
operating system is Linux.

3.3.11 New features and enhancements in ROCm v3.3

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.3.0

Multi-Version Installation Users can install and access multiple versions of the ROCm toolkit simultaneously. Pre-
viously, users could install only a single version of the ROCm toolkit.

GPU Process Information A new functionality to display process information for GPUs is available in this release.
For example, you can view the process details to determine if the GPU(s) must be reset.

Support for 3D Pooling Layers AMD ROCm is enhanced to include support for 3D pooling layers. The implemen-
tation of 3D pooling layers now allows users to run 3D convolutional networks, such as ResNext3D, on AMD Radeon
Instinct GPUs.

ONNX Enhancements Open Neural Network eXchange (ONNX) is a widely-used neural net exchange format. The
AMD model compiler & optimizer support the pre-trained models in ONNX, NNEF, & Caffe formats. Currently,
ONNX versions 1.3 and below are supported.

3.3.12 New features and enhancements in ROCm v3.2

This release was not productized.

3.3. AMD ROCm Version History 25

https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.3.0

ROCm Documentation, Release 4.5.0

3.3.13 New features and enhancements in ROCm v3.1

‘Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.1.0

Change in ROCm Installation Directory Structure

A fresh installation of the ROCm toolkit installs the packages in the /opt/rocm-<version> folder. Previously, ROCm
toolkit packages were installed in the /opt/rocm folder.

Reliability, Accessibility, and Serviceability Support for Vega 7nm

The Reliability, Accessibility, and Serviceability (RAS) support for Vega7nm is now available.

SLURM Support for AMD GPU

SLURM (Simple Linux Utility for Resource Management) is an open source, fault-tolerant, and highly scalable cluster
management and job scheduling system for large and small Linux clusters.

3.3.14 New features and enhancements in ROCm v3.0

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.0.0

• Support for CentOS RHEL v7.7

• Support is extended for CentOS/RHEL v7.7 in the ROCm v3.0 release. For more information about the Cen-
tOS/RHEL v7.7 release, see:

• CentOS/RHEL

• Initial distribution of AOMP 0.7-5 in ROCm v3.0

The code base for this release of AOMP is the Clang/LLVM 9.0 sources as of October 8th, 2019. The LLVM-project
branch used to build this release is AOMP-191008. It is now locked. With this release, an artifact tarball of the entire
source tree is created. This tree includes a Makefile in the root directory used to build AOMP from the release tarball.
You can use Spack to build AOMP from this source tarball or build manually without Spack.

• Fast Fourier Transform Updates

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform. Fast Fourier
transforms are used in signal processing, image processing, and many other areas. The following real FFT performance
change is made in the ROCm v3.0 release:

• Implement efficient real/complex 2D transforms for even lengths.

Other improvements:

• More 2D test coverage sizes.

• Fix buffer allocation error for large 1D transforms.

• C++ compatibility improvements.

MemCopy Enhancement for rocProf In the v3.0 release, the rocProf tool is enhanced with an additional capability
to dump asynchronous GPU memcopy information into a .csv file. You can use the ‘-hsa-trace’ option to create the
results_mcopy.csv file. Future enhancements will include column labels.

26 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.1.0
https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.0.0

ROCm Documentation, Release 4.5.0

3.3.15 New features and enhancements in ROCm v2.10

rocBLAS Support for Complex GEMM

The rocBLAS library is a gpu-accelerated implementation of the standard Basic Linear Algebra Subroutines (BLAS).
rocBLAS is designed to enable you to develop algorithms, including high performance computing, image analysis,
and machine learning.

In the AMD ROCm release v2.10, support is extended to the General Matrix Multiply (GEMM) routine for multi-
ple small matrices processed simultaneously for rocBLAS in AMD Radeon Instinct MI50. Both single and double
precision, CGEMM and ZGEMM, are now supported in rocBLAS.

Support for SLES 15 SP1

In the AMD ROCm v2.10 release, support is added for SUSE Linux® Enterprise Server (SLES) 15 SP1. SLES is a
modular operating system for both multimodal and traditional IT.

Code Marker Support for rocProfiler and rocTracer Libraries

Code markers provide the external correlation ID for the calling thread. This function indicates that the calling thread
is entering and leaving an external API region.

3.3.16 New features and enhancements in ROCm 2.9

Initial release for Radeon Augmentation Library(RALI)

The AMD Radeon Augmentation Library (RALI) is designed to efficiently decode and process images from a variety
of storage formats and modify them through a processing graph programmable by the user. RALI currently provides
C API.

Quantization in MIGraphX v0.4

MIGraphX 0.4 introduces support for fp16 and int8 quantization. For additional details, as well as other new MI-
GraphX features, see MIGraphX documentation.

rocSparse csrgemm

csrgemm enables the user to perform matrix-matrix multiplication with two sparse matrices in CSR format.

Singularity Support

ROCm 2.9 adds support for Singularity container version 2.5.2.

Initial release of rocTX

ROCm 2.9 introduces rocTX, which provides a C API for code markup for performance profiling. This initial release
of rocTX supports annotation of code ranges and ASCII markers.

• Added support for Ubuntu 18.04.3

• Ubuntu 18.04.3 is now supported in ROCm 2.9.

3.3. AMD ROCm Version History 27

ROCm Documentation, Release 4.5.0

3.3.17 New features and enhancements in ROCm 2.8

Support for NCCL2.4.8 API

Implements ncclCommAbort() and ncclCommGetAsyncError() to match the NCCL 2.4.x API

3.3.18 New features and enhancements in ROCm 2.7.2

This release is a hotfix for ROCm release 2.7.

3.3.19 Issues fixed in ROCm 2.7.2

• A defect in upgrades from older ROCm releases has been fixed.

• rocprofiler –hiptrace and –hsatrace fails to load roctracer library

• In ROCm 2.7.2, rocprofiler –hiptrace and –hsatrace fails to load roctracer library defect has been fixed.

• To generate traces, please provide directory path also using the parameter: -d <$directoryPath> for example:

/opt/rocm/bin/rocprof –hsa-trace -d $PWD/traces /opt/rocm/hip/samples/0_Intro/bit_extract/bit_extract All traces and
results will be saved under $PWD/traces path

3.3.20 Upgrading from ROCm 2.7 to 2.7.2

To upgrade, please remove 2.7 completely as specified for ubuntu or for centos/rhel, and install 2.7.2 as per instructions
install instructions

Other notes To use rocprofiler features, the following steps need to be completed before using rocprofiler:

Step-1: Install roctracer Ubuntu 16.04 or Ubuntu 18.04: sudo apt install roctracer-dev CentOS/RHEL 7.6: sudo yum
install roctracer-dev

Step-2: Add /opt/rocm/roctracer/lib to LD_LIBRARY_PATH New features and enhancements in ROCm 2.7 [rocFFT]
Real FFT Functional Improved real/complex 1D even-length transforms of unit stride. Performance improvements of
up to 4.5x are observed. Large problem sizes should see approximately 2x.

rocRand Enhancements and Optimizations

Added support for new datatypes: uchar, ushort, half.

Improved performance on “Vega 7nm” chips, such as on the Radeon Instinct MI50

mtgp32 uniform double performance changes due generation algorithm standardization. Better quality random num-
bers now generated with 30% decrease in performance

Up to 5% performance improvements for other algorithms

RAS

Added support for RAS on Radeon Instinct MI50, including:

• Memory error detection

• Memory error detection counter

• ROCm-SMI enhancements

• Added ROCm-SMI CLI and LIB support for FW version, compute running processes, utilization rates, utiliza-
tion counter, link error counter, and unique ID.

28 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.3.21 New features and enhancements in ROCm 2.6

ROCmInfo enhancements

ROCmInfo was extended to do the following: For ROCr API call errors including initialization determine if the error
could be explained by:

ROCk (driver) is not loaded / available User does not have membership in appropriate group - “video” If not above
print the error string that is mapped to the returned error code If no error string is available, print the error code in hex
Thrust - Functional Support on Vega20

ROCm2.6 contains the first official release of rocThrust and hipCUB. rocThrust is a port of thrust, a parallel algo-
rithm library. hipCUB is a port of CUB, a reusable software component library. Thrust/CUB has been ported to the
HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: rocThrust and hipCUB library replaces https://github.com/ROCmSoftwarePlatform/thrust (hip-thrust), i.e. hip-
thrust has been separated into two libraries, rocThrust and hipCUB. Existing hip-thrust users are encouraged to port
their code to rocThrust and/or hipCUB. Hip-thrust will be removed from official distribution later this year.

MIGraphX v0.3

MIGraphX optimizer adds support to read models frozen from Tensorflow framework. Further de-
tails and an example usage at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:
-using-the-new-features-of-MIGraphX-0.3

MIOpen 2.0

This release contains several new features including an immediate mode for selecting convolutions, bfloat16 support,
new layers, modes, and algorithms.

MIOpenDriver, a tool for benchmarking and developing kernels is now shipped with MIOpen. BFloat16 now sup-
ported in HIP requires an updated rocBLAS as a GEMM backend.

Immediate mode API now provides the ability to quickly obtain a convolution kernel.

MIOpen now contains HIP source kernels and implements the ImplicitGEMM kernels. This is a new feature and is
currently disabled by default. Use the environmental variable “MIOPEN_DEBUG_CONV_IMPLICIT_GEMM=1”
to activation this feature. ImplicitGEMM requires an up to date HIP version of at least 1.5.9211.

A new “loss” catagory of layers has been added, of which, CTC loss is the first. See the API reference for more details.
2.0 is the last release of active support for gfx803 architectures. In future releases, MIOpen will not actively debug
and develop new features specifically for gfx803.

System Find-Db in memory cache is disabled by default. Please see build instructions to enable this feature. Additional
documentation can be found here: https://rocmsoftwareplatform.github.io/MIOpen/doc/html/

Bloat16 software support in rocBLAS/Tensile

Added mixed precision bfloat16/IEEE f32 to gemm_ex. The input and output matrices are bfloat16. All arithmetic is
in IEEE f32.

AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in two hives or two Radeon Instinct
MI60 or Radeon Instinct MI50 boards in four hives via AMD Infinity Fabric™ Link GPU interconnect technology has
been added.

ROCm-smi features and bug fixes

mGPU & Vendor check

Fix clock printout if DPM is disabled

Fix finding marketing info on CentOS

3.3. AMD ROCm Version History 29

https://github.com/ROCmSoftwarePlatform/thrust
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/

ROCm Documentation, Release 4.5.0

Clarify some error messages

ROCm-smi-lib enhancements

Documentation updates

Improvements to *name_get functions

RCCL2 Enablement

RCCL2 supports collectives intranode communication using PCIe, Infinity Fabric™, and pinned host memory, as well
as internode communication using Ethernet (TCP/IP sockets) and Infiniband/RoCE (Infiniband Verbs). Note: For
Infiniband/RoCE, RDMA is not currently supported.

rocFFT enhancements

Added: Debian package with FFT test, benchmark, and sample programs Improved: hipFFT interfaces Improved:
rocFFT CPU reference code, plan generation code and logging code

3.3.22 New features and enhancements in ROCm 2.5

UCX 1.6 support

Support for UCX version 1.6 has been added.

BFloat16 GEMM in rocBLAS/Tensile

Software support for BFloat16 on Radeon Instinct MI50, MI60 has been added. This includes:

Mixed precision GEMM with BFloat16 input and output matrices, and all arithmetic in IEEE32 bit

Input matrix values are converted from BFloat16 to IEEE32 bit, all arithmetic and accumulation is IEEE32 bit. Output
values are rounded from IEEE32 bit to BFloat16

Accuracy should be correct to 0.5 ULP

ROCm-SMI enhancements

CLI support for querying the memory size, driver version, and firmware version has been added to ROCm-smi.

[PyTorch] multi-GPU functional support (CPU aggregation/Data Parallel)

Multi-GPU support is enabled in PyTorch using Dataparallel path for versions of PyTorch built using the
06c8aa7a3bbd91cda2fd6255ec82aad21fa1c0d5 commit or later.

rocSparse optimization on Radeon Instinct MI50 and MI60

This release includes performance optimizations for csrsv routines in the rocSparse library.

[Thrust] Preview

Preview release for early adopters. rocThrust is a port of thrust, a parallel algorithm library. Thrust has been ported to
the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: This library will replace https://github.com/ROCmSoftwarePlatform/thrust in a future release. The package for
rocThrust (this library) currently conflicts with version 2.5 package of thrust. They should not be installed together.

Support overlapping kernel execution in same HIP stream

HIP API has been enhanced to allow independent kernels to run in parallel on the same stream.

AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in one hive via AMD Infinity
Fabric™ Link GPU interconnect technology has been added.

30 Chapter 3. ROCm Learning Center

https://github.com/ROCmSoftwarePlatform/thrust

ROCm Documentation, Release 4.5.0

3.3.23 New features and enhancements in ROCm 2.4

TensorFlow 2.0 support

ROCm 2.4 includes the enhanced compilation toolchain and a set of bug fixes to support TensorFlow 2.0 features
natively

AMD Infinity Fabric™ Link enablement

ROCm 2.4 adds support to connect two Radeon Instinct MI60 or Radeon Instinct MI50 boards via AMD Infinity
Fabric™ Link GPU interconnect technology.

3.3.24 New features and enhancements in ROCm 2.3

Mem usage per GPU

Per GPU memory usage is added to rocm-smi. Display information regarding used/total bytes for VRAM, visible
VRAM and GTT, via the –showmeminfo flag

MIVisionX, v1.1 - ONNX

ONNX parser changes to adjust to new file formats

MIGraphX, v0.2

MIGraphX 0.2 supports the following new features:

New Python API

• Support for additional ONNX operators and fixes that now enable a large set of Imagenet models

• Support for RNN Operators

• Support for multi-stream Execution

• [Experimental] Support for Tensorflow frozen protobuf files

See: Getting-started:-using-the-new-features-of-MIGraphX-0.2 for more details

MIOpen, v1.8 - 3d convolutions and int8

This release contains full 3-D convolution support and int8 support for inference. Additionally, there are major updates
in the performance database for major models including those found in Torchvision. See: MIOpen releases

Caffe2 - mGPU support

Multi-gpu support is enabled for Caffe2.

rocTracer library, ROCm tracing API for collecting runtimes API and asynchronous GPU activity traces HIP/HCC
domains support is introduced in rocTracer library.

BLAS - Int8 GEMM performance, Int8 functional and performance Introduces support and performance optimizations
for Int8 GEMM, implements TRSV support, and includes improvements and optimizations with Tensile.

Prioritized L1/L2/L3 BLAS (functional) Functional implementation of BLAS L1/L2/L3 functions

BLAS - tensile optimization Improvements and optimizations with tensile

MIOpen Int8 support Support for int8

3.3. AMD ROCm Version History 31

ROCm Documentation, Release 4.5.0

3.3.25 New features and enhancements in ROCm 2.2

rocSparse Optimization on Vega20 Cache usage optimizations for csrsv (sparse triangular solve), coomv (SpMV in
COO format) and ellmv (SpMV in ELL format) are available.

DGEMM and DTRSM Optimization Improved DGEMM performance for reduced matrix sizes (k=384, k=256)

Caffe2 Added support for multi-GPU training

3.3.26 New features and enhancements in ROCm 2.1

RocTracer v1.0 preview release – ‘rocprof’ HSA runtime tracing and statistics support - Supports HSA API tracing
and HSA asynchronous GPU activity including kernels execution and memory copy

Improvements to ROCM-SMI tool - Added support to show real-time PCIe bandwidth usage via the -b/–showbw flag

DGEMM Optimizations - Improved DGEMM performance for large square and reduced matrix sizes (k=384, k=256)

3.3.27 New features and enhancements in ROCm 2.0

Adds support for RHEL 7.6 / CentOS 7.6 and Ubuntu 18.04.1

Adds support for Vega 7nm, Polaris 12 GPUs

Introduces MIVisionX A comprehensive computer vision and machine intelligence libraries, utilities and applications
bundled into a single toolkit. Improvements to ROCm Libraries rocSPARSE & hipSPARSE rocBLAS with improved
DGEMM efficiency on Vega 7nm

MIOpen This release contains general bug fixes and an updated performance database Group convolutions backwards
weights performance has been improved

RNNs now support fp16 Tensorflow multi-gpu and Tensorflow FP16 support for Vega 7nm TensorFlow v1.12 is
enabled with fp16 support PyTorch/Caffe2 with Vega 7nm Support

fp16 support is enabled

Several bug fixes and performance enhancements

Known Issue: breaking changes are introduced in ROCm 2.0 which are not addressed upstream yet. Meanwhile,
please continue to use ROCm fork at https://github.com/ROCmSoftwarePlatform/pytorch

Improvements to ROCProfiler tool

Support for Vega 7nm

Support for hipStreamCreateWithPriority

Creates a stream with the specified priority. It creates a stream on which enqueued kernels have a different priority
for execution compared to kernels enqueued on normal priority streams. The priority could be higher or lower than
normal priority streams.

OpenCL 2.0 support

ROCm 2.0 introduces full support for kernels written in the OpenCL 2.0 C language on certain devices and systems.
Applications can detect this support by calling the “clGetDeviceInfo” query function with “parame_name” argument
set to “CL_DEVICE_OPENCL_C_VERSION”.

In order to make use of OpenCL 2.0 C language features, the application must include the option “-cl-std=CL2.0”
in options passed to the runtime API calls responsible for compiling or building device programs. The complete
specification for the OpenCL 2.0 C language can be obtained using the following link: https://www.khronos.org/
registry/OpenCL/specs/opencl-2.0-openclc.pdf

32 Chapter 3. ROCm Learning Center

https://github.com/ROCmSoftwarePlatform/pytorch
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf

ROCm Documentation, Release 4.5.0

Improved Virtual Addressing (48 bit VA) management for Vega 10 and later GPUs

Fixes Clang AddressSanitizer and potentially other 3rd-party memory debugging tools with ROCm

Small performance improvement on workloads that do a lot of memory management

Removes virtual address space limitations on systems with more VRAM than system memory Kubernetes support

3.3.28 New features and enhancements in ROCm 1.9.2

RDMA(MPI) support on Vega 7nm

Support ROCnRDMA based on Mellanox InfiniBand

Improvements to HCC

Improved link time optimization

Improvements to ROCProfiler tool

General bug fixes and implemented versioning APIs

New features and enhancements in ROCm 1.9.2

RDMA(MPI) support on Vega 7nm

Support ROCnRDMA based on Mellanox InfiniBand

Improvements to HCC

Improved link time optimization

Improvements to ROCProfiler tool

General bug fixes and implemented versioning APIs

Critical bug fixes

3.3.29 New features and enhancements in ROCm 1.9.1

Added DPM support to Vega 7nm

Dynamic Power Management feature is enabled on Vega 7nm.

Fix for ‘ROCm profiling’ that used to fail with a “Version mismatch between HSA runtime and libhsa-runtime-
tools64.so.1” error

3.3.30 New features and enhancements in ROCm 1.9.0

Preview for Vega 7nm Enables developer preview support for Vega 7nm

System Management Interface Adds support for the ROCm SMI (System Management Interface) library, which pro-
vides monitoring and management capabilities for AMD GPUs.

Improvements to HIP/HCC Support for gfx906

Added deprecation warning for C++AMP. This will be the last version of HCC supporting C++AMP.

Improved optimization for global address space pointers passing into a GPU kernel

Fixed several race conditions in the HCC runtime

Performance tuning to the unpinned copy engine

3.3. AMD ROCm Version History 33

ROCm Documentation, Release 4.5.0

Several codegen enhancement fixes in the compiler backend

Preview for rocprof Profiling Tool

Developer preview (alpha) of profiling tool rocProfiler. It includes a command-line front-end, rpl_run.sh, which
enables:

Cmd-line tool for dumping public per kernel perf-counters/metrics and kernel timestamps

Input file with counters list and kernels selecting parameters

Multiple counters groups and app runs supported

Output results in CSV format

The tool can be installed from the rocprofiler-dev package. It will be installed into: /opt/rocm/bin/rpl_run.sh

Preview for rocr Debug Agent rocr_debug_agent

The ROCr Debug Agent is a library that can be loaded by ROCm Platform Runtime to provide the following function-
ality:

Print the state for wavefronts that report memory violation or upon executing a “s_trap 2” instruction. Al-
lows SIGINT (ctrl c) or SIGTERM (kill -15) to print wavefront state of aborted GPU dispatches. It is en-
abled on Vega10 GPUs on ROCm1.9. The ROCm1.9 release will install the ROCr Debug Agent library at
/opt/rocm/lib/librocr_debug_agent64.so

New distribution support Binary package support for Ubuntu 18.04 ROCm 1.9 is ABI compatible with KFD in up-
stream Linux kernels. Upstream Linux kernels support the following GPUs in these releases: 4.17: Fiji, Polaris 10,
Polaris 11 4.18: Fiji, Polaris 10, Polaris 11, Vega10

Some ROCm features are not available in the upstream KFD:

More system memory available to ROCm applications Interoperability between graphics and compute RDMA IPC To
try ROCm with an upstream kernel, install ROCm as normal, but do not install the rock-dkms package. Also add a
udev rule to control /dev/kfd permissions:

echo ‘SUBSYSTEM==”kfd”, KERNEL==”kfd”, TAG+=”uaccess”, GROUP=”video”’ | sudo tee
/etc/udev/rules.d/70-kfd.rules

3.3.31 New features as of ROCm 1.8.3

ROCm 1.8.3 is a minor update meant to fix compatibility issues on Ubuntu releases running kernel 4.15.0-33

3.3.32 New features as of ROCm 1.8

DKMS driver installation

Debian packages are provided for DKMS on Ubuntu

RPM packages are provided for CentOS/RHEL 7.4 and 7.5

See the ROCT-Thunk-Interface and ROCK-Kernel-Driver for additional documentation on driver setup

New distribution support

Binary package support for Ubuntu 16.04 and 18.04

Binary package support for CentOS 7.4 and 7.5

Binary package support for RHEL 7.4 and 7.5

Improved OpenMPI via UCX support

34 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

UCX support for OpenMPI

ROCm RDMA

3.3.33 New Features as of ROCm 1.7

DKMS driver installation

New driver installation uses Dynamic Kernel Module Support (DKMS)

Only amdkfd and amdgpu kernel modules are installed to support AMD hardware

Currently only Debian packages are provided for DKMS (no Fedora suport available)

See the ROCT-Thunk-Interface and ROCK-Kernel-Driver for additional documentation on driver setup

3.3.34 New Features as of ROCm 1.5

Developer preview of the new OpenCL 1.2 compatible language runtime and compiler

OpenCL 2.0 compatible kernel language support with OpenCL 1.2 compatible runtime

Supports offline ahead of time compilation today; during the Beta phase we will add in-process/in-memory compila-
tion.

Binary Package support for Ubuntu 16.04

Binary Package support for Fedora 24 is not currently available

Dropping binary package support for Ubuntu 14.04, Fedora 23

IPC support

3.4 ROCm™ Learning Center and Knowledge Base - NEW!!

3.4.1 ROCm Knowledge Base

You can access the ROCm Community website and Knowledge Base at:

https://community.amd.com/t5/knowledge-base/tkb-p/amd-rocm-tkb

3.4. ROCm™ Learning Center and Knowledge Base - NEW!! 35

https://community.amd.com/t5/knowledge-base/tkb-p/amd-rocm-tkb

ROCm Documentation, Release 4.5.0

3.4.2 ROCm Learning Center

When it comes to solving the world’s most profound computational challenges, scientists and researchers need the
most powerful and accessible tools at their fingertips. With the ROCm™ open software platform built for GPU
computing, HPC and ML developers can now gain access to an array of different open compute languages, compilers,
libraries and tools that are both open and portable.

ROCm™ Learning Center offers resources to developers looking to tap the power of accelerated computing. No
matter where they are in their journey, from those just getting started to experts in GPU programming, a broad range
of technical resources below are designed to meet developers where they are at.

Happy learning!!

3.4.2.1 Getting Started

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.4.2.2 Fundamentals of HIP Programming

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.4.2.3 From CUDA to HIP

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.4.2.4 Deep Learning on ROCm

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.4.2.5 Multi-GPU Programming

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

3.5 DISCLAIMER

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccura-
cies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered
inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
versionchanges, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that
cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise
this information. However, AMD reserves the right to revise this information and to make changes from time to time

36 Chapter 3. ROCm Learning Center

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/
https://developer.amd.com/resources/rocm-resources/rocm-learning-center/
https://developer.amd.com/resources/rocm-resources/rocm-learning-center/
https://developer.amd.com/resources/rocm-resources/rocm-learning-center/
https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

ROCm Documentation, Release 4.5.0

to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFOR-
MATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS,
OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IM-
PLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICU-
LAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT,
INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY IN-
FORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.AMD, the AMD Arrow logo,[insert all other AMD trademarks used in the material here perAMD
Trademarks]and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in
this publication are for identification purposes only and may be trademarks of their respective companies. [Insert any
third party trademark attribution here per AMD’sThird Party Trademark List.]©[Insert year written*]Advanced Micro
Devices, Inc.All rights reserved.

Third-party Disclaimer

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by
AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY
KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO
CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME
ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE
OF THIRD-PARTY CONTENT.

3.6 ROCm Installation Guide v4.5

Contents

• ROCm Installation Guide v4.5

– Overview of ROCm Installation Methods

* About This Document

* System Requirements

– Prerequisite Actions

* Confirm You Have a Supported Linux Distribution Version

· How to Check Linux Distribution and Kernel Versions on Your System

· Linux Distribution Information

· Kernel Information

· OS and Kernel Version Match

* Confirm You Have a ROCm-Capable GPU

3.6. ROCm Installation Guide v4.5 37

ROCm Documentation, Release 4.5.0

· How to Verify Your System Has a ROCm-Capable GPU

* Confirm the System Has the Required Tools and Packages Installed

· How to Install and Configure Devtoolset-7

· Required packages

· Setting Permissions for Groups

– Meta-packages in ROCm Programming Models

* ROCm Package Naming Conventions

* Components of ROCm Programming Models

* Packages in ROCm Programming Models

– Installation Methods

* Installer Script Method

· Downloading and Installing the Installer Script on Ubuntu

· Ubuntu 18.04

· Ubuntu 20.04

· Downloading and Installing the Installer Script on RHEL/CentOS

· RHEL/CentOS 7.9

· RHEL 8.4/CentOS 8.3

· Downloading and Installing the Installer Script on SLES 15

· SLES 15 Service Pack 3

· Using the Installer Script on Linux Distributions

* Package Manager Method

· Installing ROCm on Linux Distributions

· Understanding AMDGPU and ROCm Stack Repositories on Linux Distributions

· Repositories with Latest Packages

· Repositories for Specific Releases

· Using Package Manager on Ubuntu

· Installation Of Kernel Headers and Development Packages on Ubuntu

· Base URLs For AMDGPU and ROCm Stack Repositories

· Adding AMDGPU Stack Repository

· Install the Kernel Mode Driver and Reboot System

· Add the ROCm Stack Repository

· Install ROCm Meta-packages

· Using Package Manager on RHEL/CentOS

· Installation Of Kernel Headers and Development Packages on RHEL/CentOS

· Base URLs For AMDGPU and ROCm Stack Repositories

38 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

· Adding the AMDGPU Stack Repository

· Install the Kernel Mode Driver and Reboot System

· Add the ROCm Stack Repository

· Install ROCm Meta-Packages

· Using Package Manager on SLES/OpenSUSE

· Installation of Kernel Headers and Development Packages

· Base URLs For AMDGPU And ROCm Stack Repositories

· Adding AMDGPU Stack Repository

· Install the Kernel Mode Driver and Reboot System

· Add the ROCm Stack Repository

· Install ROCm Meta-Packages

* Verification Process

· Verifying ROCm Installation

· Verifying Package Installation

– ROCm Stack Uninstallation

* Uninstalling ROCm Stack

· Removing ROCm Toolkit and Driver

· Choosing an Uninstallation Method

· Uninstallation Using Uninstall Script

· Uninstallation Using Package Manager

– Troubleshooting

– Frequently Asked Questions

3.6.1 Overview of ROCm Installation Methods

In addition to the installation method using the native Package Manager, AMD ROCm v4.5 introduces new methods
to install ROCm. With this release, the ROCm installation uses the amdgpu-install and amdgpu-uninstall scripts.

The amdgpu-install script streamlines the installation process by:

• Abstracting the distribution-specific package installation logic

• Performing the repository set-up

• Allowing a user to specify the use case and automating the installation of all the required packages

• Performing post-install checks to verify whether the installation was completed successfully

• Installing the uninstallation script

The amdgpu-uninstall script allows the removal of the entire ROCm stack by using a single command.

Some of the ROCm-specific use cases that the installer currently supports are:

• OpenCL (ROCr/KFD based) runtime

3.6. ROCm Installation Guide v4.5 39

ROCm Documentation, Release 4.5.0

• HIP runtimes

• ROCm libraries and applications

• ROCm Compiler and device libraries

• ROCr runtime and thunk

For more information, refer to the Installation Methods section in this guide.

3.6.1.1 About This Document

This document is intended for users familiar with the Linux environments and discusses the installation/uninstallation
of ROCm programming models on the various flavors of Linux.

This document also refers to Radeon™ Software for Linux® as AMDGPU stack, including the kernel-mode driver
amdgpu-dkms.

The guide provides the installation instructions for the following:

• ROCm Installation

• Heterogeneous-Computing Interface for Portability (HIP) SDK

• OPENCL ™ SDK

• Kernel Mode Driver

3.6.1.2 System Requirements

The system requirements for the ROCm v4.5 installation are as follows:

OS
SLES15 SP3
RHEL 7.9
CentOS 7.9
RHEL 8.4
CentOS 8.3
Ubuntu 18.04.5 [5.11 HWE kernel]
Ubuntu 20.04.3 LTS [5.11 HWE kernel]

NOTE: Installing ROCm on Linux will require superuser privileges. For systems that have enabled sudo packages,
ensure you use the sudo prefix for all required commands.

3.6.2 Prerequisite Actions

You must perform the following steps before installing ROCm programming models and check if the system meets all
of the requirements to proceed with the installation.

• Confirm the system has a supported Linux distribution version

• Confirm the system has a ROCm-capable GPU

• Confirm the System Has the Required Tools and Packages Installed

40 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.6.2.1 Confirm You Have a Supported Linux Distribution Version

The ROCm installation is supported only on specific Linux distributions and their kernel versions.

NOTE: The ROCm installation is not supported on 32-bit operating systems.

3.6.2.1.1 How to Check Linux Distribution and Kernel Versions on Your System

3.6.2.1.1.1 Linux Distribution Information

Ensure you obtain the distribution information of the system by using the following command on your system from
the Command Line Interface (CLI),

$ uname -m && cat /etc/*release

For example, running the command above on an Ubuntu system results in the following output:

x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.5 LTS"

3.6.2.1.1.2 Kernel Information

Type the following command to check the kernel version of your Linux system.

$ uname -srmv

The output of the command above lists the kernel version in the following format:

Linux 5.4.0-77-generic #86~18.04.5-Ubuntu SMP Fri Jun 18 01:23:22 UTC 2021 x86_64

3.6.2.1.1.3 OS and Kernel Version Match

Confirm that the obtained Linux distribution and kernel versions match with System Requirements.

3.6.2.2 Confirm You Have a ROCm-Capable GPU

The ROCm platform is designed to support the following list of GPUs:

3.6. ROCm Installation Guide v4.5 41

ROCm Documentation, Release 4.5.0

3.6.2.2.1 How to Verify Your System Has a ROCm-Capable GPU

To verify that your system has a ROCm-capable GPU, enter the following command from the Command Line Interface
(CLI):

$ sudo lshw -class display
The command displays the details of detected GPUs on the system in the following
→˓format:

*-display
description: VGA compatible controller
product: Vega 20
vendor: Advanced Micro Devices, Inc. [AMD/ATI]
physical id: 0
bus info: pci@0000:43:00.
version: c1
width: 64 bits

clock: 33MHz
capabilities: vga_controller bus_master cap_list rom
configuration: driver=amdgpu latency=0
resources: irq:66 memory:80000000-8fffffff memory:90000000-901fffff

→˓ioport:2000(size=256) memory:9f600000-9f67ffff memory:c0000-dffff

NOTE: Verify from the output that the product field value matches the supported GPU Architecture in the table above.

3.6.2.3 Confirm the System Has the Required Tools and Packages Installed

You must install and configure Devtoolset-7 to use RHEL/CentOS 7.9

3.6.2.3.1 How to Install and Configure Devtoolset-7

Refer to the RHEL/CentOS Installation section for more information on the steps necessary for installing and setting
up Devtoolset-7.

3.6.2.3.2 Required packages

Verify if the wget package for downloading files from server, is installed on your system using command below:

UBUNTU/DEBIAN

$ sudo apt list --installed | grep wget gnupg2

RHEL/CentOS

$ sudo yum list installed | grep wget

SLES/OPENSUSE

$ sudo zypper search --installed-only | grep wget

If the wget package not installed , execute the following command to install it:

UBUNTU/DEBIAN

42 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

$ sudo apt-get update
$ sudo apt-get install wget gnupg2

RHEL/CentOS

$ sudo yum clean all

$ sudo yum install wget

SLES/OPENSUSE

$ zypper install wget

3.6.2.3.3 Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

1. Issue the following command to check the groups in your system:

$ groups

2. Add yourself to the video group using the following instruction:

$ sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use the video group. By default, you can add any future users
to the video and render groups.

NOTE: render group is required only for Ubuntu v20.04.

To add future users to the video and render groups, run the following command:

$ echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
$ echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf
$ echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

3.6.3 Meta-packages in ROCm Programming Models

This section provides information about the required meta-packages for the following AMD ROCm™ programming
models:

• Heterogeneous-Computing Interface for Portability (HIP)

• OpenCL™

3.6. ROCm Installation Guide v4.5 43

ROCm Documentation, Release 4.5.0

3.6.3.1 ROCm Package Naming Conventions

A meta-package is a grouping of related packages and dependencies used to support a specific use-case, for example,
running HIP applications. All meta-packages exist in both versioned and non-versioned forms.

• Non-versioned packages – For a single installation of the latest version of ROCm

• Versioned packages – For multiple installations of ROCm

The image above demonstrates the single and multi-version ROCm packages’ naming structure, including examples
for various Linux distributions.

3.6.3.2 Components of ROCm Programming Models

The following image demonstrates the high-level layered architecture of ROCm programming models and their meta-
packages. All meta-packages are a combination of required packages and libraries. For example,

• rocm-hip-runtime is used to deploy on supported machines to execute HIP applications.

• rocm-hip-sdk contains runtime components to deploy and execute HIP applications and tools to develop the
applications.

44 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

NOTE: rocm-llvm is a single package that installs the required ROCm compiler files.

3.6.3.3 Packages in ROCm Programming Models

This section discusses the available meta-packages and their packages. In a ROCm programming model, packages
refer to a collection of scripts, libraries, text files, a manifest, license, and other associated files that enable you to
install a meta-package.

The following image visualizes the meta-packages and their associated packages in a ROCm programming model.

3.6. ROCm Installation Guide v4.5 45

ROCm Documentation, Release 4.5.0

NOTE: The image above is for informational purposes only as the individual packages in a meta-package are subject
to change. Users should install meta-packages, and not individual packages, to avoid conflicts.

3.6.4 Installation Methods

You may use the following installation methods to install ROCm:

• Installer Script Method

• Package Manager Method

3.6.4.1 Installer Script Method

The Installer script method automates the installation process for the AMDGPU and ROCm stack. The Installer script
handles the complete installation process for ROCm, including setting up the repository, cleaning the system, updating
and installing the desired drivers and meta-packages. With this approach, the system has more control over the ROCm
installation process. Thus, users who are less familiar with the Linux standard commands can choose this method for
ROCm installation.

For a fresh AMDGPU and ROCm installation using the Installer script method on Linux distribution, you must:

• Meet Prerequisites - Ensure the Prerequisite Actions are met before downloading and installing the installer
using the Installer Script method.

• Download and Install the Installer – Ensure you download and install the installer script from the recommended
URL. Note, the installer package is updated periodically to resolve known issues and add new features. The
links for each Linux distribution always point to the latest available build.

• Use the Installer Script on Linux Distributions – Ensure you execute the script for installing use cases.

46 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.6.4.1.1 Downloading and Installing the Installer Script on Ubuntu

3.6.4.1.1.1 Ubuntu 18.04

Download and install the installer using the following command:

$ sudo apt-get update

$ wget https://repo.radeon.com/amdgpu-install/21.40/ubuntu/bionic/amdgpu-install-21.
→˓40.40500-1_all.deb

$ sudo apt-get install ./amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get update

3.6.4.1.1.2 Ubuntu 20.04

Download and install the installer.

$ sudo apt-get update

$ wget https://repo.radeon.com/amdgpu-install/21.40/ubuntu/focal/amdgpu-install-21.40.
→˓40500-1_all.deb

$ sudo apt-get install ./amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get update

3.6.4.1.2 Downloading and Installing the Installer Script on RHEL/CentOS

3.6.4.1.2.1 RHEL/CentOS 7.9

Use the following command to download and install the installer on RHEL/CentOS 7.9.

$ sudo yum install https://repo.radeon.com/amdgpu-install/21.40/rhel/7.9/amdgpu-
→˓install-21.40.40500-1.noarch.rpm

3.6.4.1.2.2 RHEL 8.4/CentOS 8.3

Use the following command to download and install the installer on RHEL 8.4/CentOS 8.3.

$ sudo yum install https://repo.radeon.com/amdgpu-install/21.40/rhel/8.4/amdgpu-
→˓install-21.40.40500-1.noarch.rpm

3.6. ROCm Installation Guide v4.5 47

ROCm Documentation, Release 4.5.0

3.6.4.1.3 Downloading and Installing the Installer Script on SLES 15

3.6.4.1.3.1 SLES 15 Service Pack 3

Use the following command to download and install the installer on SLES

$ sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/21.40/
→˓sle/15/amdgpu-install-21.40.40500-1.noarch.rpm

3.6.4.1.4 Using the Installer Script on Linux Distributions

To install use cases specific to your requirements, use the installer amdgpu-install as follows:

To install a single use case
$ sudo amdgpu-install --usecase=rocm

To install multiple use-cases
$ sudo amdgpu-install --usecase=hiplibsdk,rocm

To display a list of available use cases. Note, the list in this section represents
→˓only a sample of available use cases for ROCm.
$ sudo amdgpu-install --list-usecase
If --usecase option is not present, the default selection is "graphics,opencl,hip"

Available use cases:
rocm(for users and developers requiring full ROCm stack)
- OpenCL (ROCr/KFD based) runtime
- HIP runtimes
- ROCm Compiler and device libraries
- ROCr runtime and thunk

lrt(for users of applications requiring ROCm runtime)
- ROCm Compiler and device libraries
- ROCr runtime and thunk

opencl(for users of applications requiring OpenCL on Vega or
later products)
- ROCr based OpenCL
- ROCm Language runtime

openclsdk (for application developers requiring ROCr based OpenCL)
- ROCr based OpenCL
- ROCm Language runtime
- development and SDK files for ROCr based OpenCL

hip(for users of HIP runtime on AMD products)
- HIP runtimes
- hiplibsdk (for application developers requiring HIP on AMD products)
- HIP runtimes
- ROCm math libraries
- HIP development libraries

NOTE: Adding -y as a parameter to amdgpu-install will skip user prompts (for automation). For example,

48 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

amdgpu-install -y --usecase=rocm

3.6.4.2 Package Manager Method

The Package Manager method involves a manual set up of the repository, which includes cleaning up the system,
updating and installing/uninstalling meta-packages using standard commands such as yum, apt, and others respective
to the Linux distribution.

NOTE: Users must enter the desired meta-package as the <package-name> in the command. To utilize the newly
installed packages, users must install the relevant drivers and restart the system after the installation.

The typical functions of a package manager installation system include:

• Working with file archivers to extract package archives.

• Ensuring the integrity and authenticity of the package by verifying them checksums and digital certificates,
respectively.

• Looking up, downloading, installing, or updating existing packages from an online repository.

• Grouping packages by function to reduce user confusion.

• Managing dependencies to ensure a package is installed with all packages it requires, thus avoiding dependency.

NOTE: Users may consult the documentation for their package manager for more details.

3.6.4.2.1 Installing ROCm on Linux Distributions

For a fresh ROCm installation using the Package Manager method on a Linux distribution, follow the steps below:

1. Meet prerequisites - Ensure the Prerequisite Actions are met before the ROCm installation

2. Install kernel headers and development packages - Ensure kernel headers and development packages are installed
on the system

3. Select the base URLs for AMDGPU and ROCm stack repository – Ensure the base URLs for AMDGPU, and
ROCm stack repositories are selected

4. Add AMDGPU stack repository – Ensure AMDGPU stack repository is added

5. Install the kernel-mode driver and reboot the system – Ensure the kernel-mode driver is installed and the system
is rebooted

6. Add ROCm stack repository – Ensure the ROCm stack repository is added

7. Install ROCm meta-packages – Users may install the desired meta-packages

8. Verify installation for the applicable distributions – Verify if the installation is successful.

NOTE: Refer to the sections below for specific commands to install each Linux distribution’s ROCm and AMDGPU
stack.

3.6. ROCm Installation Guide v4.5 49

ROCm Documentation, Release 4.5.0

3.6.4.2.2 Understanding AMDGPU and ROCm Stack Repositories on Linux Distributions

The AMDGPU and ROCm stack repositories are divided into two categories:

• Repositories with latest release packages

• Repositories for specific releases

3.6.4.2.2.1 Repositories with Latest Packages

These repositories contain the latest AMDGPU and ROCm packages available at the time. Based on the operating
system’s configuration, choosing this repository updates the packages automatically.

3.6.4.2.2.2 Repositories for Specific Releases

The release-specific repositories consist of packages from a specific release of the AMDGPU stack and ROCm stack.
The repositories are not updated for the latest packages with subsequent releases. When a new ROCm release is
available, the new repository, specific to that release, is added. Users can select a specific release to install, update
the previously installed single version to the later available release, or add the latest version of ROCm and currently
installed by using the multi-version ROCm packages.

3.6.4.2.3 Using Package Manager on Ubuntu

3.6.4.2.3.1 Installation Of Kernel Headers and Development Packages on Ubuntu

The following instructions to install kernel headers and development packages apply to all versions and kernels of
Ubuntu.

The ROCm installation requires the linux-headers and linux-modules-extra package to be installed with the correct
version corresponding to the kernel’s version. For example, if the system is running the Linux kernel version 4.0-77,
the identical versions of linux-headers and development packages must be installed. You may refer to the Kernel
Information section to check the kernel version of the system.

For the Ubuntu/Debian environment, execute the following command to verify the kernel headers and development
packages are installed with the respective versions.

$ sudo dpkg -l | grep linux-headers

The command indicates if there are Linux headers installed as shown below:

linux-headers-5.4.0-77-generic 5.4.0-77.86~18.04.1 amd64 Linux kernel headers
→˓for version 5.4.0 on 64 bit x86 SMP

Execute the following command to check whether the development packages are installed,

$ sudo dpkg -l | grep linux-modules-extra

When run, the command mentioned above lists the installed linux-modules-extra packages like the output below:

linux-modules-extra-5.4.0-77-generic 5.4.0-77.86~18.04.1 amd64 Linux kernel extra
→˓modules for version 5.4.0 on 64-bit x86 SMP

If the supported version installation of Linux headers and development packages are not installed on the system,
execute the following command to install the packages:

50 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

$ sudo apt install linux-headers-`uname -r` linux-modules-extra-`uname -r`

3.6.4.2.3.2 Base URLs For AMDGPU and ROCm Stack Repositories

Ubuntu 18.04

Repositories with Latest Packages

• amdgpu baseurl:https://repo.radeon.com/amdgpu/latest/ubuntu

• rocm baseurl:https://repo.radeon.com/rocm/apt/debian/

Repositories for Specific Releases

• amdgpu baseurl:https://repo.radeon.com/amdgpu/21.40/ubuntu

• rocm base url:https://repo.radeon.com/rocm/apt/4.5

Ubuntu 20.04

Repositories with Latest Packages

• amdgpu baseurl:https://repo.radeon.com/amdgpu/latest/ubuntu

• rocm baseurl:https://repo.radeon.com/rocm/apt/debian/

Repositories for Specific Release

• amdgpu baseurl:https://repo.radeon.com/amdgpu/21.40/ubuntu

• rocm base url:https://repo.radeon.com/rocm/apt/4.5

3.6.4.2.3.3 Adding AMDGPU Stack Repository

Add GPG Key for AMDGPU and ROCm Stack

Add the gpg key for AMDGPU and ROCm repositories. For Debian-based systems like Ubuntu, configure the Debian
ROCm repository as follows:

$ wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

NOTE: The gpg key may change. Ensure it is updated when installing a new release. If the key signature verification
fails while updating, re-add the key from the ROCm apt repository as mentioned above. The current rocm.gpg.key is
not available in a standard key ring distribution. However, it has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Add the AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the
kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for
AMDGPU and ROCm Stack Repositories

Ubuntu 18.04

$ echo 'deb [arch=amd64] <amdgpu baseurl> bionic main' | sudo tee /etc/apt/sources.
→˓list.d/amdgpu.list

3.6. ROCm Installation Guide v4.5 51

ROCm Documentation, Release 4.5.0

Ubuntu 20.04

$ echo 'deb [arch=amd64] <amdgpu baseurl> focal main' | sudo tee /etc/apt/sources.
→˓list.d/amdgpu.list

Execute the command below to update the package list

$ sudo apt-get update

3.6.4.2.3.4 Install the Kernel Mode Driver and Reboot System

You may skip this section if you have the kernel-mode driver installed on your system. If you do not have the kernel-
mode driver on your system, follow the instructions below. Ensure the system is rebooted after the kernel-mode driver
is installed.

$ sudo apt install amdgpu-dkms

$ sudo reboot

3.6.4.2.3.5 Add the ROCm Stack Repository

Add the ROCm repository.

For <rocm baseurl> in the command below, refer to the ROCm base URLs as documented in Base URLs for AMDGPU
and ROCm Stack Repositories

$ echo 'deb [arch=amd64] <rocm baseurl> ubuntu main' | sudo tee /etc/apt/sources.list.
→˓d/rocm.list

$ sudo apt-get update

3.6.4.2.3.6 Install ROCm Meta-packages

Install ROCm meta-packages. Specify the name of the meta-package you want to install as <package-name>, as shown
below:

$ sudo apt install <package-name>

For example:

- $ sudo apt install rocm-hip-sdk

- $ sudo apt install rocm-hip-sdk rocm-opencl-sdk

52 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.6.4.2.4 Using Package Manager on RHEL/CentOS

3.6.4.2.4.1 Installation Of Kernel Headers and Development Packages on RHEL/CentOS

The ROCm installation requires the linux-headers and linux-modules-extra package to be installed with the correct
version corresponding to the kernel’s version. For example, if the system is running Linux kernel version 4.0-77, the
identical versions of linux-headers and development packages must be installed.

Refer to the Kernel Information section to check the kernel version on your system.

To verify you have the supported version of the installed linux-headers and linux-modules-extra package, type the
following on the command line:

$ sudo yum list installed | grep linux-headers

The command mentioned above displays the list of linux headers versions currently present on your system. Verify if
the listed linux headers have the same versions as the kernel.

The following command lists the development packages on your system. Verify if the listed development package’s
version number matches the kernel version number.

$ sudo yum list installed | grep linux-modules-extra

If the supported version installation of linux headers and development packages does not exist on the system, execute
the commands below to install:

$ sudo yum install kernel-headers-`uname -r` kernel-devel-`uname -r`

Preparing RHEL 7.9 for Installation

You must enable the external repositories to install on the devtoolset-7 environment and the support files.

NOTE: Devtoolset is not required for CentOS 8.3/RHEL v8.4.

NOTE: The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and
license page for instructions on registering your system with the RHEL subscription server and linking to a pool id.

Enable the following repositories for RHEL v7.9:

$ sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
$ sudo subscription-manager repos --enable rhel-7-server-optional-rpms
$ sudo subscription-manager repos --enable rhel-7-server-extras-rpms
$ sudo subscription-manager repos --enable=rhel-7-server-devtools-rpms

Preparing CentOS for Installation

The following steps help users prepare the CentOS system for the ROCm installation.

Extra Packages for Enterprise Linux (EPEL) provides additional packages for CENTOS that are not available in their
standard repositories. Install the EPEL repository configuration package using the following command.

$ sudo yum install epel-release

$ sudo yum install -y centos-release-scl #Only for CentOS 7.9

Installing Devtoolset-7 for RHEL 7.9/CentOS 7.9

Use the following command to install Devtoolset-7:

3.6. ROCm Installation Guide v4.5 53

ROCm Documentation, Release 4.5.0

$ sudo yum install devtoolset-7

$ source scl_source enable devtoolset-7

3.6.4.2.4.2 Base URLs For AMDGPU and ROCm Stack Repositories

CentOS/RHEL 7.9

Repositories with Latest Packages

• amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/rhel/7.9/main/x86_64

• rocm base url:https://repo.radeon.com/rocm/yum/rpm

Repositories for Specific Releases

• amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/rhel/7.9/main/x86_64

• rocm baseurl=https://repo.radeon.com/rocm/yum/4.5

CentOS 8.3/RHEL 8.4

Repositories with Latest Packages

• amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/rhel/8.4/main/x86_64

• rocm base url:https://repo.radeon.com/rocm/centos8/rpm

Repositories for Specific Releases

• amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/rhel/8.4/main/x86_64

• rocm baseurl=https://repo.radeon.com/rocm/centos8/4.5/

3.6.4.2.4.3 Adding the AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the
kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

Add the AMDGPU Stack Repository

Create a /etc/yum.repos.d/amdgpu.repo file with the following contents with amdgpu base URL.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for
AMDGPU and ROCm Stack Repositories

[amdgpu]
name=amdgpu
baseurl=<amdgpu baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verifica-
tion fails while updating, re-add the key from the ROCm to the yum repository as mentioned above. The current
rocm.gpg.key is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Execute the command below to clean the cached files from enabled repositories:

54 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

$ sudo yum clean all

3.6.4.2.4.4 Install the Kernel Mode Driver and Reboot System

You may skip this section if the kernel-mode driver is already installed on your system. If you do not have a version
of the kernel-mode driver installed, follow the commands below to install the kernel-mode driver:

$ sudo yum install amdgpu-dkms

Reboot the system after the completion of driver installation.

$ sudo reboot

3.6.4.2.4.5 Add the ROCm Stack Repository

Create a /etc/yum.repos.d/rocm.repo file with the following content.

For <rocm baseurl> in the command below, refer to the ROCm base URLs documented in Base URLs for AMDGPU
and ROCm Stack Repositories.

[rocm]
name=rocm
baseurl=<rocm baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verification
fails while updating, re-add the key from the ROCm yum repository as mentioned above. The current rocm.gpg.key is
not available in a standard key ring distribution, but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Execute the command below to clean the cached files from enabled repositories:

$ sudo yum clean all

3.6.4.2.4.6 Install ROCm Meta-Packages

Use the following command to install the ROCm packages.

$ sudo yum install <package-name>

Specify the meta-package name as <package-name>, which you want to install, in the command given above.

For example,

• $ sudo yum install rocm-hip-sdk

• $ sudo yum install rocm-hip-sdk rocm-opencl-sdk

3.6. ROCm Installation Guide v4.5 55

ROCm Documentation, Release 4.5.0

3.6.4.2.5 Using Package Manager on SLES/OpenSUSE

This section introduces the ROCm installation process on SLES/OpenSUSE.

3.6.4.2.5.1 Installation of Kernel Headers and Development Packages

ROCm installation requires linux-headers and linux-modules-extra package to be installed with the correct version
corresponding to the kernel’s version. For example, if the system is running the Linux kernel version 4.0-77, the same
versions of linux-headers and development packages must be installed.

Refer to the Kernel Information section to check the kernel version on your system.

Ensure that the correct version of the latest kernel-default-devel and kernel-default packages are installed. The follow-
ing command lists the installed kernel-default-devel and kernel-default package.

$ sudo zypper info kernel-default-devel or kernel-default

NOTE: This next step is only required if you find from the above command that the “kernel-default-devel” and
“kernel-default” versions of the package, corresponding to the kernel release version, do not exist on your system.

If the required version of packages does not exist on the system, install with the command below:

$ sudo zypper install kernel-default-devel or kernel-default

3.6.4.2.5.2 Base URLs For AMDGPU And ROCm Stack Repositories

Repositories with Latest Packages

• amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/sle/15/main/x86_64

• rocm baseurl:https://repo.radeon.com/rocm/zyp/zypper

Repositories for Specific Releases

• amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/sle/15/main/x86_64

• rocm baseurl=https://repo.radeon.com/rocm/zyp/4.5/

3.6.4.2.5.3 Adding AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the
kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

Add the AMDGPU Stack Repository

Create a /etc/zypp/repos.d/amdgpu.repo file with the following content.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for
AMDGPU and ROCm Stack Repositories.

[amdgpu]
name=amdgpu
baseurl=<amdgpu_basurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

56 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verification
fails while updating, re-add the key from the ROCm zypp repository as mentioned above. The current rocm.gpg.key
is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Use the following commands to update the added repository, and add the Perl repository:

$ sudo zypper ref
$ sudo zypper clean --all
$ sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/
→˓SLE_15/devel:languages:perl.repo
$ sudo SUSEConnect -p sle-module-desktop-applications/15.3/x86_64
$ sudo SUSEConnect --product sle-module-development-tools/15.3/x86_64
$ sudo SUSEConnect--product PackageHub/15.3/x86_64
$ sudo zypper ref

3.6.4.2.5.4 Install the Kernel Mode Driver and Reboot System

Install the kernel-mode driver. If you already have a version of the kernel-mode driver installed, you may skip this
section. If you do not have a version of the kernel-mode driver installed, follow the commands below to install and
reboot the system.

$ sudo zypper --gpg-auto-import-keys install amdgpu-dkms
$ sudo reboot

3.6.4.2.5.5 Add the ROCm Stack Repository

Add the ROCm repository by executing the following commands,

Create a /etc/zypp/repos.d/rocm.repo file with the following content.

For <rocm baseurl> in the command below, refer to the ROCm base URLs documented in Base URLs for AMDGPU
and ROCm Stack Repositories.

[rocm]
name=rocm
baseurl=<rocm_baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change. Ensure it is updated when installing a new release. If the key signature verification
fails while updating, re-add the key from the ROCm zypp repository as mentioned above. The current rocm.gpg.key
is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Use the following command to update the added repository.

$ sudo zypper ref

3.6. ROCm Installation Guide v4.5 57

ROCm Documentation, Release 4.5.0

3.6.4.2.5.6 Install ROCm Meta-Packages

Install the ROCm package by typing the command below:

$ sudo zypper --gpg-auto-import-keys install <package-name>

Specify the name of the meta-package name as <package-name>, which you want to install, in the command given
above. For example,

• $ sudo zypper –gpg-auto-import-keys install rocm-hip-sdk

• $ sudo zypper –gpg-auto-import-keys install rocm-hip-sdk rocm-opencl-sdk

3.6.4.3 Verification Process

3.6.4.3.1 Verifying ROCm Installation

After completing the ROCm installation, users can execute the following commands on the system to verify if the
installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm-<version>/bin/rocminfo

OR

/opt/rocm-<version>/opencl/bin/clinfo

NOTE: For convenience, users may add the ROCm binaries in your PATH, as shown in the example below.

$ echo ‘export PATH=$PATH:/opt/rocm-<version>/bin:/opt/rocm-<version>/opencl/bin’

3.6.4.3.2 Verifying Package Installation

Users can use the following commands to ensure the packages are installed successfully.

Linux Distro Command
Ubuntu/Debian $ sudo apt list –installed
RHEL/CentOS $ sudo yum list installed
OpenSUSE / SLES $ sudo zypper search –installed-only

3.6.5 ROCm Stack Uninstallation

Uninstallation of ROCm entails removing ROCm packages, tools, and libraries from the system.

58 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.6.5.1 Uninstalling ROCm Stack

3.6.5.1.1 Removing ROCm Toolkit and Driver

This section describes the uninstallation process in detail. The following methods remove the ROCm stack from the
system.

3.6.5.1.2 Choosing an Uninstallation Method

You can uninstall using the following methods:

• Uninstallation using the Uninstall Script

• Package Manager uninstallation

3.6.5.1.2.1 Uninstallation Using Uninstall Script

The following commands uninstall all installed ROCm packages:

$ sudo amdgpu-uninstall

NOTE: amdgpu-uninstall ignores all parameters/arguments and uninstalls all ROCm packages.

Refer to the Uninstall Kernel Mode Driver section to uninstall the kernel-mode driver.

3.6.5.1.2.2 Uninstallation Using Package Manager

The Package Manager uninstallation offers a method for a clean uninstallation process for ROCm. This section de-
scribes how to uninstall the ROCm for various Linux distributions.

Use the following commands to remove the specific meta-packages from the system.

Uninstalling Specific Meta-packages

Use the following command to uninstall specific meta-packages. You may specify the name of the meta-package name
as <package-name> you want to uninstall in the command given below.

UBUNTU/DEBIAN

$ sudo apt autoremove <package-name>

RHEL/CentOS

$ sudo yum remove <package-name>

SLES/OPENSUSE

$ sudo zypper remove <package-name>

Complete Uninstallation of ROCm Packages

If you want to uninstall all installed ROCm packages, use the following command as uninstallation of rocm-core
package removes all the ROCm specific packages from the system.

UBUNTU/DEBIAN

3.6. ROCm Installation Guide v4.5 59

ROCm Documentation, Release 4.5.0

$ sudo apt autoremove rocm-core

RHEL/CentOS

$ sudo yum remove rocm-core

SLES/OPENSUSE

$ sudo zypper remove rocm-core

NOTE: The command above removes all ROCm-specific packages.

Refer to the Uninstall Kernel Mode Driver section below to uninstall the kernel-mode driver uninstallation.

Uninstall Kernel Mode Driver

Users can uninstall the kernel-mode driver by entering the following command on the system.

UBUNTU/DEBIAN

$ sudo apt autoremove amdgpu-dkms

RHEL/CentOS

$ sudo yum remove amdgpu-dkms

SLES/OPENSUSE

$ sudo zypper remove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

UBUNTU/DEBIAN

Use the following commands to remove the AMDGPU and ROCm repository from the Ubuntu/Debian system:

$ sudo rm /etc/apt/sources.list.d/<rocm_repository-name>.list
$ sudo rm /etc/apt/sources.list.d/<amdgpu_repository-name>.list

Clear cache and clean the system.

$ sudo rm -rf /var/cache/apt/*
$ sudo apt-get clean all

Reboot the system.

$ sudo reboot

RHEL/CentOS

This section describes the process of removing AMDGPU and ROCm repositories from the RHEL/CentOS environ-
ment.

Remove the reference to the AMDGPU and ROCm repository from the system using the following instructions

$ sudo rm -rf /etc/yum.repos.d/<rocm_repository-name> # Remove only rocm repo
$ sudo rm -rf /etc/yum.repos.d/<amdgpu_repository-name> # Remove only amdgpu repo

Clear cache and clean the system.

60 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

$ sudo rm -rf /var/cache/yum #Remove the cache
$ sudo yum clean all

Restart the system.

$ sudo reboot

SLES/OPENSUSE

This section describes the process of removing AMDGPU and ROCm repositories from the SLES/OPENSUSE envi-
ronment.

Remove the reference to the amdgpu and ROCm repository from the system with the commands below.

$ sudo zypper removerepo <rocm_repository-name>
$ sudo zypper removerepo <amdgpu_repository-name>

Clear cache and clean the system.

$ sudo zypper clean --all

Restart the system.

$ sudo reboot

3.6.6 Troubleshooting

Issue

If the amdgpu-install script is executed inside Docker, the system may display the following error while installing
various use cases.

$ sudo amdgpu-install --usecase=rocm

Resolution

When the installation is initiated in Docker, the installer tries to install the use case along with the kernel-mode driver.
However, the kernel-mode driver cannot be installed in a Docker system. To skip the installation of the kernel-mode
driver, proceed with the option –no-dkms, as shown in the command below.

$ sudo amdgpu-install --usecase=rocm --no-dkms

3.6. ROCm Installation Guide v4.5 61

ROCm Documentation, Release 4.5.0

3.6.7 Frequently Asked Questions

Can users install multiple packages at the same time with the installer script?

Yes, users can install multiple packages at the same time with the installer script. Provide package names in the
–usecase parameter, separated by a comma, as shown below.

$ sudo amdgpu-install --usecase=hiplibsdk,rocm

How to list all the possible inputs for the –usecase parameter in the amdgpu-install script?

The following command lists all the possible options for –usecase

amdgpu-install --list-usecase

What are the available options other than the –usecase in the amdgpu-install script?

The following command lists all possible options users can provide in the amdgpu-install script.

$ sudo amdgpu-install --help

How to check if the kernel module is installed successfully?

Type the following command on the system.

$ sudo dkms status

The command displays the output in the following format if the installation of the kernel module is successful.

amdgpu, 4.3-52.el7, 3.10.0-1160.11.1.el7.x86_64, x86_64: installed (original_module
→˓exists)

Does the Docker container support command - $ sudo SUSEConnect –product PackageHub/15.2/x86_64?

Users do not need to execute the following command in Docker container.

$ sudo SUSEConnect --product PackageHub/15.2/x86_64

3.7 HIP Installation v4.5

HIP can be easily installed using the pre-built binary packages with the package manager for your platform.

62 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.7.1 HIP Prerequisites

HIP code can be developed either on AMD ROCm platform using HIP-Clang compiler, or a CUDA platform with
NVCC installed.

3.7.2 AMD Platform

sudo apt install mesa-common-dev
sudo apt install clang
sudo apt install comgr
sudo apt-get -y install rocm-dkms

HIP-Clang is the compiler for compiling HIP programs on AMD platform.

HIP-Clang can be built manually:

git clone -b roc-4.5.x https://github.com/RadeonOpenCompute/llvm-project.git
cd llvm-project
mkdir -p build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_
→˓ASSERTIONS=1 -
DLLVM_TARGETS_TO_BUILD="AMDGPU;X86" - DLLVM_ENABLE_PROJECTS="clang;lld;compiler-rt" ..
→˓/llvm
make -j
sudo make install

The ROCm device library can be manually built as following,

export PATH=/opt/rocm/llvm/bin:$PATH
git clone -b roc-4.5.x https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git
cd ROCm-Device-Libs
mkdir -p build && cd build
CC=clang CXX=clang++ cmake -DLLVM_DIR=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -
→˓DLLVM_ENABLE_WERROR=1 -DLLVM_ENABLE_ASSERTIONS=1 -DCMAKE_INSTALL_PREFIX=/opt/rocm ..
make -j
sudo make install

3.7.3 NVIDIA Platform

HIP-nvcc is the compiler for HIP program compilation on NVIDIA platform.

• Add the ROCm package server to your system as per the OS-specific guide available here.

• Install the “hip-runtime-nvidia” and “hip-devel” package. This will install CUDA SDK and the HIP porting
layer.

apt-get install hip-runtime-nvidia hip-devel

• Default paths and environment variables:

– By default HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting CUDA_PATH env
variable).

– By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment vari-
able).

– Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

3.7. HIP Installation v4.5 63

https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories

ROCm Documentation, Release 4.5.0

3.7.4 Building HIP from Source

3.7.4.1 Get HIP source code

git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hipamd.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hip.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/ROCclr.git
git clone -b rocm-4.5.x https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime.git

3.7.4.2 Set the environment variables

export HIPAMD_DIR="$(readlink -f hipamd)"
export HIP_DIR="$(readlink -f hip)"
export ROCclr_DIR="$(readlink -f ROCclr)"
export OPENCL_DIR="$(readlink -f ROCm-OpenCL-Runtime)"

ROCclr is defined on AMD platform that HIP use Radeon Open Compute Common Language Runtime (ROCclr),
which is a virtual device interface that HIP runtimes interact with different backends.

See https://github.com/ROCm-Developer-Tools/ROCclr

HIPAMD repository provides implementation specifically for AMD platform. See https://github.com/
ROCm-Developer-Tools/hipamd

3.7.4.3 Build HIP

cd "$HIPAMD_DIR"
mkdir -p build; cd build
cmake -DHIP_COMMON_DIR=$HIP_DIR -DAMD_OPENCL_PATH=$OPENCL_DIR -DROCCLR_PATH=$ROCCLR_
→˓DIR -DCMAKE_PREFIX_PATH="/opt/rocm/" -DCMAKE_INSTALL_PREFIX=$PWD/install ..
make -j$(nproc)
sudo make install

Note: If you don’t specify CMAKE_INSTALL_PREFIX, hip runtime will be installed to “/opt/rocm/hip”. By default,
release version of AMDHIP is built.

3.7.4.4 Default paths and environment variables

• By default HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH environment variable).

• By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).

• By default HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting HIP_CLANG_PATH envi-
ronment variable)

• By default HIP looks for device library in /opt/rocm/lib (can be overridden by setting DEVICE_LIB_PATH
environment variable)

• Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools

• Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation

After installation, make sure HIP_PATH is pointed to /where/to/install/hip

64 Chapter 3. ROCm Learning Center

https://github.com/ROCm-Developer-Tools/ROCclr
https://github.com/ROCm-Developer-Tools/hipamd
https://github.com/ROCm-Developer-Tools/hipamd

ROCm Documentation, Release 4.5.0

3.7.4.5 Verify your installation

Run hipconfig (instructions below assume default installation path):

/opt/rocm/bin/hipconfig --full

Compile and run the square sample. You can access the square sample at,

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

3.8 ROCm Installation v4.3

• Deploying ROCm

• Prerequisites

• Supported Operating Systems

– Ubuntu

– CentOS RHEL

– SLES 15 Service Pack 2

• ROCm Installation Known Issues and Workarounds

• Getting the ROCm Source Code

3.8.1 Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer
versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-
dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox
OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

3.8. ROCm Installation v4.3 65

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square
https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

ROCm Documentation, Release 4.5.0

3.8.1.1 ROCm Repositories

Use the following ROCm repositories for the required major and point releases:

• Major releases - https://repo.radeon.com/rocm/yum/rpm/

• Point releases - https://repo.radeon.com/rocm/yum/4.3/

3.8.1.2 Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

1. Remove rock-dkms before the upgrade.

2. Install the new kernel.

3. Reboot the system.

4. Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any
issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

3.8.2 Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work
with ROCm, however, they are not officially supported.

66 Chapter 3. ROCm Learning Center

https://repo.radeon.com/rocm/yum/rpm/
https://repo.radeon.com/rocm/yum/4.3/

ROCm Documentation, Release 4.5.0

3.8.2.1 Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default
package repositories. Use the following commands to add repositories that have the required Perl packages:

• For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

• For CentOS8.3

sudo yum config-manager --set-enabled powertools

• For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

3.8.2.2 Complete Reinstallation OF AMD ROCm V4.3 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade
from previous releases to AMD ROCm v4.3 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions.
You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher
versions and vice-versa.

• For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

• For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is
because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an
operating system upgrade.

3.8.2.3 Multi-version Installation Updates

With the AMD ROCm v4.3 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-
dkms3.7.0, rocm-dkms3.8.0.

• Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the
desired ROCm versions. For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

• ‘version’ files should be created for each multi-version rocm <= 4.3.0

– command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

– example: echo 4.3.0 | sudo tee /opt/rocm-4.3.0/.info/version

• The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

• ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users
must set LD_LIBRARY_PATH to load the ROCm library version of choice.

3.8. ROCm Installation v4.3 67

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

ROCm Documentation, Release 4.5.0

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for
single version installs and is not deprecated at this time.

Note: Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related
issues.

3.8.3 Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

1. Issue the following command to check the groups in your system:

groups

2. Add yourself to the video group using the following instruction:

sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use video group. By default, you can add any future users to
the video and render groups.

Note: render group is required only for Ubuntu v20.04.

3. To add future users to the video and render groups, run the following command:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

3.8.4 Supported Operating Systems

3.8.4.1 Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work
with ROCm, however, they are not officially supported.

3.8.4.1.1 Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

1. Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

2. Add the ROCm apt repository.

68 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Key: https://repo.radeon.com/rocm/rocm.gpg.key

sudo apt install wget gnupg2

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ ubuntu main'
→˓| sudo tee /etc/apt/sources.list.d/rocm.list

For example

For the current version of ROCm, ensure you replace <ROCm_version#> with debian.

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ ubuntu main' | sudo
→˓tee /etc/apt/sources.list.d/rocm.list

For older versions of ROCm, replace <ROCm_version#> with any ROCm versions number like 4.3.1, 4.3 or 4.2.

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.3/ ubuntu main' | sudo tee /
→˓etc/apt/sources.list.d/rocm.list

Note: For ROCm v4.1 and lower, use ‘xenial main’, instead of ‘ubuntu main’, as shown below.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ xenial main'
→˓| sudo tee /etc/apt/sources.list.d/rocm.list

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ ubuntu main' | sudo tee /
→˓etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select
a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails
while updating, re-add the key from the ROCm apt repository.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

3. Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

4. Restart the system.

5. After restarting the system, run the following commands to verify that the ROCm installation is successful. If
you see your GPUs listed by both commands, the installation is considered successful.

3.8. ROCm Installation v4.3 69

https://repo.radeon.com/rocm/rocm.gpg.key
https://repo.radeon.com/rocm/apt/

ROCm Documentation, Release 4.5.0

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin'
→˓| sudo tee -a /etc/profile.d/rocm.sh

3.8.4.1.2 Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

3.8.4.1.3 Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used
must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm
user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules

3.8.4.2 CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

3.8.4.2.1 Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7
environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

1. The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and
license page for instructions on registering your system with the RHEL subscription server and attaching to a
pool id.

2. Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

3. Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8
repository RPM:

sudo rpm -ivh <repo>

For more details,

70 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

• see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

• see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

4. Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/
scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

5. Add the ROCm GPG key

sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key

3.8.4.2.1.1 Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

3.8.4.2.2 Installing ROCm

To install ROCm on your system, follow the instructions below:

1. Delete the previous versions of ROCm before installing the latest version.

2. Create a /etc/yum.repos.d/rocm.repo file with the following contents:

• CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

• CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/rpm
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer
systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository
from:

https://repo.radeon.com/rocm/yum/

3. Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

4. Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

5. Restart the system.

6. Test the ROCm installation.

3.8. ROCm Installation v4.3 71

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/
https://repo.radeon.com/rocm/yum/rpm
https://repo.radeon.com/rocm/centos8/rpm
https://repo.radeon.com/rocm/yum/

ROCm Documentation, Release 4.5.0

3.8.4.2.3 Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see
your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' |
→˓sudo tee -a /etc/profile.d/rocm.sh

3.8.4.2.4 Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environ-
ment:

scl enable devtoolset-7 bash

3.8.4.2.5 Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

3.8.4.2.6 Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used
must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm
user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

3.8.4.2.7 Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems
may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your
development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

72 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.8.4.3 SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may
result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make
the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

1. Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

2. Add the ROCm repo.

sudo zypper clean -all
sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/
→˓SLE_15/devel:languages:perl.repo
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select
a versioned repository from:

https://repo.radeon.com/rocm/zyp/

3. Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

4. Verify the ROCm installation.

5. Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the
ROCm installation is successful.

6. Restart the system.

7. Test the basic ROCm installation.

8. After restarting the system, run the following commands to verify that the ROCm installation is successful. If
you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

3.8. ROCm Installation v4.3 73

https://www.suse.com/support/kb/doc/?id=000016939
https://repo.radeon.com/rocm/zyp/

ROCm Documentation, Release 4.5.0

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a
/etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed. Note: Ensure all the content in the /opt/rocm
directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you
remove them individually.

3.8.4.3.1 Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with
a limited amount of storage space, or which will only run a small collection of known applications, you may want
to install only the packages that are required to run OpenCL applications. To do that, you can run the following
installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

3.8.5 ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support.
These components are only available through the ROCm repositories, and they may be deprecated or become open
source components in the future. These components are made available in the following packages:

• hsa-ext-rocr-dev

3.8.6 Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm
by downloading the source code and rebuilding the components. The source code for ROCm components can be
cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of
these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to
download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following com-
mands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

74 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.8.7 Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a
directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.3.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm
release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

3.9 Multi Version Installation

Users can install and access multiple versions of the ROCm toolkit simultaneously.

Previously, users could install only a single version of the ROCm toolkit.

Now, users have the option to install multiple versions simultaneously and toggle to the desired version of the ROCm
toolkit. From the v3.3 release, multiple versions of ROCm packages can be installed in the /opt/rocm-<version>
folder.

3.9.1 Prerequisites

Ensure the existing installations of ROCm, including /opt/rocm, are completely removed before the ROCm toolkit
installation. The ROCm package requires a clean installation.

• To install a single instance of ROCm, use the rocm-dkms or rocm-dev packages to install all the required
components. This creates a symbolic link /opt/rocm pointing to the corresponding version of ROCm installed
on the system.

• To install individual ROCm components, create the /opt/rocm symbolic link pointing to the version of ROCm
installed on the system. For example, # ln -s /opt/rocm-4.0.0 /opt/rocm

• To install multiple instance ROCm packages, create /opt/rocm symbolic link pointing to the version of ROCm
installed/used on the system. For example, # ln -s /opt/rocm-4.0.0 /opt/rocm

Note: The Kernel Fusion Driver (KFD) must be compatible with all versions of the ROCm software installed on the
system.

3.9. Multi Version Installation 75

ROCm Documentation, Release 4.5.0

3.9.2 Before You Begin

Review the following important notes:

Single Version Installation

To install a single instance of the ROCm package, access the non-versioned packages.

Note: You must not install any components from the multi-instance set.

For example,

• rocm-dkms

• rocm-dev

• hip

A fresh installation of single-version installation will install the new version in the /opt/rocm-<version> folder.

Multi Version Installation

• To install a multi-instance of the ROCm package, access the versioned packages and components.

For example,

• rocm-dev4.2.0

• hip4.2.0

• kernel/firmware package doesn’t have multi version so it should be installed using “apt/yum/zypper install rock-
dkms”.

• The new multi-instance package enables you to install two versions of the ROCm toolkit simultaneously and
provides the ability to toggle between the two versioned packages.

• The ROCm-DEV package does not create symlinks

76 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

• Users must create symlinks if required

• Multi-version installation with previous ROCm versions is not supported

• Kernel Fusion Driver (KFD) must be compatible with all versions of ROCm installations

IMPORTANT: A single instance ROCm package cannot co-exist with the multi-instance package.

NOTE: The multi-instance installation applies only to ROCm v3.3 and above. This package requires a fresh in-
stallation after the complete removal of existing ROCm packages. The multi-version installation is not backward
compatible.

Note: If you install the multi-instance version of AMD ROCm and create a sym-link to /opt/rocm, you must run
‘Idconfig’ to ensure the software stack functions correctly with the sym-link.

3.9. Multi Version Installation 77

ROCm Documentation, Release 4.5.0

3.10 Using CMake with AMD ROCm

Most components in AMD ROCm support CMake 3.5 or higher out-of-the-box and do not require any special Find
modules. A Find module is often used by downstream to find the files by guessing locations of files with platform-
specific hints. Typically, the Find module is required when the upstream is not built with CMake or the package
configuration files are not available.

AMD ROCm provides the respective config-file packages, and this enables find_package to be used directly.
AMD ROCm does not require any Find module as the config-file packages are shipped with the upstream projects.

3.10.1 Finding Dependencies

When dependencies are not found in standard locations such as /usr or /usr/local, then the CMAKE_PREFIX_PATH
variable can be set to the installation prefixes. This can be set to multiple locations with a semicolon separating the
entries.

There are two ways to set this variable:

• Pass the flag when configuring with -DCMAKE_PREFIX_PATH=.... This approach is preferred when users
install the components in custom locations.

• Append the variable in the CMakeLists.txt file. This is useful if the dependencies are found in a common
location. For example, when the binaries provided on repo.radeon.com are installed to /opt/rocm, you can add
the following line to a CMakeLists.txt file

list (APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)

3.10.2 Using HIP in CMake

There are two ways to use HIP in CMake:

• Use the HIP API without compiling the GPU device code. As there is no GPU code, any C or C++ compiler
can be used. The find_package(hip) provides the hip::host target to use HIP in this context

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)
Create the library
add_library(myLib ...)
Link with HIP
target_link_libraries(myLib hip::host)

Note: The hip::host target provides all the usage requirements needed to use HIP without compiling GPU device
code.

• Use HIP API and compile GPU device code. This requires using a device compiler. The compiler for CMake
can be set using either the CMAKE_C_COMPILER and CMAKE_CXX_COMPILER variable or using the CC and
CXX environment variables. This can be set when configuring CMake or put into a CMake toolchain file. The
device compiler must be set to a compiler that supports AMD GPU targets, which is usually Clang.

The find_package(hip) provides the hip::device target to add all the flags for device compilation

78 Chapter 3. ROCm Learning Center

http://repo.radeon.com

ROCm Documentation, Release 4.5.0

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)
Create library
add_library(myLib ...)
Link with HIP
target_link_libraries(myLib hip::device)

This project can then be configured with:

cmake -DCMAKE_C_COMPILER=/opt/rocm/llvm/bin/clang -DCMAKE_CXX_COMPILER=/opt/rocm/llvm/
→˓bin/clang++ ..

Which uses the device compiler provided from the binary packages from repo.radeon.com.

Note: Compiling for the GPU device requires at least C++11. This can be enabled by setting
CMAKE_CXX_STANDARD or setting the correct compiler flags in the CMake toolchain.

The GPU device code can be built for different GPU architectures by setting the GPU_TARGETS variable. By default,
this is set to all the currently supported architectures for AMD ROCm. It can be set by passing the flag during
configuration with -DGPU_TARGETS=gfx900. It can also be set in the CMakeLists.txt as a cached variable before
calling find_package(hip):

Set the GPU to compile for
set(GPU_TARGETS "gfx900" CACHE STRING "GPU targets to compile for")
Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)

3.10.3 Using AMD ROCm Libraries

Libraries such as rocBLAS, MIOpen, and others support CMake users as well.

As illustrated in the example below, to use MIOpen from CMake, you can call find_package(miopen), which
provides the MIOpen CMake target. This can be linked with target_link_libraries:

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find miopen
find_package(miopen)
Create library
add_library(myLib ...)
Link with miopen
target_link_libraries(myLib MIOpen)

Note: Most libraries are designed as host-only API, so using a GPU device compiler is not necessary for downstream
projects unless it uses the GPU device code.

3.10. Using CMake with AMD ROCm 79

http://repo.radeon.com

ROCm Documentation, Release 4.5.0

3.10.4 ROCm CMake Packages

Com-
ponent

Pack-
age

Targets

HIP hip hip::host, hip::device
rocPRIM rocprim roc::rocprim
roc-
Thrust

roc-
thrust

roc::rocthrust

hipCUB hipcub hip::hipcub
ro-
cRAND

ro-
crand

roc::rocrand

rocBLAS rocblas roc::rocblas
roc-
SOLVER

roc-
solver

roc::rocsolver

hip-
BLAS

hip-
blas

roc::hipblas

rocFFT rocfft roc::rocfft
hipFFT hipfft hip::hipfft
roc-
SPARSE

roc-
sparse

roc::rocsparse

hipSPARSEhipsparseroc::hipsparse
rocA-
LU-
TION

roca-
lution

roc::rocalution

RCCL rccl rccl
MIOpen miopen MIOpen
MI-
GraphX

mi-
graphx

migraphx::migraphx, migraphx::migraphx_c, migraphx::migraphx_cpu, mi-
graphx::migraphx_gpu, migraphx::migraphx_onnx, migraphx::migraphx_tf

3.11 Mesa Multimedia Installation

3.11.1 Prerequisites

• Ensure you have ROCm installed on the system.

For ROCm installation instructions, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

80 Chapter 3. ROCm Learning Center

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

ROCm Documentation, Release 4.5.0

3.11.1.1 System Prerequisites

The following operating systems are supported for Mesa Multimedia:

• Ubuntu 18.04.3

• Ubuntu 20.04, including dual kernel

3.11.1.2 Installation Prerequisites

1. Obtain the AMDGPU driver from https://www.amd.com/en/support/kb/release-notes/
rn-amdgpu-unified-linux-20-45 for the appropriate distro version.

2. Follow the pre-installation instructions at https://amdgpu-install.readthedocs.io/en/latest/ (from “Preamble” to
“Using the amdgpu-install Script” sections).

3. Proceed with the installation instructions as documented in the next section.

3.11.2 Installation Instructions

1. Use the following installation instructions to install Mesa Multimeda:

| ./amdgpu-install -y --no-dkms

Note:

Run it from the directory where the download is unpacked. The download and install instructions are:

$ cd ~/Downloads
$ tar -Jxvf amdgpu-pro-YY.XX-NNNNNN.tar.xz
$ cd ~/Downloads/amdgpu-pro-YY.XX-NNNNNN
$./amdgpu-install -y –no-dkms

2. gstreamer Installation

sudo apt-get -y install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-
→˓plugins-good gstreamer1.0-plugins-ugly gstreamer1.0-plugins-bad gstreamer1.0-
→˓vaapi gstreamer1.0-libav gstreamer1.0-tools

sudo apt-get -y install gst-omx-listcomponents gstreamer1.0-omx-bellagio-config
→˓gstreamer1.0-omx-generic gstreamer1.0-omx-generic-config

3. Utilities Installation

sudo apt-get -y install mediainfo ffmpeg

sudo reboot

Check amdgpu loadking status after reboot

dmesg | grep -i initialized

(continues on next page)

3.11. Mesa Multimedia Installation 81

https://www.amd.com/en/support/kb/release-notes/rn-amdgpu-unified-linux-20-45
https://www.amd.com/en/support/kb/release-notes/rn-amdgpu-unified-linux-20-45
https://amdgpu-install.readthedocs.io/en/latest/

ROCm Documentation, Release 4.5.0

(continued from previous page)

Sep 24 13:00:42 jz-tester kernel: [277.120055] [drm] VCN decode and encode
→˓initialized successfully.

Sep 24 13:00:42 jz-tester kernel: [277.121654] [drm] Initialized amdgpu 3.34.0
→˓20150101 for 0000:03:00.0 on minor 1

4. Configure Running Environment Variables

export BELLAGIO_SEARCH_PATH=/opt/amdgpu/lib/x86_64-linux-gnu/libomxil-bellagio0:/opt/
→˓amdgpu/lib/libomxil-bellagio0

export GST_PLUGIN_PATH=/opt/amdgpu/lib/x86_64-linux-gnu/gstreamer-1.0/

export GST_VAAPI_ALL_DRIVERS=1

export OMX_RENDER_NODE=/dev/dri/renderD128

3.11.3 Check Installation

1. Ensure you perform an installation check.

omxregister-bellagio -v

Scanning directory /opt/amdgpu/lib/libomxil-bellagio0/

Scanning library /opt/amdgpu/lib/libomxil-bellagio0/libomx_mesa.so

Component OMX.mesa.video_decoder registered with 0 quality levels

Specific role OMX.mesa.video_decoder.mpeg2 registered

Specific role OMX.mesa.video_decoder.avc registered

Specific role OMX.mesa.video_decoder.hevc registered

Component OMX.mesa.video_encoder registered with 0 quality levels

Specific role OMX.mesa.video_encoder.avc registered

2 OpenMAX IL ST static components in 1 library successfully scanned

gst-inspect-1.0 omx

Plugin Details

82 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Name OMX
Description GStreamer OpenMAX Plug-ins
Filename /usr/lib/x86_64-linux-gnu/ gstreamer-1.0/libgstomx.so
Version 1.12.4
License LGPL
Source module gst-omx
Source release date 2017-12-07
Binary package GStreamer OpenMAX Plug-ins source release
Origin URL Unknown package origin

omxmpeg2dec: OpenMAX MPEG2 Video Decoder

omxh264dec: OpenMAX H.264 Video Decoder

omxh264enc: OpenMAX H.264 Video Encoder

3. Features

+-- 3 elements

gst-inspect-1.0 vaapi

Plugin Details

Name vaapi
Description VA-API based elements
Filename /usr/lib/x86_64-linux-gnu/ gstreamer-

1.0/libgstvaapi.so
Version 1.14.5
License LGPL
Source module gstreamer-vaapi
Source release date 2019-05-29
Binary package gstreamer-vaapi
Origin URL

http://bugzilla.gnome.org
/enter_bug.cgi?product=GStreamer

vaapijpegdec: VA-API JPEG decoder
vaapimpeg2dec: VA-API MPEG2 decoder
vaapih264dec: VA-API H264 decoder
vaapivc1dec: VA-API VC1 decoder
vaapivp9dec: VA-API VP9 decoder
vaapih265dec: VA-API H265 decoder
vaapipostproc: VA-API video postprocessing
vaapidecodebin: VA-API Decode Bin
vaapisink: VA-API sink
vaapih265enc: VA-API H265 encoder
vaapih264enc: VA-API H264 encoder

11 Features

(continues on next page)

3.11. Mesa Multimedia Installation 83

http://bugzilla.gnome.org

ROCm Documentation, Release 4.5.0

(continued from previous page)

+-- 11 elements

3.12 Tools Installation

3.12.1 ROCTracer

ROC-tracer library: Runtimes Generic Callback/Activity APIs.

The goal of the implementation is to provide a generic installation independent from the specific runtime profiler to
trace API and asyncronous activity.

The following API provides the functionality to register runtimes API callbacks and asyncronous activity records pool
support.

3.12.1.1 ROC-TX library: code annotation events API

Includes basic API: roctxMark, roctxRangePush, roctxRangePop

3.12.1.2 Usage

3.12.1.2.1 rocTracer API

To use the rocTracer API, you need the API header to link your application with roctracer .so librray:

• API header: /opt/rocm/roctracer/include/roctracer.h

• .so library: /opt/rocm/lib/libroctracer64.so

3.12.1.2.2 rocTX API

To use the rocTX API, you need the API header to link your application with roctx .so librray:

• API header: /opt/rocm/roctracer/include/roctx.h

• .so library: /opt/rocm/lib/libroctx64.so

84 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.12.1.2.3 Library source tree

• doc - documentation

• inc/roctracer.h - rocTacer library public API header

• inc/roctx.h - rocTX library puiblic API header

• src - Library sources

– core - rocTracer library API sources

– roctx - rocTX library API sources

– util - library utils sources

• test - test suit

– MatrixTranspose - test based on HIP MatrixTranspose sample

3.12.1.2.4 API Description

‘roctracer’ / ‘rocTX’ profiling C API specification

3.12.1.2.5 Code examples

• test/MatrixTranspose_test/MatrixTranspose.cpp

• test/MatrixTranspose/MatrixTranspose.cpp

3.12.1.2.6 Build and run test

Prequisites

• ROCm

• Python modules: CppHeaderParser, argparse

1. Install CppHeaderParser, argparse

sudo pip install CppHeaderParser argparse

2. Clone development branch of ROCTracer

git clone -b amd-master https://github.com/ROCm-Developer-Tools/roctracer

3. Set environment

export CMAKE_PREFIX_PATH=/opt/rocm

4. Use custom HIP version

export HIP_PATH=/opt/rocm/hip

5. Build roctracer library

export CMAKE_BUILD_TYPE=<debug|release> # release by default
cd <your path>/roctracer && BUILD_DIR=build HIP_VDI=1 ./build.sh

3.12. Tools Installation 85

ROCm Documentation, Release 4.5.0

6. Build and run test

make mytest
run.sh

7. Install

make install

or

make package && dpkg -i *.deb

3.13 Software Stack for AMD GPU

3.13.1 Machine Learning and High Performance Computing Software Stack for
AMD GPU v4.1

3.13.1.1 ROCm Binary Package Structure

ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools. In AMD’s
package distributions, these software projects are provided as a separate packages. This allows users to install only
the packages they need, if they do not wish to install all of ROCm. These packages will install most of the ROCm
software into /opt/rocm/ by default.

The packages for each of the major ROCm components are:

3.13.1.1.1 ROCm Core Components

• ROCk Kernel Driver: rock-dkms rock-dkms-firmware

• ROCr Runtime: hsa-rocr-dev

• ROCt Thunk Interface: hsakmt-roct, hsakmt-roct-dev

86 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.13.1.1.2 ROCm Support Software

• ROCm SMI: rocm-smi

• ROCm cmake: rocm-cmake

• rocminfo: rocminfo

• ROCm Bandwidth Test: rocm_bandwidth_test

3.13.1.1.3 ROCm Compilers

• Clang compiler: llvm-amdgpu

• HIP: hip_base, hip_doc, hip_rocclr, hip_samples

• ROCM Clang-OCL Kernel Compiler: rocm-clang-ocl

3.13.1.1.4 ROCm Device Libraries

• ROCm Device Libraries: rocm-device-libs

• ROCm OpenCL: rocm-opencl, rocm-opencl-devel (on RHEL/CentOS), rocm-opencl-dev (on
Ubuntu)

3.13.1.1.5 ROCm Development ToolChain

• Asynchronous Task and Memory Interface (ATMI): atmi

• ROCm Debug Agent: rocm_debug_agent

• ROCm Code Object Manager: comgr

• ROC Profiler: rocprofiler-dev

• ROC Tracer: roctracer-dev

3.13.1.1.6 ROCm Libraries

• rocALUTION: rocalution

• rocBLAS: rocblas

• hipBLAS: hipblas

• hipCUB: hipCUB

• rocFFT: rocfft

• rocRAND: rocrand

• rocSPARSE: rocsparse

• hipSPARSE: hipsparse

• ROCm SMI Lib: rocm-smi-lib64

• rocThrust: rocThrust

• MIOpen: MIOpen-HIP (for the HIP version), MIOpen-OpenCL (for the OpenCL version)

3.13. Software Stack for AMD GPU 87

ROCm Documentation, Release 4.5.0

• MIOpenGEMM: miopengemm

• MIVisionX: mivisionx

• RCCL: rccl

To make it easier to install ROCm, the AMD binary repositories provide a number of meta-packages that will au-
tomatically install multiple other packages. For example, rocm-dkms is the primary meta-package that is used to
install most of the base technology needed for ROCm to operate. It will install the rock-dkms kernel driver, and
another meta-package (rocm-dev) which installs most of the user-land ROCm core components, support software,
and development tools.

The rocm-utils meta-package will install useful utilities that, while not required for ROCm to operate, may still be
beneficial to have. Finally, the rocm-libs meta-package will install some (but not all) of the libraries that are part of
ROCm.

The chain of software installed by these meta-packages is illustrated below:

rocm-dkms
rock-dkms
rocm-dev

comgr
hip-base
hip-doc
hip-rocclr
hip-samples
hsa-amd-aqlprofile
hsakmt-roct
hsakmt-roct-dev
hsa-rocr-dev
llvm-amdgpu
rocm-cmake
rocm-dbgapi
rocm-debug-agent
rocm-device-libs
rocm-gdb
rocm-smi
rocm-smi-lib64
rocprofiler-dev
roctracer-dev
rocm-utils

rocm-clang-ocl
rocminfo

rocm-libs
|--miopen
|--hipblas
|--hipcub
|--hipsparse
|--rocalution
|--rocblas
|--rocfft
|--rocprim
|--rocrand
|--rocsolver
|--rocsparse
\--rocthrust

These meta-packages are not required but may be useful to make it easier to install ROCm on most systems.

88 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Note: Some users may want to skip certain packages. For instance, a user that wants to use the upstream kernel drivers
(rather than those supplied by AMD) may want to skip the rocm-dkms and rock-dkms packages. Instead, they could
directly install rocm-dev.

Similarly, a user that only wants to install OpenCL support instead of HCC and HIP may want to skip the rocm-dkms
and rocm-dev packages. Instead, they could directly install rock-dkms, rocm-opencl, and rocm-opencl-dev and their
dependencies.

3.13.1.1.6.1 ROCm Platform Packages

The following platform packages are for ROCm v4.1.0:

3.13.1.1.7 Drivers, ToolChains, Libraries, and Source Code

The latest supported version of the drivers, tools, libraries and source code for the ROCm platform have been released
and are available from the following GitHub repositories:

ROCm Core Components

• ROCk Kernel Driver

• ROCr Runtime

• ROCt Thunk Interface

ROCm Support Software

• ROCm SMI

• ROCm cmake

• rocminfo

• ROCm Bandwidth Test

ROCm Compilers

• HIP

• ROCM Clang-OCL Kernel Compiler

Example Applications:

• HIP Examples

ROCm Device Libraries and Tools

• ROCm Device Libraries

• ROCm OpenCL Runtime

• ROCm LLVM OCL

• ROCm Device Libraries OCL

• Asynchronous Task and Memory Interface

• ROCr Debug Agent

• ROCm Code Object Manager

• ROC Profiler

• ROC Tracer

3.13. Software Stack for AMD GPU 89

https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/ROCR-Runtime/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/ROC-smi/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/rocm-cmake/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/rocminfo/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/tree/rocm-4.1.0
https://github.com/ROCm-Developer-Tools/HIP/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/clang-ocl/tree/rocm-4.1.0
https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/rocm-4.1.0
http://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/llvm-project/tree/rocm-ocl-4.1.0
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/atmi/tree/rocm-4.1.0
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/tree/rocm-4.1.0
https://github.com/ROCm-Developer-Tools/rocprofiler/tree/rocm-4.1.0
https://github.com/ROCm-Developer-Tools/roctracer/tree/rocm-4.1.0

ROCm Documentation, Release 4.5.0

• AOMP

• Radeon Compute Profiler

• ROCm Validation Suite

ROCm Libraries

• rocBLAS

• hipBLAS

• rocFFT

• rocRAND

• rocSPARSE

• hipSPARSE

• rocALUTION

• MIOpenGEMM

• mi open

• rocThrust

• ROCm SMI Lib

• RCCL

• MIVisionX

• hipCUB

• AMDMIGraphX

3.13.1.1.7.1 List of ROCm Packages for Supported Operating Systems

3.13.1.1.7.2 ROCm-Library Meta Packages

Package Debian RPM
rocFFT Yes Yes
rocRAND Yes Yes
rocBLAS Yes Yes
rocSPARSE Yes Yes
rocALUTION Yes Yes
rocPRIM Yes Yes
rocTHRUST Yes Yes
rocSOLVER Yes Yes
hipBLAS Yes Yes
hipSPARSE Yes Yes
hipcub Yes Yes

90 Chapter 3. ROCm Learning Center

https://github.com/ROCm-Developer-Tools/aomp/tree/rocm-4.1.0
https://github.com/GPUOpen-Tools/RCP/tree/3a49405
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/hipBLAS/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocFFT/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocRAND/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/MIOpen/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rocThrust/tree/rocm-4.1.0
https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/rccl/tree/rocm-4.1.0
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/hipCUB/tree/rocm-4.1.0
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/rocm-4.1.0

ROCm Documentation, Release 4.5.0

3.13.1.1.7.3 Meta Packages

Package Debian RPM
ROCm Master Package rocm rocm-1.6.77-Linux.rpm
ROCm Developer Master Package rocm-dev rocm-dev-1.6.77-Linux.rpm
ROCm Libraries Master Package rocm-libs rocm-libs-1.6.77-Linux.rpm
ATMI atmi atmi-0.3.7-45-gde867f2-Linux.rpm
HIP Core hip_base hip_base-1.2.17263.rpm
HIP Documents hip_doc hip_doc-1.2.17263.rpm
HIP Compiler hip_hcc hip_hcc-1.2.17263.rpm
HIP Samples hip_samples hip_samples-1.2.17263.rpm.
HIPBLAS hipblas hipblas-0.4.0.3-Linux.rpm
MIOpen OpenCL Lib miopen-opencl. MIOpen-OpenCL-1.0.0-Linux.rpm
rocBLAS rocblas rocblas-0.4.2.3-Linux.rpm
rocFFT rocfft rocm-device-libs-0.0.1-Linux.rpm
ROCm Device Libs rocm-device-libs rocm-device-libs-0.0.1-Linux.rpm
ROCm OpenCL for Dev with CL headers rocm-opencl-dev rocm-opencl-devel-1.2.0-1424893.x86_64.rpm
ROCm GDB rocm-gdb rocm-gdb-1.5.265-gc4fb045.x86_64.rpm
RCP profiler rocm-profiler rocm-profiler-5.1.6386-gbaddcc9.x86_64.rpm
ROCm SMI Tool rocm-smi rocm-smi-1.0.0_24_g68893bc-1.x86_64.rpm
ROCm Utilities rocm-utils rocm-utils-1.0.0-Linux.rpm

3.14 Hardware and Software Support Information

• Hardware and Software Support

• Radeon Instinct™ GPU-Powered HPC Solutions

3.15 AMD Instinct™ High Performance Computing and Tuning Guide

HPC workloads have unique requirements. The default hardware and BIOS configurations for OEM platforms may
not provide optimal performance for HPC workloads. To help enable optimal HPC settings on a per-platform and
workload level, this guide calls out:

• BIOS settings that can impact performance

• hardware configuration best practices

• supported versions of operating systems

• workload-specific recommendations for optimal BIOS and operating system settings

There is also a discussion on the AMD Instinct™ software development environment, including information on how
to install and run the DGEMM and STREAM benchmarks as well as GROMACS. This guidance provides a good
starting point but is not exhaustively tested across all compilers.

Prerequisites to understanding this document and to perform tuning of HPC applications include:

3.14. Hardware and Software Support Information 91

https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support
https://www.amd.com/en/graphics/servers-radeon-instinct-mi-powered-servers

ROCm Documentation, Release 4.5.0

• Experience configuring servers

• Administrative access to the Server’s Management Interface (BMC)

• Administrative access to the operating system

• Familiarity with OEMs Server’s Management Interface (BMC) is strongly recommended

• Familiarity with the OS specific tools for configuration, monitoring and troubleshooting is strongly recom-
mended

This document provides guidance on tuning systems with AMD Instinct™ accelerators for High Performance Com-
puting (HPC) workloads. This document is not an all-inclusive guide, and some items referred to may have similar, but
different, names in various OEM systems (for example, OEM-specific BIOS settings). This document also provides
suggestions on items that should be the initial focus of additional, application-specific tuning.

This document is based on the AMD EPYC™ 7002 series processor family (former codename “Rome”). One can
expect very similar results for the AMD EYPC™ 7003 series processor family (former codename “Milan”). Specific
differences in the configuration options or performance obtained will be explicitly called out through the document
where needed.

While this guide is a good starting point, developers are encouraged to perform their own performance testing for
additional tuning.

For more details, refer to the AMD Instinct™ High Performance Computing and Tuning Guide

3.16 HIP Programming Guide v4.5

Heterogeneous-Computing Interface for Portability (HIP) is a C++ dialect designed to ease conversion of CUDA
applications to portable C++ code. It provides a C-style API and a C++ kernel language. The C++ interface can use
templates and classes across the host/kernel boundary.

The HIPify tool automates much of the conversion work by performing a source-to-source transformation from CUDA
to HIP. HIP code can run on AMD hardware (through the HCC compiler) or NVIDIA hardware (through the NVCC
compiler) with no performance loss compared with the original CUDA code.

Programmers familiar with other GPGPU languages will find HIP easy to learn and use. AMD platforms implement
this language using the HC dialect providing similar low-level control over the machine.

Use HIP when converting CUDA applications to portable C++ and for new projects that require portability between
AMD and NVIDIA. HIP provides a C++ development language and access to the best development tools on both
platforms.

92 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD%20Instinct%E2%84%A2High%20Performance%20Computing%20and%20Tuning%20Guide.pdf

ROCm Documentation, Release 4.5.0

3.16.1 Programming Guide (PDF)

You can access and download the latest version of the HIP Programming Guide.

Download PDF

3.16.2 Related Topics

3.16.2.1 HIP API Guide

You can access the Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.16.2.2 HIP_Supported_CUDA_API_Reference_Guide

You can access and download the latest version of the HIP-Supported CUDA API Reference Guide.

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_
Guide.pdf

3.16.2.3 AMD ROCm Compiler Reference Guide

You can access and download the AMD ROCm Compiler Reference Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

3.16.2.4 HIP Installation Instructions

For HIP installation instructions, refer to

https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html

3.16.2.5 HIP FAQ

• HIP-FAQ

3.17 HIP API Documentation v4.5

You can access the latest Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

3.17. HIP API Documentation v4.5 93

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf
https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

ROCm Documentation, Release 4.5.0

3.18 HIP-Supported CUDA API Reference Guide v4.5

You can access the latest Reference guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_
Guide.pdf

3.19 AMD ROCm Compiler Reference Guide v4.5

You can access and download the AMD ROCm Compiler Reference Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

3.19.1 Supported CUDA APIs

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_
Guide.pdf

To access the following supported CUDA APIs, see

https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#
hip-faq-porting-guide-and-programming-guide

• Runtime API

• Driver API

• cuComplex API

• cuBLAS

• cuRAND

• cuDNN

• cuFFT

• cuSPARSE

3.19.2 Deprecated HIP APIs

3.19.2.1 HIP Context Management APIs

CUDA supports cuCtx API, the Driver API that defines “Context” and “Devices” as separate entities. Contexts contain
a single device, and a device can theoretically have multiple contexts. HIP initially added limited support for APIs to
facilitate easy porting from existing driver codes. The APIs are marked as deprecated now as there is a better alternate
interface (such as hipSetDevice or the stream API) to achieve the required functions.

• hipCtxPopCurrent

• hipCtxPushCurrent

• hipCtxSetCurrent

• hipCtxGetCurrent

• hipCtxGetDevice

• hipCtxGetApiVersion

94 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-faq-porting-guide-and-programming-guide
https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-faq-porting-guide-and-programming-guide

ROCm Documentation, Release 4.5.0

• hipCtxGetCacheConfig

• hipCtxSetCacheConfig

• hipCtxSetSharedMemConfig

• hipCtxGetSharedMemConfig

• hipCtxSynchronize

• hipCtxGetFlags

• hipCtxEnablePeerAccess

• hipCtxDisablePeerAccess

3.20 OpenCL Programming Guide

• Opencl-Programming-Guide

• Optimization-Opencl

3.21 OpenMP Support

3.21.1 Overview

The ROCm installation includes an LLVM-based implementation that fully supports the OpenMP 4.5 standard and
a subset of the OpenMP 5.0 standard. Fortran, C/C++ compilers, and corresponding runtime libraries are included.
Along with host APIs, the OpenMP compilers support offloading code and data onto GPU devices. The GPUs sup-
ported are the same as those supported by this ROCm release. This document briefly describes the installation location
of the OpenMP toolchain and example usage of device offloading.

3.21.2 Installation

The OpenMP toolchain is automatically installed as part of the standard ROCm installation and is available under
/opt/rocm-{version}/llvm. The sub-directories are:

• bin: Compilers (flang and clang) and other binaries

• examples: How to compile and run these programs is shown in the usage section below.

• include: Header files

• lib: Libraries including those required for target offload

• lib-debug: Debug versions of the above libraries

3.20. OpenCL Programming Guide 95

ROCm Documentation, Release 4.5.0

3.21.3 Usage

The example programs can be compiled and run by pointing the environment variable AOMP to the OpenMP install
directory. For example:

% export AOMP=/opt/rocm-{version}/llvm

% cd $AOMP/examples/openmp/veccopy

% make run

The above invocation of Make will compile and run the program. Note, the options that are required for target offload
from an OpenMP program:

-target x86_64-pc-linux-gnu -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-
→˓target=amdgcn-amd-amdhsa -march=<gpu-arch>

The value of gpu-arch can be obtained by running the following command:

% /opt/rocm-{version}/bin/rocminfo | grep gfx

3.21.4 Helpful Tips

Setting the environment variable LIBOMPTARGET_KERNEL_TRACE while running an OpenMP program produces
valuable information. Among other details, a value of 1 will lead the runtime to emit the number of teams and
threads for every kernel run on the GPU. A value of 2 leads additionally to a trace of implementation-level APIs and
corresponding timing information.

3.22 ROCm Libraries

Libraries are listed alphabetically below.

hipSOLVER User Guide

MIGraphX User Guide

RCCL User Guide

rocALUTION User Guide

rocBLAS User Guide

rocFFT User Guide

rocRAND User Guide

rocSOLVER User Guide

rocSPARSE User Guide

rocThrust User Guide

96 Chapter 3. ROCm Learning Center

https://hipsolver.readthedocs.io/
https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/
https://rccl.readthedocs.io/
https://rocalution.readthedocs.io/
https://rocblas.readthedocs.io/
https://rocfft.readthedocs.io/
https://rocrand.readthedocs.io/
https://rocsolver.readthedocs.io/
https://rocsparse.readthedocs.io/
https://rocthrust.readthedocs.io/

ROCm Documentation, Release 4.5.0

3.22.1 Deprecated Libraries

3.22.1.1 hipeigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.
hipeigen has been upstream to the main project at https://eigen.tuxfamily.org/.

3.23 Deep Learning

3.23.1 MIOpen API

• MIOpen API

• MIOpenGEMM API

3.23.2 TensorFlow

3.23.2.1 AMD ROCm Tensorflow v1.15 Release

We are excited to announce the release of ROCm enabled TensorFlow v1.15 for AMD GPUs.

In this release we have the following features enabled on top of upstream TF1.15 enhancements:

• We integrated ROCm RCCL library for mGPU communication, details in RCCL github repo

• XLA backend is enabled for AMD GPUs, the functionality is complete, performance optimization is in
progress.

3.23.2.2 AMD ROCm Tensorflow v2.2.0-beta1 Release

In addition to Tensorflow v1.15 release, we also enabled Tensorflow v2.2.0-beta1 for AMD GPUs. The TF-ROCm
2.2.0-beta1 release supports Tensorflow V2 API. Both whl packages and docker containers are available below.

3.23.2.3 Tensorflow Installation

1. Install the open-source AMD ROCm 3.3 stack. For details, see here

2. Install other relevant ROCm packages.

sudo apt update
sudo apt install rocm-libs miopen-hip cxlactivitylogger rccl

3. Install TensorFlow itself (via the Python Package Index).

sudo apt install wget python3-pip
Pip3 install the whl package from PyPI
pip3 install --user tensorflow-rocm #works only with python3.8 or prior

Tensorflow v2.2.0 is installed.

3.23. Deep Learning 97

https://eigen.tuxfamily.org/
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/
https://rocmsoftwareplatform.github.io/MIOpenGEMM/doc/html/
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/RadeonOpenCompute/ROCm

ROCm Documentation, Release 4.5.0

3.23.2.3.1 Tensorflow ROCm port: Basic installation on RHEL

The following instructions provide a starting point for using the TensorFlow ROCm port on RHEL.

Note It is recommended to start with a clean RHEL 8.2 system.

3.23.2.3.1.1 Install ROCm

1. Use the instructions below to add the ROCm repository.

export RPM_ROCM_REPO=https://repo.radeon.com/rocm/yum/3.7

2. Install the following packages.

Enable extra repositories
yum --enablerepo=extras install -y epel-release

Install required base build and packaging commands for ROCm
yum -y install \

bc \
cmake \
cmake3 \
dkms \
dpkg \
elfutils-libelf-devel \
expect \
file \
gettext \
gcc-c++ \
git \
libgcc \
ncurses \
ncurses-base \
ncurses-libs \
numactl-devel \
numactl-libs \
libunwind-devel \
libunwind \
llvm \
llvm-libs \
make \
pciutils \
pciutils-devel \
pciutils-libs \
python36 \
python36-devel \
pkgconfig \
qemu-kvm \
wget

3. Install ROCm packages.

Add the ROCm package repo location
echo -e "[ROCm]\nname=ROCm\nbaseurl=$RPM_ROCM_REPO\nenabled=1\ngpgcheck=0" >> /etc/
→˓yum.repos.d/rocm.repo

(continues on next page)

98 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

Install the ROCm rpms
sudo yum clean all
sudo yum install -y rocm-dev
sudo yum install -y hipblas hipcub hipsparse miopen-hip miopengemm rccl rocblas
→˓rocfft rocprim rocrand

4. Ensure the ROCm target list is set up.

bash -c 'echo -e "gfx803\ngfx900\ngfx906\ngfx908" >> $ROCM_PATH/bin/target.lst'

5. Install the required Python packages.

pip3.6 install --user \
cget \
pyyaml \
pip \
setuptools==39.1.0 \
virtualenv \
absl-py \
six==1.10.0 \
protobuf==3.6.1 \
numpy==1.18.2 \
scipy==1.4.1 \
scikit-learn==0.19.1 \
pandas==0.19.2 \
gnureadline \
bz2file \
wheel==0.29.0 \
portpicker \
werkzeug \
grpcio \
astor \
gast \
termcolor \
h5py==2.8.0 \
keras_preprocessing==1.0.5

6. Install TensorFlow.

Install ROCm manylinux WHL
wget <location of WHL file>
pip3.6 install --user ./tensorflow*linux_x86_64.whl

3.23.2.4 Tensorflow benchmarking

Clone the repository of bench test and run it

cd ~ && git clone https://github.com/tensorflow/benchmarks.git
python3 ~/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=resnet50

3.23. Deep Learning 99

ROCm Documentation, Release 4.5.0

3.23.2.5 Tensorflow Installation with Docker

Note: firstly, configure docker environment for ROCm (information here)

Pull the docker images for Tensorflow releases with ROCm backend support. The size of these docker images is about
7 Gb.

sudo docker pull rocm/tensorflow:latest

Launch the downloaded docker image

alias drun='sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --
→˓ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt
→˓seccomp=unconfined -v $HOME/dockerx:/dockerx'

#Run it
drun rocm/tensorflow:latest

More information about tensorflow docker images can be found here

3.23.2.6 Tensorflow More Resources

The official github repository is here

3.23.3 MIOpen

3.23.3.1 ROCm MIOpen v2.0.1 Release

Announcing our new Foundation for Deep Learning acceleration MIOpen 2.0 which introduces support for Convolu-
tion Neural Network (CNN) acceleration — built to run on top of the ROCm software stack!

This release includes the following:

• This release contains bug fixes and performance improvements.

• Additionally, the convolution algorithm Implicit GEMM is now enabled by default

• Known issues:

– Backward propagation for batch normalization in fp16 mode may trigger NaN in some cases

– Softmax Log mode may produce an incorrect result in back propagation

• Source code

• Documentation

– MIOpen

– MIOpenGemm

Changes:

• Added Winograd multi-pass convolution kernel

• Fixed issue with hip compiler paths

• Fixed immediate mode behavior with auto-tuning environment variable

• Fixed issue with system find-db in-memory cache, the fix enable the cache by default

• Improved logging

100 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/ROCm-docker/blob/master/quick-start.md
https://hub.docker.com/r/rocm/tensorflow/
https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/MIOpen
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/apireference.html
https://rocmsoftwareplatform.github.io/MIOpenGEMM/doc/html/index.html

ROCm Documentation, Release 4.5.0

• Improved how symbols are hidden in the library

• Updated default behavior to enable implicit GEMM

3.23.3.2 Porting from cuDNN to MIOpen

The porting guide highlights the key differences between the current cuDNN and MIOpen APIs.

3.23.3.3 The ROCm 3.3 has prebuilt packages for MIOpen

Install the ROCm MIOpen implementation (assuming you already have the ‘rocm’ and ‘rocm-opencl-dev” package
installed):

MIOpen can be installed on Ubuntu using

apt-get

For just OpenCL development

sudo apt-get install miopengemm miopen-opencl

For HIP development

sudo apt-get install miopengemm miopen-hip

Or you can build from source code

Currently both the backends cannot be installed on the same system simultaneously. If a different backend other than
what currently exists on the system is desired, please uninstall the existing backend completely and then install the
new backend.

3.23.4 PyTorch

3.23.4.1 Building PyTorch for ROCm

This is a quick guide to setup PyTorch with ROCm support inside a docker container. Assumes a .deb based system.
See ROCm install for supported operating systems and general information on the ROCm software stack.

Note: Currently, ROCm install version 3.3 is required.

1. Install or update rocm-dev on the host system:

sudo apt-get install rocm-dev
or
sudo apt-get update
sudo apt-get upgrade

3.23. Deep Learning 101

https://github.com/dagamayank/ROCm.github.io/blob/master/doc/miopen_porting_guide.pdf
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/RadeonOpenCompute/ROCm#supported-operating-systems---new-operating-systems-available

ROCm Documentation, Release 4.5.0

3.23.4.2 Recommended: Install using published PyTorch ROCm docker image:

2. Obtain docker image:

docker pull rocm/pytorch:rocm4.0_ubuntu18.04_py3.6_pytorch

3. Start a docker container using the downloaded image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/
→˓dri --group-add video rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_pytorch

4. Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python3.6 test/run_test.py --verbose

Note: Compilation and installation must be correct for the tests to be successful.

5. Install torchvision:

pip install torchvision

This step is optional but most PyTorch scripts will use torchvision to load models. E.g., running the pytorch examples
requires torchvision.

3.23.4.3 Option 2: Install using PyTorch upstream docker file

1. Clone PyTorch repository on the host:

cd ~
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule init
git submodule update

2. Build PyTorch docker image:

cd pytorch/docker/caffe2/jenkins
./build.sh py2-clang7-rocmdeb-ubuntu16.04

A message "Successfully built <image_id>" indicates a successful completion of this
→˓step.

Note: These steps are not tested and validated on other software versions.

3. Start a docker container using the new image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/
→˓dri --group-add video <image_id>

Note: This will mount your host home directory on /data in the container.

4. Change to previous PyTorch checkout from within the running docker:

cd /data/pytorch

5. Build PyTorch for ROCm:

102 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Unless you are running a gfx900/Vega10-type GPU (MI25, Vega56, Vega64,. . .), explicitly export the GPU architec-
ture to build for, e.g.: export HCC_AMDGPU_TARGET=gfx906

then

.jenkins/pytorch/build.sh

This will hipify the PyTorch sources first, and then compile using 4 concurrent jobs. Note, the docker image requires
16 GB of RAM.

6. Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python test/run_test.py --verbose

No tests will fail if the compilation and installation is correct.

7. Install torchvision:

pip install torchvision

This step is optional; however, most PyTorch scripts use torchvision to load models. For example, running the pytorch
examples requires torchvision.

8. Commit the container to preserve the pytorch install (from the host):

sudo docker commit <container_id> -m 'pytorch installed'

3.23.4.4 Option 3: Install using minimal ROCm docker file

1. Download dockerfile based on the OS choose: Recommend to use - Dockerfile-<OS distro>-complete to get all the
ROCm Math libs installed which are required for PyTorch.

Dockerfile

2. Build docker image:

sudo docker build -f ./Dockerfile-<OS distro>-complete .

The message “Successfully built <image_id>” indicates a successful completion of this step.

3. Start a docker container using the new image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/
→˓dri --group-add video <image_id>

Note: This will mount your host home directory on /data in the container.

4. Clone pytorch master (on to the host):

cd ~
git clone https://github.com/pytorch/pytorch.git or git clone https://github.com/
→˓ROCmSoftwarePlatform/pytorch.git
cd pytorch
git submodule init
git submodule update --init --recursive'

5. Run “hipify” to prepare source code (in the container):

3.23. Deep Learning 103

https://github.com/RadeonOpenCompute/ROCm-docker/tree/master/dev

ROCm Documentation, Release 4.5.0

python3 tools/amd_build/build_amd.py

6. Build and install pytorch:

By default pytorch is built for all supported AMD GPU targets like gfx900/gfx906/gfx908 (MI25, MI50, MI60, MI100,
. . .) This can be overwritten using export PYTORCH_ROCM_ARCH=gfx900;gfx906;gfx908

then

USE_ROCM=1 MAX_JOBS=4 python3 setup.py install --user

UseMAX_JOBS=n to limit peak memory usage. If building fails try falling back to fewer jobs. 4 jobs assume available
main memory of 16 GB or larger.

7. Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python3 test/run_test.py --verbose

No tests will fail if the compilation and installation is correct.

8. Install torchvision:

pip3 install --user "git+https://github.com/pytorch/vision.git"

This step is optional. However, most PyTorch scripts will use torchvision to load models. For example, running the
PyTorch examples requires torchvision.

9. Commit the container to preserve the pytorch install (from the host):

sudo docker commit <container_id> -m 'pyTorch installed'

3.23.4.5 PyTorch examples

1. Clone the PyTorch examples repository:

git clone https://github.com/pytorch/examples.git && cd examples/

2. Download pip requiremenst:

pip3 install -r mnist/requirements.txt

3. Run individual example: Super-resolution training and running

cd super_resolution/

download dataset for training and run learning
python3 main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 30 --
→˓lr 0.001

test work super resolution effect
python3 super_resolve.py --input_image dataset/BSDS300/images/test/16077.jpg \
--model model_epoch_30.pth --output_filename out.png

4. Open out.png and dataset/BSDS300/images/test/16077.jpg files to see result

104 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.23.4.6 Building Caffe2 for ROCm

This is a quick guide to setup Caffe2 with ROCm support inside docker container and run on AMD GPUs. Caffe2 with
ROCm support offers complete functionality on a single GPU achieving great performance on AMD GPUs using both
native ROCm libraries and custom hip kernels. This requires your host system to have rocm-3.3s drivers installed.
Please refer to ROCm install to install ROCm software stack. If your host system doesn’t have docker installed, please
refer to docker install. It is recommended to add the user to the docker group to run docker as a non-root user, please
refer here.

This guide provides two options to run Caffe2.

1. Launch the docker container using a docker image with Caffe2 installed.

2. Build Caffe2 from source inside a Caffe2 ROCm docker image.

3.23.4.7 Option 1: Docker image with Caffe2 installed:

This option provides a docker image which has Caffe2 installed. Users can launch the docker container and train/run
deep learning models directly. This docker image will run on both gfx900(Vega10-type GPU - MI25, Vega56,
Vega64,. . .) and gfx906(Vega20-type GPU - MI50, MI60)

1. Launch the docker container

docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add video
→˓rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2

This will automatically download the image if it does not exist on the host. You can also pass -v argument to mount
any data directories on to the container.

3.23.4.8 Option 2: Install using Caffe2 ROCm docker image:

1. Clone PyTorch repository on the host:

cd ~
git clone --recurse-submodules https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive

2. Launch the docker container

docker pull rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2
docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add video -
→˓v $PWD:/pytorch rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2

3. Build Caffe2 from source

cd /pytorch

If running on gfx900/vega10-type GPU(MI25, Vega56, Vega64,. . .)

.jenkins/caffe2/build.sh

If running on gfx906/vega20-type GPU(MI50, MI60)

HCC_AMDGPU_TARGET=gfx906 .jenkins/caffe2/build.sh

3.23. Deep Learning 105

https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#installing-from-amd-rocm-repositories
https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/install/linux/linux-postinstall/

ROCm Documentation, Release 4.5.0

3.23.4.9 Test the Caffe2 Installation

To validate Caffe2 installation, run

1. Test Command

cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" ||
→˓echo "Failure"

2. Running unit tests in Caffe2

cd /pytorch
.jenkins/caffe2/test.sh

3.23.4.10 Run benchmarks

Caffe2 benchmarking script supports the following networks MLP, AlexNet, OverFeat, VGGA, Inception

To run benchmarks for networks MLP, AlexNet, OverFeat, VGGA, Inception run the command from pytorch home
directory replacing <name_of_the_network> with one of the networks.

python caffe2/python/convnet_benchmarks.py --batch_size 64 --model <name_of_the_
→˓network> --engine MIOPEN

3.23.4.11 Running example scripts

Please refer to the example scripts in caffe2/python/examples. It currently has resnet50_trainer.py
which can run ResNet’s, ResNeXt’s with various layer, groups, depth configurations and char_rnn.py which uses
RNNs to do character level prediction.

3.23.4.12 Building own docker images

After cloning the pytorch repository, you can build your own Caffe2 ROCm docker image. Navigate to pytorch repo
and run

cd docker/caffe2/jenkins
./build.sh py2-clang7-rocmdeb-ubuntu16.04

This should complete with a message “Successfully built <image_id>” which can then be used to install Caffe2 as in
Option 2 above.

3.24 MIVisionX

MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and appli-
cations bundled into a single toolkit. AMD MIVisionX delivers highly optimized open source implementation of the
Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer
supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment
of optimized workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete
GPUs, and heterogeneous servers.

• AMD OpenVX

• AMD OpenVX Extensions

106 Chapter 3. ROCm Learning Center

https://www.khronos.org/openvx/
https://onnx.ai/
https://www.khronos.org/nnef
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx-extensions

ROCm Documentation, Release 4.5.0

– Loom 360 Video Stitch Library

– Neural Net Library

– OpenCV Extension

– RPP Extension

– WinML Extension

• Applications

• Neural Net Model Compiler and Optimizer

• RALI

• Samples

• Toolkit

• Utilities

– Inference Generator

– Loom Shell

– RunCL

– RunVX

• Prerequisites

• Build and Install MIVisionX

• Verify the Installation

• Docker

• Release Notes

AMD OpenVX [amd_openvx] is a highly optimized open source implementation of the Khronos OpenVX computer
vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware,
including small embedded x86 CPUs and large workstation discrete GPUs.

The OpenVX framework provides a mechanism to add new vision functions to OpenVX by 3rd party vendors. This
project has below mentioned OpenVX modules and utilities to extend amd_openvx project, which contains the AMD
OpenVX Core Engine.

• amd_loomsl: AMD Radeon Loom stitching library for live 360 degree video applications.

3.24. MIVisionX 107

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_nn/#openvx-neural-network-extension-library-vx_nn
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_opencv/#amd-opencv-extension
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/amd_openvx_extensions/amd_rpp
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_winml/#amd-winml-extension
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#applications
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#neural-net-model-compiler--optimizer
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/rali/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/samples/#samples
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#toolkit
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#utilities
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/inference_generator/#inference-generator
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/loom_shell/#radeon-loomshell
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runcl/#amd-runcl
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runvx/#amd-runvx
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#prerequisites
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#build--install-mivisionx
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#verify-the-installation
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#docker
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#release-notes
https://www.khronos.org/openvx/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx
https://www.khronos.org/openvx/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/#amd-openvx-extensions-amd_openvx_extensions
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/#amd-openvx-amd_openvx
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/

ROCm Documentation, Release 4.5.0

• amd_nn: OpenVX neural network module

• amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as
OpenVX kernels

• amd_winml: WinML extension will allow developers to import a pre-trained ONNX model into
an OpenVX graph and add hundreds of different pre & post processing vision/generic/user-defined
functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model.
This will allow developers to build an end to end application for inference.

108 Chapter 3. ROCm Learning Center

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_nn/#openvx-neural-network-extension-library-vx_nn
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_opencv/#amd-opencv-extension
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_winml/#amd-winml-extension

ROCm Documentation, Release 4.5.0

MIVisionX has a number of applications built on top of OpenVX modules, it uses AMD optimized libraries to build
applications which can be used to prototype or used as models to develop a product.

• Cloud Inference Application: This sample application does inference using a client-server system.

• Digit Test This sample application is used to recognize hand written digits.

• MIVisionX OpenVX Classsification: This sample application shows how to run supported pre-trained caffe
models with MIVisionX RunTime.

• MIVisionX WinML Classification: This sample application shows how to run supported ONNX models with
MIVisionX RunTime on Windows.

• MIVisionX WinML YoloV2: This sample application shows how to run tiny yolov2(20 classes) with MIVisionX
RunTime on Windows.

• External Applications

3.24. MIVisionX 109

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#applications
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/#cloud-inference-application
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/apps/dg_test#amd-dgtest
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-openvx-classsification
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-winml-classification
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-winml-yolov2
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#external-application

ROCm Documentation, Release 4.5.0

Neural Net Model Compiler & Optimizer model_compiler converts pre-trained neural net models to MIVisionX run-
time code for optimized inference.

The Radeon Augmentation Library RALI is designed to efficiently decode and process images and videos from a
variety of storage formats and modify them through a processing graph programmable by the user.

MIVisionX samples using OpenVX and OpenVX extension libraries

GDF - Graph Description Format

MIVisionX samples using runvx with GDF

skintonedetect.gdf

usage:

runvx skintonedetect.gdf

canny.gdf

110 Chapter 3. ROCm Learning Center

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/model_compiler/#neural-net-model-compiler--optimizer
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/rali/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/samples/#samples

ROCm Documentation, Release 4.5.0

usage:

runvx canny.gdf

skintonedetect-LIVE.gdf

Using live camera

usage:

runvx -frames:live skintonedetect-LIVE.gdf

canny-LIVE.gdf

Using live camera

usage:

runvx -frames:live canny-LIVE.gdf

OpenCV_orb-LIVE.gdf

Using live camera

usage:

runvx -frames:live OpenCV_orb-LIVE.gdf

Note: More samples available on GitHub

MIVisionX Toolkit, is a comprehensive set of help tools for neural net creation, development, training, and deploy-
ment. The Toolkit provides you with helpful tools to design, develop, quantize, prune, retrain, and infer your neural
network work in any framework. The Toolkit is designed to help you deploy your work to any AMD or 3rd party
hardware, from embedded to servers.

MIVisionX provides you with tools for accomplishing your tasks throughout the whole neural net life-cycle, from
creating a model to deploying them for your target platforms.

• inference_generator: generate inference library from pre-trained CAFFE models

• loom_shell: an interpreter to prototype 360 degree video stitching applications using a script

• RunVX: command-line utility to execute OpenVX graph described in GDF text file

3.24. MIVisionX 111

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/samples#samples
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/toolkit/#mivisionx-toolkit
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/inference_generator/#inference-generator
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/loom_shell/#radeon-loomsh
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runvx/#amd-runvx

ROCm Documentation, Release 4.5.0

• RunCL: command-line utility to build, execute, and debug OpenCL programs

• CPU: SSE4.1 or above CPU, 64-bit

• GPU: GFX7 or above [optional]

• APU: Carrizo or above [optional]

Note: Some modules in MIVisionX can be built for CPU only. To take advantage of advanced features and modules
we recommend using AMD GPUs or AMD APUs.

Windows

• Windows 10

• Windows SDK

• Visual Studio 2017

• Install the latest drivers and OpenCL SDK <https://github.com/GPUOpen-LibrariesAndSDKs/OCL-
SDK/releases/tag/1.0>_

• OpenCV

– Set OpenCV_DIR environment variable to OpenCV/build folder

– Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH

Linux

• Install ROCm

• ROCm CMake, MIOpenGEMM & MIOpen for Neural Net Extensions (vx_nn)

• CMake 2.8 or newer download

• Qt Creator for Cloud Inference Client

• Protobuf for inference generator & model compiler

– install libprotobuf-dev and protobuf-compiler needed for vx_nn

• ` OpenCV <https://github.com/opencv/opencv/releases/tag/3.4.0>`_

– Set OpenCV_DIR environment variable to OpenCV/build folder

• FFMPEG - Optional

– FFMPEG is required for amd_media & mv_deploy modules

For the convenience of the developer, we here provide the setup script which will install all the dependencies required
by this project.

MIVisionX-setup.py- This scipts builds all the prerequisites required by MIVisionX. The setup script creates a deps
folder and installs all the prerequisites, this script only needs to be executed once. If -d option for directory is not given
the script will install deps folder in ‘~/’ directory by default, else in the user specified folder.

Prerequisites for running the scripts

• ubuntu 16.04/18.04 or CentOS 7.5/7.6

• ROCm supported hardware

• ROCm

usage:

112 Chapter 3. ROCm Learning Center

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runcl/#amd-runcl
https://rocm.github.io/hardware.html
https://github.com/opencv/opencv/releases/tag/3.4.0
https://rocm.github.io/ROCmInstall.html
http://cmake.org/download/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/apps/cloud_inference/client_app/README.md
https://github.com/google/protobuf
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4
https://rocm.github.io/hardware.html
https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories

ROCm Documentation, Release 4.5.0

python MIVisionX-setup.py --directory [setup directory - optional]
--installer [Package management tool - optional

→˓(default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
--miopen [MIOpen Version - optional (default:2.1.0)]
--miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
--ffmpeg [FFMPEG Installation - optional (default:no)

→˓[options:Install ffmpeg - yes]]
--rpp [RPP Installation - optional (default:yes)

→˓[options:yes/no]]

Note: use –installer yum for CentOS

Windows

Using .msi packages

• MIVisionX-installer.msi: MIVisionX

• MIVisionX_WinML-installer.msi: MIVisionX for WinML

Using Visual Studio 2017 on 64-bit Windows 10

• Install OpenCL_SDK

• Install OpenCV with/without contrib to support camera capture, image display, & opencv extensions

– Set OpenCV_DIR environment variable to OpenCV/build folder

– Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH

• Use MIVisionX.sln to build for x64 platform

NOTE: vx_nn is not supported on Windows in this release

Linux

Using apt-get/yum

Prerequisites

• Ubuntu 16.04/18.04 or CentOS 7.5/7.6

• ROCm supported hardware

• ROCm

Ubuntu

sudo apt-get install mivisionx

CentOS

sudo yum install mivisionx

Note:

• vx_winml is not supported on linux

• source code will not available with apt-get/yum install

• executables placed in /opt/rocm/mivisionx/bin and libraries in /opt/rocm/mivisionx/lib

• OpenVX and module header files into /opt/rocm/mivisionx/include

• model compiler, toolkit, & samples placed in /opt/rocm/mivisionx

• Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

3.24. MIVisionX 113

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases
https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases/tag/1.0
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/opencv/opencv_contrib
https://rocm.github.io/hardware.html
https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories

ROCm Documentation, Release 4.5.0

Using MIVisionX-setup.py and CMake on Linux (Ubuntu 16.04/18.04 or CentOS 7.5/7.6) with ROCm

• Install ROCm

• Use the below commands to setup and build MIVisionX

git clone https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX.git
cd MIVisionX

python MIVisionX-setup.py --directory [setup directory - optional]
--installer [Package management tool - optional

→˓(default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
--miopen [MIOpen Version - optional (default:2.1.0)]
--miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
--ffmpeg [FFMPEG Installation - optional (default:no)

→˓[options:Install ffmpeg - yes]]
--rpp [RPP Installation - optional (default:yes)

→˓[options:yes/no]]

Note: Use –installer yum for CentOS

mkdir build
cd build
cmake ../
make -j8
sudo make install

Note:

• vx_winml is not supported on Linux

• the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

• the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include folder

Using CMake on Linux (Ubuntu 16.04 64-bit or CentOS 7.5 / 7.6) with ROCm

• Install ROCm

• git clone, build and install other ROCm projects (using cmake and % make install) in the below order for vx_nn.

– rocm-cmake

– MIOpenGEMM

– MIOpen – make sure to use -DMIOPEN_BACKEND=OpenCL option with cmake

• install protobuf

• install OpenCV

• install FFMPEG n4.0.4 - Optional

• build and install (using cmake and % make install)

– executables will be placed in bin folder

– libraries will be placed in lib folder

– the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/lib

– the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include
folder

114 Chapter 3. ROCm Learning Center

https://rocm.github.io/ROCmInstall.html
https://rocm.github.io/ROCmInstall.html
https://github.com/RadeonOpenCompute/rocm-cmake
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2
https://github.com/opencv/opencv/releases/tag/3.3.0
https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4

ROCm Documentation, Release 4.5.0

• add the installed library path to LD_LIBRARY_PATH environment variable (default /opt/rocm/mivisionx/lib)

• add the installed executable path to PATH environment variable (default /opt/rocm/mivisionx/bin)

Linux

• The installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

• The installer also copies all the OpenVX and OpenVX module header files into /opt/rocm/mivisionx/include
folder

• Apps, Samples, Documents, Model Compiler and Toolkit are placed into /opt/rocm/mivisionx

• Run samples to verify the installation

– Canny Edge Detection

export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Note: More samples are available here

MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6.
Using docker images developers can quickly prototype and build applications without having to be locked into a
single system setup or lose valuable time figuring out the dependencies of the underlying software.

MIVisionX Docker

• Ubuntu 16.04

• Ubuntu 18.04

• CentOS 7.5

• CentOS 7.6

Docker Workflow Sample on Ubuntu 16.04/18.04

Prerequisites

• Ubuntu 16.04/18.04

• rocm supported hardware

3.24. MIVisionX 115

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/samples#samples
https://hub.docker.com/r/mivisionx/ubuntu-16.04
https://hub.docker.com/r/mivisionx/ubuntu-18.04
https://hub.docker.com/r/mivisionx/centos-7.5
https://hub.docker.com/r/mivisionx/centos-7.6
https://rocm.github.io/hardware.html

ROCm Documentation, Release 4.5.0

Workflow

Step 1 - Install rocm-dkms

sudo apt update
sudo apt dist-upgrade
sudo apt install libnuma-dev
sudo reboot

wget -qO - https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo
→˓tee /etc/apt/sources.list.d/rocm.list
sudo apt update
sudo apt install rocm-dkms
sudo reboot

Step 2 - Setup Docker

sudo apt-get install curl
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable"
sudo apt-get update
apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo systemctl status docker

Step 3 - Get Docker Image

sudo docker pull mivisionx/ubuntu-16.04

Step 4 - Run the docker image

sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/
→˓dev/mem --group-add video --network host mivisionx/ ubuntu-16.04

• Optional: Map localhost directory on the docker image

– option to map the localhost directory with trained caffe models to be accessed on the docker image.

– usage: -v {LOCAL_HOST_DIRECTORY_PATH}:{DOCKER_DIRECTORY_PATH}

sudo docker run -it -v /home/:/root/hostDrive/ --device=/dev/kfd --device=/dev/dri --
→˓cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/
→˓ubuntu-16.04

Note: Display option with docker

• Using host display

xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/
→˓dev/mem --group-add video
--network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.
→˓Xauthority
--volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-16.04:latest

• Test display with MIVisionX sample

116 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Known issues

• Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

Tested configurations

• Windows 10

• Linux: Ubuntu - 16.04/18.04 & CentOS - 7.5/7.6

• ROCm: rocm-dkms - 2.9.6

• rocm-cmake - github master:ac45c6e

• MIOpenGEMM - 1.1.5

• MIOpen - 2.1.0

• Protobuf - V3.5.2

• OpenCV - 3.4.0

• Dependencies for all the above packages

3.25 AMD ROCm Profiler

3.25.1 Overview

The rocProf is a command line tool implemented on the top of rocProfiler and rocTracer APIs. Source code for
rocProf can be found at GitHub: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/bin/rocprof

This command line tool is implemented as a script which is setting up the environment for attaching the profiler and
then run the provided application command line. The tool uses two profiling plugins loaded by ROC runtime and
based on rocProfiler and rocTracer for collecting metrics/counters, HW traces and runtime API/activity traces. The
tool consumes an input XML or text file with counters list or trace parameters and provides output profiling data and
statistics in various formats as text, CSV and JSON traces. Google Chrome tracing can be used to visualize the JSON
traces with runtime API/activity timelines and per kernel counters data.

3.25.2 Profiling Modes

‘rocprof’ can be used for GPU profiling using HW counters and application tracing.

3.25. AMD ROCm Profiler 117

https://github.com/RadeonOpenCompute/rocm-cmake/tree/master
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/releases/tag/1.1.5
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/2.1.0
https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/bin/rocprof

ROCm Documentation, Release 4.5.0

3.25.2.1 GPU profiling

GPU profiling is controlled with input file which defines a list of metrics/counters and a profiling scope. An input file
is provided using option ‘-i ’. Output CSV file with a line per submitted kernel is generated. Each line has kernel
name, kernel parameters and counter values. By option ‘—stats’ the kernel execution stats can be generated in CSV
format. Currently profiling has limitation of serializing submitted kernels. An example of input file:

Perf counters group 1
pmc : Wavefronts VALUInsts SALUInsts SFetchInsts
Perf counters group 2
pmc : TCC_HIT[0], TCC_MISS[0]
Filter by dispatches range, GPU index and kernel names
supported range formats: "3:9", "3:", "3"
range: 1 : 4
gpu: 0 1 2 3
kernel: simple Pass1 simpleConvolutionPass2

An example of profiling command line for ‘MatrixTranspose’ application

$ rocprof -i input.txt MatrixTranspose
RPL: on '191018_011134' from '/..../rocprofiler_pkg' in '/..../MatrixTranspose'
RPL: profiling '"./MatrixTranspose"'
RPL: input file 'input.txt'
RPL: output dir '/tmp/rpl_data_191018_011134_9695'
RPL: result dir '/tmp/rpl_data_191018_011134_9695/input0_results_191018_011134'
ROCProfiler: rc-file '/..../rpl_rc.xml'
ROCProfiler: input from "/tmp/rpl_data_191018_011134_9695/input0.xml"

gpu_index =
kernel =
range =
4 metrics
L2CacheHit, VFetchInsts, VWriteInsts, MemUnitStalled

0 traces
Device name Ellesmere [Radeon RX 470/480/570/570X/580/580X]
PASSED!

ROCProfiler: 1 contexts collected, output directory /tmp/rpl_data_191018_011134_9695/
→˓input0_results_191018_011134
RPL: '/..../MatrixTranspose/input.csv' is generated

3.25.2.1.1 Counters and metrics

There are two profiling features, metrics and traces. Hardware performance counters are treated as the basic metrics
and the formulas can be defined for derived metrics. Counters and metrics can be dynamically configured using XML
configuration files with counters and metrics tables:

• Counters table entry, basic metric: counter name, block name, event id

• Derived metrics table entry: metric name, an expression for calculation the metric from the counters

Metrics XML File Example:

<gfx8>
<metric name=L1_CYCLES_COUNTER block=L1 event=0 descr=”L1 cache cycles”></metric>
<metric name=L1_MISS_COUNTER block=L1 event=33 descr=”L1 cache misses”></metric>
. . .

</gfx8>
(continues on next page)

118 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

<gfx9>
. . .

</gfx9>

<global>
<metric
name=L1_MISS_RATIO
expr=L1_CYCLES_COUNT/L1_MISS_COUNTER
descry=”L1 miss rate metric”

></metric>
</global>

3.25.2.1.1.1 Metrics query

Available counters and metrics can be queried by options ‘—list-basic’ for counters and ‘—list-derived’ for derived
metrics. The output for counters indicates number of block instances and number of block counter registers. The
output for derived metrics prints the metrics expressions. Examples:

$ rocprof --list-basic
RPL: on '191018_014450' from '/opt/rocm/rocprofiler' in '/..../MatrixTranspose'
ROCProfiler: rc-file '/..../rpl_rc.xml'
Basic HW counters:

gpu-agent0 : GRBM_COUNT : Tie High - Count Number of Clocks
block GRBM has 2 counters

gpu-agent0 : GRBM_GUI_ACTIVE : The GUI is Active
block GRBM has 2 counters
. . .

gpu-agent0 : TCC_HIT[0-15] : Number of cache hits.
block TCC has 4 counters

gpu-agent0 : TCC_MISS[0-15] : Number of cache misses. UC reads count as misses.
block TCC has 4 counters
. . .

$ rocprof --list-derived
RPL: on '191018_015911' from '/opt/rocm/rocprofiler' in '/home/evgeny/work/BUILD/0_
→˓MatrixTranspose'
ROCProfiler: rc-file '/home/evgeny/rpl_rc.xml'
Derived metrics:

gpu-agent0 : TCC_HIT_sum : Number of cache hits. Sum over TCC instances.
TCC_HIT_sum = sum(TCC_HIT,16)

gpu-agent0 : TCC_MISS_sum : Number of cache misses. Sum over TCC instances.
TCC_MISS_sum = sum(TCC_MISS,16)

gpu-agent0 : TCC_MC_RDREQ_sum : Number of 32-byte reads. Sum over TCC instaces.
TCC_MC_RDREQ_sum = sum(TCC_MC_RDREQ,16)

. . .

3.25. AMD ROCm Profiler 119

ROCm Documentation, Release 4.5.0

3.25.2.1.1.2 Metrics collecting

Counters and metrics accumulated per kernel can be collected using input file with a list of metrics, see an example in
2.1. Currently profiling has limitation of serializing submitted kernels. The number of counters which can be dumped
by one run is limited by GPU HW by number of counter registers per block. The number of counters can be different
for different blocks and can be queried, see 2.1.1.1.

3.25.2.1.1.3 Blocks instancing

GPU blocks are implemented as several identical instances. To dump counters of specific instance square brackets can
be used, see an example in 2.1. The number of block instances can be queried, see 2.1.1.1.

3.25.2.1.1.4 HW limitations

The number of counters which can be dumped by one run is limited by GPU HW by number of counter registers per
block. The number of counters can be different for different blocks and can be queried, see 2.1.1.1.

• Metrics groups

To dump a list of metrics exceeding HW limitations the metrics list can be split on groups. The
tool supports automatic splitting on optimal metric groups:

$ rocprof -i input.txt ./MatrixTranspose
RPL: on '191018_032645' from '/opt/rocm/rocprofiler' in '/..../
→˓MatrixTranspose'
RPL: profiling './MatrixTranspose'
RPL: input file 'input.txt'
RPL: output dir '/tmp/rpl_data_191018_032645_12106'
RPL: result dir '/tmp/rpl_data_191018_032645_12106/input0_results_
→˓191018_032645'
ROCProfiler: rc-file '/..../rpl_rc.xml'
ROCProfiler: input from "/tmp/rpl_data_191018_032645_12106/input0.xml
→˓"
gpu_index =
kernel =
range =
20 metrics
Wavefronts, VALUInsts, SALUInsts, SFetchInsts, FlatVMemInsts,

→˓LDSInsts, FlatLDSInsts, GDSInsts, VALUUtilization, FetchSize,
→˓WriteSize, L2CacheHit, VWriteInsts, GPUBusy, VALUBusy, SALUBusy,
→˓MemUnitStalled, WriteUnitStalled, LDSBankConflict, MemUnitBusy
0 traces

Device name Ellesmere [Radeon RX 470/480/570/570X/580/580X]

Input metrics out of HW limit. Proposed metrics group set:
group1: L2CacheHit VWriteInsts MemUnitStalled WriteUnitStalled

→˓MemUnitBusy FetchSize FlatVMemInsts LDSInsts VALUInsts SALUInsts
→˓SFetchInsts FlatLDSInsts GPUBusy Wavefronts
group2: WriteSize GDSInsts VALUUtilization VALUBusy SALUBusy

→˓LDSBankConflict

ERROR: rocprofiler_open(), Construct(), Metrics list exceeds HW
→˓limits

(continues on next page)

120 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

Aborted (core dumped)
Error found, profiling aborted.

• Collecting with multiple runs

To collect several metric groups a full application replay is used by defining several ‘pmc:’
lines in the input file, see 2.1.

3.25.2.2 Application tracing

Supported application tracing includes runtime API and GPU activity tracing’ Supported runtimes are: ROCr (HSA
API) and HIP Supported GPU activity: kernel execution, async memory copy, barrier packets. The trace is generated
in JSON format compatible with Chrome tracing. The trace consists of several sections with timelines for API trace
per thread and GPU activity. The timelines events show event name and parameters. Supported options: ‘—hsa-trace’,
‘—hip-trace’, ‘—sys-trace’, where ‘sys trace’ is for HIP and HSA combined trace.

3.25.2.2.1 HIP runtime trace

The trace is generated by option ‘—hip-trace’ and includes HIP API timelines and GPU activity at the runtime level.

3.25.2.2.2 ROCr runtime trace

The trace is generated by option ‘—hsa-trace’ and includes ROCr API timelines and GPU activity at AQL queue level.
Also, can provide counters per kernel.

3.25.2.2.3 KFD driver trace

The trace is generated by option ‘—kfd-trace’ and includes KFD Thunk API timelines.

It is planned to include memory allocations/migration activity tracing.

3.25.2.2.4 Code annotation

Support for application code annotation. Start/stop API is supported to programmatically control the profiling. A
‘roctx’ library provides annotation API. Annotation is visualized in JSON trace as a separate “Markers and Ranges”
timeline section.

3.25.2.2.4.1 Start/stop API

// Tracing start API
void roctracer_start();

// Tracing stop API
void roctracer_stop();

3.25. AMD ROCm Profiler 121

ROCm Documentation, Release 4.5.0

3.25.2.2.4.2 rocTX basic markers API

// A marker created by given ASCII message
void roctxMark(const char* message);

// Returns the 0 based level of a nested range being started by given message
→˓associated to this range.
// A negative value is returned on the error.
int roctxRangePush(const char* message);

// Marks the end of a nested range.
// Returns the 0 based level the range.
// A negative value is returned on the error.
int roctxRangePop();

3.25.2.3 Multiple GPUs profiling

The profiler supports multiple GPU’s profiling and provide GPI id for counters and kernels data in CSV output file.
Also, GPU id is indicating for respective GPU activity timeline in JSON trace.

3.25.3 Profiling control

Profiling can be controlled by specifying a profiling scope, by filtering trace events and specifying interesting time
intervals.

3.25.3.1 Profiling scope

Counters profiling scope can be specified by GPU id list, kernel name substrings list and dispatch range. Supported
range formats examples: “3:9”, “3:”, “3”. You can see an example of input file in 2.1.

3.25.3.2 Tracing control

Tracing can be filtered by events names using profiler input file and by enabling interesting time intervals by command
line option.

3.25.3.2.1 Filtering Traced APIs

A list of traced API names can be specified in profiler input file. An example of input file line for ROCr runtime trace
(HSA API):

hsa:hsa_queue_create hsa_amd_memory_pool_allocate

122 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.25.3.2.2 Tracing period

Tracing can be disabled on start so it can be enabled with start/stop API:

--trace-start <on|off>

Trace can be dumped periodically with initial delay, dumping period length and rate:

--trace-period <dealy:length:rate>

3.25.3.3 Concurrent kernels

Currently concurrent kernels profiling is not supported, which is a planned feature. Kernels are serialized.

3.25.3.4 Multi-processes profiling

Multi-processes profiling is not currently supported.

3.25.3.5 Errors logging

Profiler errors are logged to global logs:

/tmp/aql_profile_log.txt
/tmp/rocprofiler_log.txt
/tmp/roctracer_log.txt

3.25.4 3rd party visualization tools

‘rocprof’ produces JSON trace, which is compatible with Chrome Tracing. Chrome Tracing is an internal trace
visualization tool in Google Chrome.

For more information about Chrome Tracing, see https://aras-p.info/blog/2017/01/23/
Chrome-Tracing-as-Profiler-Frontend/

3.25.5 Runtime Environment Setup

You must set the ‘PATH’ environment variable to the ROCM bin directory. This enables the profiler to find the correct
ROCm setup and get ROCm info metadata. For example, “export PATH=$PATH:/opt/rocm/bin”.

3.25. AMD ROCm Profiler 123

https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-Frontend/
https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-Frontend/

ROCm Documentation, Release 4.5.0

3.25.6 Command line options

The command line options can be printed with option ‘-h’:

rocprof [-h] [--list-basic] [--list-derived] [-i <input .txt/.xml file>] [-o <output
→˓CSV file>] <app command line>

Options:
-h - this help
--verbose - verbose mode, dumping all base counters used in the input metrics
--list-basic - to print the list of basic HW counters
--list-derived - to print the list of derived metrics with formulas
--cmd-qts <on|off> - quoting profiled cmd line [on]

-i <.txt|.xml file> - input file
Input file .txt format, automatically rerun application for every pmc line:

Perf counters group 1
pmc : Wavefronts VALUInsts SALUInsts SFetchInsts FlatVMemInsts LDSInsts

→˓FlatLDSInsts GDSInsts FetchSize
Perf counters group 2
pmc : VALUUtilization,WriteSize L2CacheHit
Filter by dispatches range, GPU index and kernel names
supported range formats: "3:9", "3:", "3"
range: 1 : 4
gpu: 0 1 2 3
kernel: simple Pass1 simpleConvolutionPass2

Input file .xml format, for single profiling run:

Metrics list definition, also the form "<block-name>:<event-id>" can be used
All defined metrics can be found in the 'metrics.xml'
There are basic metrics for raw HW counters and high-level metrics for

→˓derived counters
<metric name=SQ:4,SQ_WAVES,VFetchInsts
></metric>

Filter by dispatches range, GPU index and kernel names
<metric

range formats: "3:9", "3:", "3"
range=""
list of gpu indexes "0,1,2,3"
gpu_index=""
list of matched sub-strings "Simple1,Conv1,SimpleConvolution"
kernel=""

></metric>

-o <output file> - output CSV file [<input file base>.csv]
The output CSV file columns meaning in the columns order:
Index - kernels dispatch order index
KernelName - the dispatched kernel name
gpu-id - GPU id the kernel was submitted to
queue-id - the ROCm queue unique id the kernel was submitted to
queue-index - The ROCm queue write index for the submitted AQL packet
tid - system application thread id which submitted the kernel
grd - the kernel's grid size
wgr - the kernel's work group size
lds - the kernel's LDS memory size

(continues on next page)

124 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

scr - the kernel's scratch memory size
vgpr - the kernel's VGPR size
sgpr - the kernel's SGPR size
fbar - the kernel's barriers limitation
sig - the kernel's completion signal
... - The columns with the counters values per kernel dispatch
DispatchNs/BeginNs/EndNs/CompleteNs - timestamp columns if time-stamping was

→˓enabled

-d <data directory> - directory where profiler store profiling data including thread
→˓treaces [/tmp]

The data directory is renoving autonatically if the directory is matching the
→˓temporary one, which is the default.
-t <temporary directory> - to change the temporary directory [/tmp]

By changing the temporary directory you can prevent removing the profiling data
→˓from /tmp or enable removing from not '/tmp' directory.

--basenames <on|off> - to turn on/off truncating of the kernel full function names
→˓till the base ones [off]
--timestamp <on|off> - to turn on/off the kernel dispatches timestamps, dispatch/
→˓begin/end/complete [off]
Four kernel timestamps in nanoseconds are reported:

DispatchNs - the time when the kernel AQL dispatch packet was written to the
→˓queue

BeginNs - the kernel execution begin time
EndNs - the kernel execution end time
CompleteNs - the time when the completion signal of the AQL dispatch packet was

→˓received

--ctx-limit <max number> - maximum number of outstanding contexts [0 - unlimited]
--heartbeat <rate sec> - to print progress heartbeats [0 - disabled]

--stats - generating kernel execution stats, file <output name>.stats.csv
--roctx-trace - to enable rocTX applicatin code annotation trace

Will show the application code annotation in JSON trace "Markers and Ranges"
→˓section.
--sys-trace - to trace HIP/HSA APIs and GPU activity, generates stats and JSON trace
→˓chrome-tracing compatible
--hip-trace - to trace HIP, generates API execution stats and JSON file chrome-
→˓tracing compatible
--hsa-trace - to trace HSA, generates API execution stats and JSON file chrome-
→˓tracing compatible
--kfd-trace - to trace KFD, generates API execution stats and JSON file chrome-
→˓tracing compatible
Generated files: <output name>.<domain>_stats.txt <output name>.json
Traced API list can be set by input .txt or .xml files.
Input .txt:
hsa: hsa_queue_create hsa_amd_memory_pool_allocate

Input .xml:
<trace name="HSA">

<parameters list="hsa_queue_create, hsa_amd_memory_pool_allocate">
</parameters>

</trace>

--trace-start <on|off> - to enable tracing on start [on]
--trace-period <dealy:length:rate> - to enable trace with initial delay, with
→˓periodic sample length and rate

(continues on next page)

3.25. AMD ROCm Profiler 125

ROCm Documentation, Release 4.5.0

(continued from previous page)

Supported time formats: <number(m|s|ms|us)>
--obj-tracking <on|off> - to turn on/off kernels code objects tracking [off]

To support V3 code objects.

Configuration file:
You can set your parameters defaults preferences in the configuration file 'rpl_rc.xml
→˓'. The search path sequence: .:/home/ evgeny:<package path>
First the configuration file is looking in the current directory, then in your home,
→˓and then in the package directory.
Configurable options: 'basenames', 'timestamp', 'ctx-limit', 'heartbeat', 'obj-
→˓tracking'.
An example of 'rpl_rc.xml':

<defaults
basenames=off
timestamp=off
ctx-limit=0
heartbeat=0
obj-tracking=off

></defaults>

3.25.7 Publicly available counters and metrics

The following counters are publicly available for commercially available VEGA10/20 GPUs.

Counters:

• GRBM_COUNT : Tie High - Count Number of Clocks
• GRBM_GUI_ACTIVE : The GUI is Active
• SQ_WAVES : Count number of waves sent to SQs. (per-simd, emulated, global)
• SQ_INSTS_VALU : Number of VALU instructions issued. (per-simd, emulated)
• SQ_INSTS_VMEM_WR : Number of VMEM write instructions issued (including FLAT).
→˓(per-simd, emulated)
• SQ_INSTS_VMEM_RD : Number of VMEM read instructions issued (including FLAT). (per-
→˓simd, emulated)
• SQ_INSTS_SALU : Number of SALU instructions issued. (per-simd, emulated)
• SQ_INSTS_SMEM : Number of SMEM instructions issued. (per-simd, emulated)
• SQ_INSTS_FLAT : Number of FLAT instructions issued. (per-simd, emulated)
• SQ_INSTS_FLAT_LDS_ONLY : Number of FLAT instructions issued that read/wrote only
→˓from/to LDS (only works if EARLY_TA_DONE is enabled). (per-simd, emulated)
• SQ_INSTS_LDS : Number of LDS instructions issued (including FLAT). (per-simd,
→˓emulated)
• SQ_INSTS_GDS : Number of GDS instructions issued. (per-simd, emulated)
• SQ_WAIT_INST_LDS : Number of wave-cycles spent waiting for LDS instruction issue.
→˓In units of 4 cycles. (per-simd, nondeterministic)
• SQ_ACTIVE_INST_VALU : regspec 71? Number of cycles the SQ instruction arbiter is
→˓working on a VALU instruction. (per-simd, nondeterministic)
• SQ_INST_CYCLES_SALU : Number of cycles needed to execute non-memory read scalar
→˓operations. (per-simd, emulated)
• SQ_THREAD_CYCLES_VALU : Number of thread-cycles used to execute VALU operations
→˓(similar to INST_CYCLES_VALU but multiplied by # of active threads). (per-simd)
• SQ_LDS_BANK_CONFLICT : Number of cycles LDS is stalled by bank conflicts.
→˓(emulated)
• TA_TA_BUSY[0-15] : TA block is busy. Perf_Windowing not supported for this
→˓counter.
• TA_FLAT_READ_WAVEFRONTS[0-15] : Number of flat opcode reads processed by the TA.

(continues on next page)

126 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

• TA_FLAT_WRITE_WAVEFRONTS[0-15] : Number of flat opcode writes processed by the TA.
• TCC_HIT[0-15] : Number of cache hits.
• TCC_MISS[0-15] : Number of cache misses. UC reads count as misses.
• TCC_EA_WRREQ[0-15] : Number of transactions (either 32-byte or 64-byte) going
→˓over the TC_EA_wrreq interface. Atomics may travel over the same interface and are
→˓generally classified as write requests. This does not include probe commands.
• TCC_EA_WRREQ_64B[0-15] : Number of 64-byte transactions going (64-byte write or
→˓CMPSWAP) over the TC_EA_wrreq interface.
• TCC_EA_WRREQ_STALL[0-15] : Number of cycles a write request was stalled.
• TCC_EA_RDREQ[0-15] : Number of TCC/EA read requests (either 32-byte or 64-byte)
• TCC_EA_RDREQ_32B[0-15] : Number of 32-byte TCC/EA read requests
• TCP_TCP_TA_DATA_STALL_CYCLES[0-15] : TCP stalls TA data interface. Now Windowed.

The following derived metrics have been defined and the profiler metrics XML specification can be found at: https:
//github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml.

Metrics:

• TA_BUSY_avr : TA block is busy. Average over TA instances.
• TA_BUSY_max : TA block is busy. Max over TA instances.
• TA_BUSY_min : TA block is busy. Min over TA instances.
• TA_FLAT_READ_WAVEFRONTS_sum : Number of flat opcode reads processed by the TA.
→˓Sum over TA instances.
• TA_FLAT_WRITE_WAVEFRONTS_sum : Number of flat opcode writes processed by the TA.
→˓Sum over TA instances.
• TCC_HIT_sum : Number of cache hits. Sum over TCC instances.
• TCC_MISS_sum : Number of cache misses. Sum over TCC instances.
• TCC_EA_RDREQ_32B_sum : Number of 32-byte TCC/EA read requests. Sum over TCC
→˓instances.
• TCC_EA_RDREQ_sum : Number of TCC/EA read requests (either 32-byte or 64-byte).
→˓Sum over TCC instances.
• TCC_EA_WRREQ_sum : Number of transactions (either 32-byte or 64-byte) going over
→˓the TC_EA_wrreq interface. Sum over TCC instances.
• TCC_EA_WRREQ_64B_sum : Number of 64-byte transactions going (64-byte write or
→˓CMPSWAP) over the TC_EA_wrreq interface. Sum over TCC instances.
• TCC_WRREQ_STALL_max : Number of cycles a write request was stalled. Max over TCC
→˓instances.
• TCC_MC_WRREQ_sum : Number of 32-byte effective writes. Sum over TCC instaces.
• FETCH_SIZE : The total kilobytes fetched from the video memory. This is measured
→˓with all extra fetches and any cache or memory effects taken into account.
• WRITE_SIZE : The total kilobytes written to the video memory. This is measured
→˓with all extra fetches and any cache or memory effects taken into account.
• GPUBusy : The percentage of time GPU was busy.
• Wavefronts : Total wavefronts.
• VALUInsts : The average number of vector ALU instructions executed per work-item
→˓(affected by flow control).
• SALUInsts : The average number of scalar ALU instructions executed per work-item
→˓(affected by flow control).
• VFetchInsts : The average number of vector fetch instructions from the video
→˓memory executed per work-item (affected by flow control). Excludes FLAT
→˓instructions that fetch from video memory.
• SFetchInsts : The average number of scalar fetch instructions from the video
→˓memory executed per work-item (affected by flow control).
• VWriteInsts : The average number of vector write instructions to the video memory
→˓executed per work-item (affected by flow control). Excludes FLAT instructions that
→˓write to video memory.
• FlatVMemInsts : The average number of FLAT instructions that read from or write
→˓to the video memory executed per work item (affected by flow control). Includes
→˓FLAT instructions that read from or write to scratch.

(continues on next page)

3.25. AMD ROCm Profiler 127

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

ROCm Documentation, Release 4.5.0

(continued from previous page)

• LDSInsts : The average number of LDS read or LDS write instructions executed per
→˓work item (affected by flow control). Excludes FLAT instructions that read from or
→˓write to LDS.
• FlatLDSInsts : The average number of FLAT instructions that read or write to LDS
→˓executed per work item (affected by flow control).
• GDSInsts : The average number of GDS read or GDS write instructions executed per
→˓work item (affected by flow control).
• VALUUtilization : The percentage of active vector ALU threads in a wave. A lower
→˓number can mean either more thread divergence in a wave or that the work-group size
→˓is not a multiple of 64. Value range: 0% (bad), 100% (ideal - no thread divergence).
• VALUBusy : The percentage of GPUTime vector ALU instructions are processed. Value
→˓range: 0% (bad) to 100% (optimal).
• SALUBusy : The percentage of GPUTime scalar ALU instructions are processed. Value
→˓range: 0% (bad) to 100% (optimal).
• Mem32Bwrites :
• FetchSize : The total kilobytes fetched from the video memory. This is measured
→˓with all extra fetches and any cache or memory effects taken into account.
• WriteSize : The total kilobytes written to the video memory. This is measured
→˓with all extra fetches and any cache or memory effects taken into account.
• L2CacheHit : The percentage of fetch, write, atomic, and other instructions that
→˓hit the data in L2 cache. Value range: 0% (no hit) to 100% (optimal).
• MemUnitBusy : The percentage of GPUTime the memory unit is active. The result
→˓includes the stall time (MemUnitStalled). This is measured with all extra fetches
→˓and writes and any cache or memory effects taken into account. Value range: 0% to
→˓100% (fetch-bound).
• MemUnitStalled : The percentage of GPUTime the memory unit is stalled. Try
→˓reducing the number or size of fetches and writes if possible. Value range: 0%
→˓(optimal) to 100% (bad).
• WriteUnitStalled : The percentage of GPUTime the Write unit is stalled. Value
→˓range: 0% to 100% (bad).
• ALUStalledByLDS : The percentage of GPUTime ALU units are stalled by the LDS
→˓input queue being full or the output queue being not ready. If there are LDS bank
→˓conflicts, reduce them. Otherwise, try reducing the number of LDS accesses if
→˓possible. Value range: 0% (optimal) to 100% (bad).
• LDSBankConflict : The percentage of GPUTime LDS is stalled by bank conflicts.
→˓Value range: 0% (optimal) to 100% (bad).

3.26 AMD ROCProfiler API

ROC profiler library. Profiling with perf-counters and derived metrics. Library supports GFX8/GFX9.

HW specific low-level performance analysis interface for profiling of GPU compute applications. The profiling in-
cludes HW performance counters with complex performance metrics.

GitHub: https://github.com/ROCm-Developer-Tools/rocprofiler

Metrics

• The link to profiler default metrics XML specification.

API specification

• API specification at the GitHub.

To get sources

To clone ROC Profiler from GitHub:

128 Chapter 3. ROCm Learning Center

https://github.com/ROCm-Developer-Tools/rocprofiler
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/doc/rocprofiler_spec.md

ROCm Documentation, Release 4.5.0

git clone https://github.com/ROCm-Developer-Tools/rocprofiler

The library source tree:

* bin

* rocprof - Profiling tool run script

* doc - Documentation

* inc/rocprofiler.h - Library public API

* src - Library sources

* core - Library API sources

* util - Library utils sources

* xml - XML parser

* test - Library test suite

* tool - Profiling tool

* tool.cpp - tool sources

* metrics.xml - metrics config file

* ctrl - Test controll

* util - Test utils

* simple_convolution - Simple convolution test kernel

Build

Build environment:

export CMAKE_PREFIX_PATH=<path to hsa-runtime includes>:<path to hsa-runtime library>
export CMAKE_BUILD_TYPE=<debug|release> # release by default
export CMAKE_DEBUG_TRACE=1 # to enable debug tracing

To Build with the current installed ROCm:

To build and install to /opt/rocm/rocprofiler
export CMAKE_PREFIX_PATH=/opt/rocm/include/hsa:/opt/rocm
cd ../rocprofiler
mkdir build
cd build
cmake ..
make
make install

Internal ‘simple_convolution’ test run script:

cd ../rocprofiler/build
./run.sh

To enable error messages logging to ‘/tmp/rocprofiler_log.txt’:

export ROCPROFILER_LOG=1

To enable verbose tracing:

3.26. AMD ROCProfiler API 129

ROCm Documentation, Release 4.5.0

export ROCPROFILER_TRACE=1

3.27 AMD ROCTracer API

ROCtracer library, Runtimes Generic Callback/Activity APIs. The goal of the implementation is to provide a generic
independent from specific runtime profiler to trace API and asyncronous activity.

The API provides functionality for registering the runtimes API callbacks and asyncronous activity records pool sup-
port.

GitHub: https://github.com/ROCm-Developer-Tools/roctracer

API specification

• API specification at the GitHub.

To get sources

To clone ROC Tracer from GitHub:

git clone -b amd-master https://github.com/ROCm-Developer-Tools/roctracer

The library source tree:

* inc/roctracer.h - Library public API

* src - Library sources

* core - Library API sources

* util - Library utils sources

* test - test suit

* MatrixTranspose - test based on HIP MatrixTranspose sample

Build and run test

- Python is required
The required modules: CppHeaderParser, argparse.
To install:
sudo pip install CppHeaderParser argparse

- To customize environment, below are defaults
export HIP_PATH=/opt/rocm/HIP
export HCC_HOME=/opt/rocm/hcc/
export CMAKE_PREFIX_PATH=/opt/rocm

- Build ROCtracer
export CMAKE_BUILD_TYPE=<debug|release> # release by default
cd <your path>/roctracer && mkdir build && cd build && cmake -DCMAKE_INSTALL_PREFIX=/
→˓opt/rocm .. && make -j <nproc>

- To build and run test
make mytest
run.sh

- To install
make install
or
make package && dpkg -i *.deb

130 Chapter 3. ROCm Learning Center

https://github.com/ROCm-Developer-Tools/roctracer
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/doc/roctracer_spec.md

ROCm Documentation, Release 4.5.0

3.28 AMD ROCm Debugger

The AMD ROCm Debugger (ROCgdb) is the AMD ROCm source-level debugger for Linux based on the GNU
Debugger (GDB). It enables heterogeneous debugging on the AMD ROCm platform of an x86-based host architecture
along with AMD GPU architectures and supported by the AMD Debugger API.

The AMD ROCm Debugger is installed by the rocm-gdb package. The rocm-gdb package is part of the rocm-dev
meta-package, which is in the rocm-dkms package.

The current AMD ROCm Debugger (ROCgdb) is an initial prototype that focuses on source line debugging. Note,
symbolic variable debugging capabilities are not currently supported.

You can use the standard GDB commands for both CPU and GPU code debugging. For more information about
ROCgdb, refer to the ROCgdb User Guide, which is installed at:

• /opt/rocm/share/info/gdb.info as a texinfo file

• /opt/rocm/share/doc/gdb/gdb.pdf as a PDF file

The AMD ROCm Debugger User Guide is available as a PDF at:

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf

For more information about GNU Debugger (GDB), refer to the GNU Debugger (GDB) web site at: http://www.gnu.
org/software/gdb

3.29 AMD Debugger API

3.29.1 Introduction

The AMD Debugger API (ROCdbgapi) is a library that provides all the support necessary for a debugger and other
tools to perform low level control of the execution and inspection of execution state of AMD™ commercially available
GPU architectures.

For the AMD Debugger API Guide, see

For more information about the AMD ROCm ecosystem, see:

• https://rocmdocs.amd.com/

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf

3.29.2 Build the AMD Debugger API Library

The ROCdbgapi library can be built on Ubuntu 16.04, Ubuntu 18.04, Centos 8.1, RHEL 8.1, and SLES 15 Service
Pack 1.

Building the ROCdbgapi library has the following prerequisites:

1. A C++14 compiler such as GCC 5 or Clang 3.4.

2. AMD Code Object Manager Library (ROCcomgr) which can be installed as part of the AMD ROCm release by
the comgr package.

3. ROCm CMake modules which can be installed as part of the AMD ROCm release by the rocm-cmake pack-
age.

An example command-line to build and install the ROCdbgapi library on Linux is:

3.28. AMD ROCm Debugger 131

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf
http://www.gnu.org/software/gdb
http://www.gnu.org/software/gdb
https://rocmdocs.amd.com/
https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf

ROCm Documentation, Release 4.5.0

cd rocdbgapi
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install ..
make

You may substitute a path of your own choosing for CMAKE_INSTALL_PREFIX.

The built ROCdbgapi library will be placed in:

• build/include/amd-dbgapi.h

• build/librocm-dbgapi.so*

To install the ROCdbgapi library:

make install

The installed ROCdbgapi library will be placed in:

• ../install/include/amd-dbgapi.h

• ../install/lib/librocm-dbgapi.so*

• ../install/share/amd-dbgapi/LICENSE.txt

• ../install/share/amd-dbgapi/README.md

To use the ROCdbgapi library, the ROCcomgr library must be installed. This can be installed as part of the AMD
ROCm release by the comgr package:

• libamd_comgr.so.1

3.29.3 Build the AMD Debugger API Specification Documentation

Generating the AMD Debugger API Specification documentation has the following prerequisites:

1. For Ubuntu 16.04 and Ubuntu 18.04 the following adds the needed packages:

apt install doxygen graphviz texlive-full

NOTE: The doxygen 1.8.13 that is installed by Ubuntu 18.04 has a bug that prevents the PDF from being
created. doxygen 1.8.11 can be built from source to avoid the issue.

2. For CentOS 8.1 and RHEL 8.1 the following adds the needed packages:

yum install -y doxygen graphviz texlive texlive-xtab texlive-multirow \
texlive-sectsty texlive-tocloft texlive-tabu texlive-adjustbox

NOTE: The doxygen 1.8.14 that is installed by CentOS 8.1 and RHEL 8.1, has a bug that prevents the PDF
from being created. doxygen 1.8.11 can be built from source to avoid the issue.

3. For SLES 15 Service Pack 15 the following adds the needed packages:

zypper in doxygen graphviz texlive-scheme-medium texlive-hanging \
texlive-stackengine texlive-tocloft texlive-etoc texlive-tabu

An example command-line to generate the HTML and PDF documentation after running the above cmake is:

make doc

132 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

The generated ROCdbgapi library documentation is put in:

• doc/html/index.html

• doc/latex/refman.pdf

If the ROCdbgapi library PDF documentation has been generated, make install will place it in:

• ../install/share/doc/amd-dbgapi/amd-dbgapi.pdf

3.29.4 Known Limitations and Restrictions

You can refer to the following sections in the AMD Debugger API Specification documentation for:

• Supported AMD GPU Architectures provides the list of supported AMD GPU architectures.

• Known Limitations and Restrictions provides information about known limitations and restrictions.

The ROCdbgapi library is compatible with the following interface versions:

• AMD GPU Driver Version

– See KFD_IOCTL_MAJOR_VERSION and KFD_IOCTL_MINOR_VERSION in src/linux/
kfd_ioctl.h which conform to semver.

• AMD GPU Driver Debug ioctl Version

– See KFD_IOCTL_DBG_MAJOR_VERSION and KFD_IOCTL_DBG_MINOR_VERSION in src/
linux/kfd_ioctl.h which conform to semver.

• ROCm Runtime r_debug ABI Version

– See ROCR_RDEBUG_VERSION in src/rocr_rdebug.h.

• Architectures and Firmware Versions

– See s_gfxip_lookup_table in src/os_driver.cpp.

3.29.5 Disclaimer

The information contained herein is for informational purposes only and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the con-
tents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes,with respect to the operation or use of AMD hardware, software or
other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD products are as
set forth in a signed agreement between the parties or in AMD™ Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, ROCm® and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. PCIe® is a registered
trademark of PCI-SIG Corporation. RedHatÂ® and the Shadowman logo are registered trademarks of Red Hat,
Inc. www.redhat.com in the U.S. and other countries. SUSE® is a registered trademark of SUSE LLC in the United
Stated and other countries. Ubuntu® and the Ubuntu logo are registered trademarks of Canonical Ltd. Other product
names used in this publication are for identification purposes only and may be trademarks of their respective compa-
nies.

Copyright (c) 2019-2021 Advanced Micro Devices, Inc. All rights reserved.

3.29. AMD Debugger API 133

http://semver.org/
http://semver.org/

ROCm Documentation, Release 4.5.0

3.30 ROCm™ Data Center Tool

The ROCm™ Data Center Tool™ simplifies the administration and addresses key infrastructure challenges in AMD
GPUs in cluster and datacenter environments. The main features are:

• GPU telemetry

• GPU statistics for jobs

• Integration with third-party tools

• Open source

The tool can be used in stand-alone mode if all components are installed. However, the existing management tools can
use the same set of features available in a library format.

Refer to the Starting RDC section in the ROCm Data Center Tool User Guide for details on different modes of
operation.

3.30.1 Objective

This user guide is intended to:

• Provide an overview of the ROCm Data Center Tool features

• Describe how system administrators and Data Center (or HPC) users can administer and configure AMD GPUs

• Describe the components

• Provide an overview of the open source developer handbook

3.30.2 Target Audience

The audience for the AMD ROCm Data Center™ tool consists of:

• Administrators: The tool will provide cluster administrator with the capability of monitoring, validating, and
configuring policies.

• HPC Users: Provides GPU centric feedback for their workload submissions

• OEM: Add GPU information to their existing cluster management software

• Open Source Contributors: RDC is open source and will accept contributions from the community

134 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.30.3 Download AMD ROCm Data Center Tool User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf

3.30.4 Download AMD ROCm Data Center Tool API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf

3.31 AMD ROCm Debug Agent Library

3.31.1 Introduction

The AMD ROCm Debug Agent (ROCdebug-agent) is a library that can be loaded by the ROCm Platform Runtime
(ROCr) to provide the following functionality:

• Print the state of all AMD GPU wavefronts that caused a queue error (for example, causing a memory violation,
executing an s_trap 2, or executing an illegal instruction).

• Print the state of all AMD GPU wavefronts by sending a SIGQUIT signal to the process (for example, by
pressing Ctrl-\) while the program is executing.

This functionality is provided for all AMD GPUs supported by the ROCm Debugger API Library (ROCdbgapi).

3.31.2 Usage

To display the source text location with the machine code instructions around the wavefronts’ pc, compile the AMD
GPU code objects with -ggdb. In addition, -O0, while not required, will help the source text location displayed to
be more intuitive as higher optimization levels can reorder machine code instructions. If -ggdb is not used, source
line information will not be available and only machine code instructions starting at the wavefronts’ pc will be printed.
For example:

/opt/rocm/bin/hipcc -O0 -ggdb -o my_program my_program.cpp

To use the ROCdebug-agent set the HSA_TOOLS_LIB environment variable to the file name or path of the library.
For example:

HSA_TOOLS_LIB=/opt/rocm/lib/librocm-debug-agent.so.2 ./my_program

If the application encounters a triggering event, it will print the state of some or all AMD GPU wavefronts. For
example, a sample print out is:

Queue error (HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware
→˓exception.)

--
wave_1: pc=0x7fd4f100d0e8 (stopped, reason: ASSERT_TRAP)

system registers:
m0: 00000000 status: 00012461 trapsts: 20000000

→˓mode: 000003c0
ttmp4: 00000001 ttmp5: 00000000 ttmp6: f51a0080

→˓ttmp7: 000000d5
ttmp8: 00000000 ttmp9: 00000000 ttmp10: 00000000

→˓ttmp11: 000000c0 (continues on next page)

3.31. AMD ROCm Debug Agent Library 135

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf
https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf

ROCm Documentation, Release 4.5.0

(continued from previous page)

ttmp13: 00000000
exec: 0000000000000001 vcc: 0000000000000000

xnack_mask: 0000000000012460 flat_scratch: 00807fac01000000

scalar registers:
s0: f520c000 s1: 00007fd5 s2: 00000000

→˓s3: 00ea4fac
s4: f51a0080 s5: 00007fd5 s6: f520c000

→˓s7: 00007fd5
s8: f1002000 s9: 00007fd4 s10: 00000000

→˓s11: 00000000
s12: f1000000 s13: 00007fd4 s14: f1001000

→˓s15: 00007fd4
s16: f5186070 s17: 00007fd5 s18: f100e070

→˓s19: 00007fd4
s20: f5186070 s21: 00007fd5 s22: f100e070

→˓s23: 00007fd4
s24: 00004000 s25: 00010000

vector registers:
v0: [0] 00000000 [1] f1002004 [2] f1002008 [3] f100200c [4] f1002010 [5]

→˓f1002014 [6] f1002018 [7] f100201c [8] f1002020 [9] f1002024 [10] f1002028 [11]
→˓f100202c [12] f1002030 [13] f1002034 [14] f1002038 [15] f100203c [16] f1002040 [17]
→˓f1002044 [18] f1002048 [19] f100204c [20] f1002050 [21] f1002054 [22] f1002058 [23]
→˓f100205c [24] f1002060 [25] f1002064 [26] f1002068 [27] f100206c [28] f1002070 [29]
→˓f1002074 [30] f1002078 [31] f100207c [32] f1002080 [33] f1002084 [34] f1002088 [35]
→˓f100208c [36] f1002090 [37] f1002094 [38] f1002098 [39] f100209c [40] f10020a0 [41]
→˓f10020a4 [42] f10020a8 [43] f10020ac [44] f10020b0 [45] f10020b4 [46] f10020b8 [47]
→˓f10020bc [48] f10020c0 [49] f10020c4 [50] f10020c8 [51] f10020cc [52] f10020d0 [53]
→˓f10020d4 [54] f10020d8 [55] f10020dc [56] f10020e0 [57] f10020e4 [58] f10020e8 [59]
→˓f10020ec [60] f10020f0 [61] f10020f4 [62] f10020f8 [63] f10020fc

v1: [0] 00000000 [1] 00007fd4 [2] 00007fd4 [3] 00007fd4 [4] 00007fd4 [5]
→˓00007fd4 [6] 00007fd4 [7] 00007fd4 [8] 00007fd4 [9] 00007fd4 [10] 00007fd4 [11]
→˓00007fd4 [12] 00007fd4 [13] 00007fd4 [14] 00007fd4 [15] 00007fd4 [16] 00007fd4 [17]
→˓00007fd4 [18] 00007fd4 [19] 00007fd4 [20] 00007fd4 [21] 00007fd4 [22] 00007fd4 [23]
→˓00007fd4 [24] 00007fd4 [25] 00007fd4 [26] 00007fd4 [27] 00007fd4 [28] 00007fd4 [29]
→˓00007fd4 [30] 00007fd4 [31] 00007fd4 [32] 00007fd4 [33] 00007fd4 [34] 00007fd4 [35]
→˓00007fd4 [36] 00007fd4 [37] 00007fd4 [38] 00007fd4 [39] 00007fd4 [40] 00007fd4 [41]
→˓00007fd4 [42] 00007fd4 [43] 00007fd4 [44] 00007fd4 [45] 00007fd4 [46] 00007fd4 [47]
→˓00007fd4 [48] 00007fd4 [49] 00007fd4 [50] 00007fd4 [51] 00007fd4 [52] 00007fd4 [53]
→˓00007fd4 [54] 00007fd4 [55] 00007fd4 [56] 00007fd4 [57] 00007fd4 [58] 00007fd4 [59]
→˓00007fd4 [60] 00007fd4 [61] 00007fd4 [62] 00007fd4 [63] 00007fd4

v2: [0] 22222222 [1] 11111125 [2] 1111111b [3] 11111123 [4] 1111111d [5]
→˓1111111c [6] 1111111a [7] 1111111d [8] 1111111a [9] 1111111b [10] 1111111c [11]
→˓11111118 [12] 11111123 [13] 1111111c [14] 11111119 [15] 11111117 [16] 1111111d [17]
→˓11111114 [18] 1111111b [19] 11111117 [20] 1111111a [21] 1111111d [22] 11111118 [23]
→˓11111120 [24] 11111118 [25] 1111111c [26] 1111111d [27] 1111111e [28] 1111111a [29]
→˓11111122 [30] 1111111e [31] 11111120 [32] 11111123 [33] 11111119 [34] 1111111c [35]
→˓1111111d [36] 11111116 [37] 1111111a [38] 1111111d [39] 1111111c [40] 11111113 [41]
→˓11111115 [42] 1111111d [43] 1111111f [44] 1111111e [45] 1111111c [46] 1111111f [47]
→˓1111111e [48] 11111117 [49] 11111115 [50] 1111111a [51] 11111121 [52] 1111111f [53]
→˓1111111b [54] 1111111b [55] 11111124 [56] 11111116 [57] 11111125 [58] 11111123 [59]
→˓1111111b [60] 1111111a [61] 11111119 [62] 11111118 [63] 11111123

v3: [0] 11111111 [1] 11111111 [2] 11111111 [3] 11111111 [4] 11111111 [5]
→˓11111111 [6] 11111111 [7] 11111111 [8] 11111111 [9] 11111111 [10] 11111111 [11]
→˓11111111 [12] 11111111 [13] 11111111 [14] 11111111 [15] 11111111 [16] 11111111 [17]
→˓11111111 [18] 11111111 [19] 11111111 [20] 11111111 [21] 11111111 [22] 11111111 [23]
→˓11111111 [24] 11111111 [25] 11111111 [26] 11111111 [27] 11111111 [28] 11111111 [29]
→˓11111111 [30] 11111111 [31] 11111111 [32] 11111111 [33] 11111111 [34] 11111111 [35]
→˓11111111 [36] 11111111 [37] 11111111 [38] 11111111 [39] 11111111 [40] 11111111 [41]
→˓11111111 [42] 11111111 [43] 11111111 [44] 11111111 [45] 11111111 [46] 11111111 [47]
→˓11111111 [48] 11111111 [49] 11111111 [50] 11111111 [51] 11111111 [52] 11111111 [53]
→˓11111111 [54] 11111111 [55] 11111111 [56] 11111111 [57] 11111111 [58] 11111111 [59]
→˓11111111 [60] 11111111 [61] 11111111 [62] 11111111 [63] 11111111

(continues on next page)

136 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

(continued from previous page)

v4: [0] f10115b0 [1] 0000000a [2] 00000005 [3] 00000009 [4] 00000004 [5]
→˓00000001 [6] 00000001 [7] 0000000a [8] 00000004 [9] 00000005 [10] 00000008 [11]
→˓00000002 [12] 00000008 [13] 00000001 [14] 00000006 [15] 00000005 [16] 00000005 [17]
→˓00000001 [18] 00000001 [19] 00000002 [20] 00000006 [21] 00000006 [22] 00000002 [23]
→˓0000000a [24] 00000001 [25] 00000001 [26] 0000000a [27] 00000006 [28] 00000001 [29]
→˓00000008 [30] 0000000a [31] 00000009 [32] 00000009 [33] 00000007 [34] 0000000a [35]
→˓00000007 [36] 00000003 [37] 00000003 [38] 00000008 [39] 00000001 [40] 00000001 [41]
→˓00000002 [42] 00000005 [43] 00000009 [44] 00000005 [45] 00000005 [46] 0000000a [47]
→˓00000003 [48] 00000004 [49] 00000001 [50] 00000002 [51] 0000000a [52] 0000000a [53]
→˓00000001 [54] 00000007 [55] 0000000a [56] 00000004 [57] 0000000a [58] 00000008 [59]
→˓00000006 [60] 00000008 [61] 00000001 [62] 00000004 [63] 00000009

v5: [0] 00007fd4 [1] 00007fd4 [2] 00007fd4 [3] 00007fd4 [4] 00007fd4 [5]
→˓00007fd4 [6] 00007fd4 [7] 00007fd4 [8] 00007fd4 [9] 00007fd4 [10] 00007fd4 [11]
→˓00007fd4 [12] 00007fd4 [13] 00007fd4 [14] 00007fd4 [15] 00007fd4 [16] 00007fd4 [17]
→˓00007fd4 [18] 00007fd4 [19] 00007fd4 [20] 00007fd4 [21] 00007fd4 [22] 00007fd4 [23]
→˓00007fd4 [24] 00007fd4 [25] 00007fd4 [26] 00007fd4 [27] 00007fd4 [28] 00007fd4 [29]
→˓00007fd4 [30] 00007fd4 [31] 00007fd4 [32] 00007fd4 [33] 00007fd4 [34] 00007fd4 [35]
→˓00007fd4 [36] 00007fd4 [37] 00007fd4 [38] 00007fd4 [39] 00007fd4 [40] 00007fd4 [41]
→˓00007fd4 [42] 00007fd4 [43] 00007fd4 [44] 00007fd4 [45] 00007fd4 [46] 00007fd4 [47]
→˓00007fd4 [48] 00007fd4 [49] 00007fd4 [50] 00007fd4 [51] 00007fd4 [52] 00007fd4 [53]
→˓00007fd4 [54] 00007fd4 [55] 00007fd4 [56] 00007fd4 [57] 00007fd4 [58] 00007fd4 [59]
→˓00007fd4 [60] 00007fd4 [61] 00007fd4 [62] 00007fd4 [63] 00007fd4

v6: [0] 00007ffe [1] 00007ffe [2] 00007ffe [3] 00007ffe [4] 00007ffe [5]
→˓00007ffe [6] 00007ffe [7] 00007ffe [8] 00007ffe [9] 00007ffe [10] 00007ffe [11]
→˓00007ffe [12] 00007ffe [13] 00007ffe [14] 00007ffe [15] 00007ffe [16] 00007ffe [17]
→˓00007ffe [18] 00007ffe [19] 00007ffe [20] 00007ffe [21] 00007ffe [22] 00007ffe [23]
→˓00007ffe [24] 00007ffe [25] 00007ffe [26] 00007ffe [27] 00007ffe [28] 00007ffe [29]
→˓00007ffe [30] 00007ffe [31] 00007ffe [32] 00007ffe [33] 00007ffe [34] 00007ffe [35]
→˓00007ffe [36] 00007ffe [37] 00007ffe [38] 00007ffe [39] 00007ffe [40] 00007ffe [41]
→˓00007ffe [42] 00007ffe [43] 00007ffe [44] 00007ffe [45] 00007ffe [46] 00007ffe [47]
→˓00007ffe [48] 00007ffe [49] 00007ffe [50] 00007ffe [51] 00007ffe [52] 00007ffe [53]
→˓00007ffe [54] 00007ffe [55] 00007ffe [56] 00007ffe [57] 00007ffe [58] 00007ffe [59]
→˓00007ffe [60] 00007ffe [61] 00007ffe [62] 00007ffe [63] 00007ffe

v7: [0] 3d3495ac [1] bd0dfb7a [2] bcc1143a [3] bca64d59 [4] bc112d79 [5]
→˓3cbcc8c8 [6] 3ce69f7c [7] 3de967fe [8] bdee8d4d [9] 3c9e426b [10] bc6d380f [11]
→˓3c18495c [12] be38843f [13] bd5a1da8 [14] 3d80c7e4 [15] bc978798 [16] 3cd52d8d [17]
→˓bd58d230 [18] 3e2e91ac [19] bca54a71 [20] 3c3cea13 [21] 3c888a4b [22] 3de0a868 [23]
→˓3d220de3 [24] 3ce4d6f8 [25] bc033ce0 [26] bb38519f [27] b9a4b621 [28] bd800802 [29]
→˓bdb04d27 [30] bc826d02 [31] bd4aa05d [32] 3dae9483 [33] b921dac8 [34] 3d194f79 [35]
→˓bd1ccbd9 [36] bd45f9c5 [37] bc1b4cb0 [38] 3db1ab4b [39] 3e0487ab [40] 3d37f334 [41]
→˓3b983eb8 [42] 3caba2a4 [43] bd8944ea [44] be01bee7 [45] bbbf22d8 [46] 3d076472 [47]
→˓bd2eb34c [48] 3c3da426 [49] 3d754b6d [50] 3c08a069 [51] bcdeca32 [52] be12e2e4 [53]
→˓3c92d0e2 [54] 3d1480e4 [55] 3d817751 [56] 3db0072c [57] 3d6fc70b [58] bd6a67a1 [59]
→˓3da0f9ed [60] 3b67b5e6 [61] bdb8002e [62] 3cd0a9b9 [63] 386eee2b

Local memory content:
0x0000: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0020: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0040: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0060: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0080: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x00a0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x00c0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x00e0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0100: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0120: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0140: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111

(continues on next page)

3.31. AMD ROCm Debug Agent Library 137

ROCm Documentation, Release 4.5.0

(continued from previous page)

0x0160: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x0180: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x01a0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x01c0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
0x01e0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111

Disassembly for function vector_add_assert_trap(int*, int*, int*):
code object: file:////rocm-debug-agent/build/test/rocm-debug-agent-test

→˓#offset=14309&size=31336
loaded at: [0x7fd4f100c000-0x7fd4f100e070]

/rocm-debug-agent/test/vector_add_assert_trap.cpp:
55 c[gid] = a[gid] + b[gid] + (lds_check[0] >> 32);

0x7fd4f100d0c4 <+196>: s_waitcnt vmcnt(0) lgkmcnt(0)
0x7fd4f100d0c8 <+200>: v_add3_u32 v2, v2, v4, v3
0x7fd4f100d0d0 <+208>: global_store_dword v[0:1], v2, off
0x7fd4f100d0d8 <+216>: s_or_saveexec_b64 s[0:1], s[0:1]
0x7fd4f100d0dc <+220>: s_xor_b64 exec, exec, s[0:1]
0x7fd4f100d0e0 <+224>: s_cbranch_execz 65503 # 0x7fd4f100d060 <vector_add_

→˓assert_trap(int*, int*, int*)+96>

53 __builtin_trap ();
0x7fd4f100d0e4 <+228>: s_mov_b64 s[0:1], s[6:7]

=> 0x7fd4f100d0e8 <+232>: s_trap 2
0x7fd4f100d0ec <+236>: s_endpgm

End of disassembly.
Aborted (core dumped)

The supported triggering events are:

• Memory fault

A memory fault happens when an AMD GPU accesses a page that is not accessible. The information about the
memory fault is printed. For example:

System event (HSA_AMD_GPU_MEMORY_FAULT_EVENT: page not present or supervisor
→˓privilege, write access to a read-only page)
Faulting page: 0x7fbe4cc01000

There could be multiple memory faults, but the information about only one is printed.

A memory fault does not specify the wavefront that caused it. However, the stop reason for each wavefront is
available. For example:

wave_0: pc=0x7fbe4cc0d0b4 (stopped, reason: MEMORY_VIOLATION)

• Assert trap

This occurs when an s_trap 2 instruction is executed. The __builtin_trap() language builtin, or
llvm.trap LLVM IR instruction, can be used to generate this AMD GPU instruction.

• Illegal instruction

This occurs when the hardware detects an illegal instruction.

• SIGQUIT ``(Ctrl-)``

A SIGQUIT signal can be sent to a process with the kill -s SIGQUIT <pid> command or by pressing
Ctrl-\. See the --disable-linux-signals option for more information.

138 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.31.3 Options

Options are passed through the ROCM_DEBUG_AGENT_OPTIONS environment variable. For example:

ROCM_DEBUG_AGENT_OPTIONS="--all --save-code-objects" \
HSA_TOOLS_LIB=librocm-debug-agent.so.2 ./my_program

The supported options are:

• ``-a``, ``–all``

Prints all wavefronts.

If not specified, only wavefronts that have a triggering event are printed.

• ``-s [DIR]``, ``–save-code-objects[=DIR]``

Saves all loaded code objects. If the directory is not specified, the code objects are saved in the current directory.

The file name in which the code object is saved is the same as the code object URI with special characters
replaced by '_'. For example, the code object URI:

file:///rocm-debug-agent/rocm-debug-agent-test#offset=14309&size=31336

is saved in a file with the name:

file____rocm-debug-agent_rocm-debug-agent-test_offset_14309_size_31336

• ``-o <file-path>``, ``–output=<file-path>``

Saves the output produced by the ROCdebug-agent in the specified file.

By default, the output is redirected to stderr.

• ``-d``, ``–disable-linux-signals``

Disables installing a SIGQUIT signal handler, so that the default Linux handler may dump a core file.

By default, the ROCdebug-agent installs a SIGQUIT handler to print the state of all wavefronts when a SIGQUIT
signal is sent to the process.

• ``-l <log-level>``, ``–log-level=<log-level>``

Changes the ROCdebug-agent and ROCdbgapi log level. The log level can be none, info, warning, or
error.

The default log level is none.

• ``-h``, ``–help``

Displays a usage message and aborts the process.

3.31.4 Build the ROCdebug-agent library

The ROCdebug-agent library can be built on Ubuntu 18.04, Ubuntu 20.04, Centos 8.1, RHEL 8.1, and SLES 15
Service Pack 1.

Building the ROCdebug-agent library has the following prerequisites:

1. A C++17 compiler such as GCC 7 or Clang 5.

2. The AMD ROCm software stack which can be installed as part of the AMD ROCm release by the rocm-dev
package.

3.31. AMD ROCm Debug Agent Library 139

ROCm Documentation, Release 4.5.0

3. For Ubuntu 18.04 the following adds the needed packages:

apt install libelf-dev libdw-dev

4. For CentOS 8.1 and RHEL 8.1 the following adds the needed packages:

yum install elfutils-libelf-devel elfutils-devel

5. For SLES 15 Service Pack 1 the following adds the needed packages:

zypper install libelf-devel libdw-devel

6. Python version 3.6 or later is required to run the tests.

An example command-line to build and install the ROCdebug-agent library on Linux is:

cd rocm-debug-agent
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install ..
make

Use the CMAKE_INSTALL_PREFIX to specify where the ROCdebug-agent library should be installed. The default
location is /usr.

Use CMAKE_MODULE_PATH to specify a ';' separated list of paths that will be used to locate cmake modules. It is
used to locate the HIP cmake modules required to build the tests. The default is /opt/rocm/hip/cmake

The built ROCdebug-agent library will be placed in:

• build/librocm-debug-agent.so.2*

To install the ROCdebug-agent library:

make install

The installed ROCdebug-agent library will be placed in:

• <install-prefix>/lib/librocm-debug-agent.so.2*

• <install-prefix>/bin/rocm-debug-agent-test

• <install-prefix>/bin/run-test.py

• <install-prefix>/share/rocm-debug-agent/LICENSE.txt

• <install-prefix>/share/rocm-debug-agent/README.md

To use the ROCdebug-agent library, the ROCdbgapi library must be installed. This can be installed as part of the
ROCm release by the rocm-dbgapi package.

3.31.5 Test the ROCdebug-agent library

To test the ROCdebug-agent library:

make test

The output should be:

140 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Running tests...
Test project /rocm-debug-agent/build

Start 1: rocm-debug-agent-test
1/1 Test #1: rocm-debug-agent-test Passed 1.59 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 1.59 sec

Tests can be run individually outside of the CTest harness. For example:

HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 0
HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 1
HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 2

3.31.6 Known Limitations and Restrictions

• A disassembly of the wavefront faulting PC is only provided if it is within a code object.

3.31.7 Disclaimer

The information contained herein is for informational purposes only and is subject to change without notice. While
every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions
and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the con-
tents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement,
merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software
or other products described herein. No license, including implied or arising by estoppel, to any intellectual property
rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as
set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

AMD®, the AMD Arrow logo, ROCm® and combinations thereof are trademarks of Advanced Micro Devices,
Inc. Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries. RedHat® and the Shad-
owman logo are registered trademarks of Red Hat, Inc. www.redhat.com in the U.S. and other countries. SUSE® is
a registered trademark of SUSE LLC in the United Stated and other countries. Ubuntu® and the Ubuntu logo are
registered trademarks of Canonical Ltd. Other product names used in this publication are for identification purposes
only and may be trademarks of their respective companies.

Copyright (c) 2018-2020 Advanced Micro Devices, Inc. All rights reserved. For the latest HIP Programming Guide
documentation, refer to the PDF version at:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.3.pdf

3.32 System Level Debug

3.32.1 ROCm Language & System Level Debug, Flags, and Environment Variables

Kernel options to avoid Ethernet port getting renamed every time you change graphics cards
net.ifnames=0 biosdevname=0

3.32. System Level Debug 141

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.3.pdf

ROCm Documentation, Release 4.5.0

3.32.1.1 ROCr Error Code

• 2 Invalid Dimension

• 4 Invalid Group Memory

• 8 Invalid (or Null) Code

• 32 Invalid Format

• 64 Group is too large

• 128 Out of VGPR’s

• 0x80000000 Debug Trap

3.32.1.2 Command to dump firmware version and get Linux Kernel version

• sudo cat /sys/kernel/debug/dri/1/amdgpu_firmware_info

• uname -a

3.32.1.3 Debug Flags

Debug messages when developing/debugging base ROCm dirver. You could enable the printing from libhsakmt.so by
setting an environment variable, HSAKMT_DEBUG_LEVEL. Available debug levels are 3~7. The higher level you
set, the more messages will print.

• export HSAKMT_DEBUG_LEVEL=3 : only pr_err() will print.

• export HSAKMT_DEBUG_LEVEL=4 : pr_err() and pr_warn() will print.

• export HSAKMT_DEBUG_LEVEL=5 : We currently don’t implement “notice”. Setting to 5 is same as setting
to 4.

• export HSAKMT_DEBUG_LEVEL=6 : pr_err(), pr_warn(), and pr_info will print.

• export HSAKMT_DEBUG_LEVEL=7 : Everything including pr_debug will print.

3.32.1.4 ROCr level env variable for debug

• HSA_ENABLE_SDMA=0

• HSA_ENABLE_INTERRUPT=0

• HSA_SVM_GUARD_PAGES=0

• HSA_DISABLE_CACHE=1

142 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.32.1.5 Turn Off Page Retry on GFX9/Vega devices

• sudo –s

• echo 1 > /sys/module/amdkfd/parameters/noretry

3.32.1.6 HIP Environment Variables

3.32.1.7 OpenCL Debug Flags

• AMD_OCL_WAIT_COMMAND=1 (0 = OFF, 1 = On)

3.32.1.8 PCIe-Debug

Refer here for PCIe-Debug

More information here on how to debug and profile HIP applications

• HIP-Debugging

• HIP-Profiling

3.33 ROCmValidationSuite

The ROCm Validation Suite (RVS) is a system administrator’s and cluster manager’s tool for detecting and trou-
bleshooting common problems affecting AMD GPU(s) running in a high-performance computing environment, en-
abled using the ROCm software stack on a compatible platform.

The RVS is a collection of tests, benchmarks and qualification tools each targeting a specific sub-system of the ROCm
platform. All of the tools are implemented in software and share a common command line interface. Each set of tests
are implemented in a “module” which is a library encapsulating the functionality specific to the tool. The CLI can
specify the directory containing modules to use when searching for libraries to load. Each module may have a set of
options that it defines and a configuration file that supports its execution.

3.33.1 ROCmValidationSuite Modules

GPU Properties – GPUP

The GPU Properties module queries the configuration of a target device and returns the device’s static characteristics.
These static values can be used to debug issues such as device support, performance and firmware problems.

GPU Monitor – GM module

The GPU monitor tool is capable of running on one, some or all of the GPU(s) installed and will report various
information at regular intervals. The module can be configured to halt another RVS modules execution if one of the
quantities exceeds a specified boundary value.

PCI Express State Monitor – PESM module?

The PCIe State Monitor tool is used to actively monitor the PCIe interconnect between the host platform and the GPU.
The module will register a “listener” on a target GPU’s PCIe interconnect, and log a message whenever it detects a
state change. The PESM will be able to detect the following state changes:

• PCIe link speed changes

• GPU power state changes

3.33. ROCmValidationSuite 143

http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/HIP_Debugging.html#hip-debugging
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/hip_profiling.html#hip-profiling

ROCm Documentation, Release 4.5.0

PCI Express Qualification Tool – PEQT module

The PCIe Qualification Tool consists is used to qualify the PCIe bus on which the GPU is connected. The qualification
test will be capable of determining the following characteristics of the PCIe bus interconnect to a GPU:

• Support for Gen 3 atomic completers

• DMA transfer statistics

• PCIe link speed

• PCIe link width

P2P Benchmark and Qualification Tool – PBQT module

The P2P Benchmark and Qualification Tool is designed to provide the list of all GPUs that support P2P and charac-
terize the P2P links between peers. In addition to testing for P2P compatibility, this test will perform a peer-to-peer
throughput test between all P2P pairs for performance evaluation. The P2P Benchmark and Qualification Tool will
allow users to pick a collection of two or more GPUs on which to run. The user will also be able to select whether or
not they want to run the throughput test on each of the pairs.

Please see the web page “ROCm, a New Era in Open GPU Computing” to find out more about the P2P solutions
available in a ROCm environment.

PCI Express Bandwidth Benchmark – PEBB module

The PCIe Bandwidth Benchmark attempts to saturate the PCIe bus with DMA transfers between system memory and
a target GPU card’s memory. The maximum bandwidth obtained is reported to help debug low bandwidth issues. The
benchmark should be capable of targeting one, some or all of the GPUs installed in a platform, reporting individual
benchmark statistics for each.

GPU Stress Test - GST module

The GPU Stress Test runs a Graphics Stress test or SGEMM/DGEMM (Single/Double-precision General Matrix Mul-
tiplication) workload on one, some or all GPUs. The GPUs can be of the same or different types. The duration of the
benchmark should be configurable, both in terms of time (how long to run) and iterations (how many times to run).

The test should be capable driving the power level equivalent to the rated TDP of the card, or levels below that. The tool
must be capable of driving cards at TDP-50% to TDP-100%, in 10% incremental jumps. This should be controllable
by the user.

Input EDPp Test - IET module

The Input EDPp Test generates EDP peak power on all input rails. This test is used to verify if the system PSU is
capable of handling the worst case power spikes of the board. Peak Current at defined period = 1 minute moving
average power.

Examples and about config files link.

3.33.2 Prerequisites

Ubuntu :

sudo apt-get -y update && sudo apt-get install -y libpci3 libpci-dev doxygen unzip
→˓cmake git

CentOS :

sudo yum install -y cmake3 doxygen pciutils-devel rpm rpm-build git gcc-c++

RHEL :

144 Chapter 3. ROCm Learning Center

https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/roc-3.0.0/doc/ugsrc/ug1main.md

ROCm Documentation, Release 4.5.0

sudo yum install -y cmake3 doxygen rpm rpm-build git gcc-c++

wget http://mirror.centos.org/centos/7/os/x86_64/Packages/pciutils-devel-3.5.1-3.el7.
→˓x86_64.rpm

sudo rpm -ivh pciutils-devel-3.5.1-3.el7.x86_64.rpm

SLES :

sudo SUSEConnect -p sle-module-desktop-applications/15.1/x86_64

sudo SUSEConnect --product sle-module-development-tools/15.1/x86_64

sudo zypper install -y cmake doxygen pciutils-devel libpci3 rpm git rpm-build gcc-c++

3.33.3 Install ROCm stack, rocblas and rocm_smi64

Install ROCm stack for Ubuntu/CentOS, Refer https://github.com/RadeonOpenCompute/ROCm

Install rocBLAS and rocm_smi64 :

Ubuntu :

sudo apt-get install rocblas rocm_smi64

CentOS & RHEL :

sudo yum install rocblas rocm_smi64

SUSE :

sudo zypper install rocblas rocm_smi64

Note: If rocm_smi64 is already installed but “/opt/rocm/rocm_smi/ path doesn’t exist. Do below:

Ubuntu : sudo dpkg -r rocm_smi64 && sudo apt install rocm_smi64

CentOS & RHEL : sudo rpm -e rocm_smi64 && sudo yum install rocm_smi64

SUSE : sudo rpm -e rocm_smi64 && sudo zypper install rocm_smi64

3.33.4 Building from Source

This section explains how to get and compile current development stream of RVS.

Clone repository

git clone https://github.com/ROCm-Developer-Tools/ROCmValidationSuite.git

Configure and build RVS:

cd ROCmValidationSuite

If OS is Ubuntu and SLES, use cmake

3.33. ROCmValidationSuite 145

https://github.com/RadeonOpenCompute/ROCm

ROCm Documentation, Release 4.5.0

cmake ./ -B./build

make -C ./build

If OS is CentOS and RHEL, use cmake3

cmake3 ./ -B./build

make -C ./build

Build package:

cd ./build

make package

Note:_ based on your OS, only DEB or RPM package will be built. You may ignore an error for the unrelated
configuration

Install package:

Ubuntu : sudo dpkg -i rocm-validation-suite*.deb
CentOS & RHEL & SUSE : sudo rpm -i --replacefiles --nodeps rocm-validation-suite*.rpm

Running RVS

Running version built from source code:

cd ./build/bin
sudo ./rvs -d 3
sudo ./rvsqa.new.sh ; It will run complete rvs test suite

3.33.5 Regression

Regression is currently implemented for PQT module only. It comes in the form of a Python script run_regression.py.

The script will first create valid configuration files on $RVS_BUILD/regression folder. It is done by invok-
ing prq_create_conf.py script to generate valid configuration files. If you need different tests, modify the
prq_create_conf.py script to generate them.

Then, it will iterate through generated files and invoke RVS to specifying also JSON output and -d 3 logging level.

Finally, it will iterate over generated JSON output files and search for ERROR string. Results are written into
$RVS_BUILD/regression/regression_res file.

Results are written into $RVS_BUILD/regression/

Environment variables

Before running the run_regression.py you first need to set the following environment variables for location of RVS
source tree and build folders (ajdust for your particular clone):

export WB=/work/yourworkfolder
export RVS=$WB/ROCmValidationSuite
export RVS_BUILD=$RVS/../build

Running the script

Just do:

146 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

cd $RVS/regression
./run_regression.py

3.34 System Management Interface

A System Management Interface (SMI) event interface is added to the kernel and a ROCm SMI library for system
administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS in-
put/output control is enhanced to allow notifications propagation to user mode through the event channel.

On the ROCm SMI lib side, APIs are added to set an event mask and receive event notifications with a timeout option.
Further, ROCm SMI API details can be found in the PDF generated by Doxygen from source or by referring to the
rocm_smi.h header file (see the rsmi_event_notification_* functions).

For more information, download the latest System Management Interface API guide at:

https://github.com/RadeonOpenCompute/ROCm

3.34.1 ROCm SMI library

3.34.2 ROCm System Management Interface (ROCm SMI) Library

The ROCm System Management Interface Library, or ROCm SMI library, is part of the Radeon Open Compute ROCm
software stack . It is a C library for Linux that provides a user space interface for applications to monitor and control
GPU applications.

3.34.2.1 Important note about Versioning and Backward Compatibility

The ROCm SMI library is currently under development, and therefore subject to change either at the ABI or API level.
The intention is to keep the API as stable as possible even while in development, but in some cases we may need to
break backwards compatibility in order to ensure future stability and usability. Following Semantic Versioning rules,
while the ROCm SMI library is in high state of change, the major version will remain 0, and backward compatibility
is not ensured.

Once new development has leveled off, the major version will become greater than 0, and backward compatibility will
be enforced between major versions.

3.34.3 Building ROCm SMI

3.34.3.1 Additional Required software for building

In order to build the ROCm SMI library, the following components are required. Note that the software versions listed
are what was used in development. Earlier versions are not guaranteed to work:

• CMake (v3.5.0)

• g++ (5.4.0)

In order to build the latest documentation, the following are required:

• Doxygen (1.8.11)

• latex (pdfTeX 3.14159265-2.6-1.40.16)

3.34. System Management Interface 147

https://github.com/RadeonOpenCompute/ROCm
https://github.com/RadeonOpenCompute
https://semver.org/

ROCm Documentation, Release 4.5.0

The source code for ROCm SMI is available on Github.

After the the ROCm SMI library git repository has been cloned to a local Linux machine, building the library is
achieved by following the typical CMake build sequence. Specifically,

$ mk -p build
$ cd build
$ cmake <location of root of ROCm SMI library CMakeLists.txt>
$ make
Install library file and header; default location is /opt/rocm
$ make install

The built library will appear in the build folder.

3.34.3.2 Building Documentation

The documentation PDF file can be built with the following steps (continued from the steps above):

$ make doc
$ cd latex
$ make

The reference manual, refman.pdf will be in the latex directory upon a successful build.

3.34.3.3 Building Tests

In order to verify the build and capability of ROCm SMI on your system and to see an example of how ROCm SMI
can be used, you may build and run the tests that are available in the repo. To build the tests, follow these steps:

Set environment variables used in CMakeLists.txt file
$ ROCM_DIR=<location of ROCm SMI library>
$ mkdir <location for test build>
$ cd <location for test build>
$ cmake -DROCM_DIR=<location of ROCM SMI library .so> <ROCm SMI source root>/tests/
→˓rocm_smi_test
$ make

To run the test, execute the program rsmitst that is built from the steps above.

3.34.4 Usage Basics

3.34.4.1 Device Indices

Many of the functions in the library take a “device index”. The device index is a number greater than or equal to 0,
and less than the number of devices detected, as determined by rsmi_num_monitor_devices(). The index is used to
distinguish the detected devices from one another. It is important to note that a device may end up with a different
index after a reboot, so an index should not be relied upon to be constant over reboots.

148 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/rocm_smi_lib

ROCm Documentation, Release 4.5.0

3.34.4.2 Hello ROCm SMI

The only required ROCm-SMI call for any program that wants to use ROCm-SMI is the rsmi_init() call. This call
initializes some internal data structures that will be used by subsequent ROCm-SMI calls.

When ROCm-SMI is no longer being used, rsmi_shut_down() should be called. This provides a way to do any
releasing of resources that ROCm-SMI may have held. In many cases, this may have no effect, but may be necessary
in future versions of the library.

A simple “Hello World” type program that displays the device ID of detected devices would look like this:

#include <stdint.h>
#include "rocm_smi/rocm_smi.h"
int main() {
rsmi_status_t ret;
uint32_t num_devices;
uint64_t dev_id;

// We will skip return code checks for this example, but it
// is recommended to always check this as some calls may not
// apply for some devices or ROCm releases

ret = rsmi_init(0);
ret = rsmi_num_monitor_devices(&num_devices);

for (int i=0; i < num_devices; ++i) {
ret = rsmi_dev_id_get(i, &dev_id);
// dev_id holds the device ID of device i, upon a
// successful call

}
ret = rsmi_shut_down();
return 0;
}

3.34.5 SYSFS Interface

3.34.5.1 Naming and data format standards for sysfs files

The libsensors library offers an interface to the raw sensors data through the sysfs interface. Since lm-sensors 3.0.0,
libsensors is completely chip-independent. It assumes that all the kernel drivers implement the standard sysfs interface
described in this document. This makes adding or updating support for any given chip very easy, as libsensors, and
applications using it, do not need to be modified. This is a major improvement compared to lm-sensors 2.

Note that motherboards vary widely in the connections to sensor chips. There is no standard that ensures, for example,
that the second temperature sensor is connected to the CPU, or that the second fan is on the CPU. Also, some values
reported by the chips need some computation before they make full sense. For example, most chips can only measure
voltages between 0 and +4V. Other voltages are scaled back into that range using external resistors. Since the values
of these resistors can change from motherboard to motherboard, the conversions cannot be hard coded into the driver
and have to be done in user space.

For this reason, even if we aim at a chip-independent libsensors, it will still require a configuration file (e.g.
/etc/sensors.conf) for proper values conversion, labeling of inputs and hiding of unused inputs.

An alternative method that some programs use is to access the sysfs files directly. This document briefly describes the
standards that the drivers follow, so that an application program can scan for entries and access this data in a simple
and consistent way. That said, such programs will have to implement conversion, labeling and hiding of inputs. For
this reason, it is still not recommended to bypass the library.

3.34. System Management Interface 149

ROCm Documentation, Release 4.5.0

Each chip gets its own directory in the sysfs /sys/devices tree. To find all sensor chips, it is easier to follow the device
symlinks from /sys/class/hwmon/hwmon*.

Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes in the “physical” device directory. Since
lm-sensors 3.0.1, attributes found in the hwmon “class” device directory are also supported. Complex drivers (e.g.
drivers for multifunction chips) may want to use this possibility to avoid namespace pollution. The only drawback will
be that older versions of libsensors won’t support the driver in question.

All sysfs values are fixed point numbers.

There is only one value per file, unlike the older /proc specification. The common scheme for files naming is:
<type><number>_<item>. Usual types for sensor chips are “in” (voltage), “temp” (temperature) and “fan” (fan).
Usual items are “input” (measured value), “max” (high threshold, “min” (low threshold). Numbering usually starts
from 1, except for voltages which start from 0 (because most data sheets use this). A number is always used for
elements that can be present more than once, even if there is a single element of the given type on the specific chip.
Other files do not refer to a specific element, so they have a simple name, and no number.

Alarms are direct indications read from the chips. The drivers do NOT make comparisons of readings to thresholds.
This allows violations between readings to be caught and alarmed. The exact definition of an alarm (for example,
whether a threshold must be met or must be exceeded to cause an alarm) is chip-dependent.

When setting values of hwmon sysfs attributes, the string representation of the desired value must be written, note that
strings which are not a number are interpreted as 0! For more on how written strings are interpreted see the “sysfs
attribute writes interpretation” section at the end of this file.

[0-*] denotes any positive number starting from 0
[1-*] denotes any positive number starting from 1
RO read only value
WO write only value
RW read/write value

Read/write values may be read-only for some chips, depending on the hardware implementation.

All entries (except name) are optional, and should only be created in a given driver if the chip has the feature.

150 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.6 Global Attributes

name

The chip name.This should be a short, lowercase string,
not containing whitespace,
dashes, or the wildcard character ‘*’.This attribute
represents the chip name.
It is the only mandatory attribute.I2C devices get this
attribute created automatically.
RO

update_interval

The interval at which the chip will update readings.
Unit: millisecond
RW
Some devices have a variable update rate or interval.
This attribute can be used to change it to the desired
value.

3.34. System Management Interface 151

ROCm Documentation, Release 4.5.0

152 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.7 Voltages

in[0-*]_min

Voltage min value.
Unit: millivolt
RW

in[0-*]_lcrit

Voltage critical min value.
Unit: millivolt
RW
If voltage drops to or below this limit, the system may
take drastic action such as power
down or reset. At the very least, it should report a fault.

in[0-*]_max

Voltage max value.
Unit: millivolt
RW

in[0-*]_crit

Voltage critical max value.
Unit: millivolt
RW
If voltage reaches or exceeds this limit, the system may
take drastic action such as power
down or reset. At the very least, it should report a fault.

in[0-*]_input

Voltage input value.
Unit: millivolt
RO
Voltage measured on the chip pin.Actual voltage
depends on the scaling resistors on the
motherboard, as recommended in the chip
datasheet.This varies by chip and by motherboard.
Because of this variation, values are generally NOT
scaled by the chip driver, and must be
done by the application.However, some drivers
(notably lm87 and via686a) do scale, because
of internal resistors built into a chip.These drivers will
output the actual voltage. Rule of
thumb: drivers should report the voltage values at the
“pins” of the chip.

in[0-*]_average

Average voltage
Unit: millivolt
RO

in[0-*]_lowest

Historical minimum voltage
Unit: millivolt
RO

in[0-*]_highest

Historical maximum voltage
Unit: millivolt
RO

in[0-*]_reset_history

Reset inX_lowest and inX_highest
WO

in_reset_history

Reset inX_lowest and inX_highest for all sensors
WO

in[0-*]_label

Suggested voltage channel label.
Text string Should only be created if the driver has
hints about what this voltage channel
is being used for, and user-space doesn’t. In all other
cases, the label is provided by
user-space.
RO

in[0-*]_enable

Enable or disable the sensors.
When disabled the sensor read will return -ENODATA.
1: Enable
0: Disable
RW

cpu[0-*]_vid

CPU core reference voltage.
Unit: millivolt
RO
Not always correct.

vrm

Voltage Regulator Module version number.
RW (but changing it should no more be necessary)
Originally the VRM standard version multiplied by 10,
but now an arbitrary number, as not
all standards have a version number.Affects the way the
driver calculates the CPU core
reference voltage from the vid pins.

3.34. System Management Interface 153

ROCm Documentation, Release 4.5.0

Also see the Alarms section for status flags associated with voltages.

154 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34. System Management Interface 155

ROCm Documentation, Release 4.5.0

3.34.8 Fans

fan[1-*]_min

Fan minimum value
Unit: revolution/min (RPM)
RW

fan[1-*]_max

Fan maximum value
Unit: revolution/min (RPM)
Only rarely supported by the hardware.
RW

fan[1-*]_input

Fan input value.
Unit: revolution/min (RPM)
RO

fan[1-*]_div

Fan divisor.
Integer value in powers of two (1, 2, 4, 8, 16, 32, 64,
128).
RW
Some chips only support values 1, 2, 4 and 8.
Note that this is actually an internal clock divisor,
which
affects the measurable speed range, not the read value.

fan[1-*]_pulses

Number of tachometer pulses per fan revolution.
Integer value, typically between 1 and 4.
RW
This value is a characteristic of the fan connected to the
device’s input,
so it has to be set in accordance with the fan
model.Should only be created
if the chip has a register to configure the number of
pulses. In the absence
of such a register (and thus attribute) the value assumed
by all devices is 2 pulses
per fan revolution.

fan[1-*]_target

Desired fan speed
Unit: revolution/min (RPM)
RW
Only makes sense if the chip supports closed-loop fan
speed
control based on the measured fan speed.

fan[1-*]_label

Suggested fan channel label.
Text string
Should only be created if the driver has hints about
what this fan channel is being
used for, and user-space doesn’t.In all other cases, the
label is provided by user-space.
RO

fan[1-*]_enable

Enable or disable the sensors
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

156 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Also see the Alarms section for status flags associated with fans.

3.34. System Management Interface 157

ROCm Documentation, Release 4.5.0

158 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.9 Pulse with Modulation

pwm[1-*]

Pulse width modulation fan control.
Integer value in the range 0 to 255
RW
255 is max or 100%.

pwm[1-*]_enable

Fan speed control method:
0: no fan speed control (i.e. fan at full speed)
1: manual fan speed control enabled (using pwm[1-*])
2+: automatic fan speed control enabled
Check individual chip documentation files for
automatic mode details.
RW

pwm[1-*]_mode

0: DC mode (direct current)
1: PWM mode (pulse-width modulation)
RW

pwm[1-*]_freq

Base PWM frequency in Hz.
Only possibly available when pwmN_mode is PWM,
but not always present even then.
RW

pwm[1-*]_auto_channels_temp

Select which temperature channels affect this PWM
output in auto mode. Bitfield,
1 is temp1, 2 is temp2, 4 is temp3 etc. . .
Which values are possible depend on the chip used.
RW

pwm[1-]_auto_point[1-]_pwm
pwm[1-]_auto_point[1-]_temp
pwm[1-]_auto_point[1-]_temp_hyst

Define the PWM vs temperature curve. Number of trip
points is chip-dependent.Use this
for chips which associate trip points to PWM output
channels.
RW

temp[1-]_auto_point[1-]_pwm
temp[1-]_auto_point[1-]_temp
temp[1-]_auto_point[1-]_temp_hyst

Define the PWM vs temperature curve. Number of trip
points is chip dependent.
Use this for chips which associate trip points to
temperature channels.
RW

3.34. System Management Interface 159

ROCm Documentation, Release 4.5.0

There is a third case where trip points are associated to both PWM output channels and temperature channels: the
PWM values are associated to PWM output channels while the temperature values are associated to temperature
channels. In that case, the result is determined by the mapping between temperature inputs and PWM outputs. When
several temperature inputs are mapped to a given PWM output, this leads to several candidate PWM values.The actual
result is up to the chip, but in general the highest candidate value (fastest fan speed) wins.

160 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34. System Management Interface 161

ROCm Documentation, Release 4.5.0

3.34.10 Temperatures

temp[1-*]_type

Sensor type selection.
Integers 1 to 6
RW
1: CPU embedded diode
2: 3904 transistor
3: thermal diode
4: thermistor
5: AMD AMDSI
6: Intel PECI
Not all types are supported by all chips

temp[1-*]_max

Temperature max value.
Unit: millidegree Celsius (or millivolt, see below)
RW

temp[1-*]_min

Temperature min value.
Unit: millidegree Celsius
RW

temp[1-*]_max_hyst

Temperature hysteresis value for max limit.
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a
delta from the max value.
RW

temp[1-*]_min_hyst

Temperature hysteresis value for min limit.
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a
delta from the min value.
RW

temp[1-*]_input

Temperature input value.
Unit: millidegree Celsius
RO

temp[1-*]_crit

Temperature critical max value, typically greater than
corresponding temp_max values.
Unit: millidegree Celsius
RW

temp[1-*]_crit_hyst

Temperature hysteresis value for critical limit.
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a
delta from the critical value.
RW

temp[1-*]_emergency

Temperature emergency max value, for chips
supporting more than two upper
temperature limits. Must be equal or greater than
corresponding temp_crit values.
Unit: millidegree Celsius
RW

temp[1-*]_emergency_hyst

Temperature hysteresis value for emergency limit.
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a
delta from the emergency value.
RW

temp[1-*]_lcrit

Temperature critical min value, typically lower than
corresponding temp_min values.
Unit: millidegree Celsius
RW

temp[1-*]_lcrit_hyst

Temperature hysteresis value for critical min limit.
Unit: millidegree Celsius
Must be reported as an absolute temperature, NOT a
delta from the critical min value.
RW

temp[1-*]_offset

Temperature offset which is added to the temperature
reading by the chip.
Unit: millidegree Celsius
Read/Write value.

temp[1-*]_label

Suggested temperature channel label.
Text string Should only be created if the driver has
hints about what this temperature
channel is being used for, and user-space doesn’t. In all
other cases, the label is
provided by user-space.
RO

temp[1-*]_lowest

Historical minimum temperature
Unit: millidegree Celsius
RO

temp[1-*]_highest

Historical maximum temperature
Unit: millidegree Celsius
RO

temp[1-*]_reset_history

Reset temp_lowest and temp_highest
WO

temp_reset_history

Reset temp_lowest and temp_highest for all sensors
WO

temp[1-*]_enable

Enable or diable the sensors
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

162 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Some chips measure temperature using external thermistors and an ADC, and report the temperature measurement as
a voltage. Converting this voltage back to a temperature (or the other way around for limits) requires mathematical
functions not available in the kernel, so the conversion must occur in user space. For these chips, all temp* files
described above should contain values expressed in millivolt instead of millidegree Celsius. In other words, such
temperature channels are handled as voltage channels by the driver.

Also see the Alarms section for status flags associated with temperatures.

3.34. System Management Interface 163

ROCm Documentation, Release 4.5.0

164 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.11 Currents

curr[1-*]_max

Current max value
Unit: milliampere
RW

curr[1-*]_min

Current min value.
Unit: milliampere
RW

curr[1-*]_lcrit

Current critical low value
Unit: milliampere

RW

curr[1-*]_crit

Current critical high value.
Unit: milliampere
RW

curr[1-*]_input

Current input value
Unit: milliampere
RO

curr[1-*]_average

Average current use
Unit: milliampere
RO

curr[1-*]_lowest

Historical minimum current
Unit: milliampere
RO

curr[1-*]_highest

Historical maximum current
Unit: milliampere
RO

curr[1-*]_reset_history

Reset currX_lowest and currX_highest
WO

curr_reset_history

Reset currX_lowest and currX_highest for all sensors
WO

curr[1-*]_enable

Enable or disable the sensors
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

3.34. System Management Interface 165

ROCm Documentation, Release 4.5.0

Also see the Alarms section for status flags associated with currents.

166 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34. System Management Interface 167

ROCm Documentation, Release 4.5.0

3.34.12 Power

power[1-*]_average

Average power use
Unit: microWatt
RO

power[1-*]_average_interval

Power use averaging interval. A poll notification is sent
to this
file if the hardware changes the averaging interval.
Unit: milliseconds
RW

power[1-*]_average_interval_max

Maximum power use averaging interval
Unit: milliseconds
RO

power[1-*]_average_interval_min

Minimum power use averaging interval
Unit: milliseconds
RO

power[1-*]_average_highest

Historical average maximum power use
Unit: microWatt
RO

power[1-*]_average_lowest

Historical average minimum power use
Unit: microWatt
RO

power[1-*]_average_max

A poll notification is sent to power[1-*]_average when
power use
rises above this value.
Unit: microWatt
RW

power[1-*]_average_min

A poll notification is sent to power[1-*]_average when
power use
sinks below this value.
Unit: microWatt
RW

power[1-*]_input

Instantaneous power use
Unit: microWatt
RO

power[1-*]_input_highest

Historical maximum power use
Unit: microWatt
RO

power[1-*]_input_lowest

Historical minimum power use
Unit: microWatt
RO

power[1-*]_reset_history

Reset input_highest, input_lowest,
average_highest and average_lowest.
WO

power[1-*]_accuracy

Accuracy of the power meter.
Unit: Percent
RO

power[1-*]_cap

If power use rises above this limit, the system should
take action to
reduce power use.A poll notification is sent to this file
if the cap is
changed by the hardware.The *_cap files only appear if
the cap is known
to be enforced by hardware.
Unit: microWatt

RW

power[1-*]_cap_hyst

Margin of hysteresis built around capping and
notification.
Unit: microWatt
RW

power[1-*]_cap_max

Maximum cap that can be set.
Unit: microWatt
RO

power[1-*]_cap_min

Minimum cap that can be set.
Unit: microWatt
RO

power[1-*]_max

Maximum power.
Unit: microWatt
RW

power[1-*]_crit

Critical maximum power.
If power rises to or above this limit, the system is
expected take drastic
action to reduce power consumption, such as a system
shutdown or
a forced powerdown of some devices.
Unit: microWatt
RW

power[1-*]_enable

Enable or disable the sensors.
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

168 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Also see the Alarms section for status flags associated with power readings.

3.34.13 Energy

energy[1-*]_input

Cumulative energy use
Unit: microJoule
RO

energy[1-*]_enable

Enable or disable the sensors
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

3.34.14 Humidity

humidity[1-*]_input

Humidity
Unit: milli-percent (per cent mille, pcm)
RO

humidity[1-*]_enable

Enable or disable the sensors
When diabled the sensor read will return -ENODATA
1: Enable
0: Disable
RW

3.34.15 Alarms

Each channel or limit may have an associated alarm file, containing a boolean value. 1 means than an alarm condition
exists, 0 means no alarm.

Usually a given chip will either use channel-related alarms, or limit-related alarms, not both. The driver should just
reflect the hardware implementation.

3.34. System Management Interface 169

ROCm Documentation, Release 4.5.0

in[0-*]_alarm
curr[1-*]_alarm
power[1-*]_alarm
fan[1-*]_alarm
temp[1-*]_alarm

Channel alarm
0: no alarm
1: alarm
RO

OR

in[0-*]_min_alarm
in[0-*]_max_alarm
in[0-*]_lcrit_alarm
in[0-*]_crit_alarm
curr[1-*]_min_alarm
curr[1-*]_max_alarm
curr[1-*]_lcrit_alarm
curr[1-*]_crit_alarm
power[1-*]_cap_alarm
power[1-*]_max_alarm
power[1-*]_crit_alarm
fan[1-*]_min_alarm
fan[1-*]_max_alarm
temp[1-*]_min_alarm
temp[1-*]_max_alarm
temp[1-*]_lcrit_alarm
temp[1-*]_crit_alarm
temp[1-*]_emergency_alarm

Limit alarm
0: no alarm
1: alarm
RO

Each input channel may have an associated fault file. This can be used to notify open diodes, unconnected fans etc.
where the hardware supports it. When this boolean has value 1, the measurement for that channel should not be trusted.

fan[1-*]_fault
temp[1-*]_fault

Input fault condition
0: no fault occurred
1: fault condition
RO

Some chips also offer the possibility to get beeped when an alarm occurs:

170 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

beep_enable

Master beep enable
0: no beeps
1: beeps
RW

in[0-*]_beep
curr[1-*]_beep
fan[1-*]_beep
temp[1-*]_beep

Channel beep
0: disable
1: enable
RW

In theory, a chip could provide per-limit beep masking, but no such chip was seen so far.

Old drivers provided a different, non-standard interface to alarms and beeps. These interface files are deprecated, but
will be kept around for compatibility reasons:

alarms

Alarm bitmask.
RO
Integer representation of one to four bytes.
A ‘1’ bit means an alarm.
Chips should be programmed for ‘comparator’ mode
so that
the alarm will ‘come back’ after you read the register
if it is still valid.
Generally a direct representation of a chip’s internal
alarm registers; there is no standard for the position
of individual bits. For this reason, the use of this
interface file for new drivers is discouraged. Use
individual *_alarm and *_fault files instead.
Bits are defined in kernel/include/sensors.h.

beep_mask

Bitmask for beep.
Same format as ‘alarms’ with the same bit locations,
use discouraged for the same reason. Use individual
*_beep files instead.
RW

3.34. System Management Interface 171

ROCm Documentation, Release 4.5.0

3.34.16 Intrusion detection

intrusion[0-*]_alarm

Chassis intrusion detection
0: OK
1: intrusion detected
RW
Contrary to regular alarm flags which clear themselves
automatically when read, this one sticks until cleared
by
the user. This is done by writing 0 to the file. Writing
other values is unsupported.

intrusion[0-*]_beep

Chassis intrusion beep
0: disable
1: enable
RW

3.34.17 Average Sample Configuration

Devices allowing for reading {in,power,curr,temp}_average values may export attributes for controlling number of
samples used to compute average.

samples

Sets number of average samples for all types of
measurements.
RW

in_samples

Sets number of average samples for specific type of
measurements.

power_samples

Note that on some devices it won’t be possible to set all
of

curr_samples

them to different values so changing one might also
change

curr_samples

some others.
RW

172 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.18 sysfs attribute writes interpretation

hwmon sysfs attributes always contain numbers, so the first thing to do is to convert the input to a number, there are
2 ways todo this depending whether the number can be negative or not: unsigned long u = simple_strtoul(buf, NULL,
10); long s = simple_strtol(buf, NULL, 10);

With buf being the buffer with the user input being passed by the kernel. Notice that we do not use the second argument
of strto[u]l, and thus cannot tell when 0 is returned, if this was really 0 or is caused by invalid input. This is done
deliberately as checking this everywhere would add a lot of code to the kernel.

Notice that it is important to always store the converted value in an unsigned long or long, so that no wrap around can
happen before any further checking.

After the input string is converted to an (unsigned) long, the value should be checked if its acceptable. Be careful
with further conversions on the value before checking it for validity, as these conversions could still cause a wrap
around before the check. For example do not multiply the result, and only add/subtract if it has been divided before
the add/subtract.

What to do if a value is found to be invalid, depends on the type of the sysfs attribute that is being set. If it is
a continuous setting like a tempX_max or inX_max attribute, then the value should be clamped to its limits using
clamp_val(value, min_limit, max_limit). If it is not continuous like for example a tempX_type, then when an invalid
value is written, -EINVAL should be returned.

Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees):

long v = simple_strtol(buf, NULL, 10) / 1000;
v = clamp_val(v, -128, 127);
/* write v to register */

Example2, fan divider setting, valid values 2, 4 and 8:

unsigned long v = simple_strtoul(buf, NULL, 10);

switch (v) {
case 2: v = 1; break;
case 4: v = 2; break;
case 8: v = 3; break;
default:

return -EINVAL;
}
/* write v to register */

3.34.19 Performance

The pcie_bw sysfs file will report the usage of the PCIe bus over the last second, as a string with 3 integers: “bytes-
received bytes-sent mps” . As there is no efficient way to calculate the size of each packet transmitted to and from the
GPU in real time, the maximum payload size (mps), or the largest size of a PCIe packet, is included. The estimated
bandwidth can then be calculated using by “bytes-received*mps + bytes-sent*mps” sed and multiplied by the number
of packets received and sent.

3.34. System Management Interface 173

ROCm Documentation, Release 4.5.0

3.34.20 KFD Topology

Application software needs to understand the properties of the underlying hardware to leverage the performance ca-
pabilities of the platform for feature utilization and task scheduling. The sysfs topology exposes this information
in a loosely hierarchal order. The information is populated by the KFD driver is gathered from ACPI (CRAT) and
AMDGPU base driver.

The sysfs topology is arranged hierarchically as following. The root directory of the topology is
/sys/devices/virtual/kfd/kfd/topology/nodes/

Based on the platform inside this directory there will be sub-directories corresponding to each HSA Agent. A system
with N HSA Agents will have N directories as shown below.

/sys/devices/virtual/kfd/kfd/topology/nodes/0/
/sys/devices/virtual/kfd/kfd/topology/nodes/1/
.
.
/sys/devices/virtual/kfd/kfd/topology/nodes/N-1/

3.34.21 HSA Agent Information

The HSA Agent directory and the sub-directories inside that contains all the information about that agent. The follow-
ing are the main information available.

3.34.22 Node Information

This is available in the root directory of the HSA agent. This provides information about the compute capabilities of
the agent which includes number of cores or compute units, SIMD count and clock speed.

3.34.23 Memory

The memory bank information attached to this agent is populated in “mem_banks” subdirectory.
/sys/devices/virtual/kfd/kfd/topology/nodes/N/mem_banks

3.34.24 Cache

The caches available for this agent is populated in “cache” subdirectory
/sys/devices/virtual/kfd/kfd/topology/nodes/N/cache

174 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.25 IO-LINKS

The IO links provides HSA agent interconnect information with latency (cost) between agents. This is useful for
peer-to-peer transfers.

3.34.26 How to use topology information

The information provided in sysfs should not be directly used by application software. Application software should
always use Thunk library API (libhsakmt) to access topology information. Please refer to Thunk API for more infor-
mation.

The data are associated with a node ID, forming a per-node element list which references the elements contained at
relative offsets within that list. A node associates with a kernel agent or agent. Node ID’s should be 0-based, with the
“0” ID representing the primary elements of the system (e.g., “boot cores”, memory) if applicable. The enumeration
order and—if applicable—values of the ID should match other information reported through mechanisms outside of
the scope of the requirements;

For example, the data and enumeration order contained in the ACPI SRAT table on some systems should match the
memory order and properties reported through HSA. Further detail is out of the scope of the System Architecture and
outlined in the Runtime API specification.

Each of these nodes is interconnected with other nodes in more advanced systems to the level necessary to adequately
describe the topology.

3.34. System Management Interface 175

ROCm Documentation, Release 4.5.0

Where applicable, the node grouping of physical memory follows NUMA principles to leverage memory locality in
software when multiple physical memory blocks are available in the system and agents have a different “access cost”
(e.g., bandwidth/latency) to that memory.

KFD Topology structure for AMDGPU :

sysfsclasskfd
sysfsclasskfdtopology
sysfsclasskfdtopologynodes0
sysfsclasskfdtopologynodes0iolinks01
sysfsclasskfdtopologynodes0membanks0
sysfs-class-kfd-topology-nodes-N-caches

[–setsclk LEVEL [LEVEL . . .]] [–setmclk LEVEL [LEVEL . . .]] [–setpcie LEVEL [LEVEL . . .]] [–set-
slevel

176 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.34.27 SMI Event Interface and Library

An SMI event interface is added to the kernel and ROCm SMI lib for system administrators to get notified when
specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS input/output control is added to allow
notifications propagation to user mode through the event channel.

On the ROCm SMI lib side, APIs are added to set an event mask and receive event notifications with a timeout option.
Further, ROCm SMI API details can be found in the PDF generated by Doxygen from source or by referring to the
rocm_smi.h header file (see the rsmi_event_notification_* functions).

3.34.28 ROCR_VISIBLE_DEVICES

It is possible to rearrange or isolate the collection of ROCm GPU/GCD devices that are available on a ROCm platform.
This can be achieved at the start of an application by way of ROCR_VISIBLE_DEVICES environment variable.

To make devices visible to an application, they must be specified as a comma-separated list of enumerable devices,
where devices are identified by their enumeration index or UUID.

For example, consider a ROCm platform with the following devices:

Device Enumeration Index UUID
Device 1 0 GPU-365628c172834d70
Device 2 1 GPU-368988c172123d70
Device 3 2 GPU-367458c172345d70
Device 4 4 GPU-363688c172386d70

To use devices 0 and 2 from the above-mentioned ROCm platform and to enumerate them in that order, one can employ
ROCR_VISIBLE_DEVICES in the following ways:

• ROCR_VISIBLE_DEVICES=0,2

• ROCR_VISIBLE_DEVICES=0,GPU-367458c172345d70

• ROCR_VISIBLE_DEVICES=GPU-365628c172834d70,2

• ROCR_VISIBLE_DEVICES=GPU-365628c172834d70,GPU-363688c172386d70

Cooperative applications can use this to effectively allocate GPU/GCDs among themselves.

3.34.28.1 Interaction between ROCR_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES

The ROCR_VISIBLE_DEVICES (RVD) environment is defined by ROCm stack to operate at the ROCr level. The
ROCr implementation surfaces all GPU devices when users have not explicitly defined the environment. If defined,
ROCr surfaces only those GPU devices that fulfil user requests.

CUDA_VISIBLE_DEVICES (CVD) controls the subset of GPU devcies that are available to an application. It builds
on GPU devices surfaced by ROCr. The CVD value is legal only if it is a subset of the GPU device indices surfaced
by ROCr.

This is best illustrated by the following example:

1. Consider a system that has 8 devices - 0, 1, 2, 3, 4, 5, 6, 7

2. User specifies RVD to select 4 devices - 4, 5, 6, 7

3. These four devices will be available to application as 0, 1, 2, 3

3.34. System Management Interface 177

ROCm Documentation, Release 4.5.0

Note the indices of GPU devices as they become available to an application. Users can specify CVD to select a subset
of these 4 devices. For example, they can specify CVD as 1,2 or 1,3 or 0,3 or 3,2 etc

Setting both RVD and CVD is typically unnecessary and may be harmful. Use of both environments can play a role
when using multiple GPUs and mixing high level languages within a single process. For example, if a single Linux
process uses both HIP and OpenCL and wants to use two GPUs such that HIP uses one GPU and OpenCL uses the
other, then RVD will select the two GPUs that are assigned to the process, and CVD will select a single GPU (index 0
or 1), from those allowed by RVD, for use by HIP. OpenCL has its own variable enabling it to use the other GPU as
allowed by RVD.

Usually, users will not need per language controls either because the process only runs one language or the languages
need to cooperate within the same device and will be best served by RVD alone.

It is therefore recommended that ROCm applications use RVD.

3.34.29 Device cgroup

At a system administration level, the GPU/GCD isolation is possible using the device control group (cgroup). For
all the AMD GPUs in a compute node, the ROCk-Kernel-Driver exposes a single compute device file /dev/kfd and a
separate (Direct Rendering Infrastructure) render device files /dev/dri/renderDN for each device. To participate in the
Linux kernel’s cgroup infrastructure, the ROCk driver relies on the render device files.

For example, consider a compute node with the two AMD GPUs. The ROCk-Kernel-Driver exposes the following
device files:

crw-rw-rw- 1 root root 240, 0 Apr 22 10:31 /dev/kfd

crw-rw—- 1 root video 226, 128 Apr 22 10:31 /dev/dri/renderD128

crw-rw—- 1 root video 226, 129 Apr 22 10:31 /dev/dri/renderD129

A ROCm application running on this compute node can use both GPUs only if it has access to all the above-listed
device files. The administrator can restrict the devices an application can access by using device cgroup. The device
cgroup subsystem allows or denies access to devices by applications in a cgroup. If a cgroup has whitelisted only
/dev/kfd and /dev/dri/renderD129, then applications in that cgroup will have access only to that single GPU.

Refer to the Linux kernel’s cgroup documentation for information on how to create a cgroup and whitelist devices.

For cgroup-v1, refer https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt

For cgroup-v2, refer https://www.kernel.org/doc/Documentation/cgroup-v2.txt

3.35 ROCm Command Line Interface

3.35.1 Clock and Temperature Management

This repository includes the AMD ROCm-SMI tool. This tool exposes functionality for clock and temperature man-
agement of the ROCm-enabled system.

For detailed and up to date usage information, use:

178 Chapter 3. ROCm Learning Center

https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt

ROCm Documentation, Release 4.5.0

/opt/rocm/bin/rocm-smi -h

Or see below for information on:

• Optional Arguments

• Display Options

• Topology

• Pages Information

• Hardware-related Information

• Software-related/controlled Information

• Set Options

• Reset Options

• Auto-response Options

• Output Options

Installation

You may find rocm-smi at the following location after installing the rocm package:

/opt/rocm/bin/rocm-smi

Alternatively, you may clone this repository and run the tool directly.

Version

The SMI will report a “version” which is the version of the kernel installed:

AMD ROCm System Management Interface v$(uname)

For ROCk installations, this will be the AMDGPU module version (e.g. 5.0.71) For non-ROCk or monolithic ROCk
installations, this will be the kernel version, which will be equivalent to the following bash command:

$(uname -a) | cut -d ' ' -f 3)

Usage

For detailed and up to date usage information, see:

/opt/rocm/bin/rocm-smi -h

For your convenience, the output from the -h flag is as follows:

AMD ROCm System Management Interface | ROCM-SMI version: 1.4.1 | Kernel version: 5.6.20

usage: rocm-smi [-h] [-d DEVICE [DEVICE . . .]] [–alldevices] [–showhw] [-a] [-i] [-v] [–showdriverversion]
[–showfwinfo [BLOCK [BLOCK . . .]]] [–showmclkrange] [–showmemvendor] [–showsclkrange] [–showpro-
ductname] [–showserial] [–showuniqueid] [–showvoltagerange] [–showbus] [–showpagesinfo] [–showpend-
ingpages] [–showretiredpages] [–showunreservablepages] [-f] [-P] [-t] [-u] [–showmemuse] [–showvoltage]
[-b] [-c] [-g] [-l] [-M] [-m] [-o] [-p] [-S] [-s] [–showmeminfo TYPE [TYPE . . .]] [–showpids] [–show-
pidgpus [SHOWPIDGPUS [SHOWPIDGPUS . . .]]] [–showreplaycount] [–showrasinfo [SHOWRASINFO
[SHOWRASINFO . . .]]] [–showvc] [–showxgmierr] [–showtopo] [–showtopoweight] [–showtopohops]
[–showtopotype] [–showtoponuma] [-r] [–resetfans] [–resetprofile] [–resetpoweroverdrive] [–resetxgmierr]
[–setsclk LEVEL [LEVEL . . .]] [–setmclk LEVEL [LEVEL . . .]] [–setpcie LEVEL [LEVEL . . .]] [–setslevel
SCLKLEVEL SCLK SVOLT] [–setmlevel MCLKLEVEL MCLK MVOLT] [–setvc POINT SCLK SVOLT]

3.35. ROCm Command Line Interface 179

ROCm Documentation, Release 4.5.0

[–setsrange MINMAX SCLK] [–setmrange MINMAX SCLK] [–setfan LEVEL] [–setperflevel LEVEL] [–se-
toverdrive %] [–setmemoverdrive %] [–setpoweroverdrive WATTS] [–setprofile SETPROFILE] [–rasenable
BLOCK ERRTYPE] [–rasdisable BLOCK ERRTYPE] [–rasinject BLOCK] [–gpureset] [–load FILE | –save
FILE] [–autorespond RESPONSE] [–loglevel LEVEL] [–json] [–csv]

Optional Arguments
-h, –help show this help message and exit
–gpureset Reset specified GPU (One GPU must be specified)
–load FILE Load Clock, Fan, Performance and Profile settings from FILE
–save FILE Save Clock, Fan, Performance and Profile settings to FILE

-d DEVICE [DEVICE . . .], –device DEVICE [DEVICE . . .] Execute command on specified device

Display Options
–alldevices
–showhw Show Hardware details
-a, –showallinfo Show Temperature, Fan and Clock values
Topology
-i, –showid Show GPU ID
-v, –showvbios Show VBIOS version
–showdriverversion Show kernel driver version
–showfwinfo [BLOCK [BLOCK . . .]] Show FW information
–showmclkrange Show mclk range
–showmemvendor Show GPU memory vendor
–showsclkrange Show sclk range
–showproductname Show SKU/Vendor name
–showserial Show GPU’s Serial Number
–showuniqueid Show GPU’s Unique ID
–showvoltagerange Show voltage range
–showbus Show PCI bus number
Pages Information
–showpagesinfo Show retired, pending and unreservable pages
–showpendingpages Show pending retired pages
–showretiredpages Show retired pages
–showunreservablepages Show unreservable pages
Hardware-related Information
-f, –showfan Show current fan speed
-P, –showpower Show current Average Graphics Package Power Consumption
-t, –showtemp Show current temperature
-u, –showuse Show current GPU use
–showmemuse Show current GPU memory used
–showvoltage Show current GPU voltage
Software-related/controlled information
-b, –showbw Show estimated PCIe use
-c, –showclocks Show current clock frequencies
-g, –showgpuclocks Show current GPU clock frequencies
-l, –showprofile Show Compute Profile attributes
-M, –showmaxpower Show maximum graphics package power this GPU will consume
-m, –showmemoverdrive Show current GPU Memory Clock OverDrive level
-o, –showoverdrive Show current GPU Clock OverDrive level
-p, –showperflevel Show current DPM Performance Level

continues on next page

180 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

Table 1 – continued from previous page
-S, –showclkvolt Show supported GPU and Memory Clocks and Voltages
-s, –showclkfrq Show supported GPU and Memory Clock
–showmeminfo TYPE [TYPE . . .] Show Memory usage information for given block(s) TYPE
–showpids Show current running KFD PIDs
–showpidgpus [SHOWPIDGPUS [SHOWPIDGPUS . . .]] Show GPUs used by specified KFD PIDs (all if no arg given)
–showreplaycount Show PCIe Replay Count
–showrasinfo [SHOWRASINFO [SHOWRASINFO . . .]] Show RAS enablement information and error counts for the specified block(s) (all if no arg given)
–showvc Show voltage curve
–showxgmierr Show XGMI error information since last read
–showtopo Show hardware topology information
–showtopoweight Shows the relative weight between GPUs
–showtopohops Shows the number of hops between GPUs
–showtopotype Shows the link type between GPUs
–showtoponuma Shows the numa nodes
Set Options
–setsclk LEVEL [LEVEL . . .] Set GPU Clock Frequency Level(s) (requires manual Perf level)
–setmclk LEVEL [LEVEL . . .] Set GPU Memory Clock Frequency Level(s) (requires manual Perf level)
–setpcie LEVEL [LEVEL . . .] Set PCIE Clock Frequency Level(s) (requires manual Perf level)
–setslevel SCLKLEVEL SCLK SVOLT Change GPU Clock frequency (MHz) and Voltage (mV) for a specific Level
–setmlevel MCLKLEVEL MCLK MVOLT Change GPU Memory clock frequency (MHz) and Voltage for (mV) a specific Level
–setvc POINT SCLK SVOLT Change SCLK Voltage Curve (MHz mV) for a specific point
–setsrange MINMAX SCLK Set min(0) or max(1) SCLK speed
–setmrange MINMAX SCLK Set min(0) or max(1) MCLK speed
–setfan LEVEL Set GPU Fan Speed (Level or %)
–setperflevel LEVEL Set Performance Level
–setoverdrive % Set GPU OverDrive level (requires manual|high Perf level)
–setmemoverdrive % Set GPU Memory Overclock OverDrive level (requires manual|high Perf level)
–setpoweroverdrive WATTS Set the maximum GPU power using Power OverDrive in Watts
–setprofile SETPROFILE Specify Power Profile level (#) or a quoted string of CUSTOM Profile attributes “# # # #. . . ” (requires manual Perf level)
–rasenable BLOCK ERRTYPE Enable RAS for specified block and error type
–rasdisable BLOCK ERRTYPE Disable RAS for specified block and error type
–rasinject BLOCK Inject RAS poison for specified block (ONLY WORKS ON UNSECURE BOARDS)
Reset Options
-r, –resetclocks Reset clocks and OverDrive to default
–resetfans Reset fans to automatic (driver) control
–resetprofile Reset Power Profile back to default
–resetpoweroverdrive Set the maximum GPU power back to the device deafult state
–resetxgmierr Reset XGMI error count
Auto-response Options
–autorespond RESPONSE Response to automatically provide for all prompts (NOT RECOMMENDED)
Output Options
–loglevel LEVEL How much output will be printed for what program is doing, one of debug/info/warning/error/critical
–json Print output in JSON format
–csv Print output in CSV format

Detailed Option Descriptions

–setsclk/–setmclk # [# # . . .]: This allows you to set a mask for the levels. For example, if a GPU has 8 clock levels,
you can set a mask to use levels 0, 5, 6 and 7 with –setsclk 0 5 6 7 . This will only use the base level, and the top 3
clock levels. This will allow you to keep the GPU at base level when there is no GPU load, and the top 3 levels when
the GPU load increases.

3.35. ROCm Command Line Interface 181

ROCm Documentation, Release 4.5.0

–setfan LEVEL: This sets the fan speed to a value ranging from 0 to 255 (not from 0-100%). If the level ends with a
%, the fan speed is calculated as pct*maxlevel/100 (maxlevel is usually 255, but is determined by the ASIC) .. NOTE:

While the hardware is usually capable of overriding this value when required, it is
recommended to not set the fan level lower than the default value for extended periods
of time

–setperflevel LEVEL: This lets you use the pre-defined Performance Level values, which can include: auto (Automat-
ically change PowerPlay values based on GPU workload) low (Keep PowerPlay values low, regardless of workload)
high (Keep PowerPlay values high, regardless of workload) manual (Only use values defined in sysfs values)

–setoverdrive/–setmemoverdrive #: DEPRECATED IN NEWER KERNEL VERSIONS (use –set-
slevel/–setmlevel instead) This sets the percentage above maximum for the max Performance Level. For example,
–setoverdrive 20 will increase the top sclk level by 20%. If the maximum sclk level is 1000MHz, then –setoverdrive
20 will increase the maximum sclk to 1200MHz

–setpoweroverdrive/–resetpoweroverdrive #: This allows users to change the maximum power available to a GPU
package. The input value is in Watts. This limit is enforced by the hardware, and some cards allow users to set it to
a higher value than the default that ships with the GPU. This Power OverDrive mode allows the GPU to run at higher
frequencies for longer periods of time, though this may mean the GPU uses more power than it is allowed to use per
power supply specifications. Each GPU has a model-specific maximum Power OverDrive that is will take; attempting
to set a higher limit than that will cause this command to fail.

–setprofile SETPROFILE: The Compute Profile accepts 1 or n parameters, either the Profile to select (see –show-
profile for a list of preset Power Profiles) or a quoted string of values for the CUSTOM profile.

NOTE: These values can vary based on the ASIC, and may include: SCLK_PROFILE_ENABLE - Whether or not to
apply the 3 following SCLK settings (0=disable,1=enable)

NOTE: This is a hidden field. If set to 0, the following 3 values are displayed as ‘-‘ SCLK_UP_HYST

• Delay before sclk is increased (in milliseconds) SCLK_DOWN_HYST

• Delay before sclk is decresed (in milliseconds) SCLK_ACTIVE_LEVEL

• Workload required before sclk levels change (in %) MCLK_PROFILE_ENABLE

• Whether or not to apply the 3 following MCLK settings (0=disable,1=enable)

NOTE: This is a hidden field. If set to 0, the following 3 values are displayed as ‘-‘ MCLK_UP_HYST

• Delay before mclk is increased (in milliseconds) MCLK_DOWN_HYST

• Delay before mclk is decresed (in milliseconds) MCLK_ACTIVE_LEVEL

• Workload required before mclk levels change (in %)

BUSY_SET_POINT - Threshold for raw activity level before levels change FPS - Frames Per Second
USE_RLC_BUSY - When set to 1, DPM is switched up as long as RLC busy message is received
MIN_ACTIVE_LEVEL - Workload required before levels change (in %)

Note: When a compute queue is detected, these values will be automatically applied to the system Compute Power
Profiles are only applied when the Performance Level is set to “auto”

The CUSTOM Power Profile is only applied when the Performance Level is set to “manual” so using this flag will
automatically set the performance level to “manual”

It is not possible to modify the non-CUSTOM Profiles. These are hard-coded by the kernel

-P, –showpower: Show Average Graphics Package power consumption

“Graphics Package” refers to the GPU plus any HBM (High-Bandwidth memory) modules, if present

182 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

-M, –showmaxpower: Show the maximum Graphics Package power that the GPU will attempt to consume. This
limit is enforced by the hardware.

–loglevel: This will allow the user to set a logging level for the SMI’s actions. Currently this is only implemented for
sysfs writes, but can easily be expanded upon in the future to log other things from the SMI

–showmeminfo: This allows the user to see the amount of used and total memory for a given block (vram, vis_vram,
gtt). It returns the number of bytes used and total number of bytes for each block ‘all’ can be passed as a field to return
all blocks, otherwise a quoted-string is used for multiple values (e.g. “vram vis_vram”) vram refers to the Video RAM,
or graphics memory, on the specified device vis_vram refers to Visible VRAM, which is the CPU-accessible video
memory on the device gtt refers to the Graphics Translation Table

-b, –showbw: This shows an approximation of the number of bytes received and sent by the GPU over the last second
through the PCIe bus. Note that this will not work for APUs since data for the GPU portion of the APU goes through
the memory fabric and does not ‘enter/exit’ the chip via the PCIe interface, thus no accesses are generated, and the
performance counters can’t count accesses that are not generated. NOTE: It is not possible to easily grab the size of
every packet that is transmitted in real time, so the kernel estimates the bandwidth by taking the maximum payload
size (mps), which is the max size that a PCIe packet can be. and multiplies it by the number of packets received and
sent. This means that the SMI will report the maximum estimated bandwidth, the actual usage could (and likely will
be) less

–showrasinfo: This shows the RAS information for a given block. This includes enablement of the block (currently
GFX, SDMA and UMC are the only supported blocks) and the number of errors ue - Uncorrectable errors ce - Cor-
rectable errors

Clock Type Descriptions

DCEFCLK - DCE (Display) FCLK - Data fabric (VG20 and later) - Data flow from XGMI, Memory, PCIe SCLK -
GFXCLK (Graphics core)

Note: SOCCLK split from SCLK as of Vega10. Pre-Vega10 they were both controlled by SCLK

MCLK - GPU Memory (VRAM) PCLK - PCIe bus

Note: This gives 2 speeds, PCIe Gen1 x1 and the highest available based on the hardware

SOCCLK - System clock (VG10 and later)- Data Fabric (DF), MM HUB, AT HUB, SYSTEM HUB, OSS, DFD Note
- DF split from SOCCLK as of Vega20. Pre-Vega20 they were both controlled by SOCCLK

–gpureset: This flag will attempt to reset the GPU for a specified device. This will invoke the GPU reset through
the kernel debugfs file amdgpu_gpu_recover. Note that GPU reset will not always work, depending on the manner in
which the GPU is hung.

—showdriverversion: This flag will print out the AMDGPU module version for amdgpu-pro or ROCK kernels. For
other kernels, it will simply print out the name of the kernel (uname)

–showserial: This flag will print out the serial number for the graphics card NOTE: This is currently only supported
on Vega20 server cards that support it. Consumer cards and cards older than Vega20 will not support this feature.

–showproductname: This uses the pci.ids file to print out more information regarding the GPUs on the system.
‘update-pciids’ may need to be executed on the machine to get the latest PCI ID snapshot, as certain newer GPUs will
not be present in the stock pci.ids file, and the file may even be absent on certain OS installation types

–showpagesinfo | –showretiredpages | –showpendingpages | –showunreservablepages: These flags display the
different “bad pages” as reported by the kernel. The three types of pages are: Retired pages (reserved pages) - These
pages are reserved and are unable to be used Pending pages - These pages are pending for reservation, and will be
reserved/retired Unreservable pages - These pages are not reservable for some reason.

3.35. ROCm Command Line Interface 183

ROCm Documentation, Release 4.5.0

–showmemuse | –showuse | –showmeminfo –showuse and –showmemuse are used to indicate how busy the respec-
tive blocks are. For example, for –showuse (gpu_busy_percent sysfs file), the SMU samples every ms or so to see if
any GPU block (RLC, MEC, PFP, CP) is busy. If so, that’s 1 (or high). If not, that’s 0 (low). If we have 5 high and 5
low samples, that means 50% utilization (50% GPU busy, or 50% GPU use). The windows and sampling vary from
generation to generation, but that is how GPU and VRAM use is calculated in a generic sense. –showmeminfo (and
VRAM% in concise output) will show the amount of VRAM used (visible, total, GTT), as well as the total available
for those partitions. The percentage shown there indicates the amount of used memory in terms of current allocations
OverDrive settings

• Enabling OverDrive requires both a card that support OverDrive and a driver parameter that enables its use.

• Because OverDrive features can damage your card, most workstation and server GPUs cannot use OverDrive.

• Consumer GPUs that can use OverDrive must enable this feature by setting bit 14 in the amdgpu driver’s
ppfeaturemask module parameter

For OverDrive functionality, the OverDrive bit (bit 14) must be enabled (by default, the OverDrive bit is disabled
on the ROCK and upstream kernels). This can be done by setting amdgpu.ppfeaturemask accordingly in the kernel
parameters, or by changing the default value inside amdgpu_drv.c (if building your own kernel).

As an example, if the ppfeaturemask is set to 0xffffbfff (11111111111111111011111111111111), then enabling the
OverDrive bit would make it 0xffffffff (11111111111111111111111111111111). These are the flags that require
OverDrive functionality to be enabled for the flag to work:

--showclkvolt
--showvoltagerange
--showvc
--showsclkrange
--showmclkrange
--setslevel
--setmlevel
--setoverdrive
--setpoweroverdrive
--resetpoweroverdrive
--setvc
--setsrange
--setmrange

Testing changes

After making changes to the SMI, run the test script to ensure that all functionality remains intact before uploading
the patch. This can be done using:

./test-rocm-smi.sh /opt/rocm/bin/rocm-smi

The test can run all flags for the SMI, or specific flags can be tested with the -s option.

Any new functionality added to the SMI should have a corresponding test added to the test script.

184 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.35.2 SDMA Usage Per-process

The SDMA usage per-process is available using the following command,

$ rocm-smi -showpids

3.35.3 Hardware Topology

This feature provides a matrix representation of the GPUs present in a system by providing information of the manner
in which the nodes are connected.

This is represented in terms of weights, hops, and link types between two given GPUs. It also provides the numa node
and the CPU affinity associated with every GPU.

For more information about ROCm SMI API libraries, refer to the ROCm SMI API Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf

3.35. ROCm Command Line Interface 185

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf

ROCm Documentation, Release 4.5.0

3.36 GCN ISA Manuals

3.36.1 GCN 1.1

ISA Manual for Hawaii pdf

3.36.2 GCN 2.0

ISA Manual for Fiji and Polaris pdf

3.36.3 Vega

• testdocbook

3.36.4 Inline GCN ISA Assembly Guide

3.36.4.1 The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. We have
previously described how to combine several languages in a single program using ROCm and Hsaco. This article
explains how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN
architecture. I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs
should achieve the highest performance possible. Even carefully written ones, however, won’t always employ 100%
of the GPU’s capabilities. Some reasons are the following:

• The program may be written in a high level language that does not expose all of the features available on the
hardware.

• The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while
adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub). Recent hardware
architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To
become more familiar with the instruction set, review the GCN ISA Reference Guide. Note: the assembler is currently
experimental; some of syntax we describe may change.

3.36.4.2 DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis
of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they
don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane
ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from
lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial
data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An
analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index, __
→˓global uint * out)
{

size_t i = get_global_id(0);

(continues on next page)

186 Chapter 3. ROCm Learning Center

http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture1.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra
https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf

ROCm Documentation, Release 4.5.0

(continued from previous page)

out[i] = in[index[i]];
}

3.36.4.3 Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a
wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables
in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding
between variables—except to honor the requirements of natural alignment and any align qualifier. The example host
program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like
the following:

/*
* This is the host-side representation of the kernel arguments that the simplePermute
→˓kernel expects.

*/
struct simplePermute_args_t {

uint32_t * in;
uint32_t * index;
uint32_t * out;

};
/*
* Allocate the kernel-argument buffer from the correct region.

*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate(kernarg_region, sizeof(simplePermute_args_t), (void**)(&
→˓args));
assert(HSA_STATUS_SUCCESS == status);
aql->kernarg_address = args;
/*
* Write the args directly to the kernargs buffer;

* the code assumes that memory is already allocated for the

* buffers that in_ptr, index_ptr and out_ptr point to

*/
args->in = in_ptr;
args->index = index_ptr;
args->out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the
run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 * sizeof(void*))) { return false; }

// Create buffers
Buffer *in, *index, *out;
in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer(size);

// Fill Kernarg memory
Kernarg(in); // Add base pointer to “in” buffer
Kernarg(index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

3.36. GCN ISA Manuals 187

ROCm Documentation, Release 4.5.0

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the
kernel, such as

• The LDS size

• The number of GPRs

• Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in
the AMDGPU-ABI specification. This is what it looks like in source code:

.hsa_code_object_version 2,0

.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text

.p2align 8

.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
compute_pgm_rsrc1_vgprs = 1
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5
.end_amd_kernel_code_t

s_load_dwordx2 s[4:5], s[0:1], 0x10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_lshlrev_b32 v0, 2, v0
s_waitcnt lgkmcnt(0)
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc
flat_load_dword v1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vmcnt(0) & lgkmcnt(0)
v_lshlrev_b32 v1, 2, v1
ds_bpermute_b32 v1, v1, v2
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkmcnt(0)
flat_store_dword v[3:4], v1
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully,
this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill
that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the
enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension.
Registers v1 and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs
can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to

188 Chapter 3. ROCm Learning Center

http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer#introduction

ROCm Documentation, Release 4.5.0

kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in
in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1]
registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is
the scheme showing initial state for our kernel.

3.36.4.4 The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and
kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward,
however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wave-
front_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs v0–v4, so
workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0–s5, since the special
registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-
numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional
registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Pre-
vious generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers.
The fields compute_pgm_rsrc1_*gprs contain a device-specific number for each register-block type to allocate for a
wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following
formulas for all three GCN GPU generations:

compute_pgm_rsrc1_vgprs = (workitem_vgpr_count-1)/4

compute_pgm_rsrc1_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into
→˓s[2:3] from kernarg

(continues on next page)

3.36. GCN ISA Manuals 189

ROCm Documentation, Release 4.5.0

(continued from previous page)

v_lshlrev_b32 v0, 2, v0 // v0 *= 4;
s_waitcnt lgkmcnt(0) // wait for memory reads to finish

// compute address of corresponding element of index buffer
// i.e. v[1:2] = &index[workitem_id]
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer
// i.e. v[3:4] = &in[workitem_id]
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword v1, v[1:2] // load index[workitem_id] into v1
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vmcnt(0) & lgkmcnt(0) // wait for memory reads to finish

// v1 *= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_lshlrev_b32 v1, 2, v1

// perform permutation
// temp[thread_id] = v2
// v1 = temp[v1]
// effectively we got v1 = in[index[thread_id]]
ds_bpermute_b32 v1, v1, v2

// compute address of corresponding element of out buffer
// i.e. v[3:4] = &out[workitem_id]
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc

s_waitcnt lgkmcnt(0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = v1
flat_store_dword v[3:4], v1

s_endpgm

3.36.4.5 Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so
you can use Clang to do all the necessary magic:

clang -x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could
have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The
GitHub examples use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another
GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

190 Chapter 3. ROCm Learning Center

https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra

ROCm Documentation, Release 4.5.0

3.37 Remote Device Programming

3.37.1 ROCmRDMA

Peer-to-Peer bridge driver for PeerDirect - Deprecated Repo

This is now included as part of the ROCK Kernel Driver ROCmRDMA is the solution designed to allow third-party
kernel drivers to utilize DMA access to the GPU memory. It allows direct path for data exchange (peer-to-peer) using
the standard features of PCI Express.

Currently ROCmRDMA provides the following benefits:

• Direct access to ROCm memory for 3rd party PCIe devices

• Support for PeerDirect(c) interface to offloads the CPU when dealing with ROCm memory for RDMA network
stacks;

3.37.1.1 Restrictions and limitations

To fully utilize ROCmRDMA the number of limitation could apply impacting either performance or functionality in
the whole:

• It is recommended that devices utilizing ROCmRDMA share the same upstream PCI Express root complex.
Such limitation depends on PCIe chipset manufacturses and outside of GPU controls;

• To provide peer-to-peer DMA access all GPU local memory must be exposed via PCI memory BARs (so called
large-BAR configuration);

• It is recommended to have IOMMU support disabled or configured in pass-through mode due to limitation in
Linux kernel to support local PCIe device memory for any form transition others then 1:1 mapping.

3.37.1.2 ROCmRDMA interface specification

The implementation of ROCmRDMA interface can be found in [amd_rdma.h] file.

3.37.1.3 API versions

ROCm up to and including v4.1 supported RDMA version 1.0.

ROCm 4.2 has enhanced the API version to 2.0, introduced the following definitions to allow users to detect the API
version, and apply conditional compilation as needed:

/* API versions:

* 1.0 Original API until ROCm 4.1, AMD_RDMA_MAJOR/MINOR undefined

* 2.0 Added IOMMU (dma-mapping) support, removed p2p_info.kfd_proc

* Introduced AMD_RDMA_MAJOR/MINOR version definition

*/
#define AMD_RDMA_MAJOR 2
#define AMD_RDMA_MINOR 0

3.37. Remote Device Programming 191

https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/include/drm/amd_rdma.h

ROCm Documentation, Release 4.5.0

3.37.1.4 Data structures

/**
* Structure describing information needed to P2P access from another device

* to specific location of GPU memory

*/
struct amd_p2p_info {

uint64_t va; /**< Specify user virt. address

* which this page table

* described

*/
uint64_t size; /**< Specify total size of

* allocation

*/
struct pid *pid; /**< Specify process pid to which

* virtual address belongs

*/
struct sg_table *pages; /**< Specify DMA/Bus addresses */
void *priv; /**< Pointer set by AMD kernel

* driver

*/
};

/**
* Structure providing function pointers to support rdma/p2p requirements.

* to specific location of GPU memory

*/
struct amd_rdma_interface {

int (*get_pages)(uint64_t address, uint64_t length, struct pid *pid,
struct device *dma_dev,
struct amd_p2p_info **amd_p2p_data,
void (*free_callback)(void *client_priv),
void *client_priv);

int (*put_pages)(struct amd_p2p_info **amd_p2p_data);
int (*is_gpu_address)(uint64_t address, struct pid *pid);
int (*get_page_size)(uint64_t address, uint64_t length, struct pid *pid,

unsigned long *page_size);
};

3.37.1.5 The function to query ROCmRDMA interface

/**
* amdkfd_query_rdma_interface - Return interface (function pointers table) for

* rdma interface

*
*
* \param interace - OUT: Pointer to interface

* \return 0 if operation was successful.

*/
int amdkfd_query_rdma_interface(const struct amd_rdma_interface **rdma);

192 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

3.37.1.6 ROCmRDMA interface functions description

/**
* This function makes the pages underlying a range of GPU virtual memory

* accessible for DMA operations from another PCIe device

*
* \param address - The start address in the Unified Virtual Address

* space in the specified process

* \param length - The length of requested mapping

* \param pid - Pointer to structure pid to which address belongs.

* Could be NULL for current process address space.

* \param dma_dev - Device that will need a DMA mapping of the memory

* \param amd_p2p_data - On return: Pointer to structure describing

* underlying pages/locations

* \param free_callback - Pointer to callback which will be called when access

* to such memory must be stopped immediately: Memory

* was freed, GECC events, etc.

* Client should immediately stop any transfer

* operations and returned as soon as possible.

* After return all resources associated with address

* will be release and no access will be allowed.

* \param client_priv - Pointer to be passed as parameter on

* 'free_callback;

*
* \return 0 if operation was successful

*/
int get_pages(uint64_t address, uint64_t length, struct pid *pid,

struct device *dma_dev, struct amd_p2p_info **amd_p2p_data,
void (*free_callback)(void *client_priv),
void *client_priv);

/**
* This function release resources previously allocated by get_pages() call.

* \param p_p2p_data - A pointer to pointer to amd_p2p_info entries

* allocated by get_pages() call.

* \return 0 if operation was successful

*/
int put_pages(struct amd_p2p_info **p_p2p_data)

/**
* Check if given address belongs to GPU address space.

* \param address - Address to check

* \param pid - Process to which given address belongs.

* Could be NULL if current one.

* \return 0 - This is not GPU address managed by AMD driver

* 1 - This is GPU address managed by AMD driver

*/
int is_gpu_address(uint64_t address, struct pid *pid);

/**
* Return the single page size to be used when building scatter/gather table

* for given range.

* \param address - Address

* \param length - Range length

* \param pid - Process id structure. Could be NULL if current one.

* \param page_size - On return: Page size

(continues on next page)

3.37. Remote Device Programming 193

ROCm Documentation, Release 4.5.0

(continued from previous page)

* \return 0 if operation was successful

*/
int get_page_size(uint64_t address, uint64_t length, struct pid *pid,

unsigned long *page_size);

3.37.2 UCX

What is UCX ?

Unified Communication X (UCX) is a communication library for building Message Passing (MPI),
PGAS/OpenSHMEM libraries and RPC/data-centric applications. UCX utilizes high-speed networks for inter-node
and shared memory mechanisms for intra-node communication. For more information, visit http://openucx.github.io/
ucx/

How to install UCX with ROCm ?

See How to install UCX and OpenMPI

How to enable ROCm transport during configuration and runtime

Access the following links to enable ROCm transport during configuration and runtime:

• For release builds: ./contrib/configure-release –prefix=/path/to/install –with-rocm=/path/to/rocm

• For debug builds: ./contrib/configure-devel –prefix=/path/to/install –with-rocm=/path/to/rocm

3.37.3 OpenMPI

OpenMPI and OpenSHMEM installation

1. Get latest-and-gratest OpenMPI version:

$ git clone https://github.com/open-mpi/ompi.git

2. Autogen:

$ cd ompi
$./autogen.pl

3. Configure with UCX

$ mkdir build
$ cd build
../configure --prefix=/your_install_path/ --with-ucx=/path_to_ucx_installation

4. Build:

$ make
$ make install

Running Open MPI with UCX

Example of the command line (for InfiniBand RC + shared memory):

$ mpirun -np 2 -mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_TLS=rc,sm ./app

Open MPI runtime optimizations for UCX

194 Chapter 3. ROCm Learning Center

http://openucx.github.io/ucx/
http://openucx.github.io/ucx/
https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI

ROCm Documentation, Release 4.5.0

• By default OpenMPI enables build-in transports (BTLs), which may result in additional software overheads in
the OpenMPI progress function. In order to workaround this issue you may try to disable certain BTLs.

$ mpirun -np 2 -mca pml ucx --mca btl ^vader,tcp,openib -x UCX_NET_DEVICES=mlx5_0:1 -
→˓x UCX_TLS=rc,sm ./app

• OpenMPI version https://github.com/open-mpi/ompi/commit/066370202dcad8e302f2baf8921e9efd0f1f7dfc
leverages more efficient timer mechanism and there fore reduces software overheads in OpenMPI progress

MPI and OpenSHMEM release versions tested with UCX master

1. UCX current tarball: https://github.com/openucx/ucx/archive/master.zip

2. The table of MPI and OpenSHMEM distributions that are tested with the HEAD of UCX master

MPI/OpenSHMEM project
OpenMPI/OSHMEM 2.1.0
MPICH Latest

3.37.4 IPC API

3.37.4.1 New Datatypes

hsa_amd_ipc_memory_handle_t

/** IPC memory handle to by passed from one process to another */
typedef struct hsa_amd_ipc_memory_handle_s {

uint64_t handle;
} hsa_amd_ipc_memory_handle_t;

hsa_amd_ipc_signal_handle_t

/** IPC signal handle to by passed from one process to another */
typedef struct hsa_amd_ipc_signal_handle_s {

uint64_t handle;
} hsa_amd_ipc_signal_handle_t;

Memory sharing API

Allows sharing of HSA allocated memory between different processes.

hsa_amd_ipc_get_memory_handle
The purpose of this API is to get / export an IPC handle for an existing allocation from pool.

hsa_status_t HSA_API

hsa_amd_ipc_get_memory_handle(void *ptr, hsa_amd_ipc_memory_handle_t *ipc_handle);
where:

IN: ptr - Pointer to memory previously allocated via hsa_amd_memory_pool_allocate() call
OUT: ipc_handle - Unique IPC handle to be used in IPC.

Application must pass this handle to another process.

3.37. Remote Device Programming 195

https://github.com/open-mpi/ompi/commit/066370202dcad8e302f2baf8921e9efd0f1f7dfc
https://github.com/openucx/ucx/archive/master.zip

ROCm Documentation, Release 4.5.0

hsa_amd_ipc_close_memory_handle
Close IPC memory handle previously received via “hsa_amd_ipc_get_memory_handle()” call .

hsa_status_t HSA_API

hsa_amd_ipc_close_memory_handle(hsa_amd_ipc_memory_handle_t ipc_handle);
where:

IN: ipc_handle - IPC Handle to close

hsa_amd_ipc_open_memory_handle
Open / import an IPC memory handle exported from another process and return address to be used in the current
process.

hsa_status_t HSA_API

hsa_amd_ipc_open_memory_handle(hsa_amd_ipc_memory_handle_t ipc_handle, void **ptr);
where:

IN: ipc_handle - IPC Handle
OUT: ptr- Address which could be used in the given process for access to the memory

Client should call hsa_amd_memory_pool_free() when access to this resource is not needed any more.

Signal sharing API

Allows sharing of HSA signals between different processes.

hsa_amd_ipc_get_signal_handle
The purpose of this API is to get / export an IPC handle for an existing signal.

hsa_status_t HSA_API

hsa_amd_ipc_get_signal_handle(hsa_signal_t signal, hsa_amd_ipc_signal_handle_t *ipc_handle);
where:

IN: signal - Signal handle created as the result of hsa_signal_create() call.
OUT: ipc_handle - Unique IPC handle to be used in IPC.

Application must pass this handle to another process.

hsa_amd_ipc_close_signal_handle
Close IPC signal handle previously received via “hsa_amd_ipc_get_signal_handle()” call .

hsa_status_t HSA_API

196 Chapter 3. ROCm Learning Center

ROCm Documentation, Release 4.5.0

hsa_amd_ipc_close_signal_handle(hsa_amd_ipc_signal_handle_t ipc_handle);
where:

IN: ipc_handle - IPC Handle to close

hsa_amd_ipc_open_signal_handle
Open / import an IPC signal handle exported from another process and return address to be used in the current
process.

hsa_status_t HSA_API

hsa_amd_ipc_open_signal_handle(hsa_amd_ipc_signal_handle_t ipc_handle, hsa_signal_t &signal);
where:

IN: ipc_handle - IPC Handle
OUT: signal - Signal handle to be used in the current process

Client should call hsa_signal_destroy() when access to this resource is not needed any more.

Query API

Query memory information

Allows query information about memory resource based on address. It is partially overlapped with the following
requirement Memory info interface so it may be possible to merge those two interfaces.

typedef enum hsa_amd_address_info_s {

/* Return uint32_t / boolean if address was allocated via HSA stack */
HSA_AMD_ADDRESS_HSA_ALLOCATED = 0x1,

/** Return agent where such memory was allocated */
HSA_AMD_ADDRESS_AGENT = 0x2,

/** Return pool from which this address was allocated */
HSA_AMD_ADDRESS_POOL = 0x3,

/** Return size of allocation */
HSA_AMD_ADDRESS_ALLOC_SIZE = 0x4

} hsa_amd_address_info_t;

hsa_status_t HSA_API

hsa_amd_get_address_info(void ptr, hsa_amd_address_info_t attribute, void value);
where:

ptr - Address information about which to query
attribute - Attribute to query

3.37. Remote Device Programming 197

ROCm Documentation, Release 4.5.0

3.37.5 MPICH

MPICH is a high-performance and widely portable implementation of the MPI-3.1 standard.

For more information about MPICH, refer to https://www.mpich.org/

3.37.5.1 Building and Installing MPICH

To build and install MPICH with UCX and ROCm support, see the instructions below.

git clone https://github.com/pmodels/mpich.git
cd mpich
git checkout v3.4
git submodule update --init --recursive
./autogen.sh
./configure --prefix=</mpich/install/location> --with-device=ch4:ucx --with-ucx=</ucx/
→˓install/location>
make -j && make install

3.38 v4.1 ROCm Installation

• Deploying ROCm

• Prerequisites

• Supported Operating Systems

– Ubuntu

– CentOS RHEL

– SLES 15 Service Pack 2

• ROCm Installation Known Issues and Workarounds

• Getting the ROCm Source Code

198 Chapter 3. ROCm Learning Center

https://www.mpich.org/

ROCm Documentation, Release 4.5.0

3.38.1 Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer
versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-
dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox
OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

3.38.1.1 ROCm Repositories

• For major releases - https://repo.radeon.com/rocm/yum/rpm/

• For point releases - https://repo.radeon.com/rocm/yum/4.1.x/

3.38.1.2 Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

1. Remove rock-dkms before the upgrade.

2. Install the new kernel.

3. Reboot the system.

4. Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any
issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

3.38.2 Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

• Ubuntu 20.04.1 (5.4 and 5.6-oem) and 18.04.5 (Kernel 5.4)

• CentOS 7.9 (3.10.0-1127) & RHEL 7.9 (3.10.0-1160.6.1.el7) (Using devtoolset-7 runtime support)

• CentOS 8.3 (4.18.0-193.el8) and RHEL 8.3 (4.18.0-193.1.1.el8) (devtoolset is not required)

• SLES 15 SP2

Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work
with ROCm, however, they are not officially supported.

3.38. v4.1 ROCm Installation 199

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED
https://repo.radeon.com/rocm/yum/rpm/
https://repo.radeon.com/rocm/yum/4.1.x/

ROCm Documentation, Release 4.5.0

3.38.2.1 Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default
package repositories. Use the following commands to add repositories that have the required Perl packages:

• For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

• For CentOS8.3

sudo yum config-manager --set-enabled powertools

• For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

3.38.2.2 Complete Reinstallation OF AMD ROCm V4.1 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade
from previous releases to AMD ROCm v4.1 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions.
You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher
versions and vice-versa.

• For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

• For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is
because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an
operating system upgrade.

Note: render group is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to
use video group.

• For ROCm v3.5 and releases thereafter, the clinfo path is changed to /opt/rocm/opencl/bin/clinfo.

• For ROCm v3.3 and older releases, the clinfo path remains /opt/rocm/opencl/bin/x86_64/clinfo.

3.38.2.3 Multi-version Installation Updates

With the AMD ROCm v4.1 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-
dkms3.7.0, rocm-dkms3.8.0.

• Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the
desired ROCm versions. For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

• ‘version’ files should be created for each multi-version rocm <= 4.1.0

– command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

– example: echo 4.1.0 | sudo tee /opt/rocm-4.1.0/.info/version

200 Chapter 3. ROCm Learning Center

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

ROCm Documentation, Release 4.5.0

• The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

• ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users
must set LD_LIBRARY_PATH to load the ROCm library version of choice.

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for
single version installs and is not deprecated at this time.

SETTING PERMISSIONS for GROUPS

Note: render group is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to
use video group. By default, you must add any future users to the video and render groups.

To add future users to the video and render groups, run the following command:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Note: Before updating to the latest version of the operating system, delete the
→˓ROCm packages to avoid DKMS-related issues.

3.38.3 Supported Operating Systems

3.38.3.1 Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work
with ROCm, however, they are not officially supported.

3.38.3.1.1 Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

1. Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

2. Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Note: The public key has changed to reflect the new location. You must update to the new location as the old key will
be removed in a future release.

• Old Key: https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key

• New Key: https://repo.radeon.com/rocm/rocm.gpg.key

3.38. v4.1 ROCm Installation 201

https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key
https://repo.radeon.com/rocm/rocm.gpg.key

ROCm Documentation, Release 4.5.0

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ xenial main' | sudo tee /
→˓etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select
a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails
while updating, re-add the key from the ROCm apt repository.

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

e85a40d1a43453fe37d63aa6899bc96e08f2817a rocm.gpg.key

3. Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

4. Restart the system.

5. After restarting the system, run the following commands to verify that the ROCm installation is successful. If
you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin'
→˓| sudo tee -a /etc/profile.d/rocm.sh

3.38.3.1.2 Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

3.38.3.1.3 Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used
must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm
user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules

202 Chapter 3. ROCm Learning Center

https://repo.radeon.com/rocm/apt/

ROCm Documentation, Release 4.5.0

3.38.3.2 CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

3.38.3.2.1 Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7
environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

1. The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and
license page for instructions on registering your system with the RHEL subscription server and attaching to a
pool id.

2. Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

3. Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8
repository RPM:

sudo rpm -ivh <repo>

For more details,

• see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

• see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

4. Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/
scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

3.38.3.2.1.1 Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

3.38. v4.1 ROCm Installation 203

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

ROCm Documentation, Release 4.5.0

3.38.3.2.2 Installing ROCm

To install ROCm on your system, follow the instructions below:

1. Delete the previous versions of ROCm before installing the latest version.

2. Create a /etc/yum.repos.d/rocm.repo file with the following contents:

• CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

• CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/4.1/
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer
systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository
from:

https://repo.radeon.com/rocm/yum/

3. Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

4. Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

5. Restart the system.

6. Test the ROCm installation.

3.38.3.2.3 Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see
your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' |
→˓sudo tee -a /etc/profile.d/rocm.sh

204 Chapter 3. ROCm Learning Center

https://repo.radeon.com/rocm/yum/rpm
https://repo.radeon.com/rocm/centos8/rpm
https://repo.radeon.com/rocm/yum/

ROCm Documentation, Release 4.5.0

3.38.3.2.4 Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environ-
ment:

scl enable devtoolset-7 bash

3.38.3.2.5 Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

3.38.3.2.6 Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used
must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm
user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

3.38.3.2.7 Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems
may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your
development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

3.38.3.3 SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may
result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make
the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

3.38. v4.1 ROCm Installation 205

https://www.suse.com/support/kb/doc/?id=000016939

ROCm Documentation, Release 4.5.0

1. Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

2. Add the ROCm repo.

sudo zypper clean -all
sudo zypper addrepo https://repo.radeon.com/rocm/zyp/4.1/
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select
a versioned repository from:

https://repo.radeon.com/rocm/zyp/

3. Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

4. Verify the ROCm installation.

5. Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the
ROCm installation is successful.

6. Restart the system.

7. Test the basic ROCm installation.

8. After restarting the system, run the following commands to verify that the ROCm installation is successful. If
you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a
/etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
→˓udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed. Note: Ensure all the content in the /opt/rocm
directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you
remove them individually.

206 Chapter 3. ROCm Learning Center

https://repo.radeon.com/rocm/zyp/

ROCm Documentation, Release 4.5.0

3.38.3.3.1 Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with
a limited amount of storage space, or which will only run a small collection of known applications, you may want
to install only the packages that are required to run OpenCL applications. To do that, you can run the following
installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

3.38.4 ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support.
These components are only available through the ROCm repositories, and they may be deprecated or become open
source components in the future. These components are made available in the following packages:

• hsa-ext-rocr-dev

3.38.5 Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm
by downloading the source code and rebuilding the components. The source code for ROCm components can be
cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of
these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to
download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following com-
mands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

3.38.6 Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a
directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.1.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm
release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

3.38. v4.1 ROCm Installation 207

	The AMD ROCm Programming-Language Run-Time
	Solid Compilation Foundation and Language Support
	ROCm Learning Center
	AMD ROCm™ Release Notes v4.5
	List of Supported Operating Systems
	Enhanced Installation Process for ROCm v4.5
	AMD ROCm v4.5 Documentation Updates
	AMD ROCm Installation Guide
	AMD Instinct™ High Performance Computing and Tuning
	HIP Documentation Updates
	System Interface Management
	AMD ROCm Data Center Tool
	ROCm SMI API Guide
	ROC Debugger User and API Guide
	OpenMP Documentation
	AMD ROCm General Documentation Links

	What's New in This Release
	HIP Enhancements
	HIP Direct Dispatch
	Support for HIP Graph
	Enhanced launch_bounds Check Error Log Message
	HIP Runtime Compilation
	New Flag for Backwards Compatibility on float/double atomicAdd Function
	Updated HIP Version Definition
	Planned HIP Enhancements and Fixes
	Changes to hiprtc implementation to match nvrtc behavior
	HIP device attribute enumeration
	Changes to behavior of hipGetLastError() and hipPeekAtLastError() to match CUDA behavior available

	Unified Memory Support in ROCm
	Supported Operating Systems and Versions
	Unified Memory Support and XNACK

	System Management Interface
	Enhanced ROCm SMI setpoweroverdrive Functionality

	OpenMP Enhancements

	ROCm Math and Communication Libraries
	Known Issues in This Release
	Cache Issues with ROCProfiler
	Compiler Support for Function Pointers and Virtual Functions
	Debugger Process Exit May Cause ROCgdb Internal Error
	clinfo and rocminfo Do Not Display Marketing Name
	Stability Issue on LAMMPS-KOKKOS Applications

	Deprecations
	AMD Instinct MI25 End of Life
	Planned Deprecation for Code Object Versions 2 AND 3

	DISCLAIMER

	Deprecations
	ROCm Release v4.5
	AMD Instinct MI25 End of Life
	Planned Deprecation for Code Object Versions 2 AND 3

	ROCm Release v4.1
	COMPILER-GENERATED CODE OBJECT VERSION 2 DEPRECATION
	Changed HIP Environment Variables in ROCm v4.1 Release

	ROCm Release v4.0
	ROCr Runtime Deprecations
	Deprecated ROCr Runtime Enumerations
	Deprecated ROCr Runtime Structs
	AOMP DEPRECATION

	ROCm Release v3.5
	Heterogeneous Compute Compiler

	AMD ROCm Version History
	New features and enhancements in ROCm v4.3
	New features and enhancements in ROCm v4.2
	New features and enhancements in ROCm v4.1
	New features and enhancements in ROCm v4.0
	New features and enhancements in ROCm v3.10
	New features and enhancements in ROCm v3.9
	New features and enhancements in ROCm v3.8
	New features and enhancements in ROCm v3.7
	Patch Release - ROCm v3.5.1
	New features and enhancements in ROCm v3.5
	New features and enhancements in ROCm v3.3
	New features and enhancements in ROCm v3.2
	New features and enhancements in ROCm v3.1
	New features and enhancements in ROCm v3.0
	New features and enhancements in ROCm v2.10
	New features and enhancements in ROCm 2.9
	New features and enhancements in ROCm 2.8
	New features and enhancements in ROCm 2.7.2
	Issues fixed in ROCm 2.7.2
	Upgrading from ROCm 2.7 to 2.7.2
	New features and enhancements in ROCm 2.6
	New features and enhancements in ROCm 2.5
	New features and enhancements in ROCm 2.4
	New features and enhancements in ROCm 2.3
	New features and enhancements in ROCm 2.2
	New features and enhancements in ROCm 2.1
	New features and enhancements in ROCm 2.0
	New features and enhancements in ROCm 1.9.2
	New features and enhancements in ROCm 1.9.1
	New features and enhancements in ROCm 1.9.0
	New features as of ROCm 1.8.3
	New features as of ROCm 1.8
	New Features as of ROCm 1.7
	New Features as of ROCm 1.5

	ROCm™ Learning Center and Knowledge Base - NEW!!
	ROCm Knowledge Base
	ROCm Learning Center
	Getting Started
	Fundamentals of HIP Programming
	From CUDA to HIP
	Deep Learning on ROCm
	Multi-GPU Programming

	DISCLAIMER
	ROCm Installation Guide v4.5
	Overview of ROCm Installation Methods
	About This Document
	System Requirements

	Prerequisite Actions
	Confirm You Have a Supported Linux Distribution Version
	How to Check Linux Distribution and Kernel Versions on Your System
	Linux Distribution Information
	Kernel Information
	OS and Kernel Version Match

	Confirm You Have a ROCm-Capable GPU
	How to Verify Your System Has a ROCm-Capable GPU

	Confirm the System Has the Required Tools and Packages Installed
	How to Install and Configure Devtoolset-7
	Required packages
	Setting Permissions for Groups

	Meta-packages in ROCm Programming Models
	ROCm Package Naming Conventions
	Components of ROCm Programming Models
	Packages in ROCm Programming Models

	Installation Methods
	Installer Script Method
	Downloading and Installing the Installer Script on Ubuntu
	Ubuntu 18.04
	Ubuntu 20.04

	Downloading and Installing the Installer Script on RHEL/CentOS
	RHEL/CentOS 7.9
	RHEL 8.4/CentOS 8.3

	Downloading and Installing the Installer Script on SLES 15
	SLES 15 Service Pack 3

	Using the Installer Script on Linux Distributions

	Package Manager Method
	Installing ROCm on Linux Distributions
	Understanding AMDGPU and ROCm Stack Repositories on Linux Distributions
	Repositories with Latest Packages
	Repositories for Specific Releases

	Using Package Manager on Ubuntu
	Installation Of Kernel Headers and Development Packages on Ubuntu
	Base URLs For AMDGPU and ROCm Stack Repositories
	Adding AMDGPU Stack Repository
	Install the Kernel Mode Driver and Reboot System
	Add the ROCm Stack Repository
	Install ROCm Meta-packages

	Using Package Manager on RHEL/CentOS
	Installation Of Kernel Headers and Development Packages on RHEL/CentOS
	Base URLs For AMDGPU and ROCm Stack Repositories
	Adding the AMDGPU Stack Repository
	Install the Kernel Mode Driver and Reboot System
	Add the ROCm Stack Repository
	Install ROCm Meta-Packages

	Using Package Manager on SLES/OpenSUSE
	Installation of Kernel Headers and Development Packages
	Base URLs For AMDGPU And ROCm Stack Repositories
	Adding AMDGPU Stack Repository
	Install the Kernel Mode Driver and Reboot System
	Add the ROCm Stack Repository
	Install ROCm Meta-Packages

	Verification Process
	Verifying ROCm Installation
	Verifying Package Installation

	ROCm Stack Uninstallation
	Uninstalling ROCm Stack
	Removing ROCm Toolkit and Driver
	Choosing an Uninstallation Method
	Uninstallation Using Uninstall Script
	Uninstallation Using Package Manager

	Troubleshooting
	Frequently Asked Questions

	HIP Installation v4.5
	HIP Prerequisites
	AMD Platform
	NVIDIA Platform
	Building HIP from Source
	Get HIP source code
	Set the environment variables
	Build HIP
	Default paths and environment variables
	Verify your installation

	ROCm Installation v4.3
	Deploying ROCm
	ROCm Repositories
	Base Operating System Kernel Upgrade

	Prerequisites
	Perl Modules for HIP-Base Package
	Complete Reinstallation OF AMD ROCm V4.3 Recommended
	Multi-version Installation Updates

	Setting Permissions for Groups
	Supported Operating Systems
	Ubuntu
	Installing a ROCm Package from a Debian Repository
	Uninstalling ROCm Packages from Ubuntu
	Using Debian-based ROCm with Upstream Kernel Drivers

	CentOS RHEL
	Preparing RHEL for Installation
	Installing CentOS for DKMS

	Installing ROCm
	Testing the ROCm Installation
	Compiling Applications Using HCC, HIP, and Other ROCm Software
	Uninstalling ROCm from CentOS/RHEL
	Using ROCm on CentOS/RHEL with Upstream Kernel Drivers
	Installing Development Packages for Cross Compilation

	SLES 15 Service Pack 2
	Performing an OpenCL-only Installation of ROCm

	ROCm Installation Known Issues and Workarounds
	Getting the ROCm Source Code
	Downloading the ROCm Source Code

	Multi Version Installation
	Prerequisites
	Before You Begin

	Using CMake with AMD ROCm
	Finding Dependencies
	Using HIP in CMake
	Using AMD ROCm Libraries
	ROCm CMake Packages

	Mesa Multimedia Installation
	Prerequisites
	System Prerequisites
	Installation Prerequisites

	Installation Instructions
	Check Installation

	Tools Installation
	ROCTracer
	ROC-TX library: code annotation events API
	Usage
	rocTracer API
	rocTX API
	Library source tree
	API Description
	Code examples
	Build and run test

	Software Stack for AMD GPU
	Machine Learning and High Performance Computing Software Stack for AMD GPU v4.1
	ROCm Binary Package Structure
	ROCm Core Components
	ROCm Support Software
	ROCm Compilers
	ROCm Device Libraries
	ROCm Development ToolChain
	ROCm Libraries
	ROCm Platform Packages

	Drivers, ToolChains, Libraries, and Source Code
	List of ROCm Packages for Supported Operating Systems
	ROCm-Library Meta Packages
	Meta Packages

	Hardware and Software Support Information
	AMD Instinct™ High Performance Computing and Tuning Guide
	HIP Programming Guide v4.5
	Programming Guide (PDF)
	Related Topics
	HIP API Guide
	HIP_Supported_CUDA_API_Reference_Guide
	AMD ROCm Compiler Reference Guide
	HIP Installation Instructions
	HIP FAQ

	HIP API Documentation v4.5
	HIP-Supported CUDA API Reference Guide v4.5
	AMD ROCm Compiler Reference Guide v4.5
	Supported CUDA APIs
	Deprecated HIP APIs
	HIP Context Management APIs

	OpenCL Programming Guide
	OpenMP Support
	Overview
	Installation
	Usage
	Helpful Tips

	ROCm Libraries
	Deprecated Libraries
	hipeigen

	Deep Learning
	MIOpen API
	TensorFlow
	AMD ROCm Tensorflow v1.15 Release
	AMD ROCm Tensorflow v2.2.0-beta1 Release
	Tensorflow Installation
	Tensorflow ROCm port: Basic installation on RHEL
	Install ROCm

	Tensorflow benchmarking
	Tensorflow Installation with Docker
	Tensorflow More Resources

	MIOpen
	ROCm MIOpen v2.0.1 Release
	Porting from cuDNN to MIOpen
	The ROCm 3.3 has prebuilt packages for MIOpen

	PyTorch
	Building PyTorch for ROCm
	Recommended: Install using published PyTorch ROCm docker image:
	Option 2: Install using PyTorch upstream docker file
	Option 3: Install using minimal ROCm docker file
	PyTorch examples
	Building Caffe2 for ROCm
	Option 1: Docker image with Caffe2 installed:
	Option 2: Install using Caffe2 ROCm docker image:
	Test the Caffe2 Installation
	Run benchmarks
	Running example scripts
	Building own docker images

	MIVisionX
	AMD ROCm Profiler
	Overview
	Profiling Modes
	GPU profiling
	Counters and metrics
	Metrics query
	Metrics collecting
	Blocks instancing
	HW limitations

	Application tracing
	HIP runtime trace
	ROCr runtime trace
	KFD driver trace
	Code annotation
	Start/stop API
	rocTX basic markers API

	Multiple GPUs profiling

	Profiling control
	Profiling scope
	Tracing control
	Filtering Traced APIs
	Tracing period

	Concurrent kernels
	Multi-processes profiling
	Errors logging

	3rd party visualization tools
	Runtime Environment Setup
	Command line options
	Publicly available counters and metrics

	AMD ROCProfiler API
	AMD ROCTracer API
	AMD ROCm Debugger
	AMD Debugger API
	Introduction
	Build the AMD Debugger API Library
	Build the AMD Debugger API Specification Documentation
	Known Limitations and Restrictions
	Disclaimer

	ROCm™ Data Center Tool
	Objective
	Target Audience
	Download AMD ROCm Data Center Tool User Guide
	Download AMD ROCm Data Center Tool API Guide

	AMD ROCm Debug Agent Library
	Introduction
	Usage
	Options
	Build the ROCdebug-agent library
	Test the ROCdebug-agent library
	Known Limitations and Restrictions
	Disclaimer

	System Level Debug
	ROCm Language & System Level Debug, Flags, and Environment Variables
	ROCr Error Code
	Command to dump firmware version and get Linux Kernel version
	Debug Flags
	ROCr level env variable for debug
	Turn Off Page Retry on GFX9/Vega devices
	HIP Environment Variables
	OpenCL Debug Flags
	PCIe-Debug

	ROCmValidationSuite
	ROCmValidationSuite Modules
	Prerequisites
	Install ROCm stack, rocblas and rocm_smi64
	Building from Source
	Regression

	System Management Interface
	ROCm SMI library
	ROCm System Management Interface (ROCm SMI) Library
	Important note about Versioning and Backward Compatibility

	Building ROCm SMI
	Additional Required software for building
	Building Documentation
	Building Tests

	Usage Basics
	Device Indices
	Hello ROCm SMI

	SYSFS Interface
	Naming and data format standards for sysfs files

	Global Attributes
	Voltages
	Fans
	Pulse with Modulation
	Temperatures
	Currents
	Power
	Energy
	Humidity
	Alarms
	Intrusion detection
	Average Sample Configuration
	sysfs attribute writes interpretation
	Performance
	KFD Topology
	HSA Agent Information
	Node Information
	Memory
	Cache
	IO-LINKS
	How to use topology information
	SMI Event Interface and Library
	ROCR_VISIBLE_DEVICES
	Interaction between ROCR_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES

	Device cgroup

	ROCm Command Line Interface
	Clock and Temperature Management
	SDMA Usage Per-process
	Hardware Topology

	GCN ISA Manuals
	GCN 1.1
	GCN 2.0
	Vega
	Inline GCN ISA Assembly Guide
	The Art of AMDGCN Assembly: How to Bend the Machine to Your Will
	DS Permute Instructions
	Passing Parameters to a Kernel
	The GPR Counting
	Compiling GCN ASM Kernel Into Hsaco

	Remote Device Programming
	ROCmRDMA
	Restrictions and limitations
	ROCmRDMA interface specification
	API versions
	Data structures
	The function to query ROCmRDMA interface
	ROCmRDMA interface functions description

	UCX
	OpenMPI
	IPC API
	New Datatypes

	MPICH
	Building and Installing MPICH

	v4.1 ROCm Installation
	Deploying ROCm
	ROCm Repositories
	Base Operating System Kernel Upgrade

	Prerequisites
	Perl Modules for HIP-Base Package
	Complete Reinstallation OF AMD ROCm V4.1 Recommended
	Multi-version Installation Updates

	Supported Operating Systems
	Ubuntu
	Installing a ROCm Package from a Debian Repository
	Uninstalling ROCm Packages from Ubuntu
	Using Debian-based ROCm with Upstream Kernel Drivers

	CentOS RHEL
	Preparing RHEL for Installation
	Installing CentOS for DKMS

	Installing ROCm
	Testing the ROCm Installation
	Compiling Applications Using HCC, HIP, and Other ROCm Software
	Uninstalling ROCm from CentOS/RHEL
	Using ROCm on CentOS/RHEL with Upstream Kernel Drivers
	Installing Development Packages for Cross Compilation

	SLES 15 Service Pack 2
	Performing an OpenCL-only Installation of ROCm

	ROCm Installation Known Issues and Workarounds
	Getting the ROCm Source Code
	Downloading the ROCm Source Code

