

 [image: _images/amdblack1.jpg]

Welcome to AMD ROCm™ Platform

AMD ROCm is the first open-source software development platform for HPC/Hyperscale-class GPU computing. AMD ROCm brings the UNIX philosophy of choice, minimalism and modular software development to GPU computing.

Since the ROCm ecosystem is comprised of open technologies: frameworks (Tensorflow / PyTorch), libraries (MIOpen / Blas / RCCL), programming model (HIP), inter-connect (OCD) and up streamed Linux® Kernel support – the platform is continually optimized for performance and extensibility. Tools, guidance and insights are shared freely across the ROCm GitHub community and forums.

Note: The AMD ROCm™ open software platform is a compute stack for headless system deployments. GUI-based software applications are currently not supported.

[image: _images/latestGPU.PNG]
AMD ROCm is built for scale; it supports multi-GPU computing in and out of server-node communication through RDMA. AMD ROCm also simplifies the stack when the driver directly incorporates RDMA peer-sync support.

The AMD ROCm Programming-Language Run-Time

The AMD ROCr System Runtime is language independent and makes heavy use of the Heterogeneous System Architecture (HSA) Runtime API. This approach provides a rich foundation to execute programming languages, such as HIP and OpenMP.

[image: _images/ROCm_Stack.png]
Important features include the following:

	Multi-GPU coarse-grain shared virtual memory

	Process concurrency and preemption

	Large memory allocations

	HSA signals and atomics

	User-mode queues and DMA

	Standardized loader and code-object format

	Dynamic and offline-compilation support

	Peer-to-peer multi-GPU operation with RDMA support

	Profiler trace and event-collection API

	Systems-management API and tools

[image: _images/ROCm_Core_Stack.png]

Solid Compilation Foundation and Language Support

	LLVM compiler foundation

	HIP for application portability

	GCN assembler and disassembler

AMD ROCm gives developers the flexibility of choice for hardware and aids in the development of compute-intensive applications.

ROCm Learning Center

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

 [image: ../_images/amdblack1.jpg]

AMD ROCm™ Release Notes v4.5

October, 2021

This document describes the features, fixed issues, and information about downloading and installing the AMD ROCm™ software.

It also covers known issues and deprecations in this release.

List of Supported Operating Systems

The AMD ROCm platform supports the following operating systems:

	OS

	Kernel

	SLES15 SP3

	5.3.18-24.49

	RHEL 7.9

	3.10.0-1160.6.1.el7

	CentOS 7.9

	3.10.0-1127

	RHEL 8.4

	4.18.0-193.1.1.el8

	CentOS 8.3

	4.18.0-193.el8

	Ubuntu 18.04.5

	5.4.0-71-generic

	Ubuntu 20.04.3HWE

	5.8.0-48-generic

	Host OS

	Azure RS1.86

	Guest OS

	Ubuntu 20.04

Enhanced Installation Process for ROCm v4.5

In addition to the installation method using the native Package Manager, AMD ROCm v4.5 introduces added methods to install ROCm. With this
release, the ROCm installation uses the amdgpu-install and amdgpu-uninstall scripts.

The amdgpu-install script streamlines the installation process by:

	Abstracting the distribution-specific package installation logic

	Performing the repository set-up

	Allowing user to specify the use case and automating the installation
of all the required packages,

	Performing post-install checks to verify whether the installation was
performed successfully

	Installing the uninstallation script

The amdgpu-uninstall script allows the removal of the entire ROCm stack by using a single command.

Some of the ROCm-specific use cases that the installer currently supports are:

	OpenCL (ROCr/KFD based) runtime

	HIP runtimes

	ROCm libraries and applications

	ROCm Compiler and device libraries

	ROCr runtime and thunk

For more information, refer to the Installation Methods section in this guide.

Note: Graphics use cases are not supported in this release.

For more details, refer to the AMD ROCm Installation Guide v4.5 at,

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html

AMD ROCm v4.5 Documentation Updates

AMD ROCm Installation Guide

The AMD ROCm Installation Guide in this release includes the following updates:

	New - Installation Guide for ROCm v4.5

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation_new.html

AMD Instinct™ High Performance Computing and Tuning

	New - AMD Instinct™ High Performance Computing and Tuning Guide

see AMD Instinct™ High Performance Computing and Tuning Guide [https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD%20Instinct%E2%84%A2High%20Performance%20Computing%20and%20Tuning%20Guide.pdf]

HIP Documentation Updates

	HIP installation instructions

https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html

	HIP Programming Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

	HIP API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

	HIP-Supported CUDA API Reference Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf

	AMD ROCm Compiler Reference Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

	HIP FAQ

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP-FAQ.html#hip-faq

System Interface Management

	System Interface Management (SMI)

https://rocmdocs.amd.com/en/latest/ROCm_System_Managment/ROCm-System-Managment.html

AMD ROCm Data Center Tool

	AMD ROCm Data Center Tool API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf

	AMD ROCm Data Center Tool User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf

ROCm SMI API Guide

	ROCm SMI API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_Manual_4.5.pdf

ROC Debugger User and API Guide

	ROCDebugger User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf

	Debugger API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf

OpenMP Documentation

	Updated OpenMP documentation

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

AMD ROCm General Documentation Links

	For AMD ROCm documentation, see

https://rocmdocs.amd.com/en/latest/

	For installation instructions on supported platforms, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

	For AMD ROCm binary structure, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Software-Stack-for-AMD-GPU.html

	For AMD ROCm release history, see

https://rocmdocs.amd.com/en/latest/Current_Release_Notes/ROCm-Version-History.html

What's New in This Release

HIP Enhancements

The ROCm v4.5 release consists of the following HIP enhancements:

HIP Direct Dispatch

The conventional producer-consumer model where the host thread(producer) enqueues commands to a command queue (per stream), which is then
processed by a separate, per-stream worker thread (consumer) created by the runtime, is no longer applicable.

In this release, for Direct Dispatch, the runtime directly queues a packet to the AQL queue (user mode queue to GPU) in Dispatch and some of
the synchronization. This new functionality indicates the total latency of the HIP Dispatch API and the latency to launch the first wave on the
GPU.

In addition, eliminating the threads in runtime has reduced the variance in the dispatch numbers as the thread scheduling delays and
atomics/locks synchronization latencies are reduced.

This feature can be disabled by setting the following environment variable,

AMD_DIRECT_DISPATCH=0

Support for HIP Graph

ROCm v4.5 extends support for HIP Graph. For details, refer to the HIP API Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

Enhanced launch_bounds Check Error Log Message

When a kernel is launched with HIP APIs, for example, hipModuleLaunchKernel(), HIP validates to check that input kernel
dimension size is not larger than specified launch_bounds.

If exceeded, HIP returns launch failure if AMD_LOG_LEVEL is set with the proper value. Users can find more information in the error log message,
including launch parameters of kernel dim size, launch bounds, and the name of the faulting kernel. It is helpful to figure out the faulting
kernel. Besides, the kernel dim size and launch bounds values will also assist in debugging such failures.

For more details, refer to the HIP Programming Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

HIP Runtime Compilation

HIP now supports runtime compilation (hipRTC), the usage of which will provide the possibility of optimizations and performance improvement
compared with other APIs via regular offline static compilation.

hipRTC APIs accept HIP source files in character string format as input parameters and create handles of programs by compiling the HIP source
files without spawning separate processes.

For more details on hipRTC APIs, refer to the HIP API Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

New Flag for Backwards Compatibility on float/double atomicAdd Function

In the ROCm4.5 release, a new compilation flag is introduced as an option in the CMAKE file. This flag ensures backwards compatibility in
float/double atomicAdd functions.

__HIP_USE_CMPXCHG_FOR_FP_ATOMICS

This compilation flag is not set(â€œ0â€�) by default, so the HIP runtime uses the current float/double atomicAdd functions.

If this compilation flag is set to â€œ1â€� with the CMAKE option, the existing float/double atomicAdd functions is used for compatibility with
compilers that do not support floating point atomics.

D__HIP_USE_CMPXCHG_FOR_FP_ATOMICS=1

For details on how to build the HIP runtime, refer to the HIP Programming Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf

Updated HIP Version Definition

The HIP version definition is updated as follows:

HIP_VERSION=HIP_VERSION_MAJOR * 10000000 + HIP_VERSION_MINOR * 100000
+ HIP_VERSION_PATCH)

The HIP version can be queried from the following HIP API call,

hipRuntimeGetVersion(&runtimeVersion);

The version returned is always greater than the versions in the previous ROCm releases.

Note: The version definition of the HIP runtime is different from that of CUDA. The function returns the HIP runtime version on the AMD
platform, while on the NVIDIA platform, it returns the CUDA runtime version. There is no mapping or a correlation between the HIP and CUDA
versions.

Planned HIP Enhancements and Fixes

Changes to hiprtc implementation to match nvrtc behavior

In this release, there are changes to the hiprtc implementation to match the nvrtc behavior.

Impact: Applications can no longer explicitly include HIP runtime header files. Minor code changes are required to remove the HIP runtime
header files.

HIP device attribute enumeration

In a future release, there will be a breaking change in the HIP device attribute enumeration. Enum values are being rearranged to accommodate
future enhancements and additions.

Impact: This will require users to rebuild their applications. No code changes are required.

Changes to behavior of hipGetLastError() and hipPeekAtLastError() to match CUDA behavior available

In a later release, changes to behavior of hipGetLastError() and hipPeekAtLastError() to match CUDA behavior will be available.

Impact: Applications relying on the previous behavior will be impacted and may require some code changes.

Unified Memory Support in ROCm

Unified memory allows applications to map and migrate data between CPU and GPU seamlessly without explicitly copying it between different
allocations. This enables a more complete implementation of hipMallocManaged, hipMemAdvise, hipMemPrefetchAsync and related
APIs. Without unified memory, these APIs only support system memory. With unified memory, the driver can automatically migrate such memory to
GPU memory for faster access.

Supported Operating Systems and Versions

This feature is only supported on recent Linux kernels. Currently, it works on Ubuntu versions with 5.6 or newer kernels and the DKMS driver
from ROCm. Current releases of RHEL and SLES do not support this feature yet. Future releases of those distributions will add support for this.
The unified memory feature is also supported in the KFD driver included with upstream kernels starting from Linux 5.14.

Unified memory only works on GFXv9 and later GPUs, including Vega10 and MI100. Fiji, Polaris and older GPUs are not supported. To check whether
unified memory is enabled, look in the kernel log for this message:

$ dmesg \| grep "HMM registered"

If unified memory is enabled, there should be a “message like registered xyzMB device memory”. If unified memory is not supported on
your GPU or kernel version, this message is missing.

Unified Memory Support and XNACK

Unified memory support comes in two flavours, XNACK-enabled and XNACK-disabled. XNACK refers to the ability of the GPU to handle page
faults gracefully and retry a memory access. In XNACK-enabled mode, the GPU can handle retry after page-faults, which enables mapping and
migrating data on demand, as well as memory overcommitment. In XNACK-disabled mode, all memory must be resident and mapped in the GPU
page tables when the GPU is executing application code. Any migrations involve temporary preemption of the GPU queues by the driver. Both page
fault handling and preemptions, happen automatically and are transparent to the applications.

XNACK-enabled mode only has experimental support. XNACK-enabled mode requires compiling shader code differently. By default, the ROCm
compiler builds code that works in both modes. Code can be optimized for one specific mode with compiler options:

OpenCL:

clang ... -mcpu=gfx908:**xnack+**:sramecc- ... // xnack on, sramecc
off
clangÂ ... -mcpu=gfx908:**xnack-**:sramecc+ ... // xnack off, sramecc
 on

HIP:

clang ... --cuda-gpu-arch=gfx906:xnack+ ... // xnack on
clang ... --cuda-gpu-arch=gfx906:xnack- ... // xnack off

Not all the math libraries included in ROCm support XNACK-enabled mode on current hardware. Applications will fail to run if their shaders are
compiled in the incorrect mode.

On the current hardware, the XNACK mode can be chosen at boot-time by a module parameter amdgpu.noretry. The default is XNACK-disabled
(amdgpu.noretry=1).

System Management Interface

Enhanced ROCm SMI setpoweroverdrive Functionality

The ROCm System Management Interface (SMI) setpoweroverdrive functionality is used to lower the power cap on a device without needing
to enable the OverDrive functionality in the driver. Similarly, even with the OverDrive driver functionality enabled, it is possible to
request a lower power cap than the card’s default.

Currently, any use of the “setpoweroverdrive* functionality in rocm-smi prints an out-of-spec warning to the screen and requires the user to
agree that using this functionality potentially voids their warranty. However, this warning should only be printed when users are trying to
set the power cap to higher than the cardâ€™s default, which requires the OverDrive driver functionality to be enabled.

For example:

The default power cap is 225.0W before any changes.

[atitest@rhel85 smi]$./rocm_smi.py â€“resetpoweroverdrive

======================= ROCm System Management Interface
==

========================== Reset GPU Power OverDrive
==

GPU[0] : Successfully reset Power OverDrive to: 225W

============================ End of ROCm SMI Log
==

Now, after using â€“setpoweroverdrive to lower the power cap to 123 watts:

[atitest@rhel85 smi]$./rocm_smi.py â€“setpoweroverdrive 123

.. _rocm-system-management-interface-1:

======================= ROCm System Management Interface
==

=========================== Set GPU Power OverDrive
===

GPU[0] : Successfully set power to: 123W

.. _end-of-rocm-smi-log-1:

======================= End of ROCm SMI Log
===

Setting a power cap lower than the default of 225.0W (in this case,
123W) does not give a warning.

To verify that the power is set to the correct value:

[atitest@rhel85 smi]$./rocm_smi.py â€“showmaxpower

.. _rocm-system-management-interface-2:

======================= ROCm System Management Interface
==

======================== Power Cap ===================================

GPU[0] : Max Graphics Package Power (W): 123.0

.. _end-of-rocm-smi-log-2:

========================End of ROCm SMI Log
===

OpenMP Enhancements

The ROCm installation includes an LLVM-based implementation, which fully supports OpenMP 4.5 standard and a subset of the OpenMP 5.0 standard.
Fortran and C/C++ compilers and corresponding runtime libraries are included. Along with host APIs, the OpenMP compilers support offloading
code and data onto GPU devices.

For more information, refer to

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

ROCm Math and Communication Libraries

In this release, ROCm Math and Communication Libraries consists of the
following enhancements and fixes:

	Library

	Changes

	rocBLAS

	Optimizations

	Improved performance of non-batched and batched syr
for all sizes and data types

	Improved performance of non-batched and batched hemv
for all sizes and data types

	Improved performance of non-batched and batched symv
for all sizes and data types

	Improved memory utilization in rocblas-bench,
rocblas-test gemm functions, increasing possible
runtime sizes.

Changes

	Update from C++14 to C++17.

	Packaging split into a runtime package (called
rocblas) and a development package (called
rocblas-dev for .deb packages, and rocblas-devel for
.rpm packages). The development package depends on
runtime. The runtime package suggests the development
package for all supported OSes except CentOS 7 to aid
in the transition. The ‘suggests’ feature in packaging
is a transitional feature and will be
removed in a future ROCm release.

Fixed

	For function geam avoid overflow in offset
calculation.

	For function syr avoid overflow in offset
calculation.

	For function gemv (Transpose-case) avoid overflow in
offset calculation.

	For functions ssyrk and dsyrk, allow
conjugate-transpose case to match legacy BLAS.
Behavior is the same as the transpose case.

	hipBLAS

	Added

	More support for hipblas-bench

Fixed

	Avoid large offset overflow for gemv and hemv in
hipblas-test

Changed

	Packaging split into a runtime package called hipblas
and a development package called hipblas-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The ‘suggests’ feature in packaging is
a transitional feature and will be
removed in a future rocm release.

	rocFFT

	Optimizations

	Optimized SBCC kernels of length 52, 60, 72, 80, 84,
96, 104, 108, 112, 160, 168, 208, 216, 224, 240 with
new kernel generator.

Added

	Split 2D device code into separate libraries.

Changed

	Packaging split into a runtime package called rocfft
and a development package called rocfft-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The suggests feature in packaging is
a transitional feature and will be
removed in a future rocm release.

Fixed

	Fixed a few validation failures of even-length R2C
inplace. 2D, 3D cubics sizes such as 100^2 (or ^3),
200^2 (or ^3), 256^2 (or ^3)…etc. We don’t combine
the three kernels (stockham-r2c-transpose). We only
combine two kernels (r2c-transpose) instead.

	hipFFT

	Changed

	Packaging split into a runtime package called hipfft
and a development package called hipfft-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The ‘suggests’ feature in packaging is
a tranistional feature and will be
removed in a future rocm release.

	rocSPARSE

	Added

	Triangular solve for multiple right-hand sides using
BSR format

	SpMV for BSRX format

	SpMM in CSR format enhanced to work with transposed A

	Matrix coloring for CSR matrices

	Added batched tridiagonal solve (gtsv_strided_batch)

Improved

	Fixed a bug with gemvi on Navi21

	Optimization for pivot based gtsv

	hipSPARSE

	Added

	Triangular solve for multiple right-hand sides using
BSR format

	SpMV for BSRX format

	SpMM in CSR format enhanced to work with transposed A

	Matrix coloring for CSR matrices

	Added batched tridiagonal solve (gtsv_strided_batch)

Improved

	Fixed a bug with gemvi on Navi21

	Optimization for pivot based gtsv

	r
ocALUTION

	Changed

	Packaging split into a runtime package called
rocalution and a development package called
rocalution-devel. The development package depends on
runtime. The runtime package suggests the development
package for all supported OSes except CentOS 7 to aid
in the transition. The ‘suggests’ feature in packaging
is a transitional feature and will be
removed in a future rocm release.

Improved

	(A)MG solving phase optimization

	rocTHRUST

	Changed

	Packaging changed to a development package (called
rocthrust-dev for .deb packages, and rocthrust-devel
for .rpm packages). As rocThrust is a header-only
library, there is no runtime package. To aid in the
transition, the development package sets the
“provides” field to provide the package rocthrust, so
that existing packages depending on rocthrust can
continue to work. This provides feature is introduced
as a deprecated feature and will be removed in a
future ROCm release.

	rocSOLVER

	Added

	RQ factorization routines:

	GERQ2, GERQF (with batched and strided_batched
versions)

	Linear solvers for general square systems:

	GESV (with batched and strided_batched versions)

	Linear solvers for symmetric/hermitian positive
definite systems:

	POTRS (with batched and strided_batched versions)

	POSV (with batched and strided_batched versions)

	Inverse of symmetric/hermitian positive definite
matrices:

	POTRI (with batched and strided_batched versions)

	General matrix inversion without pivoting:

	GETRI_NPVT (with batched and strided_batched
versions)

	GETRI_NPVT_OUTOFPLACE (with batched and
strided_batched versions)

Optimized

	Improved performance of LU factorization (especially
for large matrix sizes)

	Changed

	Raised reference LAPACK version used for rocSOLVER
test and benchmark clients to v3.9.1

	Minor CMake improvements for users building from
source without install.sh:

	Removed fmt::fmt from rocsolver’s public usage
requirements

	Enabled small-size optimizations by default

	Split packaging into a runtime package (‘rocsolver’)
and a development package (‘rocsolver-devel’). The
development package depends on the runtime package.
To aid in the transition, the runtime package
suggests the development package (except on CentOS
7). This use of the ‘suggests’ feature is deprecated
and will be removed in a future ROCm release.

Fixed

	Use of the GCC / Clang
__attribute__((deprecated(…))) extension is now
guarded by compiler detection macros.

	hipSOLVER

	The following functions were added in this release:

	gesv

	hipsolverSSgesv_bufferSize,
hipsolverDDgesv_bufferSize,
hipsolverCCgesv_bufferSize,
hipsolverZZgesv_bufferSize

	hipsolverSSgesv, hipsolverDDgesv, hipsolverCCgesv,
hipsolverZZgesv

	potrs

	hipsolverSpotrs_bufferSize,
hipsolverDpotrs_bufferSize,
hipsolverCpotrs_bufferSize,
hipsolverZpotrs_bufferSize

	hipsolverSpotrs, hipsolverDpotrs, hipsolverCpotrs,
hipsolverZpotrs

	potrsBatched

	hipsolverSpotrsBatched_bufferSize,
hipsolverDpotrsBatched_bufferSize,
hipsolverCpotrsBatched_bufferSize,
hipsolverZpotrsBatched_bufferSize

	hipsolverSpotrsBatched, hipsolverDpotrsBatched,
hipsolverCpotrsBatched, hipsolverZpotrsBatched

	potri

	hipsolverSpotri_bufferSize,
hipsolverDpotri_bufferSize,
hipsolverCpotri_bufferSize,
hipsolverZpotri_bufferSize

	hipsolverSpotri, hipsolverDpotri, hipsolverCpotri,
hipsolverZpotri

	RCCL

	Added

	Compatibility with NCCL 2.9.9

Changed

	Packaging split into a runtime package called rccl
and a development package called rccl-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The suggests feature in packaging is
a transitional feature and will be
removed in a future rocm release.

	hipCUB

	Changed

	Packaging changed to a development package (called
hipcub-dev for .deb packages, and hipcub-devel for
.rpm packages). As hipCUB is a header-only library,
there is no runtime package. To aid in the
transition, the development package sets the
“provides” field to provide the package hipcub, so
that existing packages depending on hipcub can
continue to work. This provides feature is introduced
as a deprecated feature and will be removed in a
future ROCm release.

	rocPRIM

	Added

	bfloat16 support added.

Changed

	Packaging split into a runtime package called rocprim
and a development package called rocprim-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The suggests feature in packaging is
a transitional feature and will be
removed in a future rocm release.

	As rocPRIM is a header-only library, the runtime
package is an empty placeholder used to aid in the
transition. This package is also a deprecated feature
and will be removed in a future rocm release.

Deprecated

	The warp_size() function is now deprecated; please
switch to host_warp_size() and device_warp_size() for
host and device references respectively.

	rocRAND

	Changed

	Packaging split into a runtime package called rocrand
and a development package called rocrand-devel. The
development package depends on runtime. The runtime
package suggests the development package for all
supported OSes except CentOS 7 to aid in the
transition. The ‘suggests’ feature in packaging is
a transitional feature and will be
removed in a future rocm release.

Fixed

	Fix for mrg_uniform_distribution_double generating
incorrect range of values

	Fix for order of state calls for log_normal, normal,
and uniform

Known issues

	kernel_xorwow test is failing for certain GPU
architectures.

For more information about ROCm Libraries, refer to the documentation at

https://rocmdocs.amd.com/en/latest/ROCm_Libraries/ROCm_Libraries.html

Known Issues in This Release

The following are the known issues in this release.

Cache Issues with ROCProfiler

When the same kernel is launched back-to-back multiple times on a GPU, a cache flush is executed each time the kernel finishes when profiler data is collected. The cache flush is inserted by ROCprofiler for each kernel. This prevents kernel from being cached, instead it is being read each time it is launched. As a result the cache hit rate from rocprofiler is reported as 0% or very low.

This issue is under investigation and will be fixed in a future release.

Compiler Support for Function Pointers and Virtual Functions

A known issue in the compiler support for function pointers and virtual functions on the GPU may cause undefined behavior due to register
corruption.

A temporary workaround is to compile the affected application with

-mllvm -amdgpu-fixed-function-abi=1* option

Note: This is an internal compiler flag and may be removed without notice once the issue is addressed in a future release.

Debugger Process Exit May Cause ROCgdb Internal Error

If the debugger process exits during debugging, ROCgdb may report internal errors. This issue occurs as it attempts to access the AMD GPU
state for the exited process. To recover, users must restart ROCgdb.

As a workaround, users can set breakpoints to prevent the debugged process from exiting. For example, users can set breakpoints at the last
statement of the main function and in the abort() and exit() functions. This temporary solution allows the application to be re-run without
restarting ROCgdb.

This issue is currently under investigation and will be fixed in a future release.

For more information, refer to the ROCgdb User Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCDebugger_User_Guide.pdf

clinfo and rocminfo Do Not Display Marketing Name

clinfo and rocminfo display a blank field for Marketing Name.

This is due to a missing package that is not yet available from ROCm. This package will be distributed in future ROCm releases.

Stability Issue on LAMMPS-KOKKOS Applications

On mGPU machines, lammps-kokkos applications experience a stability issue (AMD Instinct MI100™).

As a workaround, perform a Translation LookAside Buffer (TLB) flush.

The issue is under active investigation and will be resolved in a future release.

Deprecations

AMD Instinct MI25 End of Life

ROCm release v4.5 is the final release to support AMD Instinct MI25. AMD Instinct MI25 has reached End of Life (EOL). ROCm 4.5 represents the
last certified release for software and driver support. AMD will continue to provide technical support and issue resolution for AMD
Instinct MI25 on ROCm v4.5 for a period of 12 months from the software GA date.

Planned Deprecation for Code Object Versions 2 AND 3

With the ROCm v4.5 release, the generation of code object versions 2 and 3 is being deprecated and may be removed in a future release. This deprecation notice does not impact support for the execution of AMD GPU code object versions.

The -mcode-object-version Clang option can be used to instruct the compiler to generate a specific AMD GPU code object version. In ROCm v4.5, the compiler can generate AMD GPU code object version 2, 3, and 4, with version 4 being the default if not specified.

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard versionchanges, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.AMD, the AMD Arrow logo,[insert all other AMD trademarks used in the material here perAMD Trademarks]and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. [Insert any third party trademark attribution here per AMD’sThird Party Trademark List.]©[Insert year written*]Advanced Micro Devices, Inc.All rights reserved.

Third-party Disclaimer

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

 [image: ../_images/amdblack1.jpg]

Deprecations

ROCm Release v4.5

AMD Instinct MI25 End of Life

ROCm release v4.5 is the final release to support AMD Instinct MI25. AMD Instinct MI25 has reached End of Life (EOL). ROCm 4.5 represents the last certified release for software and driver support. AMD will continue to provide technical support and issue resolution for AMD Instinct MI25 on ROCm v4.5 for a period of 12 months from the software GA date.

Planned Deprecation for Code Object Versions 2 AND 3

With the ROCm v4.5 release, the generation of code object versions 2 and 3 is being deprecated and may be removed in a future release. This deprecation notice does not impact support for the execution of AMD GPU code object versions.

The -mcode-object-version Clang option can be used to instruct the compiler to generate a specific AMD GPU code object version. In ROCm v4.5, the compiler can generate AMD GPU code object version 2, 3, and 4, with version 4 being the default if not specified.

ROCm Release v4.1

COMPILER-GENERATED CODE OBJECT VERSION 2 DEPRECATION

Compiler-generated code object version 2 is no longer supported and has been completely removed.

Support for loading code object version 2 is also deprecated with no announced removal release.

Changed HIP Environment Variables in ROCm v4.1 Release

In the ROCm v3.5 release, the Heterogeneous Compute Compiler (HCC) compiler was deprecated, and the HIP-Clang compiler was introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs. Also, the HIP runtime API was implemented on top of the Radeon Open Compute Common Language runtime (ROCclr). ROCclr is an abstraction layer that provides the ability to interact with different runtime backends such as ROCr.

While the HIP_PLATFORM=hcc environment variable was functional in subsequent releases after ROCm v3.5, in the ROCm v4.1 release, changes to the following environment variables were implemented:

	HIP_PLATFORM=hcc was changed to HIP_PLATFORM=amd

	HIP_PLATFORM=nvcc was changed to HIP_PLATFORM=nvidia

Therefore, any applications continuing to use the HIP_PLATFORM=hcc environment variable will fail.

Workaround: Update the environment variables to reflect the changes mentioned above.

ROCm Release v4.0

ROCr Runtime Deprecations

The following ROCr Runtime enumerations, functions, and structs are deprecated in the AMD ROCm v4.0 release.

Deprecated ROCr Runtime Functions

	hsa_isa_get_info

	hsa_isa_compatible

	hsa_executable_create

	hsa_executable_get_symbol

	hsa_executable_iterate_symbols

	hsa_code_object_serialize

	hsa_code_object_deserialize

	hsa_code_object_destroy

	hsa_code_object_get_info

	hsa_executable_load_code_object

	hsa_code_object_get_symbol

	hsa_code_object_get_symbol_from_name

	hsa_code_symbol_get_info

	hsa_code_object_iterate_symbols

Deprecated ROCr Runtime Enumerations

	HSA_ISA_INFO_CALL_CONVENTION_COUNT

	HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONT_SIZE

	HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONTS_PER_COMPUTE_UNIT

	HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH

	HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME

	HSA_EXECUTABLE_SYMBOL_INFO_AGENT

	HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION

	HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SEGMENT

	HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALIGNMENT

	HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE

	HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_IS_CONST

	HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_CALL_CONVENTION

	HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION

	hsa_code_object_type_t

	hsa_code_object_info_t

	hsa_code_symbol_info_t

Deprecated ROCr Runtime Structs

	hsa_code_object_t

	hsa_callback_data_t

	hsa_code_symbol_t

AOMP DEPRECATION

As of AMD ROCm v4.0, AOMP (aomp-amdgpu) is deprecated. OpenMP support has moved to the openmp-extras auxiliary package, which leverages the ROCm compiler on LLVM 12.

For more information, refer to

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

ROCm Release v3.5

Heterogeneous Compute Compiler

In the ROCm v3.5 release, the Heterogeneous Compute Compiler (HCC) compiler was deprecated and the HIP-Clang compiler was introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs.

For more information, download the HIP Programming Guide at:

https://github.com/RadeonOpenCompute/ROCm

 [image: ../_images/amdblack1.jpg]

AMD ROCm Version History

This file contains historical information for ROCm releases.

New features and enhancements in ROCm v4.3

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.3.x

	HIP Versioning Update

	Kernel Enqueue Serialization

	NUMA-aware Host Memory Allocation

	New Atomic System Scope Atomic Operations

	Indirect Function Call and C++ Virtual Functions

	Prometheus (Grafana) Integration with Automatic Node Detection

	Coarse Grain Utilization

	Add 64-bit Energy Accumulator In-band

	Support for Continuous Clocks Values

	Memory Utilization Counters

	Performance Determinism

	HBM Temperature Metric Per Stack

	Tracing Multiple MPI Ranks

	ROCm Math and Communication Libraries Enhancements and Fixes

New features and enhancements in ROCm v4.2

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.2.x

	HIP Target Platform Macro

	Updated HIP ‘Include’ Directories

	HIP Stream Memory Operations

	HIP Events in Kernel Dispatch

	Changed Environment Variables for HIP

	ROCm Data Center Tool - RAS Integration

	ROCm Math and Communication Libraries Enhancements and Fixes

New features and enhancements in ROCm v4.1

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.1.x

	TargetID for Multiple Configurations

	Grafana Integration in ROCm Data Center Tool

	ROCm Math and Communication Libraries Enhancements and Fixes

	HIP Enhancements

	OpenMP Enhancements and Fixes

	MIOpen Tensile Integration

New features and enhancements in ROCm v4.0

Release notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-4.0.x

	Introducing AMD Instinct™ MI100 accelerator

	Important features of the AMD Instinct™ MI100 accelerator

	Matrix Core Engines and GFX908 Considerations

	RAS (Reliability, Availability, and Accessibility) features

	Using CMake with AMD ROCm

	AMD ROCm and MESA Multimedia

	Support for Printing PCle Information on AMD Instinct™100

	New API for xGMI

New features and enhancements in ROCm v3.10

Release notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.10.x

	Prometheus Plugin for ROCm Data Center Tool

	Python Binding

	System DMA (SDMA) Utilization

	ROCm-SMI Command Line Interface

	Enhanced ROCm SMI Library for Events

	ROCm SMI – Command Line Interface Hardware Topology

	New rocSOLVER APIs

	RCCL Alltoallv Support in PyTorch

	AOMP Release 11.11-0

New features and enhancements in ROCm v3.9

Release Notes: https://github.com/RadeonOpenCompute/ROCm/blob/roc-3.9.x/README.md

	Compiler support for OpenMP

	ROCm-SMI Hardware Topology

	Compute Unit Occupancy

	Accessing Compute Unit Occupancy Directly Using SYSFS

	‘rocfft_execution_info_set_stream’ API

	Improved GEMM Performance

	New Matrix Pruning Functions

	AOMP v11.9-0

	AOMP v11.08-0

New features and enhancements in ROCm v3.8

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.8.x

	Hipfort-Interface for GPU Kernel Libraries

	ROCm Data Center Tool

	Error-Correcting Code Fields in ROCm Data Center Tool

	Static Linking Libraries

New features and enhancements in ROCm v3.7

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.7.x

	AOMP Enhancements

	Compatibility with NVIDIA Communications Collective Library v2.7 API

	Singular Value Decomposition of Bi-diagonal Matrices

	rocSPARSE_gemmi() Operations for Sparse Matrices

Patch Release - ROCm v3.5.1

AMD ROCm released a maintenance patch release v3.5.1. For more information about the release see,

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.1

New features and enhancements in ROCm v3.5

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.5.0

rocProf Command Line Tool Python Requirement
SQLite3 is a required Python module for the rocprof command-line tool. You can install the SQLite3 Python module using the pip utility and set env var ROCP_PYTHON_VERSION to the Python version, which includes the SQLite3 module.

Heterogeneous-Compute Interface for Portability
In this release, the Heterogeneous Compute Compiler (HCC) compiler is deprecated and the HIP-Clang compiler is introduced for compiling Heterogeneous-Compute Interface for Portability (HIP) programs.

Radeon Open Compute Common Language Runtime
In this release, the HIP runtime API is implemented on top of Radeon Open Compute Common Language Runtime (ROCclr). ROCclr is an abstraction layer that provides the ability to interact with different runtime backends such as ROCr.

OpenCL Runtime
The following OpenCL runtime changes are made in this release:

-AMD ROCm OpenCL Runtime extends support to OpenCL2.2
-The developer branch is changed from master to master-next

AMD ROCm GNU Debugger (ROCgdb)
The AMD ROCm Debugger (ROCgdb) is the AMD ROCm source-level debugger for Linux based on the GNU Debugger (GDB). It enables heterogeneous debugging on the AMD ROCm platform of an x86-based host architecture along with AMD GPU architectures and supported by the AMD Debugger API Library (ROCdbgapi).

AMD ROCm Debugger API Library
The AMD ROCm Debugger API Library (ROCdbgapi) implements an AMD GPU debugger application programming interface (API) that provides the support necessary for a client of the library to control the execution and inspect the state of AMD GPU devices.

rocProfiler Dispatch Callbacks Start Stop API
In this release, a new rocprofiler start/stop API is added to enable/disable GPU kernel HSA dispatch callbacks. The callback can be registered with the ‘rocprofiler_set_hsa_callbacks’ API. The API helps you eliminate some profiling performance impact by invoking the profiler only for kernel dispatches of interest. This optimization will result in significant performance gains.

ROCm Communications Collective Library
The ROCm Communications Collective Library (RCCL) consists of the following enhancements:

-Re-enable target 0x803
-Build time improvements for the HIP-Clang compiler

NVIDIA Communications Collective Library Version Compatibility
AMD RCCL is now compatible with NVIDIA Communications Collective Library (NCCL) v2.6.4 and provides the following features:

Network interface improvements with API v3
Network topology detection
Improved CPU type detection
Infiniband adaptive routing support

MIOpen Optional Kernel Package Installation
MIOpen provides an optional pre-compiled kernel package to reduce startup latency.

New SMI Event Interface and Library
An SMI event interface is added to the kernel and ROCm SMI lib for system administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS input/output control is enhanced to allow notifications propagation to user mode through the event channel.

API for CPU Affinity
A new API is introduced for aiding applications to select the appropriate memory node for a given accelerator(GPU).

Radeon Performance Primitives Library
The new Radeon Performance Primitives (RPP) library is a comprehensive high-performance computer vision library for AMD (CPU and GPU) with the HIP and OpenCL backend. The target operating system is Linux.

New features and enhancements in ROCm v3.3

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.3.0

Multi-Version Installation
Users can install and access multiple versions of the ROCm toolkit simultaneously. Previously, users could install only a single version of the ROCm toolkit.

GPU Process Information
A new functionality to display process information for GPUs is available in this release. For example, you can view the process details to determine if the GPU(s) must be reset.

Support for 3D Pooling Layers
AMD ROCm is enhanced to include support for 3D pooling layers. The implementation of 3D pooling layers now allows users to run 3D convolutional networks, such as ResNext3D, on AMD Radeon Instinct GPUs.

ONNX Enhancements
Open Neural Network eXchange (ONNX) is a widely-used neural net exchange format. The AMD model compiler & optimizer support the pre-trained models in ONNX, NNEF, & Caffe formats. Currently, ONNX versions 1.3 and below are supported.

New features and enhancements in ROCm v3.2

This release was not productized.

New features and enhancements in ROCm v3.1

‘Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.1.0

Change in ROCm Installation Directory Structure

A fresh installation of the ROCm toolkit installs the packages in the /opt/rocm-<version> folder.
Previously, ROCm toolkit packages were installed in the /opt/rocm folder.

Reliability, Accessibility, and Serviceability Support for Vega 7nm

The Reliability, Accessibility, and Serviceability (RAS) support for Vega7nm is now available.

SLURM Support for AMD GPU

SLURM (Simple Linux Utility for Resource Management) is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters.

New features and enhancements in ROCm v3.0

Release Notes: https://github.com/RadeonOpenCompute/ROCm/tree/roc-3.0.0

	Support for CentOS RHEL v7.7

	Support is extended for CentOS/RHEL v7.7 in the ROCm v3.0 release. For more information about the CentOS/RHEL v7.7 release, see:

	CentOS/RHEL

	Initial distribution of AOMP 0.7-5 in ROCm v3.0

The code base for this release of AOMP is the Clang/LLVM 9.0 sources as of October 8th, 2019. The LLVM-project branch used to build this release is AOMP-191008. It is now locked. With this release, an artifact tarball of the entire source tree is created. This tree includes a Makefile in the root directory used to build AOMP from the release tarball. You can use Spack to build AOMP from this source tarball or build manually without Spack.

	Fast Fourier Transform Updates

The Fast Fourier Transform (FFT) is an efficient algorithm for computing the Discrete Fourier Transform. Fast Fourier transforms are used in signal processing, image processing, and many other areas. The following real FFT performance change is made in the ROCm v3.0 release:

	Implement efficient real/complex 2D transforms for even lengths.

Other improvements:

	More 2D test coverage sizes.

	Fix buffer allocation error for large 1D transforms.

	C++ compatibility improvements.

MemCopy Enhancement for rocProf
In the v3.0 release, the rocProf tool is enhanced with an additional capability to dump asynchronous GPU memcopy information into a .csv file. You can use the ‘-hsa-trace’ option to create the results_mcopy.csv file. Future enhancements will include column labels.

New features and enhancements in ROCm v2.10

rocBLAS Support for Complex GEMM

The rocBLAS library is a gpu-accelerated implementation of the standard Basic Linear Algebra Subroutines (BLAS). rocBLAS is designed to enable you to develop algorithms, including high performance computing, image analysis, and machine learning.

In the AMD ROCm release v2.10, support is extended to the General Matrix Multiply (GEMM) routine for multiple small matrices processed simultaneously for rocBLAS in AMD Radeon Instinct MI50. Both single and double precision, CGEMM and ZGEMM, are now supported in rocBLAS.

Support for SLES 15 SP1

In the AMD ROCm v2.10 release, support is added for SUSE Linux® Enterprise Server (SLES) 15 SP1. SLES is a modular operating system for both multimodal and traditional IT.

Code Marker Support for rocProfiler and rocTracer Libraries

Code markers provide the external correlation ID for the calling thread. This function indicates that the calling thread is entering and leaving an external API region.

New features and enhancements in ROCm 2.9

Initial release for Radeon Augmentation Library(RALI)

The AMD Radeon Augmentation Library (RALI) is designed to efficiently decode and process images from a variety of storage formats and modify them through a processing graph programmable by the user. RALI currently provides C API.

Quantization in MIGraphX v0.4

MIGraphX 0.4 introduces support for fp16 and int8 quantization. For additional details, as well as other new MIGraphX features, see MIGraphX documentation.

rocSparse csrgemm

csrgemm enables the user to perform matrix-matrix multiplication with two sparse matrices in CSR format.

Singularity Support

ROCm 2.9 adds support for Singularity container version 2.5.2.

Initial release of rocTX

ROCm 2.9 introduces rocTX, which provides a C API for code markup for performance profiling. This initial release of rocTX supports annotation of code ranges and ASCII markers.

	Added support for Ubuntu 18.04.3

	Ubuntu 18.04.3 is now supported in ROCm 2.9.

New features and enhancements in ROCm 2.8

Support for NCCL2.4.8 API

Implements ncclCommAbort() and ncclCommGetAsyncError() to match the NCCL 2.4.x API

New features and enhancements in ROCm 2.7.2

This release is a hotfix for ROCm release 2.7.

Issues fixed in ROCm 2.7.2

	A defect in upgrades from older ROCm releases has been fixed.

	rocprofiler –hiptrace and –hsatrace fails to load roctracer library

	In ROCm 2.7.2, rocprofiler –hiptrace and –hsatrace fails to load roctracer library defect has been fixed.

	To generate traces, please provide directory path also using the parameter: -d <$directoryPath> for example:

/opt/rocm/bin/rocprof –hsa-trace -d $PWD/traces /opt/rocm/hip/samples/0_Intro/bit_extract/bit_extract
All traces and results will be saved under $PWD/traces path

Upgrading from ROCm 2.7 to 2.7.2

To upgrade, please remove 2.7 completely as specified for ubuntu or for centos/rhel, and install 2.7.2 as per instructions install instructions

Other notes
To use rocprofiler features, the following steps need to be completed before using rocprofiler:

Step-1: Install roctracer
Ubuntu 16.04 or Ubuntu 18.04:
sudo apt install roctracer-dev
CentOS/RHEL 7.6:
sudo yum install roctracer-dev

Step-2: Add /opt/rocm/roctracer/lib to LD_LIBRARY_PATH
New features and enhancements in ROCm 2.7
[rocFFT] Real FFT Functional
Improved real/complex 1D even-length transforms of unit stride. Performance improvements of up to 4.5x are observed. Large problem sizes should see approximately 2x.

rocRand Enhancements and Optimizations

Added support for new datatypes: uchar, ushort, half.

Improved performance on “Vega 7nm” chips, such as on the Radeon Instinct MI50

mtgp32 uniform double performance changes due generation algorithm standardization. Better quality random numbers now generated with 30% decrease in performance

Up to 5% performance improvements for other algorithms

RAS

Added support for RAS on Radeon Instinct MI50, including:

	Memory error detection

	Memory error detection counter

	ROCm-SMI enhancements

	Added ROCm-SMI CLI and LIB support for FW version, compute running processes, utilization rates, utilization counter, link error counter, and unique ID.

New features and enhancements in ROCm 2.6

ROCmInfo enhancements

ROCmInfo was extended to do the following: For ROCr API call errors including initialization determine if the error could be explained by:

ROCk (driver) is not loaded / available
User does not have membership in appropriate group - “video”
If not above print the error string that is mapped to the returned error code
If no error string is available, print the error code in hex
Thrust - Functional Support on Vega20

ROCm2.6 contains the first official release of rocThrust and hipCUB. rocThrust is a port of thrust, a parallel algorithm library. hipCUB is a port of CUB, a reusable software component library. Thrust/CUB has been ported to the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: rocThrust and hipCUB library replaces https://github.com/ROCmSoftwarePlatform/thrust (hip-thrust), i.e. hip-thrust has been separated into two libraries, rocThrust and hipCUB. Existing hip-thrust users are encouraged to port their code to rocThrust and/or hipCUB. Hip-thrust will be removed from official distribution later this year.

MIGraphX v0.3

MIGraphX optimizer adds support to read models frozen from Tensorflow framework. Further details and an example usage at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3

MIOpen 2.0

This release contains several new features including an immediate mode for selecting convolutions, bfloat16 support, new layers, modes, and algorithms.

MIOpenDriver, a tool for benchmarking and developing kernels is now shipped with MIOpen. BFloat16 now supported in HIP requires an updated rocBLAS as a GEMM backend.

Immediate mode API now provides the ability to quickly obtain a convolution kernel.

MIOpen now contains HIP source kernels and implements the ImplicitGEMM kernels. This is a new feature and is currently disabled by default. Use the environmental variable “MIOPEN_DEBUG_CONV_IMPLICIT_GEMM=1” to activation this feature. ImplicitGEMM requires an up to date HIP version of at least 1.5.9211.

A new “loss” catagory of layers has been added, of which, CTC loss is the first. See the API reference for more details. 2.0 is the last release of active support for gfx803 architectures. In future releases, MIOpen will not actively debug and develop new features specifically for gfx803.

System Find-Db in memory cache is disabled by default. Please see build instructions to enable this feature. Additional documentation can be found here: https://rocmsoftwareplatform.github.io/MIOpen/doc/html/

Bloat16 software support in rocBLAS/Tensile

Added mixed precision bfloat16/IEEE f32 to gemm_ex. The input and output matrices are bfloat16. All arithmetic is in IEEE f32.

AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in two hives or two Radeon Instinct MI60 or Radeon Instinct MI50 boards in four hives via AMD Infinity Fabric™ Link GPU interconnect technology has been added.

ROCm-smi features and bug fixes

mGPU & Vendor check

Fix clock printout if DPM is disabled

Fix finding marketing info on CentOS

Clarify some error messages

ROCm-smi-lib enhancements

Documentation updates

Improvements to *name_get functions

RCCL2 Enablement

RCCL2 supports collectives intranode communication using PCIe, Infinity Fabric™, and pinned host memory, as well as internode communication using Ethernet (TCP/IP sockets) and Infiniband/RoCE (Infiniband Verbs). Note: For Infiniband/RoCE, RDMA is not currently supported.

rocFFT enhancements

Added: Debian package with FFT test, benchmark, and sample programs
Improved: hipFFT interfaces
Improved: rocFFT CPU reference code, plan generation code and logging code

New features and enhancements in ROCm 2.5

UCX 1.6 support

Support for UCX version 1.6 has been added.

BFloat16 GEMM in rocBLAS/Tensile

Software support for BFloat16 on Radeon Instinct MI50, MI60 has been added. This includes:

Mixed precision GEMM with BFloat16 input and output matrices, and all arithmetic in IEEE32 bit

Input matrix values are converted from BFloat16 to IEEE32 bit, all arithmetic and accumulation is IEEE32 bit. Output values are rounded from IEEE32 bit to BFloat16

Accuracy should be correct to 0.5 ULP

ROCm-SMI enhancements

CLI support for querying the memory size, driver version, and firmware version has been added to ROCm-smi.

[PyTorch] multi-GPU functional support (CPU aggregation/Data Parallel)

Multi-GPU support is enabled in PyTorch using Dataparallel path for versions of PyTorch built using the 06c8aa7a3bbd91cda2fd6255ec82aad21fa1c0d5 commit or later.

rocSparse optimization on Radeon Instinct MI50 and MI60

This release includes performance optimizations for csrsv routines in the rocSparse library.

[Thrust] Preview

Preview release for early adopters. rocThrust is a port of thrust, a parallel algorithm library. Thrust has been ported to the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: This library will replace https://github.com/ROCmSoftwarePlatform/thrust in a future release. The package for rocThrust (this library) currently conflicts with version 2.5 package of thrust. They should not be installed together.

Support overlapping kernel execution in same HIP stream

HIP API has been enhanced to allow independent kernels to run in parallel on the same stream.

AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in one hive via AMD Infinity Fabric™ Link GPU interconnect technology has been added.

New features and enhancements in ROCm 2.4

TensorFlow 2.0 support

ROCm 2.4 includes the enhanced compilation toolchain and a set of bug fixes to support TensorFlow 2.0 features natively

AMD Infinity Fabric™ Link enablement

ROCm 2.4 adds support to connect two Radeon Instinct MI60 or Radeon Instinct MI50 boards via AMD Infinity Fabric™ Link GPU interconnect technology.

New features and enhancements in ROCm 2.3

Mem usage per GPU

Per GPU memory usage is added to rocm-smi. Display information regarding used/total bytes for VRAM, visible VRAM and GTT, via the –showmeminfo flag

MIVisionX, v1.1 - ONNX

ONNX parser changes to adjust to new file formats

MIGraphX, v0.2

MIGraphX 0.2 supports the following new features:

New Python API

	Support for additional ONNX operators and fixes that now enable a large set of Imagenet models

	Support for RNN Operators

	Support for multi-stream Execution

	[Experimental] Support for Tensorflow frozen protobuf files

See: Getting-started:-using-the-new-features-of-MIGraphX-0.2 for more details

MIOpen, v1.8 - 3d convolutions and int8

This release contains full 3-D convolution support and int8 support for inference.
Additionally, there are major updates in the performance database for major models including those found in Torchvision.
See: MIOpen releases

Caffe2 - mGPU support

Multi-gpu support is enabled for Caffe2.

rocTracer library, ROCm tracing API for collecting runtimes API and asynchronous GPU activity traces
HIP/HCC domains support is introduced in rocTracer library.

BLAS - Int8 GEMM performance, Int8 functional and performance
Introduces support and performance optimizations for Int8 GEMM, implements TRSV support, and includes improvements and optimizations with Tensile.

Prioritized L1/L2/L3 BLAS (functional)
Functional implementation of BLAS L1/L2/L3 functions

BLAS - tensile optimization
Improvements and optimizations with tensile

MIOpen Int8 support
Support for int8

New features and enhancements in ROCm 2.2

rocSparse Optimization on Vega20
Cache usage optimizations for csrsv (sparse triangular solve), coomv (SpMV in COO format) and ellmv (SpMV in ELL format) are available.

DGEMM and DTRSM Optimization
Improved DGEMM performance for reduced matrix sizes (k=384, k=256)

Caffe2
Added support for multi-GPU training

New features and enhancements in ROCm 2.1

RocTracer v1.0 preview release – ‘rocprof’ HSA runtime tracing and statistics support -
Supports HSA API tracing and HSA asynchronous GPU activity including kernels execution and memory copy

Improvements to ROCM-SMI tool -
Added support to show real-time PCIe bandwidth usage via the -b/–showbw flag

DGEMM Optimizations -
Improved DGEMM performance for large square and reduced matrix sizes (k=384, k=256)

New features and enhancements in ROCm 2.0

Adds support for RHEL 7.6 / CentOS 7.6 and Ubuntu 18.04.1

Adds support for Vega 7nm, Polaris 12 GPUs

Introduces MIVisionX
A comprehensive computer vision and machine intelligence libraries, utilities and applications bundled into a single toolkit.
Improvements to ROCm Libraries
rocSPARSE & hipSPARSE
rocBLAS with improved DGEMM efficiency on Vega 7nm

MIOpen
This release contains general bug fixes and an updated performance database
Group convolutions backwards weights performance has been improved

RNNs now support fp16
Tensorflow multi-gpu and Tensorflow FP16 support for Vega 7nm
TensorFlow v1.12 is enabled with fp16 support
PyTorch/Caffe2 with Vega 7nm Support

fp16 support is enabled

Several bug fixes and performance enhancements

Known Issue: breaking changes are introduced in ROCm 2.0 which are not addressed upstream yet. Meanwhile, please continue to use ROCm fork at https://github.com/ROCmSoftwarePlatform/pytorch

Improvements to ROCProfiler tool

Support for Vega 7nm

Support for hipStreamCreateWithPriority

Creates a stream with the specified priority. It creates a stream on which enqueued kernels have a different priority for execution compared to kernels enqueued on normal priority streams. The priority could be higher or lower than normal priority streams.

OpenCL 2.0 support

ROCm 2.0 introduces full support for kernels written in the OpenCL 2.0 C language on certain devices and systems. Applications can detect this support by calling the “clGetDeviceInfo” query function with “parame_name” argument set to “CL_DEVICE_OPENCL_C_VERSION”.

In order to make use of OpenCL 2.0 C language features, the application must include the option “-cl-std=CL2.0” in options passed to the runtime API calls responsible for compiling or building device programs. The complete specification for the OpenCL 2.0 C language can be obtained using the following link: https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf

Improved Virtual Addressing (48 bit VA) management for Vega 10 and later GPUs

Fixes Clang AddressSanitizer and potentially other 3rd-party memory debugging tools with ROCm

Small performance improvement on workloads that do a lot of memory management

Removes virtual address space limitations on systems with more VRAM than system memory
Kubernetes support

New features and enhancements in ROCm 1.9.2

RDMA(MPI) support on Vega 7nm

Support ROCnRDMA based on Mellanox InfiniBand

Improvements to HCC

Improved link time optimization

Improvements to ROCProfiler tool

General bug fixes and implemented versioning APIs

New features and enhancements in ROCm 1.9.2

RDMA(MPI) support on Vega 7nm

Support ROCnRDMA based on Mellanox InfiniBand

Improvements to HCC

Improved link time optimization

Improvements to ROCProfiler tool

General bug fixes and implemented versioning APIs

Critical bug fixes

New features and enhancements in ROCm 1.9.1

Added DPM support to Vega 7nm

Dynamic Power Management feature is enabled on Vega 7nm.

Fix for ‘ROCm profiling’ that used to fail with a “Version mismatch between HSA runtime and libhsa-runtime-tools64.so.1” error

New features and enhancements in ROCm 1.9.0

Preview for Vega 7nm
Enables developer preview support for Vega 7nm

System Management Interface
Adds support for the ROCm SMI (System Management Interface) library, which provides monitoring and management capabilities for AMD GPUs.

Improvements to HIP/HCC
Support for gfx906

Added deprecation warning for C++AMP. This will be the last version of HCC supporting C++AMP.

Improved optimization for global address space pointers passing into a GPU kernel

Fixed several race conditions in the HCC runtime

Performance tuning to the unpinned copy engine

Several codegen enhancement fixes in the compiler backend

Preview for rocprof Profiling Tool

Developer preview (alpha) of profiling tool rocProfiler. It includes a command-line front-end, rpl_run.sh, which enables:

Cmd-line tool for dumping public per kernel perf-counters/metrics and kernel timestamps

Input file with counters list and kernels selecting parameters

Multiple counters groups and app runs supported

Output results in CSV format

The tool can be installed from the rocprofiler-dev package. It will be installed into: /opt/rocm/bin/rpl_run.sh

Preview for rocr Debug Agent rocr_debug_agent

The ROCr Debug Agent is a library that can be loaded by ROCm Platform Runtime to provide the following functionality:

Print the state for wavefronts that report memory violation or upon executing a “s_trap 2” instruction.
Allows SIGINT (ctrl c) or SIGTERM (kill -15) to print wavefront state of aborted GPU dispatches.
It is enabled on Vega10 GPUs on ROCm1.9.
The ROCm1.9 release will install the ROCr Debug Agent library at /opt/rocm/lib/librocr_debug_agent64.so

New distribution support
Binary package support for Ubuntu 18.04
ROCm 1.9 is ABI compatible with KFD in upstream Linux kernels.
Upstream Linux kernels support the following GPUs in these releases: 4.17: Fiji, Polaris 10, Polaris 11 4.18: Fiji, Polaris 10, Polaris 11, Vega10

Some ROCm features are not available in the upstream KFD:

More system memory available to ROCm applications
Interoperability between graphics and compute
RDMA
IPC
To try ROCm with an upstream kernel, install ROCm as normal, but do not install the rock-dkms package. Also add a udev rule to control /dev/kfd permissions:

echo ‘SUBSYSTEM==”kfd”, KERNEL==”kfd”, TAG+=”uaccess”, GROUP=”video”’ | sudo tee /etc/udev/rules.d/70-kfd.rules

New features as of ROCm 1.8.3

ROCm 1.8.3 is a minor update meant to fix compatibility issues on Ubuntu releases running kernel 4.15.0-33

New features as of ROCm 1.8

DKMS driver installation

Debian packages are provided for DKMS on Ubuntu

RPM packages are provided for CentOS/RHEL 7.4 and 7.5

See the ROCT-Thunk-Interface and ROCK-Kernel-Driver for additional documentation on driver setup

New distribution support

Binary package support for Ubuntu 16.04 and 18.04

Binary package support for CentOS 7.4 and 7.5

Binary package support for RHEL 7.4 and 7.5

Improved OpenMPI via UCX support

UCX support for OpenMPI

ROCm RDMA

New Features as of ROCm 1.7

DKMS driver installation

New driver installation uses Dynamic Kernel Module Support (DKMS)

Only amdkfd and amdgpu kernel modules are installed to support AMD hardware

Currently only Debian packages are provided for DKMS (no Fedora suport available)

See the ROCT-Thunk-Interface and ROCK-Kernel-Driver for additional documentation on driver setup

New Features as of ROCm 1.5

Developer preview of the new OpenCL 1.2 compatible language runtime and compiler

OpenCL 2.0 compatible kernel language support with OpenCL 1.2 compatible runtime

Supports offline ahead of time compilation today; during the Beta phase we will add in-process/in-memory compilation.

Binary Package support for Ubuntu 16.04

Binary Package support for Fedora 24 is not currently available

Dropping binary package support for Ubuntu 14.04, Fedora 23

IPC support

 [image: ../_images/amdblack1.jpg]

ROCm™ Learning Center and Knowledge Base - NEW!!

ROCm Knowledge Base

You can access the ROCm Community website and Knowledge Base at:

https://community.amd.com/t5/knowledge-base/tkb-p/amd-rocm-tkb

ROCm Learning Center

When it comes to solving the world’s most profound computational challenges, scientists and researchers need the most powerful and accessible tools at their fingertips. With the ROCm™ open software platform built for GPU computing, HPC and ML developers can now gain access to an array of different open compute languages, compilers, libraries and tools that are both open and portable.

ROCm™ Learning Center offers resources to developers looking to tap the power of accelerated computing. No matter where they are in their journey, from those just getting started to experts in GPU programming, a broad range of technical resources below are designed to meet developers where they are at.

Happy learning!!

Getting Started

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

Fundamentals of HIP Programming

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

From CUDA to HIP

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

Deep Learning on ROCm

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

Multi-GPU Programming

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

 [image: ../_images/amdblack1.jpg]

DISCLAIMER

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard versionchanges, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.AMD, the AMD Arrow logo,[insert all other AMD trademarks used in the material here perAMD Trademarks]and combinations thereof are trademarks of Advanced Micro Devices, Inc.Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. [Insert any third party trademark attribution here per AMD’sThird Party Trademark List.]©[Insert year written*]Advanced Micro Devices, Inc.All rights reserved.

Third-party Disclaimer

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

 [image: ../_images/amdblack.jpg]

ROCm Installation Guide v4.5

Contents

	ROCm Installation Guide v4.5

	Overview of ROCm Installation Methods

	About This Document

	System Requirements

	Prerequisite Actions

	Confirm You Have a Supported Linux Distribution Version

	How to Check Linux Distribution and Kernel Versions on Your System

	Linux Distribution Information

	Kernel Information

	OS and Kernel Version Match

	Confirm You Have a ROCm-Capable GPU

	How to Verify Your System Has a ROCm-Capable GPU

	Confirm the System Has the Required Tools and Packages Installed

	How to Install and Configure Devtoolset-7

	Required packages

	Setting Permissions for Groups

	Meta-packages in ROCm Programming Models

	ROCm Package Naming Conventions

	Components of ROCm Programming Models

	Packages in ROCm Programming Models

	Installation Methods

	Installer Script Method

	Downloading and Installing the Installer Script on Ubuntu

	Ubuntu 18.04

	Ubuntu 20.04

	Downloading and Installing the Installer Script on RHEL/CentOS

	RHEL/CentOS 7.9

	RHEL 8.4/CentOS 8.3

	Downloading and Installing the Installer Script on SLES 15

	SLES 15 Service Pack 3

	Using the Installer Script on Linux Distributions

	Package Manager Method

	Installing ROCm on Linux Distributions

	Understanding AMDGPU and ROCm Stack Repositories on Linux Distributions

	Repositories with Latest Packages

	Repositories for Specific Releases

	Using Package Manager on Ubuntu

	Installation Of Kernel Headers and Development Packages on Ubuntu

	Base URLs For AMDGPU and ROCm Stack Repositories

	Adding AMDGPU Stack Repository

	Install the Kernel Mode Driver and Reboot System

	Add the ROCm Stack Repository

	Install ROCm Meta-packages

	Using Package Manager on RHEL/CentOS

	Installation Of Kernel Headers and Development Packages on RHEL/CentOS

	Base URLs For AMDGPU and ROCm Stack Repositories

	Adding the AMDGPU Stack Repository

	Install the Kernel Mode Driver and Reboot System

	Add the ROCm Stack Repository

	Install ROCm Meta-Packages

	Using Package Manager on SLES/OpenSUSE

	Installation of Kernel Headers and Development Packages

	Base URLs For AMDGPU And ROCm Stack Repositories

	Adding AMDGPU Stack Repository

	Install the Kernel Mode Driver and Reboot System

	Add the ROCm Stack Repository

	Install ROCm Meta-Packages

	Verification Process

	Verifying ROCm Installation

	Verifying Package Installation

	ROCm Stack Uninstallation

	Uninstalling ROCm Stack

	Removing ROCm Toolkit and Driver

	Choosing an Uninstallation Method

	Uninstallation Using Uninstall Script

	Uninstallation Using Package Manager

	Troubleshooting

	Frequently Asked Questions

Overview of ROCm Installation Methods

In addition to the installation method using the native Package Manager, AMD ROCm v4.5 introduces new methods to install ROCm. With this release, the ROCm installation uses the amdgpu-install and amdgpu-uninstall scripts.

The amdgpu-install script streamlines the installation process by:

	Abstracting the distribution-specific package installation logic

	Performing the repository set-up

	Allowing a user to specify the use case and automating the installation of all the required packages

	Performing post-install checks to verify whether the installation was completed successfully

	Installing the uninstallation script

The amdgpu-uninstall script allows the removal of the entire ROCm stack by using a single command.

Some of the ROCm-specific use cases that the installer currently supports are:

	OpenCL (ROCr/KFD based) runtime

	HIP runtimes

	ROCm libraries and applications

	ROCm Compiler and device libraries

	ROCr runtime and thunk

For more information, refer to the Installation Methods section in this guide.

About This Document

This document is intended for users familiar with the Linux environments and discusses the installation/uninstallation of ROCm programming models on the various flavors of Linux.

This document also refers to Radeon™ Software for Linux® as AMDGPU stack, including the kernel-mode driver amdgpu-dkms.

The guide provides the installation instructions for the following:

	ROCm Installation

	Heterogeneous-Computing Interface for Portability (HIP) SDK

	OPENCL ™ SDK

	Kernel Mode Driver

System Requirements

The system requirements for the ROCm v4.5 installation are as follows:

	OS

	SLES15 SP3

	RHEL 7.9

	CentOS 7.9

	RHEL 8.4

	CentOS 8.3

	Ubuntu 18.04.5
[5.11 HWE kernel]

	Ubuntu 20.04.3
LTS [5.11 HWE kernel]

NOTE: Installing ROCm on Linux will require superuser privileges. For systems that have enabled sudo packages, ensure you use the sudo prefix for all required commands.

Prerequisite Actions

You must perform the following steps before installing ROCm programming models and check if the system meets all of the requirements to proceed with the installation.

	Confirm the system has a supported Linux distribution version

	Confirm the system has a ROCm-capable GPU

	Confirm the System Has the Required Tools and Packages Installed

Confirm You Have a Supported Linux Distribution Version

The ROCm installation is supported only on specific Linux distributions and their kernel versions.

NOTE: The ROCm installation is not supported on 32-bit operating systems.

How to Check Linux Distribution and Kernel Versions on Your System

Linux Distribution Information

Ensure you obtain the distribution information of the system by using the following command on your system from the Command Line Interface (CLI),

$ uname -m && cat /etc/*release

For example, running the command above on an Ubuntu system results in the following output:

x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=18.04
DISTRIB_CODENAME=bionic
DISTRIB_DESCRIPTION="Ubuntu 18.04.5 LTS"

Kernel Information

Type the following command to check the kernel version of your Linux system.

$ uname -srmv

The output of the command above lists the kernel version in the following format:

Linux 5.4.0-77-generic #86~18.04.5-Ubuntu SMP Fri Jun 18 01:23:22 UTC 2021 x86_64

OS and Kernel Version Match

Confirm that the obtained Linux distribution and kernel versions match with System Requirements.

Confirm You Have a ROCm-Capable GPU

The ROCm platform is designed to support the following list of GPUs:

[image: Screenshot]

How to Verify Your System Has a ROCm-Capable GPU

To verify that your system has a ROCm-capable GPU, enter the following command from the Command Line Interface (CLI):

$ sudo lshw -class display
The command displays the details of detected GPUs on the system in the following format:
*-display
description: VGA compatible controller
product: Vega 20
vendor: Advanced Micro Devices, Inc. [AMD/ATI]
physical id: 0
bus info: pci@0000:43:00.
version: c1
width: 64 bits
 clock: 33MHz
 capabilities: vga_controller bus_master cap_list rom
 configuration: driver=amdgpu latency=0
 resources: irq:66 memory:80000000-8fffffff memory:90000000-901fffff ioport:2000(size=256) memory:9f600000-9f67ffff memory:c0000-dffff

NOTE: Verify from the output that the product field value matches the supported GPU Architecture in the table above.

Confirm the System Has the Required Tools and Packages Installed

You must install and configure Devtoolset-7 to use RHEL/CentOS 7.9

How to Install and Configure Devtoolset-7

Refer to the RHEL/CentOS Installation section for more information on the steps necessary for installing and setting up Devtoolset-7.

Required packages

Verify if the wget package for downloading files from server, is installed on your system using command below:

UBUNTU/DEBIAN

$ sudo apt list --installed | grep wget gnupg2

RHEL/CentOS

$ sudo yum list installed | grep wget

SLES/OPENSUSE

$ sudo zypper search --installed-only | grep wget

If the wget package not installed , execute the following command to install it:

UBUNTU/DEBIAN

$ sudo apt-get update
$ sudo apt-get install wget gnupg2

RHEL/CentOS

$ sudo yum clean all

$ sudo yum install wget

SLES/OPENSUSE

$ zypper install wget

Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

	Issue the following command to check the groups in your system:

$ groups

	Add yourself to the video group using the following instruction:

$ sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use the video group. By default, you can add any future users to the video and render groups.

NOTE: render group is required only for Ubuntu v20.04.

To add future users to the video and render groups, run the following command:

$ echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
$ echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf
$ echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Meta-packages in ROCm Programming Models

This section provides information about the required meta-packages for the following AMD ROCm™ programming models:

	Heterogeneous-Computing Interface for Portability (HIP)

	OpenCL™

ROCm Package Naming Conventions

A meta-package is a grouping of related packages and dependencies used to support a specific use-case, for example, running HIP applications. All meta-packages exist in both versioned and non-versioned forms.

	Non-versioned packages – For a single installation of the latest version of ROCm

	Versioned packages – For multiple installations of ROCm

[image: Screenshot]
The image above demonstrates the single and multi-version ROCm packages’ naming structure, including examples for various Linux distributions.

Components of ROCm Programming Models

The following image demonstrates the high-level layered architecture of ROCm programming models and their meta-packages. All meta-packages are a combination of required packages and libraries. For example,

	rocm-hip-runtime is used to deploy on supported machines to execute HIP applications.

	rocm-hip-sdk contains runtime components to deploy and execute HIP applications and tools to develop the applications.

[image: Screenshot]
NOTE: rocm-llvm is a single package that installs the required ROCm compiler files.

[image: Screenshot]

Packages in ROCm Programming Models

This section discusses the available meta-packages and their packages. In a ROCm programming model, packages refer to a collection of scripts, libraries, text files, a manifest, license, and other associated files that enable you to install a meta-package.

The following image visualizes the meta-packages and their associated packages in a ROCm programming model.

[image: Screenshot]
NOTE: The image above is for informational purposes only as the individual packages in a meta-package are subject to change. Users should install meta-packages, and not individual packages, to avoid conflicts.

Installation Methods

You may use the following installation methods to install ROCm:

	Installer Script Method

	Package Manager Method

Installer Script Method

The Installer script method automates the installation process for the AMDGPU and ROCm stack. The Installer script handles the complete installation process for ROCm, including setting up the repository, cleaning the system, updating and installing the desired drivers and meta-packages. With this approach, the system has more control over the ROCm installation process. Thus, users who are less familiar with the Linux standard commands can choose this method for ROCm installation.

For a fresh AMDGPU and ROCm installation using the Installer script method on Linux distribution, you must:

	Meet Prerequisites - Ensure the Prerequisite Actions are met before downloading and installing the installer using the Installer Script method.

	Download and Install the Installer – Ensure you download and install the installer script from the recommended URL. Note, the installer package is updated periodically to resolve known issues and add new features. The links for each Linux distribution always point to the latest available build.

	Use the Installer Script on Linux Distributions – Ensure you execute the script for installing use cases.

Downloading and Installing the Installer Script on Ubuntu

Ubuntu 18.04

Download and install the installer using the following command:

$ sudo apt-get update

$ wget https://repo.radeon.com/amdgpu-install/21.40/ubuntu/bionic/amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get install ./amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get update

Ubuntu 20.04

Download and install the installer.

$ sudo apt-get update

$ wget https://repo.radeon.com/amdgpu-install/21.40/ubuntu/focal/amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get install ./amdgpu-install-21.40.40500-1_all.deb

$ sudo apt-get update

Downloading and Installing the Installer Script on RHEL/CentOS

RHEL/CentOS 7.9

Use the following command to download and install the installer on RHEL/CentOS 7.9.

$ sudo yum install https://repo.radeon.com/amdgpu-install/21.40/rhel/7.9/amdgpu-install-21.40.40500-1.noarch.rpm

RHEL 8.4/CentOS 8.3

Use the following command to download and install the installer on RHEL 8.4/CentOS 8.3.

$ sudo yum install https://repo.radeon.com/amdgpu-install/21.40/rhel/8.4/amdgpu-install-21.40.40500-1.noarch.rpm

Downloading and Installing the Installer Script on SLES 15

SLES 15 Service Pack 3

Use the following command to download and install the installer on SLES

$ sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/21.40/sle/15/amdgpu-install-21.40.40500-1.noarch.rpm

Using the Installer Script on Linux Distributions

To install use cases specific to your requirements, use the installer amdgpu-install as follows:

To install a single use case
$ sudo amdgpu-install --usecase=rocm

To install multiple use-cases
$ sudo amdgpu-install --usecase=hiplibsdk,rocm

To display a list of available use cases. Note, the list in this section represents only a sample of available use cases for ROCm.
$ sudo amdgpu-install --list-usecase
If --usecase option is not present, the default selection is "graphics,opencl,hip"

Available use cases:
rocm(for users and developers requiring full ROCm stack)
- OpenCL (ROCr/KFD based) runtime
- HIP runtimes
- ROCm Compiler and device libraries
- ROCr runtime and thunk

lrt(for users of applications requiring ROCm runtime)
- ROCm Compiler and device libraries
- ROCr runtime and thunk

opencl(for users of applications requiring OpenCL on Vega or
later products)
- ROCr based OpenCL
- ROCm Language runtime

openclsdk (for application developers requiring ROCr based OpenCL)
- ROCr based OpenCL
- ROCm Language runtime
- development and SDK files for ROCr based OpenCL

hip(for users of HIP runtime on AMD products)
- HIP runtimes
- hiplibsdk (for application developers requiring HIP on AMD products)
- HIP runtimes
- ROCm math libraries
- HIP development libraries

NOTE: Adding -y as a parameter to amdgpu-install will skip user prompts (for automation). For example,

amdgpu-install -y --usecase=rocm

Package Manager Method

The Package Manager method involves a manual set up of the repository, which includes cleaning up the system, updating and installing/uninstalling meta-packages using standard commands such as yum, apt, and others respective to the Linux distribution.

NOTE: Users must enter the desired meta-package as the <package-name> in the command. To utilize the newly installed packages, users must install the relevant drivers and restart the system after the installation.

The typical functions of a package manager installation system include:

	Working with file archivers to extract package archives.

	Ensuring the integrity and authenticity of the package by verifying them checksums and digital certificates, respectively.

	Looking up, downloading, installing, or updating existing packages from an online repository.

	Grouping packages by function to reduce user confusion.

	Managing dependencies to ensure a package is installed with all packages it requires, thus avoiding dependency.

NOTE: Users may consult the documentation for their package manager for more details.

Installing ROCm on Linux Distributions

For a fresh ROCm installation using the Package Manager method on a Linux distribution, follow the steps below:

	Meet prerequisites - Ensure the Prerequisite Actions are met before the ROCm installation

	Install kernel headers and development packages - Ensure kernel headers and development packages are installed on the system

	Select the base URLs for AMDGPU and ROCm stack repository – Ensure the base URLs for AMDGPU, and ROCm stack repositories are selected

	Add AMDGPU stack repository – Ensure AMDGPU stack repository is added

	Install the kernel-mode driver and reboot the system – Ensure the kernel-mode driver is installed and the system is rebooted

	Add ROCm stack repository – Ensure the ROCm stack repository is added

	Install ROCm meta-packages – Users may install the desired meta-packages

	Verify installation for the applicable distributions – Verify if the installation is successful.

NOTE: Refer to the sections below for specific commands to install each Linux distribution’s ROCm and AMDGPU stack.

Understanding AMDGPU and ROCm Stack Repositories on Linux Distributions

The AMDGPU and ROCm stack repositories are divided into two categories:

	Repositories with latest release packages

	Repositories for specific releases

Repositories with Latest Packages

These repositories contain the latest AMDGPU and ROCm packages available at the time. Based on the operating system’s configuration, choosing this repository updates the packages automatically.

Repositories for Specific Releases

The release-specific repositories consist of packages from a specific release of the AMDGPU stack and ROCm stack. The repositories are not updated for the latest packages with subsequent releases. When a new ROCm release is available, the new repository, specific to that release, is added. Users can select a specific release to install, update the previously installed single version to the later available release, or add the latest version of ROCm and currently installed by using the multi-version ROCm packages.

Using Package Manager on Ubuntu

Installation Of Kernel Headers and Development Packages on Ubuntu

The following instructions to install kernel headers and development packages apply to all versions and kernels of Ubuntu.

The ROCm installation requires the linux-headers and linux-modules-extra package to be installed with the correct version corresponding to the kernel’s version. For example, if the system is running the Linux kernel version 4.0-77, the identical versions of linux-headers and development packages must be installed. You may refer to the Kernel Information section to check the kernel version of the system.

For the Ubuntu/Debian environment, execute the following command to verify the kernel headers and development packages are installed with the respective versions.

$ sudo dpkg -l | grep linux-headers

The command indicates if there are Linux headers installed as shown below:

linux-headers-5.4.0-77-generic 5.4.0-77.86~18.04.1 amd64 Linux kernel headers for version 5.4.0 on 64 bit x86 SMP

Execute the following command to check whether the development packages are installed,

$ sudo dpkg -l | grep linux-modules-extra

When run, the command mentioned above lists the installed linux-modules-extra packages like the output below:

linux-modules-extra-5.4.0-77-generic 5.4.0-77.86~18.04.1 amd64 Linux kernel extra modules for version 5.4.0 on 64-bit x86 SMP

If the supported version installation of Linux headers and development packages are not installed on the system, execute the following command to install the packages:

$ sudo apt install linux-headers-`uname -r` linux-modules-extra-`uname -r`

Base URLs For AMDGPU and ROCm Stack Repositories

Ubuntu 18.04

Repositories with Latest Packages

	amdgpu baseurl:https://repo.radeon.com/amdgpu/latest/ubuntu

	rocm baseurl:https://repo.radeon.com/rocm/apt/debian/

Repositories for Specific Releases

	amdgpu baseurl:https://repo.radeon.com/amdgpu/21.40/ubuntu

	rocm base url:https://repo.radeon.com/rocm/apt/4.5

Ubuntu 20.04

Repositories with Latest Packages

	amdgpu baseurl:https://repo.radeon.com/amdgpu/latest/ubuntu

	rocm baseurl:https://repo.radeon.com/rocm/apt/debian/

Repositories for Specific Release

	amdgpu baseurl:https://repo.radeon.com/amdgpu/21.40/ubuntu

	rocm base url:https://repo.radeon.com/rocm/apt/4.5

Adding AMDGPU Stack Repository

Add GPG Key for AMDGPU and ROCm Stack

Add the gpg key for AMDGPU and ROCm repositories. For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

$ wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

NOTE: The gpg key may change. Ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository as mentioned above. The current rocm.gpg.key is not available in a standard key ring distribution. However, it has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Add the AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for AMDGPU and ROCm Stack Repositories

Ubuntu 18.04

$ echo 'deb [arch=amd64] <amdgpu baseurl> bionic main' | sudo tee /etc/apt/sources.list.d/amdgpu.list

Ubuntu 20.04

$ echo 'deb [arch=amd64] <amdgpu baseurl> focal main' | sudo tee /etc/apt/sources.list.d/amdgpu.list

Execute the command below to update the package list

$ sudo apt-get update

Install the Kernel Mode Driver and Reboot System

You may skip this section if you have the kernel-mode driver installed on your system. If you do not have the kernel-mode driver on your system, follow the instructions below.
Ensure the system is rebooted after the kernel-mode driver is installed.

$ sudo apt install amdgpu-dkms

$ sudo reboot

Add the ROCm Stack Repository

Add the ROCm repository.

For <rocm baseurl> in the command below, refer to the ROCm base URLs as documented in Base URLs for AMDGPU and ROCm Stack Repositories

$ echo 'deb [arch=amd64] <rocm baseurl> ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

$ sudo apt-get update

Install ROCm Meta-packages

Install ROCm meta-packages. Specify the name of the meta-package you want to install as <package-name>, as shown below:

$ sudo apt install <package-name>

For example:

- $ sudo apt install rocm-hip-sdk

- $ sudo apt install rocm-hip-sdk rocm-opencl-sdk

Using Package Manager on RHEL/CentOS

Installation Of Kernel Headers and Development Packages on RHEL/CentOS

The ROCm installation requires the linux-headers and linux-modules-extra package to be installed with the correct version corresponding to the kernel’s version. For example, if the system is running Linux kernel version 4.0-77, the identical versions of linux-headers and development packages must be installed.

Refer to the Kernel Information section to check the kernel version on your system.

To verify you have the supported version of the installed linux-headers and linux-modules-extra package, type the following on the command line:

$ sudo yum list installed | grep linux-headers

The command mentioned above displays the list of linux headers versions currently present on your system. Verify if the listed linux headers have the same versions as the kernel.

The following command lists the development packages on your system. Verify if the listed development package’s version number matches the kernel version number.

$ sudo yum list installed | grep linux-modules-extra

If the supported version installation of linux headers and development packages does not exist on the system, execute the commands below to install:

$ sudo yum install kernel-headers-`uname -r` kernel-devel-`uname -r`

Preparing RHEL 7.9 for Installation

You must enable the external repositories to install on the devtoolset-7 environment and the support files.

NOTE: Devtoolset is not required for CentOS 8.3/RHEL v8.4.

NOTE: The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and linking to a pool id.

Enable the following repositories for RHEL v7.9:

$ sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
$ sudo subscription-manager repos --enable rhel-7-server-optional-rpms
$ sudo subscription-manager repos --enable rhel-7-server-extras-rpms
$ sudo subscription-manager repos --enable=rhel-7-server-devtools-rpms

Preparing CentOS for Installation

The following steps help users prepare the CentOS system for the ROCm installation.

Extra Packages for Enterprise Linux (EPEL) provides additional packages for CENTOS that are not available in their standard repositories. Install the EPEL repository configuration package using the following command.

$ sudo yum install epel-release

$ sudo yum install -y centos-release-scl #Only for CentOS 7.9

Installing Devtoolset-7 for RHEL 7.9/CentOS 7.9

Use the following command to install Devtoolset-7:

$ sudo yum install devtoolset-7

$ source scl_source enable devtoolset-7

Base URLs For AMDGPU and ROCm Stack Repositories

CentOS/RHEL 7.9

Repositories with Latest Packages

	amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/rhel/7.9/main/x86_64

	rocm base url:https://repo.radeon.com/rocm/yum/rpm

Repositories for Specific Releases

	amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/rhel/7.9/main/x86_64

	rocm baseurl=https://repo.radeon.com/rocm/yum/4.5

CentOS 8.3/RHEL 8.4

Repositories with Latest Packages

	amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/rhel/8.4/main/x86_64

	rocm base url:https://repo.radeon.com/rocm/centos8/rpm

Repositories for Specific Releases

	amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/rhel/8.4/main/x86_64

	rocm baseurl=https://repo.radeon.com/rocm/centos8/4.5/

Adding the AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

Add the AMDGPU Stack Repository

Create a /etc/yum.repos.d/amdgpu.repo file with the following contents with amdgpu base URL.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for AMDGPU and ROCm Stack Repositories

[amdgpu]
name=amdgpu
baseurl=<amdgpu baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm to the yum repository as mentioned above. The current rocm.gpg.key is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Execute the command below to clean the cached files from enabled repositories:

$ sudo yum clean all

Install the Kernel Mode Driver and Reboot System

You may skip this section if the kernel-mode driver is already installed on your system. If you do not have a version of the kernel-mode driver installed, follow the commands below to install the kernel-mode driver:

$ sudo yum install amdgpu-dkms

Reboot the system after the completion of driver installation.

$ sudo reboot

Add the ROCm Stack Repository

Create a /etc/yum.repos.d/rocm.repo file with the following content.

For <rocm baseurl> in the command below, refer to the ROCm base URLs documented in Base URLs for AMDGPU and ROCm Stack Repositories.

[rocm]
name=rocm
baseurl=<rocm baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm yum repository as mentioned above. The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Execute the command below to clean the cached files from enabled repositories:

$ sudo yum clean all

Install ROCm Meta-Packages

Use the following command to install the ROCm packages.

$ sudo yum install <package-name>

Specify the meta-package name as <package-name>, which you want to install, in the command given above.

For example,

	$ sudo yum install rocm-hip-sdk

	$ sudo yum install rocm-hip-sdk rocm-opencl-sdk

Using Package Manager on SLES/OpenSUSE

This section introduces the ROCm installation process on SLES/OpenSUSE.

Installation of Kernel Headers and Development Packages

ROCm installation requires linux-headers and linux-modules-extra package to be installed with the correct version corresponding to the kernel’s version. For example, if the system is running the Linux kernel version 4.0-77, the same versions of linux-headers and development packages must be installed.

Refer to the Kernel Information section to check the kernel version on your system.

Ensure that the correct version of the latest kernel-default-devel and kernel-default packages are installed. The following command lists the installed kernel-default-devel and kernel-default package.

$ sudo zypper info kernel-default-devel or kernel-default

NOTE: This next step is only required if you find from the above command that the “kernel-default-devel” and “kernel-default” versions of the package, corresponding to the kernel release version, do not exist on your system.

If the required version of packages does not exist on the system, install with the command below:

$ sudo zypper install kernel-default-devel or kernel-default

Base URLs For AMDGPU And ROCm Stack Repositories

Repositories with Latest Packages

	amdgpu baseurl=https://repo.radeon.com/amdgpu/latest/sle/15/main/x86_64

	rocm baseurl:https://repo.radeon.com/rocm/zyp/zypper

Repositories for Specific Releases

	amdgpu baseurl=https://repo.radeon.com/amdgpu/21.40/sle/15/main/x86_64

	rocm baseurl=https://repo.radeon.com/rocm/zyp/4.5/

Adding AMDGPU Stack Repository

You may skip this section if you have a version of the kernel-mode driver installed. If you do not have a version of the kernel-mode driver installed, follow the commands below to add the AMDGPU stack repository.

Add the AMDGPU Stack Repository

Create a /etc/zypp/repos.d/amdgpu.repo file with the following content.

For <amdgpu baseurl> in the command below, refer to the AMDGPU base URLs as documented in Base URLs for AMDGPU and ROCm Stack Repositories.

[amdgpu]
name=amdgpu
baseurl=<amdgpu_basurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm zypp repository as mentioned above. The current rocm.gpg.key is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Use the following commands to update the added repository, and add the Perl repository:

$ sudo zypper ref
$ sudo zypper clean --all
$ sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo
$ sudo SUSEConnect -p sle-module-desktop-applications/15.3/x86_64
$ sudo SUSEConnect --product sle-module-development-tools/15.3/x86_64
$ sudo SUSEConnect--product PackageHub/15.3/x86_64
$ sudo zypper ref

Install the Kernel Mode Driver and Reboot System

Install the kernel-mode driver. If you already have a version of the kernel-mode driver installed, you may skip this section. If you do not have a version of the kernel-mode driver installed, follow the commands below to install and reboot the system.

$ sudo zypper --gpg-auto-import-keys install amdgpu-dkms
$ sudo reboot

Add the ROCm Stack Repository

Add the ROCm repository by executing the following commands,

Create a /etc/zypp/repos.d/rocm.repo file with the following content.

For <rocm baseurl> in the command below, refer to the ROCm base URLs documented in Base URLs for AMDGPU and ROCm Stack Repositories.

[rocm]
name=rocm
baseurl=<rocm_baseurl>
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

NOTE: The gpg key may change. Ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm zypp repository as mentioned above. The current rocm.gpg.key is not available in a standard key ring distribution but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

Use the following command to update the added repository.

$ sudo zypper ref

Install ROCm Meta-Packages

Install the ROCm package by typing the command below:

$ sudo zypper --gpg-auto-import-keys install <package-name>

Specify the name of the meta-package name as <package-name>, which you want to install, in the command given above.
For example,

	$ sudo zypper –gpg-auto-import-keys install rocm-hip-sdk

	$ sudo zypper –gpg-auto-import-keys install rocm-hip-sdk rocm-opencl-sdk

Verification Process

Verifying ROCm Installation

After completing the ROCm installation, users can execute the following commands on the system to verify if the installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm-<version>/bin/rocminfo

OR

/opt/rocm-<version>/opencl/bin/clinfo

NOTE: For convenience, users may add the ROCm binaries in your PATH, as shown in the example below.

$ echo ‘export PATH=$PATH:/opt/rocm-<version>/bin:/opt/rocm-<version>/opencl/bin’

Verifying Package Installation

Users can use the following commands to ensure the packages are installed successfully.

	Linux Distro

	Command

	Ubuntu/Debian

	$ sudo apt list –installed

	RHEL/CentOS

	$ sudo yum list installed

	OpenSUSE / SLES

	$ sudo zypper search –installed-only

ROCm Stack Uninstallation

Uninstallation of ROCm entails removing ROCm packages, tools, and libraries from the system.

Uninstalling ROCm Stack

Removing ROCm Toolkit and Driver

This section describes the uninstallation process in detail. The following methods remove the ROCm stack from the system.

Choosing an Uninstallation Method

You can uninstall using the following methods:

	Uninstallation using the Uninstall Script

	Package Manager uninstallation

Uninstallation Using Uninstall Script

The following commands uninstall all installed ROCm packages:

$ sudo amdgpu-uninstall

NOTE: amdgpu-uninstall ignores all parameters/arguments and uninstalls all ROCm packages.

Refer to the Uninstall Kernel Mode Driver section to uninstall the kernel-mode driver.

Uninstallation Using Package Manager

The Package Manager uninstallation offers a method for a clean uninstallation process for ROCm. This section describes how to uninstall the ROCm for various Linux distributions.

Use the following commands to remove the specific meta-packages from the system.

Uninstalling Specific Meta-packages

Use the following command to uninstall specific meta-packages. You may specify the name of the meta-package name as <package-name> you want to uninstall in the command given below.

UBUNTU/DEBIAN

$ sudo apt autoremove <package-name>

RHEL/CentOS

$ sudo yum remove <package-name>

SLES/OPENSUSE

$ sudo zypper remove <package-name>

Complete Uninstallation of ROCm Packages

If you want to uninstall all installed ROCm packages, use the following command as uninstallation of rocm-core package removes all the ROCm specific packages from the system.

UBUNTU/DEBIAN

$ sudo apt autoremove rocm-core

RHEL/CentOS

$ sudo yum remove rocm-core

SLES/OPENSUSE

$ sudo zypper remove rocm-core

NOTE: The command above removes all ROCm-specific packages.

Refer to the Uninstall Kernel Mode Driver section below to uninstall the kernel-mode driver uninstallation.

Uninstall Kernel Mode Driver

Users can uninstall the kernel-mode driver by entering the following command on the system.

UBUNTU/DEBIAN

$ sudo apt autoremove amdgpu-dkms

RHEL/CentOS

$ sudo yum remove amdgpu-dkms

SLES/OPENSUSE

$ sudo zypper remove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

UBUNTU/DEBIAN

Use the following commands to remove the AMDGPU and ROCm repository from the Ubuntu/Debian system:

$ sudo rm /etc/apt/sources.list.d/<rocm_repository-name>.list
$ sudo rm /etc/apt/sources.list.d/<amdgpu_repository-name>.list

Clear cache and clean the system.

$ sudo rm -rf /var/cache/apt/*
$ sudo apt-get clean all

Reboot the system.

$ sudo reboot

RHEL/CentOS

This section describes the process of removing AMDGPU and ROCm repositories from the RHEL/CentOS environment.

Remove the reference to the AMDGPU and ROCm repository from the system using the following instructions

$ sudo rm -rf /etc/yum.repos.d/<rocm_repository-name> # Remove only rocm repo
$ sudo rm -rf /etc/yum.repos.d/<amdgpu_repository-name> # Remove only amdgpu repo

Clear cache and clean the system.

$ sudo rm -rf /var/cache/yum #Remove the cache
$ sudo yum clean all

Restart the system.

$ sudo reboot

SLES/OPENSUSE

This section describes the process of removing AMDGPU and ROCm repositories from the SLES/OPENSUSE environment.

Remove the reference to the amdgpu and ROCm repository from the system with the commands below.

$ sudo zypper removerepo <rocm_repository-name>
$ sudo zypper removerepo <amdgpu_repository-name>

Clear cache and clean the system.

$ sudo zypper clean --all

Restart the system.

$ sudo reboot

Troubleshooting

Issue

If the amdgpu-install script is executed inside Docker, the system may display the following error while installing various use cases.

$ sudo amdgpu-install --usecase=rocm

[image: Screenshot]
Resolution

When the installation is initiated in Docker, the installer tries to install the use case along with the kernel-mode driver. However, the kernel-mode driver cannot be installed in a Docker system. To skip the installation of the kernel-mode driver, proceed with the option –no-dkms, as shown in the command below.

$ sudo amdgpu-install --usecase=rocm --no-dkms

Frequently Asked Questions

Can users install multiple packages at the same time with the installer script?

Yes, users can install multiple packages at the same time with the installer script. Provide package names in the –usecase parameter, separated by a comma, as shown below.

$ sudo amdgpu-install --usecase=hiplibsdk,rocm

How to list all the possible inputs for the –usecase parameter in the amdgpu-install script?

The following command lists all the possible options for –usecase

amdgpu-install --list-usecase

What are the available options other than the –usecase in the amdgpu-install script?

The following command lists all possible options users can provide in the amdgpu-install script.

$ sudo amdgpu-install --help

How to check if the kernel module is installed successfully?

Type the following command on the system.

$ sudo dkms status

The command displays the output in the following format if the installation of the kernel module is successful.

amdgpu, 4.3-52.el7, 3.10.0-1160.11.1.el7.x86_64, x86_64: installed (original_module exists)

Does the Docker container support command - $ sudo SUSEConnect –product PackageHub/15.2/x86_64?

Users do not need to execute the following command in Docker container.

$ sudo SUSEConnect --product PackageHub/15.2/x86_64

 [image: ../_images/amdblack.jpg]

HIP Installation v4.5

HIP can be easily installed using the pre-built binary packages with the package manager for your platform.

HIP Prerequisites

HIP code can be developed either on AMD ROCm platform using HIP-Clang compiler, or a CUDA platform with NVCC installed.

AMD Platform

sudo apt install mesa-common-dev
sudo apt install clang
sudo apt install comgr
sudo apt-get -y install rocm-dkms

HIP-Clang is the compiler for compiling HIP programs on AMD platform.

HIP-Clang can be built manually:

git clone -b roc-4.5.x https://github.com/RadeonOpenCompute/llvm-project.git
cd llvm-project
mkdir -p build && cd build
cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_ASSERTIONS=1 -
DLLVM_TARGETS_TO_BUILD="AMDGPU;X86" - DLLVM_ENABLE_PROJECTS="clang;lld;compiler-rt" ../llvm
make -j
sudo make install

The ROCm device library can be manually built as following,

export PATH=/opt/rocm/llvm/bin:$PATH
git clone -b roc-4.5.x https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git
cd ROCm-Device-Libs
mkdir -p build && cd build
CC=clang CXX=clang++ cmake -DLLVM_DIR=/opt/rocm/llvm -DCMAKE_BUILD_TYPE=Release -DLLVM_ENABLE_WERROR=1 -DLLVM_ENABLE_ASSERTIONS=1 -DCMAKE_INSTALL_PREFIX=/opt/rocm ..
make -j
sudo make install

NVIDIA Platform

HIP-nvcc is the compiler for HIP program compilation on NVIDIA platform.

	Add the ROCm package server to your system as per the OS-specific
guide available
here [https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories].

	Install the “hip-runtime-nvidia” and “hip-devel” package. This will install CUDA SDK and the HIP porting layer.

apt-get install hip-runtime-nvidia hip-devel

	Default paths and environment variables:

	By default HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting CUDA_PATH env variable).

	By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).

	Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

Building HIP from Source

Get HIP source code

git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hipamd.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/hip.git
git clone -b rocm-4.5.x https://github.com/ROCm-Developer-Tools/ROCclr.git
git clone -b rocm-4.5.x https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime.git

Set the environment variables

export HIPAMD_DIR="$(readlink -f hipamd)"
export HIP_DIR="$(readlink -f hip)"
export ROCclr_DIR="$(readlink -f ROCclr)"
export OPENCL_DIR="$(readlink -f ROCm-OpenCL-Runtime)"

ROCclr is defined on AMD platform that HIP use Radeon Open Compute Common Language Runtime (ROCclr), which is a virtual device interface that HIP runtimes interact with different backends.

See https://github.com/ROCm-Developer-Tools/ROCclr

HIPAMD repository provides implementation specifically for AMD platform. See https://github.com/ROCm-Developer-Tools/hipamd

Build HIP

cd "$HIPAMD_DIR"
mkdir -p build; cd build
cmake -DHIP_COMMON_DIR=$HIP_DIR -DAMD_OPENCL_PATH=$OPENCL_DIR -DROCCLR_PATH=$ROCCLR_DIR -DCMAKE_PREFIX_PATH="/opt/rocm/" -DCMAKE_INSTALL_PREFIX=$PWD/install ..
make -j$(nproc)
sudo make install

Note: If you don’t specify CMAKE_INSTALL_PREFIX, hip runtime will be installed to “/opt/rocm/hip”. By default, release version of AMDHIP is built.

Default paths and environment variables

	By default HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH environment variable).

	By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).

	By default HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting HIP_CLANG_PATH environment variable)

	By default HIP looks for device library in /opt/rocm/lib (can be overridden by setting DEVICE_LIB_PATH environment variable)

	Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools

	Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation

After installation, make sure HIP_PATH is pointed to /where/to/install/hip

Verify your installation

Run hipconfig (instructions below assume default installation path):

/opt/rocm/bin/hipconfig --full

Compile and run the square sample. You can access the square sample at,

https://github.com/ROCm-Developer-Tools/HIP/tree/main/samples/0_Intro/square

 [image: ../_images/amdblack.jpg]

ROCm Installation v4.3

	Deploying ROCm

	Prerequisites

	Supported Operating Systems

	Ubuntu

	CentOS RHEL

	SLES 15 Service Pack 2

	ROCm Installation Known Issues and Workarounds

	Getting the ROCm Source Code

Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

ROCm Repositories

Use the following ROCm repositories for the required major and point releases:

	Major releases - https://repo.radeon.com/rocm/yum/rpm/

	Point releases - https://repo.radeon.com/rocm/yum/4.3/

Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

	Remove rock-dkms before the upgrade.

	Install the new kernel.

	Reboot the system.

	Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

[image: ../_images/OSKernelupdated.PNG]
Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default package repositories. Use the following commands to add repositories that have the required Perl packages:

	For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

	For CentOS8.3

sudo yum config-manager --set-enabled powertools

	For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

Complete Reinstallation OF AMD ROCm V4.3 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade from previous releases to AMD ROCm v4.3 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.

	For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

	For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an operating system upgrade.

Multi-version Installation Updates

With the AMD ROCm v4.3 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.

	Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions.
For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

	‘version’ files should be created for each multi-version rocm <= 4.3.0

	command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

	example: echo 4.3.0 | sudo tee /opt/rocm-4.3.0/.info/version

	The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

	ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users must set LD_LIBRARY_PATH to load the ROCm library version of choice.

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.

Note: Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related issues.

Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

	Issue the following command to check the groups in your system:

groups

	Add yourself to the video group using the following instruction:

sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use video group. By default, you can add any future users to the video and render groups.

Note: render group is required only for Ubuntu v20.04.

	To add future users to the video and render groups, run the following command:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Supported Operating Systems

Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

	Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

	Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Key: https://repo.radeon.com/rocm/rocm.gpg.key

sudo apt install wget gnupg2

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

For example

For the current version of ROCm, ensure you replace <ROCm_version#> with debian.

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

For older versions of ROCm, replace <ROCm_version#> with any ROCm versions number like 4.3.1, 4.3 or 4.2.

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.3/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For ROCm v4.1 and lower, use ‘xenial main’, instead of ‘ubuntu main’, as shown below.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

	Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

	Restart the system.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules

CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7 environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

	The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

	Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

	Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8 repository RPM:

sudo rpm -ivh <repo>

For more details,

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

	Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

	Add the ROCm GPG key

sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key

Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

Installing ROCm

To install ROCm on your system, follow the instructions below:

	Delete the previous versions of ROCm before installing the latest version.

	Create a /etc/yum.repos.d/rocm.repo file with the following contents:

	CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

	CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/rpm
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/yum/

	Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

	Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

	Restart the system.

	Test the ROCm installation.

Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environment:

scl enable devtoolset-7 bash

Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

	Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

	Add the ROCm repo.

sudo zypper clean –all
sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/zyp/

	Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

	Verify the ROCm installation.

	Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the ROCm installation is successful.

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a /etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed.
Note: Ensure all the content in the /opt/rocm directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you remove them individually.

Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with a limited amount of storage space, or which will only run a small collection of known applications, you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support. These components are only available through the ROCm repositories, and they may be deprecated or become open source components in the future. These components are made available in the following packages:

	hsa-ext-rocr-dev

Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.3.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

 [image: ../_images/amdblack.jpg]

Multi Version Installation

Users can install and access multiple versions of the ROCm toolkit simultaneously.

Previously, users could install only a single version of the ROCm toolkit.

Now, users have the option to install multiple versions simultaneously and toggle to the desired version of the ROCm toolkit. From the v3.3 release, multiple versions of ROCm packages can be installed in the /opt/rocm-<version> folder.

Prerequisites

Ensure the existing installations of ROCm, including /opt/rocm, are completely removed before the ROCm toolkit installation. The ROCm package requires a clean installation.

	To install a single instance of ROCm, use the rocm-dkms or rocm-dev packages to install all the required components. This creates a symbolic link /opt/rocm pointing to the corresponding version of ROCm installed on the system.

	To install individual ROCm components, create the /opt/rocm symbolic link pointing to the version of ROCm installed on the system. For example, # ln -s /opt/rocm-4.0.0 /opt/rocm

	To install multiple instance ROCm packages, create /opt/rocm symbolic link pointing to the version of ROCm installed/used on the system. For example, # ln -s /opt/rocm-4.0.0 /opt/rocm

Note: The Kernel Fusion Driver (KFD) must be compatible with all versions of the ROCm software installed on the system.

Before You Begin

Review the following important notes:

Single Version Installation

To install a single instance of the ROCm package, access the non-versioned packages.

Note: You must not install any components from the multi-instance set.

For example,

	rocm-dkms

	rocm-dev

	hip

A fresh installation of single-version installation will install the new version in the /opt/rocm-<version> folder.

[image: ../_images/singleinstance.png]
Multi Version Installation

	To install a multi-instance of the ROCm package, access the versioned packages and components.

For example,

	rocm-dev4.2.0

	hip4.2.0

	kernel/firmware package doesn’t have multi version so it should be installed using “apt/yum/zypper install rock-dkms”.

	The new multi-instance package enables you to install two versions of the ROCm toolkit simultaneously and provides the ability to toggle between the two versioned packages.

	The ROCm-DEV package does not create symlinks

	Users must create symlinks if required

	Multi-version installation with previous ROCm versions is not supported

	Kernel Fusion Driver (KFD) must be compatible with all versions of ROCm installations

[image: ../_images/MultiIns.png]
IMPORTANT: A single instance ROCm package cannot co-exist with the multi-instance package.

NOTE: The multi-instance installation applies only to ROCm v3.3 and above. This package requires a fresh installation after the complete removal of existing ROCm packages. The multi-version installation is not backward compatible.

Note: If you install the multi-instance version of AMD ROCm and create a sym-link to /opt/rocm, you must run ‘Idconfig’ to ensure the software stack functions correctly with the sym-link.

 [image: ../_images/amdblack.jpg]

Using CMake with AMD ROCm

Most components in AMD ROCm support CMake 3.5 or higher out-of-the-box and do not require any special Find modules. A Find module is often used by
downstream to find the files by guessing locations of files with platform-specific hints. Typically, the Find module is required when the
upstream is not built with CMake or the package configuration files are not available.

AMD ROCm provides the respective config-file packages, and this enables find_package to be used directly. AMD ROCm does not require any Find
module as the config-file packages are shipped with the upstream projects.

Finding Dependencies

When dependencies are not found in standard locations such as /usr or /usr/local, then the CMAKE_PREFIX_PATH variable can be set to the
installation prefixes. This can be set to multiple locations with a semicolon separating the entries.

There are two ways to set this variable:

	Pass the flag when configuring with -DCMAKE_PREFIX_PATH=.... This approach is preferred when users install the components in custom
locations.

	Append the variable in the CMakeLists.txt file. This is useful if the dependencies are found in a common location. For example, when
the binaries provided on repo.radeon.com [http://repo.radeon.com] are installed to /opt/rocm, you can add the following line to a CMakeLists.txt file

list (APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)

Using HIP in CMake

There are two ways to use HIP in CMake:

	Use the HIP API without compiling the GPU device code. As there is no GPU code, any C or C++ compiler can be used.
The find_package(hip) provides the hip::host target to use HIP in this context

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)
Create the library
add_library(myLib ...)
Link with HIP
target_link_libraries(myLib hip::host)

Note

The hip::host target provides all the usage requirements needed to use HIP without compiling GPU device code.

	Use HIP API and compile GPU device code. This requires using a
device compiler. The compiler for CMake can be set using either the
CMAKE_C_COMPILER and CMAKE_CXX_COMPILER variable or using the CC and
CXX environment variables. This can be set when configuring CMake or
put into a CMake toolchain file. The device compiler must be set to a
compiler that supports AMD GPU targets, which is usually Clang.

The find_package(hip) provides the hip::device target to add all the
flags for device compilation

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)
Create library
add_library(myLib ...)
Link with HIP
target_link_libraries(myLib hip::device)

This project can then be configured with:

cmake -DCMAKE_C_COMPILER=/opt/rocm/llvm/bin/clang -DCMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++ ..

Which uses the device compiler provided from the binary packages from
repo.radeon.com [http://repo.radeon.com].

Note

Compiling for the GPU device requires at least C++11. This can be
enabled by setting CMAKE_CXX_STANDARD or setting the correct compiler flags
in the CMake toolchain.

The GPU device code can be built for different GPU architectures by
setting the GPU_TARGETS variable. By default, this is set to all the
currently supported architectures for AMD ROCm. It can be set by passing
the flag during configuration with -DGPU_TARGETS=gfx900. It can also be
set in the CMakeLists.txt as a cached variable before calling
find_package(hip):

Set the GPU to compile for
set(GPU_TARGETS "gfx900" CACHE STRING "GPU targets to compile for")
Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find hip
find_package(hip)

Using AMD ROCm Libraries

Libraries such as rocBLAS, MIOpen, and others support CMake users as
well.

As illustrated in the example below, to use MIOpen from CMake, you can
call find_package(miopen), which provides the MIOpen CMake target. This
can be linked with target_link_libraries:

Search for rocm in common locations
list(APPEND CMAKE_PREFIX_PATH /opt/rocm/hip /opt/rocm)
Find miopen
find_package(miopen)
Create library
add_library(myLib ...)
Link with miopen
target_link_libraries(myLib MIOpen)

Note

Most libraries are designed as host-only API, so using a GPU device
compiler is not necessary for downstream projects unless it uses the GPU
device code.

ROCm CMake Packages

	Component

	Package

	Targets

	HIP

	hip

	hip::host, hip::device

	rocPRIM

	rocprim

	roc::rocprim

	rocThrust

	rocthrust

	roc::rocthrust

	hipCUB

	hipcub

	hip::hipcub

	rocRAND

	rocrand

	roc::rocrand

	rocBLAS

	rocblas

	roc::rocblas

	rocSOLVER

	rocsolver

	roc::rocsolver

	hipBLAS

	hipblas

	roc::hipblas

	rocFFT

	rocfft

	roc::rocfft

	hipFFT

	hipfft

	hip::hipfft

	rocSPARSE

	rocsparse

	roc::rocsparse

	hipSPARSE

	hipsparse

	roc::hipsparse

	rocALUTION

	rocalution

	roc::rocalution

	RCCL

	rccl

	rccl

	MIOpen

	miopen

	MIOpen

	MIGraphX

	migraphx

	migraphx::migraphx, migraphx::migraphx_c,
migraphx::migraphx_cpu, migraphx::migraphx_gpu,
migraphx::migraphx_onnx, migraphx::migraphx_tf

 [image: ../_images/amdblack.jpg]

Mesa Multimedia Installation

Prerequisites

	Ensure you have ROCm installed on the system.

For ROCm installation instructions, see

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

System Prerequisites

The following operating systems are supported for Mesa Multimedia:

	Ubuntu 18.04.3

	Ubuntu 20.04, including dual kernel

Installation Prerequisites

	Obtain the AMDGPU driver from https://www.amd.com/en/support/kb/release-notes/rn-amdgpu-unified-linux-20-45 for the appropriate distro version.

	Follow the pre-installation instructions at https://amdgpu-install.readthedocs.io/en/latest/ (from “Preamble” to “Using the amdgpu-install Script” sections).

	Proceed with the installation instructions as documented in the next section.

Installation Instructions

	Use the following installation instructions to install Mesa Multimeda:

| ./amdgpu-install -y --no-dkms

Note

Run it from the directory where the download is unpacked. The download and install instructions are:

$ cd ~/Downloads

$ tar -Jxvf amdgpu-pro-YY.XX-NNNNNN.tar.xz

$ cd ~/Downloads/amdgpu-pro-YY.XX-NNNNNN

$./amdgpu-install -y –no-dkms

	gstreamer Installation

sudo apt-get -y install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-ugly gstreamer1.0-plugins-bad gstreamer1.0- vaapi gstreamer1.0-libav gstreamer1.0-tools

sudo apt-get -y install gst-omx-listcomponents gstreamer1.0-omx-bellagio-config gstreamer1.0-omx-generic gstreamer1.0-omx-generic-config

	Utilities Installation

sudo apt-get -y install mediainfo ffmpeg

sudo reboot

Check amdgpu loadking status after reboot

dmesg | grep -i initialized

Sep 24 13:00:42 jz-tester kernel: [277.120055] [drm] VCN decode and encode initialized successfully.

Sep 24 13:00:42 jz-tester kernel: [277.121654] [drm] Initialized amdgpu 3.34.0 20150101 for 0000:03:00.0 on minor 1

	Configure Running Environment Variables

export BELLAGIO_SEARCH_PATH=/opt/amdgpu/lib/x86_64-linux-gnu/libomxil-bellagio0:/opt/amdgpu/lib/libomxil-bellagio0

export GST_PLUGIN_PATH=/opt/amdgpu/lib/x86_64-linux-gnu/gstreamer-1.0/

export GST_VAAPI_ALL_DRIVERS=1

export OMX_RENDER_NODE=/dev/dri/renderD128

Check Installation

	Ensure you perform an installation check.

omxregister-bellagio -v

Scanning directory /opt/amdgpu/lib/libomxil-bellagio0/

Scanning library /opt/amdgpu/lib/libomxil-bellagio0/libomx_mesa.so

Component OMX.mesa.video_decoder registered with 0 quality levels

Specific role OMX.mesa.video_decoder.mpeg2 registered

Specific role OMX.mesa.video_decoder.avc registered

Specific role OMX.mesa.video_decoder.hevc registered

Component OMX.mesa.video_encoder registered with 0 quality levels

Specific role OMX.mesa.video_encoder.avc registered

2 OpenMAX IL ST static components in 1 library successfully scanned

gst-inspect-1.0 omx

Plugin Details

	Name

	OMX

	Description

	GStreamer OpenMAX Plug-ins

	Filename

	/usr/lib/x86_64-linux-gnu/
gstreamer-1.0/libgstomx.so

	Version

	1.12.4

	License

	LGPL

	Source module

	gst-omx

	Source release date

	2017-12-07

	Binary package

	GStreamer OpenMAX Plug-ins source
release

	Origin URL

	Unknown package origin

omxmpeg2dec: OpenMAX MPEG2 Video Decoder

omxh264dec: OpenMAX H.264 Video Decoder

omxh264enc: OpenMAX H.264 Video Encoder

3. Features

+-- 3 elements

gst-inspect-1.0 vaapi

Plugin Details

	Name

	vaapi

	Description

	VA-API based elements

	Filename

	/usr/lib/x86_64-linux-gnu/
gstreamer-1.0/libgstvaapi.so

	Version

	1.14.5

	License

	LGPL

	Source module

	gstreamer-vaapi

	Source release date

	2019-05-29

	Binary package

	gstreamer-vaapi

	Origin URL

	
http://bugzilla.gnome.org

/enter_bug.cgi?product=GStreamer

 vaapijpegdec: VA-API JPEG decoder
 vaapimpeg2dec: VA-API MPEG2 decoder
 vaapih264dec: VA-API H264 decoder
 vaapivc1dec: VA-API VC1 decoder
 vaapivp9dec: VA-API VP9 decoder
 vaapih265dec: VA-API H265 decoder
 vaapipostproc: VA-API video postprocessing
 vaapidecodebin: VA-API Decode Bin
 vaapisink: VA-API sink
 vaapih265enc: VA-API H265 encoder
 vaapih264enc: VA-API H264 encoder

11 Features

+-- 11 elements

 [image: ../_images/amdblack.jpg]

Tools Installation

ROCTracer

ROC-tracer library: Runtimes Generic Callback/Activity APIs.

The goal of the implementation is to provide a generic installation independent from the specific runtime profiler to trace API and asyncronous activity.

The following API provides the functionality to register runtimes API callbacks and asyncronous activity records pool support.

ROC-TX library: code annotation events API

Includes basic API: roctxMark, roctxRangePush, roctxRangePop

Usage

rocTracer API

To use the rocTracer API, you need the API header to link your application with roctracer .so librray:

	API header: /opt/rocm/roctracer/include/roctracer.h

	.so library: /opt/rocm/lib/libroctracer64.so

rocTX API

To use the rocTX API, you need the API header to link your application with roctx .so librray:

	API header: /opt/rocm/roctracer/include/roctx.h

	.so library: /opt/rocm/lib/libroctx64.so

Library source tree

	doc - documentation

	inc/roctracer.h - rocTacer library public API header

	inc/roctx.h - rocTX library puiblic API header

	
	src - Library sources
	
	core - rocTracer library API sources

	roctx - rocTX library API sources

	util - library utils sources

	
	test - test suit
	
	MatrixTranspose - test based on HIP MatrixTranspose sample

API Description

‘roctracer’ / ‘rocTX’ profiling C API specification

Code examples

	test/MatrixTranspose_test/MatrixTranspose.cpp

	test/MatrixTranspose/MatrixTranspose.cpp

Build and run test

Prequisites

	ROCm

	Python modules: CppHeaderParser, argparse

	Install CppHeaderParser, argparse

sudo pip install CppHeaderParser argparse

	Clone development branch of ROCTracer

git clone -b amd-master https://github.com/ROCm-Developer-Tools/roctracer

	Set environment

export CMAKE_PREFIX_PATH=/opt/rocm

	Use custom HIP version

export HIP_PATH=/opt/rocm/hip

	Build roctracer library

export CMAKE_BUILD_TYPE=<debug|release> # release by default
cd <your path>/roctracer && BUILD_DIR=build HIP_VDI=1 ./build.sh

	Build and run test

make mytest
run.sh

	Install

make install

or

make package && dpkg -i *.deb

 [image: ../_images/amdblack.jpg]

Software Stack for AMD GPU

Machine Learning and High Performance Computing Software Stack for AMD GPU v4.1

ROCm Binary Package Structure

ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools. In AMD’s package distributions, these software projects are provided as a separate packages. This allows users to install only the packages they need, if they do not wish to install all of ROCm. These packages will install most of the ROCm software into /opt/rocm/ by default.

The packages for each of the major ROCm components are:

ROCm Core Components

	ROCk Kernel Driver: rock-dkms rock-dkms-firmware

	ROCr Runtime: hsa-rocr-dev

	ROCt Thunk Interface: hsakmt-roct, hsakmt-roct-dev

ROCm Support Software

	ROCm SMI: rocm-smi

	ROCm cmake: rocm-cmake

	rocminfo: rocminfo

	ROCm Bandwidth Test: rocm_bandwidth_test

ROCm Compilers

	Clang compiler: llvm-amdgpu

	HIP: hip_base, hip_doc, hip_rocclr, hip_samples

	ROCM Clang-OCL Kernel Compiler: rocm-clang-ocl

ROCm Device Libraries

	ROCm Device Libraries: rocm-device-libs

	ROCm OpenCL: rocm-opencl, rocm-opencl-devel (on RHEL/CentOS), rocm-opencl-dev (on Ubuntu)

ROCm Development ToolChain

	Asynchronous Task and Memory Interface (ATMI): atmi

	ROCm Debug Agent: rocm_debug_agent

	ROCm Code Object Manager: comgr

	ROC Profiler: rocprofiler-dev

	ROC Tracer: roctracer-dev

ROCm Libraries

	rocALUTION: rocalution

	rocBLAS: rocblas

	hipBLAS: hipblas

	hipCUB: hipCUB

	rocFFT: rocfft

	rocRAND: rocrand

	rocSPARSE: rocsparse

	hipSPARSE: hipsparse

	ROCm SMI Lib: rocm-smi-lib64

	rocThrust: rocThrust

	MIOpen: MIOpen-HIP (for the HIP version), MIOpen-OpenCL (for the OpenCL version)

	MIOpenGEMM: miopengemm

	MIVisionX: mivisionx

	RCCL: rccl

To make it easier to install ROCm, the AMD binary repositories provide a number of meta-packages that will automatically install multiple other packages. For example, rocm-dkms is the primary meta-package that is used to install most of the base technology needed for ROCm to operate. It will install the rock-dkms kernel driver, and another meta-package (rocm-dev) which installs most of the user-land ROCm core components, support software, and development tools.

The rocm-utils meta-package will install useful utilities that, while not required for ROCm to operate, may still be beneficial to have. Finally, the rocm-libs meta-package will install some (but not all) of the libraries that are part of ROCm.

The chain of software installed by these meta-packages is illustrated below:

 └── rocm-dkms
 ├── rock-dkms
 └── rocm-dev
 ├── comgr
 ├── hip-base
 ├── hip-doc
 ├── hip-rocclr
 ├── hip-samples
 ├── hsa-amd-aqlprofile
 ├── hsakmt-roct
 ├── hsakmt-roct-dev
 ├── hsa-rocr-dev
 ├── llvm-amdgpu
 ├── rocm-cmake
 ├── rocm-dbgapi
 ├── rocm-debug-agent
 ├── rocm-device-libs
 ├── rocm-gdb
 ├── rocm-smi
 ├── rocm-smi-lib64
 ├── rocprofiler-dev
 └── roctracer-dev
 ├── rocm-utils
 │ ├── rocm-clang-ocl
 │ └── rocminfo

rocm-libs
 |--miopen
 |--hipblas
 |--hipcub
 |--hipsparse
 |--rocalution
 |--rocblas
 |--rocfft
 |--rocprim
 |--rocrand
 |--rocsolver
 |--rocsparse
 \--rocthrust

These meta-packages are not required but may be useful to make it easier to install ROCm on most systems.

Note: Some users may want to skip certain packages. For instance, a user that wants to use the upstream kernel drivers (rather than those supplied by AMD) may want to skip the rocm-dkms and rock-dkms packages. Instead, they could directly install rocm-dev.

Similarly, a user that only wants to install OpenCL support instead of HCC and HIP may want to skip the rocm-dkms and rocm-dev packages. Instead, they could directly install rock-dkms, rocm-opencl, and rocm-opencl-dev and their dependencies.

ROCm Platform Packages

The following platform packages are for ROCm v4.1.0:

Drivers, ToolChains, Libraries, and Source Code

The latest supported version of the drivers, tools, libraries and source code for the ROCm platform have been released and are available from the following GitHub repositories:

ROCm Core Components

	ROCk Kernel Driver [https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/rocm-4.1.0]

	ROCr Runtime [https://github.com/RadeonOpenCompute/ROCR-Runtime/tree/rocm-4.1.0]

	ROCt Thunk Interface [https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/rocm-4.1.0]

ROCm Support Software

	ROCm SMI [https://github.com/RadeonOpenCompute/ROC-smi/tree/rocm-4.1.0]

	ROCm cmake [https://github.com/RadeonOpenCompute/rocm-cmake/tree/rocm-4.1.0]

	rocminfo [https://github.com/RadeonOpenCompute/rocminfo/tree/rocm-4.1.0]

	ROCm Bandwidth Test [https://github.com/RadeonOpenCompute/rocm_bandwidth_test/tree/rocm-4.1.0]

ROCm Compilers

	HIP [https://github.com/ROCm-Developer-Tools/HIP/tree/rocm-4.1.0]

	ROCM Clang-OCL Kernel Compiler [https://github.com/RadeonOpenCompute/clang-ocl/tree/rocm-4.1.0]

Example Applications:

	HIP Examples [https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/rocm-4.1.0]

ROCm Device Libraries and Tools

	ROCm Device Libraries [https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/rocm-4.1.0]

	ROCm OpenCL Runtime [http://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/tree/rocm-4.1.0]

	ROCm LLVM OCL [https://github.com/RadeonOpenCompute/llvm-project/tree/rocm-ocl-4.1.0]

	ROCm Device Libraries OCL [https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/rocm-4.1.0]

	Asynchronous Task and Memory Interface [https://github.com/RadeonOpenCompute/atmi/tree/rocm-4.1.0]

	ROCr Debug Agent [https://github.com/ROCm-Developer-Tools/rocr_debug_agent/tree/rocm-4.1.0]

	ROCm Code Object Manager [https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/tree/rocm-4.1.0]

	ROC Profiler [https://github.com/ROCm-Developer-Tools/rocprofiler/tree/rocm-4.1.0]

	ROC Tracer [https://github.com/ROCm-Developer-Tools/roctracer/tree/rocm-4.1.0]

	AOMP [https://github.com/ROCm-Developer-Tools/aomp/tree/rocm-4.1.0]

	Radeon Compute Profiler [https://github.com/GPUOpen-Tools/RCP/tree/3a49405]

	ROCm Validation Suite [https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/tree/rocm-4.1.0]

ROCm Libraries

	rocBLAS [https://github.com/ROCmSoftwarePlatform/rocBLAS/tree/rocm-4.1.0]

	hipBLAS [https://github.com/ROCmSoftwarePlatform/hipBLAS/tree/rocm-4.1.0]

	rocFFT [https://github.com/ROCmSoftwarePlatform/rocFFT/tree/rocm-4.1.0]

	rocRAND [https://github.com/ROCmSoftwarePlatform/rocRAND/tree/rocm-4.1.0]

	rocSPARSE [https://github.com/ROCmSoftwarePlatform/rocSPARSE/tree/rocm-4.1.0]

	hipSPARSE [https://github.com/ROCmSoftwarePlatform/hipSPARSE/tree/rocm-4.1.0]

	rocALUTION [https://github.com/ROCmSoftwarePlatform/rocALUTION/tree/rocm-4.1.0]

	MIOpenGEMM [https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/tree/rocm-4.1.0]

	mi open [https://github.com/ROCmSoftwarePlatform/MIOpen/tree/rocm-4.1.0]

	rocThrust [https://github.com/ROCmSoftwarePlatform/rocThrust/tree/rocm-4.1.0]

	ROCm SMI Lib [https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/rocm-4.1.0]

	RCCL [https://github.com/ROCmSoftwarePlatform/rccl/tree/rocm-4.1.0]

	MIVisionX [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/rocm-4.1.0]

	hipCUB [https://github.com/ROCmSoftwarePlatform/hipCUB/tree/rocm-4.1.0]

	AMDMIGraphX [https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/rocm-4.1.0]

List of ROCm Packages for Supported Operating Systems

ROCm-Library Meta Packages

	Package

	Debian

	RPM

	rocFFT

	Yes

	Yes

	rocRAND

	Yes

	Yes

	rocBLAS

	Yes

	Yes

	rocSPARSE

	Yes

	Yes

	rocALUTION

	Yes

	Yes

	rocPRIM

	Yes

	Yes

	rocTHRUST

	Yes

	Yes

	rocSOLVER

	Yes

	Yes

	hipBLAS

	Yes

	Yes

	hipSPARSE

	Yes

	Yes

	hipcub

	Yes

	Yes

Meta Packages

	Package

	Debian

	RPM

	ROCm Master Package

	rocm

	rocm-1.6.77-Linux.rpm

	ROCm Developer Master Package

	rocm-dev

	rocm-dev-1.6.77-Linux.rpm

	ROCm Libraries Master Package

	rocm-libs

	rocm-libs-1.6.77-Linux.rpm

	ATMI

	atmi

	atmi-0.3.7-45-gde867f2-Linux.rpm

	HIP Core

	hip_base

	hip_base-1.2.17263.rpm

	HIP Documents

	hip_doc

	hip_doc-1.2.17263.rpm

	HIP Compiler

	hip_hcc

	hip_hcc-1.2.17263.rpm

	HIP Samples

	hip_samples

	hip_samples-1.2.17263.rpm.

	HIPBLAS

	hipblas

	hipblas-0.4.0.3-Linux.rpm

	MIOpen OpenCL Lib

	miopen-opencl.

	MIOpen-OpenCL-1.0.0-Linux.rpm

	rocBLAS

	rocblas

	rocblas-0.4.2.3-Linux.rpm

	rocFFT

	rocfft

	rocm-device-libs-0.0.1-Linux.rpm

	ROCm Device Libs

	rocm-device-libs

	rocm-device-libs-0.0.1-Linux.rpm

	ROCm OpenCL for Dev with CL headers

	rocm-opencl-dev

	rocm-opencl-devel-1.2.0-1424893.x86_64.rpm

	ROCm GDB

	rocm-gdb

	rocm-gdb-1.5.265-gc4fb045.x86_64.rpm

	RCP profiler

	rocm-profiler

	rocm-profiler-5.1.6386-gbaddcc9.x86_64.rpm

	ROCm SMI Tool

	rocm-smi

	rocm-smi-1.0.0_24_g68893bc-1.x86_64.rpm

	ROCm Utilities

	rocm-utils

	rocm-utils-1.0.0-Linux.rpm

Hardware and Software Support Information

	Hardware and Software Support [https://github.com/RadeonOpenCompute/ROCm#Hardware-and-Software-Support]

	Radeon Instinct™ GPU-Powered HPC Solutions [https://www.amd.com/en/graphics/servers-radeon-instinct-mi-powered-servers]

 [image: ../_images/amdblack6.jpg]

AMD Instinct™ High Performance Computing and Tuning Guide

HPC workloads have unique requirements. The default hardware and BIOS configurations for OEM platforms may not provide optimal performance for HPC workloads. To help enable optimal HPC settings on a per-platform and workload level, this guide calls out:

	BIOS settings that can impact performance

	hardware configuration best practices

	supported versions of operating systems

	workload-specific recommendations for optimal BIOS and operating system settings

There is also a discussion on the AMD Instinct™ software development environment, including information on how to install and run the DGEMM and STREAM benchmarks as well as GROMACS. This guidance provides a good starting point but is not exhaustively tested across all compilers.

Prerequisites to understanding this document and to perform tuning of HPC applications include:

	Experience configuring servers

	Administrative access to the Server’s Management Interface (BMC)

	Administrative access to the operating system

	Familiarity with OEMs Server’s Management Interface (BMC) is strongly recommended

	Familiarity with the OS specific tools for configuration, monitoring and troubleshooting is strongly recommended

This document provides guidance on tuning systems with AMD Instinct™ accelerators for High Performance Computing (HPC) workloads. This document is not an all-inclusive guide, and some items referred to may have similar, but different, names in various OEM systems (for example, OEM-specific BIOS settings). This document also provides suggestions on items that should be the initial focus of additional, application-specific tuning.

This document is based on the AMD EPYC™ 7002 series processor family (former codename “Rome”). One can expect very similar results for the AMD EYPC™ 7003 series processor family (former codename “Milan”). Specific differences in the configuration options or performance obtained will be explicitly called out through the document where needed.

While this guide is a good starting point, developers are encouraged to perform their own performance testing for additional tuning.

For more details, refer to the AMD Instinct™ High Performance Computing and Tuning Guide [https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD%20Instinct%E2%84%A2High%20Performance%20Computing%20and%20Tuning%20Guide.pdf]

 [image: ../_images/amdblack2.jpg]

HIP Programming Guide v4.5

Heterogeneous-Computing Interface for Portability (HIP) is a C++ dialect designed to ease conversion of CUDA applications to portable C++ code. It provides a C-style API and a C++ kernel language. The C++ interface can use templates and classes across the host/kernel boundary.

The HIPify tool automates much of the conversion work by performing a source-to-source transformation from CUDA to HIP. HIP code can run on AMD hardware (through the HCC compiler) or NVIDIA hardware (through the NVCC compiler) with no performance loss compared with the original CUDA code.

Programmers familiar with other GPGPU languages will find HIP easy to learn and use. AMD platforms implement this language using the HC dialect providing similar low-level control over the machine.

Use HIP when converting CUDA applications to portable C++ and for new projects that require portability between AMD and NVIDIA. HIP provides a C++ development language and access to the best development tools on both platforms.

Programming Guide (PDF)

You can access and download the latest version of the HIP Programming Guide.

Download PDF [https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide.pdf]

Related Topics

HIP API Guide

You can access the Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

HIP_Supported_CUDA_API_Reference_Guide

You can access and download the latest version of the HIP-Supported CUDA API Reference Guide.

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf

AMD ROCm Compiler Reference Guide

You can access and download the AMD ROCm Compiler Reference Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

HIP Installation Instructions

For HIP installation instructions, refer to

https://rocmdocs.amd.com/en/latest/Installation_Guide/HIP-Installation.html

HIP FAQ

	HIP-FAQ

HIP API Documentation v4.5

You can access the latest Doxygen-generated HIP API Guide at the following location:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD-HIP-API-4.5.pdf

HIP-Supported CUDA API Reference Guide v4.5

You can access the latest Reference guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf

AMD ROCm Compiler Reference Guide v4.5

You can access and download the AMD ROCm Compiler Reference Guide at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_Compiler_Reference_Guide_v4.5.pdf

Supported CUDA APIs

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Supported_CUDA_API_Reference_Guide.pdf

To access the following supported CUDA APIs, see

https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html#hip-faq-porting-guide-and-programming-guide

	Runtime API

	Driver API

	cuComplex API

	cuBLAS

	cuRAND

	cuDNN

	cuFFT

	cuSPARSE

Deprecated HIP APIs

HIP Context Management APIs

CUDA supports cuCtx API, the Driver API that defines “Context” and “Devices” as separate entities. Contexts contain a single device, and a device can theoretically have multiple contexts. HIP initially added limited support for APIs to facilitate easy porting from existing driver codes. The APIs are marked as deprecated now as there is a better alternate interface (such as hipSetDevice or the stream API) to achieve the required functions.

	hipCtxPopCurrent

	hipCtxPushCurrent

	hipCtxSetCurrent

	hipCtxGetCurrent

	hipCtxGetDevice

	hipCtxGetApiVersion

	hipCtxGetCacheConfig

	hipCtxSetCacheConfig

	hipCtxSetSharedMemConfig

	hipCtxGetSharedMemConfig

	hipCtxSynchronize

	hipCtxGetFlags

	hipCtxEnablePeerAccess

	hipCtxDisablePeerAccess

OpenCL Programming Guide

	OpenCL Programming Guide

	OPENCL Optimization

OpenMP Support

Overview

The ROCm installation includes an LLVM-based implementation that fully supports the OpenMP 4.5 standard and a subset of the OpenMP 5.0 standard. Fortran, C/C++ compilers, and corresponding runtime libraries are included. Along with host APIs, the OpenMP compilers support offloading code and data onto GPU devices. The GPUs supported are the same as those supported by this ROCm release. This document briefly describes the installation location of the OpenMP toolchain and example usage of device offloading.

Installation

The OpenMP toolchain is automatically installed as part of the standard ROCm installation and is available under /opt/rocm-{version}/llvm. The sub-directories are:

	bin: Compilers (flang and clang) and other binaries

	examples: How to compile and run these programs is shown in the usage section below.

	include: Header files

	lib: Libraries including those required for target offload

	lib-debug: Debug versions of the above libraries

Usage

The example programs can be compiled and run by pointing the environment variable AOMP to the OpenMP install directory. For example:

% export AOMP=/opt/rocm-{version}/llvm

% cd $AOMP/examples/openmp/veccopy

% make run

The above invocation of Make will compile and run the program. Note, the options that are required for target offload from an OpenMP program:

-target x86_64-pc-linux-gnu -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=<gpu-arch>

The value of gpu-arch can be obtained by running the following command:

% /opt/rocm-{version}/bin/rocminfo | grep gfx

Helpful Tips

Setting the environment variable LIBOMPTARGET_KERNEL_TRACE while running an OpenMP program produces valuable information. Among other details, a value of 1 will lead the runtime to emit the number of teams and threads for every kernel run on the GPU. A value of 2 leads additionally to a trace of implementation-level APIs and corresponding timing information.

ROCm Libraries

Libraries are listed alphabetically below.

hipSOLVER User Guide [https://hipsolver.readthedocs.io/]

MIGraphX User Guide [https://rocmsoftwareplatform.github.io/AMDMIGraphX/doc/html/]

RCCL User Guide [https://rccl.readthedocs.io/]

rocALUTION User Guide [https://rocalution.readthedocs.io/]

rocBLAS User Guide [https://rocblas.readthedocs.io/]

rocFFT User Guide [https://rocfft.readthedocs.io/]

rocRAND User Guide [https://rocrand.readthedocs.io/]

rocSOLVER User Guide [https://rocsolver.readthedocs.io/]

rocSPARSE User Guide [https://rocsparse.readthedocs.io/]

rocThrust User Guide [https://rocthrust.readthedocs.io/]

Deprecated Libraries

hipeigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. hipeigen has been upstream to the main project at https://eigen.tuxfamily.org/.

Deep Learning

MIOpen API

	MIOpen API [https://rocmsoftwareplatform.github.io/MIOpen/doc/html/]

	MIOpenGEMM API [https://rocmsoftwareplatform.github.io/MIOpenGEMM/doc/html/]

TensorFlow

AMD ROCm Tensorflow v1.15 Release

We are excited to announce the release of ROCm enabled TensorFlow v1.15 for AMD GPUs.

	In this release we have the following features enabled on top of upstream TF1.15 enhancements:
	
	We integrated ROCm RCCL library for mGPU communication, details in RCCL github repo [https://github.com/ROCmSoftwarePlatform/rccl]

	XLA backend is enabled for AMD GPUs, the functionality is complete, performance optimization is in progress.

AMD ROCm Tensorflow v2.2.0-beta1 Release

In addition to Tensorflow v1.15 release, we also enabled Tensorflow v2.2.0-beta1 for AMD GPUs. The TF-ROCm 2.2.0-beta1 release supports Tensorflow V2 API.
Both whl packages and docker containers are available below.

Tensorflow Installation

	Install the open-source AMD ROCm 3.3 stack. For details, see here [https://github.com/RadeonOpenCompute/ROCm]

2. Install other relevant ROCm packages.

sudo apt update
sudo apt install rocm-libs miopen-hip cxlactivitylogger rccl

3. Install TensorFlow itself (via the Python Package Index).

sudo apt install wget python3-pip
Pip3 install the whl package from PyPI
pip3 install --user tensorflow-rocm #works only with python3.8 or prior

Tensorflow v2.2.0 is installed.

Tensorflow ROCm port: Basic installation on RHEL

The following instructions provide a starting point for using the TensorFlow ROCm port on RHEL.

Note It is recommended to start with a clean RHEL 8.2 system.

Install ROCm

	Use the instructions below to add the ROCm repository.

export RPM_ROCM_REPO=https://repo.radeon.com/rocm/yum/3.7

	Install the following packages.

Enable extra repositories
yum --enablerepo=extras install -y epel-release

Install required base build and packaging commands for ROCm
yum -y install \
 bc \
 cmake \
 cmake3 \
 dkms \
 dpkg \
 elfutils-libelf-devel \
 expect \
 file \
 gettext \
 gcc-c++ \
 git \
 libgcc \
 ncurses \
 ncurses-base \
 ncurses-libs \
 numactl-devel \
 numactl-libs \
 libunwind-devel \
 libunwind \
 llvm \
 llvm-libs \
 make \
 pciutils \
 pciutils-devel \
 pciutils-libs \
 python36 \
 python36-devel \
 pkgconfig \
 qemu-kvm \
 wget

	Install ROCm packages.

Add the ROCm package repo location
echo -e "[ROCm]\nname=ROCm\nbaseurl=$RPM_ROCM_REPO\nenabled=1\ngpgcheck=0" >> /etc/yum.repos.d/rocm.repo

Install the ROCm rpms
sudo yum clean all
sudo yum install -y rocm-dev
sudo yum install -y hipblas hipcub hipsparse miopen-hip miopengemm rccl rocblas rocfft rocprim rocrand

	Ensure the ROCm target list is set up.

bash -c 'echo -e "gfx803\ngfx900\ngfx906\ngfx908" >> $ROCM_PATH/bin/target.lst'

	Install the required Python packages.

pip3.6 install --user \
 cget \
 pyyaml \
 pip \
 setuptools==39.1.0 \
 virtualenv \
 absl-py \
 six==1.10.0 \
 protobuf==3.6.1 \
 numpy==1.18.2 \
 scipy==1.4.1 \
 scikit-learn==0.19.1 \
 pandas==0.19.2 \
 gnureadline \
 bz2file \
 wheel==0.29.0 \
 portpicker \
 werkzeug \
 grpcio \
 astor \
 gast \
 termcolor \
 h5py==2.8.0 \
 keras_preprocessing==1.0.5

	Install TensorFlow.

Install ROCm manylinux WHL
wget <location of WHL file>
pip3.6 install --user ./tensorflow*linux_x86_64.whl

Tensorflow benchmarking

Clone the repository of bench test and run it

cd ~ && git clone https://github.com/tensorflow/benchmarks.git
python3 ~/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=resnet50

Tensorflow Installation with Docker

Note: firstly, configure docker environment for ROCm (information here [https://github.com/RadeonOpenCompute/ROCm-docker/blob/master/quick-start.md])

Pull the docker images for Tensorflow releases with ROCm backend support. The size of these docker images is about 7 Gb.

sudo docker pull rocm/tensorflow:latest

Launch the downloaded docker image

alias drun='sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $HOME/dockerx:/dockerx'

#Run it
drun rocm/tensorflow:latest

More information about tensorflow docker images can be found here [https://hub.docker.com/r/rocm/tensorflow/]

Tensorflow More Resources

The official github repository is here [https://github.com/ROCmSoftwarePlatform/tensorflow-upstream]

MIOpen

ROCm MIOpen v2.0.1 Release

Announcing our new Foundation for Deep Learning acceleration MIOpen 2.0 which introduces support for Convolution Neural Network (CNN) acceleration — built to run on top of the ROCm software stack!

This release includes the following:

	This release contains bug fixes and performance improvements.

	Additionally, the convolution algorithm Implicit GEMM is now enabled by default

	
	Known issues:
	
	Backward propagation for batch normalization in fp16 mode may trigger NaN in some cases

	Softmax Log mode may produce an incorrect result in back propagation

	Source code [https://github.com/ROCmSoftwarePlatform/MIOpen]

	
	Documentation
	
	MIOpen [https://rocmsoftwareplatform.github.io/MIOpen/doc/html/apireference.html]

	MIOpenGemm [https://rocmsoftwareplatform.github.io/MIOpenGEMM/doc/html/index.html]

Changes:

	Added Winograd multi-pass convolution kernel

	Fixed issue with hip compiler paths

	Fixed immediate mode behavior with auto-tuning environment variable

	Fixed issue with system find-db in-memory cache, the fix enable the cache by default

	Improved logging

	Improved how symbols are hidden in the library

	Updated default behavior to enable implicit GEMM

Porting from cuDNN to MIOpen

The porting guide [https://github.com/dagamayank/ROCm.github.io/blob/master/doc/miopen_porting_guide.pdf] highlights the key differences between the current cuDNN and MIOpen APIs.

The ROCm 3.3 has prebuilt packages for MIOpen

Install the ROCm MIOpen implementation (assuming you already have the ‘rocm’ and ‘rocm-opencl-dev” package installed):

MIOpen can be installed on Ubuntu using

apt-get

For just OpenCL development

sudo apt-get install miopengemm miopen-opencl

For HIP development

sudo apt-get install miopengemm miopen-hip

Or you can build from source code [https://github.com/ROCmSoftwarePlatform/MIOpen]

Currently both the backends cannot be installed on the same system simultaneously. If a different backend other than what currently exists on the system is desired, please uninstall the existing backend completely and then install the new backend.

PyTorch

Building PyTorch for ROCm

This is a quick guide to setup PyTorch with ROCm support inside a docker container. Assumes a .deb based system. See ROCm install [https://github.com/RadeonOpenCompute/ROCm#supported-operating-systems---new-operating-systems-available] for supported operating systems and general information on the ROCm software stack.

Note: Currently, ROCm install version 3.3 is required.

	Install or update rocm-dev on the host system:

sudo apt-get install rocm-dev
or
sudo apt-get update
sudo apt-get upgrade

Recommended: Install using published PyTorch ROCm docker image:

	Obtain docker image:

docker pull rocm/pytorch:rocm4.0_ubuntu18.04_py3.6_pytorch

	Start a docker container using the downloaded image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/dri --group-add video rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_pytorch

	Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python3.6 test/run_test.py --verbose

Note: Compilation and installation must be correct for the tests to be successful.

	Install torchvision:

pip install torchvision

This step is optional but most PyTorch scripts will use torchvision to load models. E.g., running the pytorch examples requires torchvision.

Option 2: Install using PyTorch upstream docker file

	Clone PyTorch repository on the host:

cd ~
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule init
git submodule update

	Build PyTorch docker image:

 cd pytorch/docker/caffe2/jenkins
 ./build.sh py2-clang7-rocmdeb-ubuntu16.04

A message "Successfully built <image_id>" indicates a successful completion of this step.

Note: These steps are not tested and validated on other software versions.

	Start a docker container using the new image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/dri --group-add video <image_id>

Note: This will mount your host home directory on /data in the container.

	Change to previous PyTorch checkout from within the running docker:

cd /data/pytorch

	Build PyTorch for ROCm:

Unless you are running a gfx900/Vega10-type GPU (MI25, Vega56, Vega64,…), explicitly export the GPU architecture to build for, e.g.:
export HCC_AMDGPU_TARGET=gfx906

then

.jenkins/pytorch/build.sh

This will hipify the PyTorch sources first, and then compile using 4 concurrent jobs. Note, the docker image requires 16 GB of RAM.

	Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python test/run_test.py --verbose

No tests will fail if the compilation and installation is correct.

	Install torchvision:

pip install torchvision

This step is optional; however, most PyTorch scripts use torchvision to load models. For example, running the pytorch examples requires torchvision.

	Commit the container to preserve the pytorch install (from the host):

sudo docker commit <container_id> -m 'pytorch installed'

Option 3: Install using minimal ROCm docker file

1. Download dockerfile based on the OS choose:
Recommend to use - Dockerfile-<OS distro>-complete to get all the ROCm Math libs installed which are required for PyTorch.

Dockerfile [https://github.com/RadeonOpenCompute/ROCm-docker/tree/master/dev]

	Build docker image:

sudo docker build -f ./Dockerfile-<OS distro>-complete .

The message “Successfully built <image_id>” indicates a successful completion of this step.

	Start a docker container using the new image:

sudo docker run -it -v $HOME:/data --privileged --rm --device=/dev/kfd --device=/dev/dri --group-add video <image_id>

Note: This will mount your host home directory on /data in the container.

	Clone pytorch master (on to the host):

cd ~
git clone https://github.com/pytorch/pytorch.git or git clone https://github.com/ROCmSoftwarePlatform/pytorch.git
cd pytorch
git submodule init
git submodule update --init --recursive'

	Run “hipify” to prepare source code (in the container):

python3 tools/amd_build/build_amd.py

	Build and install pytorch:

By default pytorch is built for all supported AMD GPU targets like gfx900/gfx906/gfx908 (MI25, MI50, MI60, MI100, …)
This can be overwritten using
export PYTORCH_ROCM_ARCH=gfx900;gfx906;gfx908

then

USE_ROCM=1 MAX_JOBS=4 python3 setup.py install --user

UseMAX_JOBS=n to limit peak memory usage. If building fails try falling back to fewer jobs. 4 jobs assume available main memory of 16 GB or larger.

	Confirm working installation:

PYTORCH_TEST_WITH_ROCM=1 python3 test/run_test.py --verbose

No tests will fail if the compilation and installation is correct.

	Install torchvision:

pip3 install --user "git+https://github.com/pytorch/vision.git"

This step is optional. However, most PyTorch scripts will use torchvision to load models. For example, running the PyTorch examples requires torchvision.

	Commit the container to preserve the pytorch install (from the host):

sudo docker commit <container_id> -m 'pyTorch installed'

PyTorch examples

	Clone the PyTorch examples repository:

git clone https://github.com/pytorch/examples.git && cd examples/

	Download pip requiremenst:

pip3 install -r mnist/requirements.txt

	Run individual example: Super-resolution training and running

cd super_resolution/

download dataset for training and run learning
python3 main.py --upscale_factor 3 --batchSize 4 --testBatchSize 100 --nEpochs 30 --lr 0.001

test work super resolution effect
python3 super_resolve.py --input_image dataset/BSDS300/images/test/16077.jpg \
--model model_epoch_30.pth --output_filename out.png

	Open out.png and dataset/BSDS300/images/test/16077.jpg files to see result

Building Caffe2 for ROCm

This is a quick guide to setup Caffe2 with ROCm support inside docker container and run on AMD GPUs. Caffe2 with ROCm support offers complete functionality on a single GPU achieving great performance on AMD GPUs using both native ROCm libraries and custom hip kernels. This requires your host system to have rocm-3.3s drivers installed. Please refer to ROCm install [https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#installing-from-amd-rocm-repositories] to install ROCm software stack. If your host system doesn’t have docker installed, please refer to docker install [https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce]. It is recommended to add the user to the docker group to run docker as a non-root user, please refer here [https://docs.docker.com/install/linux/linux-postinstall/].

	This guide provides two options to run Caffe2.
	
	Launch the docker container using a docker image with Caffe2 installed.

	Build Caffe2 from source inside a Caffe2 ROCm docker image.

Option 1: Docker image with Caffe2 installed:

This option provides a docker image which has Caffe2 installed. Users can launch the docker container and train/run deep learning models directly. This docker image will run on both gfx900(Vega10-type GPU - MI25, Vega56, Vega64,…) and gfx906(Vega20-type GPU - MI50, MI60)

	Launch the docker container

docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add video rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2

This will automatically download the image if it does not exist on the host. You can also pass -v argument to mount any data directories on to the container.

Option 2: Install using Caffe2 ROCm docker image:

1. Clone PyTorch repository on the host:

cd ~
git clone --recurse-submodules https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive

	Launch the docker container

docker pull rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2
docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-add video -v $PWD:/pytorch rocm/pytorch:rocm3.7_ubuntu16.04_py3.6_caffe2

3. Build Caffe2 from source

cd /pytorch

If running on gfx900/vega10-type GPU(MI25, Vega56, Vega64,…)

.jenkins/caffe2/build.sh

If running on gfx906/vega20-type GPU(MI50, MI60)

HCC_AMDGPU_TARGET=gfx906 .jenkins/caffe2/build.sh

Test the Caffe2 Installation

To validate Caffe2 installation, run

1. Test Command

cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && echo "Success" || echo "Failure"

2. Running unit tests in Caffe2

cd /pytorch
.jenkins/caffe2/test.sh

Run benchmarks

Caffe2 benchmarking script supports the following networks MLP, AlexNet, OverFeat, VGGA, Inception

To run benchmarks for networks MLP, AlexNet, OverFeat, VGGA, Inception run the command from pytorch home directory replacing <name_of_the_network> with one of the networks.

python caffe2/python/convnet_benchmarks.py --batch_size 64 --model <name_of_the_network> --engine MIOPEN

Running example scripts

Please refer to the example scripts in caffe2/python/examples. It currently has resnet50_trainer.py which can run ResNet’s, ResNeXt’s with various layer, groups, depth configurations and char_rnn.py which uses RNNs to do character level prediction.

Building own docker images

After cloning the pytorch repository, you can build your own Caffe2 ROCm docker image. Navigate to pytorch repo and run

cd docker/caffe2/jenkins
./build.sh py2-clang7-rocmdeb-ubuntu16.04

This should complete with a message “Successfully built <image_id>” which can then be used to install Caffe2 as in Option 2 above.

MIVisionX

MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open source implementation of the Khronos OpenVX™ [https://www.khronos.org/openvx/] and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX [https://onnx.ai/], and Khronos NNEF™ [https://www.khronos.org/nnef] exchange formats. The toolkit allows for rapid prototyping and deployment of optimized workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.

	AMD OpenVX [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx]

	
	AMD OpenVX Extensions [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx-extensions]
	
	Loom 360 Video Stitch Library [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/]

	Neural Net Library [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_nn/#openvx-neural-network-extension-library-vx_nn]

	OpenCV Extension [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_opencv/#amd-opencv-extension]

	RPP Extension [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/amd_openvx_extensions/amd_rpp]

	WinML Extension [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_winml/#amd-winml-extension]

	Applications [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#applications]

	Neural Net Model Compiler and Optimizer [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#neural-net-model-compiler--optimizer]

	RALI [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/rali/]

	Samples [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/samples/#samples]

	Toolkit [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#toolkit]

	
	Utilities [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#utilities]
	
	Inference Generator [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/inference_generator/#inference-generator]

	Loom Shell [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/loom_shell/#radeon-loomshell]

	RunCL [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runcl/#amd-runcl]

	RunVX [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runvx/#amd-runvx]

	Prerequisites [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#prerequisites]

	Build and Install MIVisionX [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#build--install-mivisionx]

	Verify the Installation [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#verify-the-installation]

	Docker [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#docker]

	Release Notes [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#release-notes]

[image: OpenVX]
 [https://www.khronos.org/openvx/]AMD OpenVX [amd_openvx [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#amd-openvx]] is a highly optimized open source implementation of the Khronos OpenVX [https://www.khronos.org/openvx/] computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.

The OpenVX framework provides a mechanism to add new vision functions to OpenVX by 3rd party vendors. This project has below mentioned OpenVX modules [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/#amd-openvx-extensions-amd_openvx_extensions] and utilities to extend amd_openvx [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/#amd-openvx-amd_openvx] project, which contains the AMD OpenVX Core Engine.

	amd_loomsl [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/]: AMD Radeon Loom stitching library for live 360 degree video applications.

[image: Loom Stitch]

	amd_nn [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_nn/#openvx-neural-network-extension-library-vx_nn]: OpenVX neural network module

[image: AMD OpenVX Neural Net Extension]

	amd_opencv [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_opencv/#amd-opencv-extension]: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX kernels

	amd_winml [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_winml/#amd-winml-extension]: WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX graph and add hundreds of different pre & post processing vision/generic/user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This will allow developers to build an end to end application for inference.

[image: AMD WinML]

MIVisionX has a number of applications [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/#applications] built on top of OpenVX modules, it uses AMD optimized libraries to build applications which can be used to prototype or used as models to develop a product.

	Cloud Inference Application [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/#cloud-inference-application]: This sample application does inference using a client-server system.

	Digit Test [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/apps/dg_test#amd-dgtest] This sample application is used to recognize hand written digits.

	MIVisionX OpenVX Classsification [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-openvx-classsification]: This sample application shows how to run supported pre-trained caffe models with MIVisionX RunTime.

	MIVisionX WinML Classification [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-winml-classification]: This sample application shows how to run supported ONNX models with MIVisionX RunTime on Windows.

	MIVisionX WinML YoloV2 [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#mivisionx-winml-yolov2]: This sample application shows how to run tiny yolov2(20 classes) with MIVisionX RunTime on Windows.

	External Applications [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/#external-application]

[image: Neural Net Model Compiler And Optimizer]
Neural Net Model Compiler & Optimizer model_compiler [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/model_compiler/#neural-net-model-compiler--optimizer] converts pre-trained neural net models to MIVisionX runtime code for optimized inference.

The Radeon Augmentation Library RALI [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/rali/] is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.

MIVisionX samples [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/samples/#samples] using OpenVX and OpenVX extension libraries

GDF - Graph Description Format

MIVisionX samples using runvx with GDF

skintonedetect.gdf

[image: skintonedetect]
usage:

runvx skintonedetect.gdf

canny.gdf

[image: canny]
usage:

runvx canny.gdf

skintonedetect-LIVE.gdf

Using live camera

usage:

runvx -frames:live skintonedetect-LIVE.gdf

canny-LIVE.gdf

Using live camera

usage:

runvx -frames:live canny-LIVE.gdf

OpenCV_orb-LIVE.gdf

Using live camera

usage:

runvx -frames:live OpenCV_orb-LIVE.gdf

Note: More samples available on GitHub [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/master/samples#samples]

MIVisionX Toolkit [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/toolkit/#mivisionx-toolkit], is a comprehensive set of help tools for neural net creation, development, training, and deployment. The Toolkit provides you with helpful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit is designed to help you deploy your work to any AMD or 3rd party hardware, from embedded to servers.

MIVisionX provides you with tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.

	inference_generator [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/inference_generator/#inference-generator]: generate inference library from pre-trained CAFFE models

	loom_shell [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/loom_shell/#radeon-loomsh]: an interpreter to prototype 360 degree video stitching applications using a script

	RunVX [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runvx/#amd-runvx]: command-line utility to execute OpenVX graph described in GDF text file

	RunCL [https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runcl/#amd-runcl]: command-line utility to build, execute, and debug OpenCL programs

	CPU: SSE4.1 or above CPU, 64-bit

	GPU: GFX7 or above [https://rocm.github.io/hardware.html] [optional]

	APU: Carrizo or above [optional]

Note: Some modules in MIVisionX can be built for CPU only. To take advantage of advanced features and modules we recommend using AMD GPUs or AMD APUs.

Windows

	Windows 10

	Windows SDK

	Visual Studio 2017

	Install the latest drivers and OpenCL SDK <https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases/tag/1.0>_

	
	OpenCV [https://github.com/opencv/opencv/releases/tag/3.4.0]
	
	Set OpenCV_DIR environment variable to OpenCV/build folder

	Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH

Linux

	Install ROCm [https://rocm.github.io/ROCmInstall.html]

	ROCm CMake, MIOpenGEMM & MIOpen for Neural Net Extensions (vx_nn)

	CMake 2.8 or newer download [http://cmake.org/download/]

	Qt Creator for Cloud Inference Client [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/apps/cloud_inference/client_app/README.md]

	
	Protobuf [https://github.com/google/protobuf] for inference generator & model compiler
	
	install libprotobuf-dev and protobuf-compiler needed for vx_nn

	
	` OpenCV <https://github.com/opencv/opencv/releases/tag/3.4.0>`_
	
	Set OpenCV_DIR environment variable to OpenCV/build folder

	
	FFMPEG [https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4] - Optional
	
	FFMPEG is required for amd_media & mv_deploy modules

For the convenience of the developer, we here provide the setup script which will install all the dependencies required by this project.

MIVisionX-setup.py- This scipts builds all the prerequisites required by MIVisionX. The setup script creates a deps folder and installs all the prerequisites, this script only needs to be executed once. If -d option for directory is not given the script will install deps folder in ‘~/’ directory by default, else in the user specified folder.

Prerequisites for running the scripts

	ubuntu 16.04/18.04 or CentOS 7.5/7.6

	ROCm supported hardware [https://rocm.github.io/hardware.html]

	ROCm [https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories]

usage:

python MIVisionX-setup.py --directory [setup directory - optional]
 --installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
 --miopen [MIOpen Version - optional (default:2.1.0)]
 --miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
 --ffmpeg [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
 --rpp [RPP Installation - optional (default:yes) [options:yes/no]]

Note: use –installer yum for CentOS

Windows

Using .msi packages

	MIVisionX-installer.msi [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases]: MIVisionX

	MIVisionX_WinML-installer.msi [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases]: MIVisionX for WinML

Using Visual Studio 2017 on 64-bit Windows 10

	Install OpenCL_SDK [https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases/tag/1.0]

	
	Install OpenCV [https://github.com/opencv/opencv/releases/tag/3.4.0] with/without contrib [https://github.com/opencv/opencv_contrib] to support camera capture, image display, & opencv extensions
	
	Set OpenCV_DIR environment variable to OpenCV/build folder

	Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH

	Use MIVisionX.sln to build for x64 platform

NOTE: vx_nn is not supported on Windows in this release

Linux

Using apt-get/yum

Prerequisites

	Ubuntu 16.04/18.04 or CentOS 7.5/7.6

	ROCm supported hardware [https://rocm.github.io/hardware.html]

	ROCm [https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories]

Ubuntu

sudo apt-get install mivisionx

CentOS

sudo yum install mivisionx

Note:

	vx_winml is not supported on linux

	source code will not available with apt-get/yum install

	executables placed in /opt/rocm/mivisionx/bin and libraries in /opt/rocm/mivisionx/lib

	OpenVX and module header files into /opt/rocm/mivisionx/include

	model compiler, toolkit, & samples placed in /opt/rocm/mivisionx

	Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

Using MIVisionX-setup.py and CMake on Linux (Ubuntu 16.04/18.04 or CentOS 7.5/7.6) with ROCm

	Install ROCm [https://rocm.github.io/ROCmInstall.html]

	Use the below commands to setup and build MIVisionX

git clone https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX.git
cd MIVisionX

python MIVisionX-setup.py --directory [setup directory - optional]
 --installer [Package management tool - optional (default:apt-get) [options: Ubuntu:apt-get;CentOS:yum]]
 --miopen [MIOpen Version - optional (default:2.1.0)]
 --miopengemm[MIOpenGEMM Version - optional (default:1.1.5)]
 --ffmpeg [FFMPEG Installation - optional (default:no) [options:Install ffmpeg - yes]]
 --rpp [RPP Installation - optional (default:yes) [options:yes/no]]

Note: Use –installer yum for CentOS

mkdir build
cd build
cmake ../
make -j8
sudo make install

Note:

	vx_winml is not supported on Linux

	the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

	the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include folder

Using CMake on Linux (Ubuntu 16.04 64-bit or CentOS 7.5 / 7.6) with ROCm

	Install ROCm [https://rocm.github.io/ROCmInstall.html]

	
	git clone, build and install other ROCm projects (using cmake and % make install) in the below order for vx_nn.
	
	rocm-cmake [https://github.com/RadeonOpenCompute/rocm-cmake]

	MIOpenGEMM [https://github.com/ROCmSoftwarePlatform/MIOpenGEMM]

	MIOpen [https://github.com/ROCmSoftwarePlatform/MIOpen] – make sure to use -DMIOPEN_BACKEND=OpenCL option with cmake

	install protobuf [https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2]

	install OpenCV [https://github.com/opencv/opencv/releases/tag/3.3.0]

	install FFMPEG n4.0.4 [https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4] - Optional

	
	build and install (using cmake and % make install)
	
	executables will be placed in bin folder

	libraries will be placed in lib folder

	the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/lib

	the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include folder

	add the installed library path to LD_LIBRARY_PATH environment variable (default /opt/rocm/mivisionx/lib)

	add the installed executable path to PATH environment variable (default /opt/rocm/mivisionx/bin)

Linux

	The installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

	The installer also copies all the OpenVX and OpenVX module header files into /opt/rocm/mivisionx/include folder

	Apps, Samples, Documents, Model Compiler and Toolkit are placed into /opt/rocm/mivisionx

	Run samples to verify the installation

	Canny Edge Detection

[image: ../_images/canny_image.PNG]
export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Note: More samples are available here [https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/samples#samples]

MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

MIVisionX Docker

	Ubuntu 16.04 [https://hub.docker.com/r/mivisionx/ubuntu-16.04]

	Ubuntu 18.04 [https://hub.docker.com/r/mivisionx/ubuntu-18.04]

	CentOS 7.5 [https://hub.docker.com/r/mivisionx/centos-7.5]

	CentOS 7.6 [https://hub.docker.com/r/mivisionx/centos-7.6]

Docker Workflow Sample on Ubuntu 16.04/18.04

Prerequisites

	Ubuntu 16.04/18.04

	rocm supported hardware [https://rocm.github.io/hardware.html]

Workflow

Step 1 - Install rocm-dkms

sudo apt update
sudo apt dist-upgrade
sudo apt install libnuma-dev
sudo reboot

wget -qO - https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list
sudo apt update
sudo apt install rocm-dkms
sudo reboot

Step 2 - Setup Docker

sudo apt-get install curl
sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
sudo apt-get update
apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo systemctl status docker

Step 3 - Get Docker Image

sudo docker pull mivisionx/ubuntu-16.04

Step 4 - Run the docker image

sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ ubuntu-16.04

	
	Optional: Map localhost directory on the docker image
	
	option to map the localhost directory with trained caffe models to be accessed on the docker image.

	usage: -v {LOCAL_HOST_DIRECTORY_PATH}:{DOCKER_DIRECTORY_PATH}

sudo docker run -it -v /home/:/root/hostDrive/ --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/ubuntu-16.04

Note: Display option with docker

	Using host display

xhost +local:root
sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/dev/mem --group-add video
--network host --env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.Xauthority
--volume /tmp/.X11-unix/:/tmp/.X11-unix mivisionx/ubuntu-16.04:latest

	Test display with MIVisionX sample

export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Known issues

	Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

Tested configurations

	Windows 10

	Linux: Ubuntu - 16.04/18.04 & CentOS - 7.5/7.6

	ROCm: rocm-dkms - 2.9.6

	rocm-cmake - github master:ac45c6e [https://github.com/RadeonOpenCompute/rocm-cmake/tree/master]

	MIOpenGEMM - 1.1.5 [https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/releases/tag/1.1.5]

	MIOpen - 2.1.0 [https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/2.1.0]

	Protobuf - V3.5.2 [https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2]

	OpenCV - 3.4.0 [https://github.com/opencv/opencv/releases/tag/3.4.0]

	Dependencies for all the above packages

AMD ROCm Profiler

Overview

The rocProf is a command line tool implemented on the top of
rocProfiler and rocTracer APIs. Source code for rocProf can be found
at GitHub:
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/bin/rocprof

This command line tool is implemented as a script which is setting up the environment for attaching the profiler and then run the provided
application command line. The tool uses two profiling plugins loaded by ROC runtime and based on rocProfiler and rocTracer for collecting
metrics/counters, HW traces and runtime API/activity traces. The tool consumes an input XML or text file with counters list or trace
parameters and provides output profiling data and statistics in various formats as text, CSV and JSON traces. Google Chrome tracing
can be used to visualize the JSON traces with runtime API/activity timelines and per kernel counters data.

Profiling Modes

‘rocprof’ can be used for GPU profiling using HW counters and
application tracing.

GPU profiling

GPU profiling is controlled with input file which defines a list of
metrics/counters and a profiling scope. An input file is provided using
option ‘-i ’. Output CSV file with a line per submitted kernel is
generated. Each line has kernel name, kernel parameters and counter
values. By option ‘—stats’ the kernel execution stats can be generated
in CSV format. Currently profiling has limitation of serializing
submitted kernels. An example of input file:

Perf counters group 1
pmc : Wavefronts VALUInsts SALUInsts SFetchInsts
Perf counters group 2
pmc : TCC_HIT[0], TCC_MISS[0]
Filter by dispatches range, GPU index and kernel names
supported range formats: "3:9", "3:", "3"
range: 1 : 4
gpu: 0 1 2 3
kernel: simple Pass1 simpleConvolutionPass2

An example of profiling command line for ‘MatrixTranspose’ application

$ rocprof -i input.txt MatrixTranspose
RPL: on '191018_011134' from '/…./rocprofiler_pkg' in '/…./MatrixTranspose'
RPL: profiling '"./MatrixTranspose"'
RPL: input file 'input.txt'
RPL: output dir '/tmp/rpl_data_191018_011134_9695'
RPL: result dir '/tmp/rpl_data_191018_011134_9695/input0_results_191018_011134'
ROCProfiler: rc-file '/…./rpl_rc.xml'
ROCProfiler: input from "/tmp/rpl_data_191018_011134_9695/input0.xml"
 gpu_index =
 kernel =
 range =
 4 metrics
 L2CacheHit, VFetchInsts, VWriteInsts, MemUnitStalled
 0 traces
Device name Ellesmere [Radeon RX 470/480/570/570X/580/580X]
PASSED!

ROCProfiler: 1 contexts collected, output directory /tmp/rpl_data_191018_011134_9695/input0_results_191018_011134
RPL: '/…./MatrixTranspose/input.csv' is generated

Counters and metrics

There are two profiling features, metrics and traces. Hardware
performance counters are treated as the basic metrics and the formulas
can be defined for derived metrics. Counters and metrics can be
dynamically configured using XML configuration files with counters and
metrics tables:

	Counters table entry, basic metric: counter name, block name, event
id

	Derived metrics table entry: metric name, an expression for
calculation the metric from the counters

Metrics XML File Example:

<gfx8>
 <metric name=L1_CYCLES_COUNTER block=L1 event=0 descr=”L1 cache cycles”></metric>
 <metric name=L1_MISS_COUNTER block=L1 event=33 descr=”L1 cache misses”></metric>
 . . .
</gfx8>

<gfx9>
 . . .
</gfx9>

<global>
 <metric
 name=L1_MISS_RATIO
 expr=L1_CYCLES_COUNT/L1_MISS_COUNTER
 descry=”L1 miss rate metric”
 ></metric>
</global>

Metrics query

Available counters and metrics can be queried by options ‘—list-basic’
for counters and ‘—list-derived’ for derived metrics. The output for
counters indicates number of block instances and number of block counter
registers. The output for derived metrics prints the metrics
expressions. Examples:

$ rocprof --list-basic
RPL: on '191018_014450' from '/opt/rocm/rocprofiler' in '/…./MatrixTranspose'
ROCProfiler: rc-file '/…./rpl_rc.xml'
Basic HW counters:
 gpu-agent0 : GRBM_COUNT : Tie High - Count Number of Clocks
 block GRBM has 2 counters
 gpu-agent0 : GRBM_GUI_ACTIVE : The GUI is Active
 block GRBM has 2 counters
 . . .
 gpu-agent0 : TCC_HIT[0-15] : Number of cache hits.
 block TCC has 4 counters
 gpu-agent0 : TCC_MISS[0-15] : Number of cache misses. UC reads count as misses.
 block TCC has 4 counters
 . . .

$ rocprof --list-derived
RPL: on '191018_015911' from '/opt/rocm/rocprofiler' in '/home/evgeny/work/BUILD/0_MatrixTranspose'
ROCProfiler: rc-file '/home/evgeny/rpl_rc.xml'
Derived metrics:
 gpu-agent0 : TCC_HIT_sum : Number of cache hits. Sum over TCC instances.
 TCC_HIT_sum = sum(TCC_HIT,16)
 gpu-agent0 : TCC_MISS_sum : Number of cache misses. Sum over TCC instances.
 TCC_MISS_sum = sum(TCC_MISS,16)
 gpu-agent0 : TCC_MC_RDREQ_sum : Number of 32-byte reads. Sum over TCC instaces.
 TCC_MC_RDREQ_sum = sum(TCC_MC_RDREQ,16)
 . . .

Metrics collecting

Counters and metrics accumulated per kernel can be collected using input
file with a list of metrics, see an example in 2.1. Currently profiling
has limitation of serializing submitted kernels. The number of counters
which can be dumped by one run is limited by GPU HW by number of counter
registers per block. The number of counters can be different for
different blocks and can be queried, see 2.1.1.1.

Blocks instancing

GPU blocks are implemented as several identical instances. To dump
counters of specific instance square brackets can be used, see an
example in 2.1. The number of block instances can be queried, see
2.1.1.1.

HW limitations

The number of counters which can be dumped by one run is limited by GPU
HW by number of counter registers per block. The number of counters can
be different for different blocks and can be queried, see 2.1.1.1.

	Metrics groups

To dump a list of metrics exceeding HW limitations the metrics list can
be split on groups. The tool supports automatic splitting on optimal
metric groups:

$ rocprof -i input.txt ./MatrixTranspose
RPL: on '191018_032645' from '/opt/rocm/rocprofiler' in '/…./MatrixTranspose'
RPL: profiling './MatrixTranspose'
RPL: input file 'input.txt'
RPL: output dir '/tmp/rpl_data_191018_032645_12106'
RPL: result dir '/tmp/rpl_data_191018_032645_12106/input0_results_191018_032645'
ROCProfiler: rc-file '/…./rpl_rc.xml'
ROCProfiler: input from "/tmp/rpl_data_191018_032645_12106/input0.xml"
 gpu_index =
 kernel =
 range =
 20 metrics
 Wavefronts, VALUInsts, SALUInsts, SFetchInsts, FlatVMemInsts, LDSInsts, FlatLDSInsts, GDSInsts, VALUUtilization, FetchSize, WriteSize, L2CacheHit, VWriteInsts, GPUBusy, VALUBusy, SALUBusy, MemUnitStalled, WriteUnitStalled, LDSBankConflict, MemUnitBusy
 0 traces
Device name Ellesmere [Radeon RX 470/480/570/570X/580/580X]

Input metrics out of HW limit. Proposed metrics group set:
 group1: L2CacheHit VWriteInsts MemUnitStalled WriteUnitStalled MemUnitBusy FetchSize FlatVMemInsts LDSInsts VALUInsts SALUInsts SFetchInsts FlatLDSInsts GPUBusy Wavefronts
 group2: WriteSize GDSInsts VALUUtilization VALUBusy SALUBusy LDSBankConflict

ERROR: rocprofiler_open(), Construct(), Metrics list exceeds HW limits

Aborted (core dumped)
Error found, profiling aborted.

	Collecting with multiple runs

To collect several metric groups a full application replay is used by
defining several ‘pmc:’ lines in the input file, see 2.1.

Application tracing

Supported application tracing includes runtime API and GPU activity
tracing’ Supported runtimes are: ROCr (HSA API) and HIP Supported GPU
activity: kernel execution, async memory copy, barrier packets. The
trace is generated in JSON format compatible with Chrome tracing. The
trace consists of several sections with timelines for API trace per
thread and GPU activity. The timelines events show event name and
parameters. Supported options: ‘—hsa-trace’, ‘—hip-trace’, ‘—sys-trace’,
where ‘sys trace’ is for HIP and HSA combined trace.

HIP runtime trace

The trace is generated by option ‘—hip-trace’ and includes HIP API
timelines and GPU activity at the runtime level.

ROCr runtime trace

The trace is generated by option ‘—hsa-trace’ and includes ROCr API
timelines and GPU activity at AQL queue level. Also, can provide
counters per kernel.

KFD driver trace

The trace is generated by option ‘—kfd-trace’ and includes KFD Thunk API
timelines.

It is planned to include memory allocations/migration activity tracing.

Code annotation

Support for application code annotation. Start/stop API is supported to
programmatically control the profiling. A ‘roctx’ library provides
annotation API. Annotation is visualized in JSON trace as a separate
“Markers and Ranges” timeline section.

Start/stop API

// Tracing start API
void roctracer_start();

// Tracing stop API
void roctracer_stop();

rocTX basic markers API

// A marker created by given ASCII message
void roctxMark(const char* message);

// Returns the 0 based level of a nested range being started by given message associated to this range.
// A negative value is returned on the error.
int roctxRangePush(const char* message);

// Marks the end of a nested range.
// Returns the 0 based level the range.
// A negative value is returned on the error.
int roctxRangePop();

Multiple GPUs profiling

The profiler supports multiple GPU’s profiling and provide GPI id for
counters and kernels data in CSV output file. Also, GPU id is indicating
for respective GPU activity timeline in JSON trace.

Profiling control

Profiling can be controlled by specifying a profiling scope, by
filtering trace events and specifying interesting time intervals.

Profiling scope

Counters profiling scope can be specified by GPU id list, kernel name
substrings list and dispatch range. Supported range formats examples:
“3:9”, “3:”, “3”. You can see an example of input file in 2.1.

Tracing control

Tracing can be filtered by events names using profiler input file and by
enabling interesting time intervals by command line option.

Filtering Traced APIs

A list of traced API names can be specified in profiler input file. An
example of input file line for ROCr runtime trace (HSA API):

hsa:hsa_queue_create hsa_amd_memory_pool_allocate

Tracing period

Tracing can be disabled on start so it can be enabled with start/stop API:

--trace-start <on|off>

Trace can be dumped periodically with initial delay, dumping period
length and rate:

--trace-period <dealy:length:rate>

Concurrent kernels

Currently concurrent kernels profiling is not supported, which is a
planned feature. Kernels are serialized.

Multi-processes profiling

Multi-processes profiling is not currently supported.

Errors logging

Profiler errors are logged to global logs:

/tmp/aql_profile_log.txt
/tmp/rocprofiler_log.txt
/tmp/roctracer_log.txt

3rd party visualization tools

‘rocprof’ produces JSON trace, which is compatible with Chrome Tracing. Chrome Tracing is an internal trace visualization tool in Google Chrome.

For more information about Chrome Tracing, see
https://aras-p.info/blog/2017/01/23/Chrome-Tracing-as-Profiler-Frontend/

Runtime Environment Setup

You must set the ‘PATH’ environment variable to the ROCM bin directory. This enables the profiler to find the correct ROCm setup and get ROCm info metadata. For example, “export PATH=$PATH:/opt/rocm/bin”.

Command line options

The command line options can be printed with option ‘-h’:

rocprof [-h] [--list-basic] [--list-derived] [-i <input .txt/.xml file>] [-o <output CSV file>] <app command line>

Options:
-h - this help
--verbose - verbose mode, dumping all base counters used in the input metrics
--list-basic - to print the list of basic HW counters
--list-derived - to print the list of derived metrics with formulas
--cmd-qts <on|off> - quoting profiled cmd line [on]

-i <.txt|.xml file> - input file
 Input file .txt format, automatically rerun application for every pmc line:

 # Perf counters group 1
 pmc : Wavefronts VALUInsts SALUInsts SFetchInsts FlatVMemInsts LDSInsts FlatLDSInsts GDSInsts FetchSize
 # Perf counters group 2
 pmc : VALUUtilization,WriteSize L2CacheHit
 # Filter by dispatches range, GPU index and kernel names
 # supported range formats: "3:9", "3:", "3"
 range: 1 : 4
 gpu: 0 1 2 3
 kernel: simple Pass1 simpleConvolutionPass2

 Input file .xml format, for single profiling run:

 # Metrics list definition, also the form "<block-name>:<event-id>" can be used
 # All defined metrics can be found in the 'metrics.xml'
 # There are basic metrics for raw HW counters and high-level metrics for derived counters
 <metric name=SQ:4,SQ_WAVES,VFetchInsts
 ></metric>

 # Filter by dispatches range, GPU index and kernel names
 <metric
 # range formats: "3:9", "3:", "3"
 range=""
 # list of gpu indexes "0,1,2,3"
 gpu_index=""
 # list of matched sub-strings "Simple1,Conv1,SimpleConvolution"
 kernel=""
 ></metric>

-o <output file> - output CSV file [<input file base>.csv]
 The output CSV file columns meaning in the columns order:
 Index - kernels dispatch order index
 KernelName - the dispatched kernel name
 gpu-id - GPU id the kernel was submitted to
 queue-id - the ROCm queue unique id the kernel was submitted to
 queue-index - The ROCm queue write index for the submitted AQL packet
 tid - system application thread id which submitted the kernel
 grd - the kernel's grid size
 wgr - the kernel's work group size
 lds - the kernel's LDS memory size
 scr - the kernel's scratch memory size
 vgpr - the kernel's VGPR size
 sgpr - the kernel's SGPR size
 fbar - the kernel's barriers limitation
 sig - the kernel's completion signal
 ... - The columns with the counters values per kernel dispatch
 DispatchNs/BeginNs/EndNs/CompleteNs - timestamp columns if time-stamping was enabled

-d <data directory> - directory where profiler store profiling data including thread treaces [/tmp]
 The data directory is renoving autonatically if the directory is matching the temporary one, which is the default.
-t <temporary directory> - to change the temporary directory [/tmp]
 By changing the temporary directory you can prevent removing the profiling data from /tmp or enable removing from not '/tmp' directory.

--basenames <on|off> - to turn on/off truncating of the kernel full function names till the base ones [off]
--timestamp <on|off> - to turn on/off the kernel dispatches timestamps, dispatch/begin/end/complete [off]
 Four kernel timestamps in nanoseconds are reported:
 DispatchNs - the time when the kernel AQL dispatch packet was written to the queue
 BeginNs - the kernel execution begin time
 EndNs - the kernel execution end time
 CompleteNs - the time when the completion signal of the AQL dispatch packet was received

--ctx-limit <max number> - maximum number of outstanding contexts [0 - unlimited]
--heartbeat <rate sec> - to print progress heartbeats [0 - disabled]

--stats - generating kernel execution stats, file <output name>.stats.csv
--roctx-trace - to enable rocTX applicatin code annotation trace
 Will show the application code annotation in JSON trace "Markers and Ranges" section.
--sys-trace - to trace HIP/HSA APIs and GPU activity, generates stats and JSON trace chrome-tracing compatible
--hip-trace - to trace HIP, generates API execution stats and JSON file chrome-tracing compatible
--hsa-trace - to trace HSA, generates API execution stats and JSON file chrome-tracing compatible
--kfd-trace - to trace KFD, generates API execution stats and JSON file chrome-tracing compatible
 Generated files: <output name>.<domain>_stats.txt <output name>.json
 Traced API list can be set by input .txt or .xml files.
 Input .txt:
 hsa: hsa_queue_create hsa_amd_memory_pool_allocate
 Input .xml:
 <trace name="HSA">
 <parameters list="hsa_queue_create, hsa_amd_memory_pool_allocate">
 </parameters>
 </trace>

--trace-start <on|off> - to enable tracing on start [on]
--trace-period <dealy:length:rate> - to enable trace with initial delay, with periodic sample length and rate
 Supported time formats: <number(m|s|ms|us)>
--obj-tracking <on|off> - to turn on/off kernels code objects tracking [off]
 To support V3 code objects.

Configuration file:
You can set your parameters defaults preferences in the configuration file 'rpl_rc.xml'. The search path sequence: .:/home/ evgeny:<package path>
First the configuration file is looking in the current directory, then in your home, and then in the package directory.
Configurable options: 'basenames', 'timestamp', 'ctx-limit', 'heartbeat', 'obj-tracking'.
An example of 'rpl_rc.xml':
 <defaults
 basenames=off
 timestamp=off
 ctx-limit=0
 heartbeat=0
 obj-tracking=off
 ></defaults>

Publicly available counters and metrics

The following counters are publicly available for commercially available
VEGA10/20 GPUs.

Counters:

• GRBM_COUNT : Tie High - Count Number of Clocks
• GRBM_GUI_ACTIVE : The GUI is Active
• SQ_WAVES : Count number of waves sent to SQs. (per-simd, emulated, global)
• SQ_INSTS_VALU : Number of VALU instructions issued. (per-simd, emulated)
• SQ_INSTS_VMEM_WR : Number of VMEM write instructions issued (including FLAT). (per-simd, emulated)
• SQ_INSTS_VMEM_RD : Number of VMEM read instructions issued (including FLAT). (per-simd, emulated)
• SQ_INSTS_SALU : Number of SALU instructions issued. (per-simd, emulated)
• SQ_INSTS_SMEM : Number of SMEM instructions issued. (per-simd, emulated)
• SQ_INSTS_FLAT : Number of FLAT instructions issued. (per-simd, emulated)
• SQ_INSTS_FLAT_LDS_ONLY : Number of FLAT instructions issued that read/wrote only from/to LDS (only works if EARLY_TA_DONE is enabled). (per-simd, emulated)
• SQ_INSTS_LDS : Number of LDS instructions issued (including FLAT). (per-simd, emulated)
• SQ_INSTS_GDS : Number of GDS instructions issued. (per-simd, emulated)
• SQ_WAIT_INST_LDS : Number of wave-cycles spent waiting for LDS instruction issue. In units of 4 cycles. (per-simd, nondeterministic)
• SQ_ACTIVE_INST_VALU : regspec 71? Number of cycles the SQ instruction arbiter is working on a VALU instruction. (per-simd, nondeterministic)
• SQ_INST_CYCLES_SALU : Number of cycles needed to execute non-memory read scalar operations. (per-simd, emulated)
• SQ_THREAD_CYCLES_VALU : Number of thread-cycles used to execute VALU operations (similar to INST_CYCLES_VALU but multiplied by # of active threads). (per-simd)
• SQ_LDS_BANK_CONFLICT : Number of cycles LDS is stalled by bank conflicts. (emulated)
• TA_TA_BUSY[0-15] : TA block is busy. Perf_Windowing not supported for this counter.
• TA_FLAT_READ_WAVEFRONTS[0-15] : Number of flat opcode reads processed by the TA.
• TA_FLAT_WRITE_WAVEFRONTS[0-15] : Number of flat opcode writes processed by the TA.
• TCC_HIT[0-15] : Number of cache hits.
• TCC_MISS[0-15] : Number of cache misses. UC reads count as misses.
• TCC_EA_WRREQ[0-15] : Number of transactions (either 32-byte or 64-byte) going over the TC_EA_wrreq interface. Atomics may travel over the same interface and are generally classified as write requests. This does not include probe commands.
• TCC_EA_WRREQ_64B[0-15] : Number of 64-byte transactions going (64-byte write or CMPSWAP) over the TC_EA_wrreq interface.
• TCC_EA_WRREQ_STALL[0-15] : Number of cycles a write request was stalled.
• TCC_EA_RDREQ[0-15] : Number of TCC/EA read requests (either 32-byte or 64-byte)
• TCC_EA_RDREQ_32B[0-15] : Number of 32-byte TCC/EA read requests
• TCP_TCP_TA_DATA_STALL_CYCLES[0-15] : TCP stalls TA data interface. Now Windowed.

The following derived metrics have been defined and the profiler metrics
XML specification can be found at:
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml.

Metrics:

• TA_BUSY_avr : TA block is busy. Average over TA instances.
• TA_BUSY_max : TA block is busy. Max over TA instances.
• TA_BUSY_min : TA block is busy. Min over TA instances.
• TA_FLAT_READ_WAVEFRONTS_sum : Number of flat opcode reads processed by the TA. Sum over TA instances.
• TA_FLAT_WRITE_WAVEFRONTS_sum : Number of flat opcode writes processed by the TA. Sum over TA instances.
• TCC_HIT_sum : Number of cache hits. Sum over TCC instances.
• TCC_MISS_sum : Number of cache misses. Sum over TCC instances.
• TCC_EA_RDREQ_32B_sum : Number of 32-byte TCC/EA read requests. Sum over TCC instances.
• TCC_EA_RDREQ_sum : Number of TCC/EA read requests (either 32-byte or 64-byte). Sum over TCC instances.
• TCC_EA_WRREQ_sum : Number of transactions (either 32-byte or 64-byte) going over the TC_EA_wrreq interface. Sum over TCC instances.
• TCC_EA_WRREQ_64B_sum : Number of 64-byte transactions going (64-byte write or CMPSWAP) over the TC_EA_wrreq interface. Sum over TCC instances.
• TCC_WRREQ_STALL_max : Number of cycles a write request was stalled. Max over TCC instances.
• TCC_MC_WRREQ_sum : Number of 32-byte effective writes. Sum over TCC instaces.
• FETCH_SIZE : The total kilobytes fetched from the video memory. This is measured with all extra fetches and any cache or memory effects taken into account.
• WRITE_SIZE : The total kilobytes written to the video memory. This is measured with all extra fetches and any cache or memory effects taken into account.
• GPUBusy : The percentage of time GPU was busy.
• Wavefronts : Total wavefronts.
• VALUInsts : The average number of vector ALU instructions executed per work-item (affected by flow control).
• SALUInsts : The average number of scalar ALU instructions executed per work-item (affected by flow control).
• VFetchInsts : The average number of vector fetch instructions from the video memory executed per work-item (affected by flow control). Excludes FLAT instructions that fetch from video memory.
• SFetchInsts : The average number of scalar fetch instructions from the video memory executed per work-item (affected by flow control).
• VWriteInsts : The average number of vector write instructions to the video memory executed per work-item (affected by flow control). Excludes FLAT instructions that write to video memory.
• FlatVMemInsts : The average number of FLAT instructions that read from or write to the video memory executed per work item (affected by flow control). Includes FLAT instructions that read from or write to scratch.
• LDSInsts : The average number of LDS read or LDS write instructions executed per work item (affected by flow control). Excludes FLAT instructions that read from or write to LDS.
• FlatLDSInsts : The average number of FLAT instructions that read or write to LDS executed per work item (affected by flow control).
• GDSInsts : The average number of GDS read or GDS write instructions executed per work item (affected by flow control).
• VALUUtilization : The percentage of active vector ALU threads in a wave. A lower number can mean either more thread divergence in a wave or that the work-group size is not a multiple of 64. Value range: 0% (bad), 100% (ideal - no thread divergence).
• VALUBusy : The percentage of GPUTime vector ALU instructions are processed. Value range: 0% (bad) to 100% (optimal).
• SALUBusy : The percentage of GPUTime scalar ALU instructions are processed. Value range: 0% (bad) to 100% (optimal).
• Mem32Bwrites :
• FetchSize : The total kilobytes fetched from the video memory. This is measured with all extra fetches and any cache or memory effects taken into account.
• WriteSize : The total kilobytes written to the video memory. This is measured with all extra fetches and any cache or memory effects taken into account.
• L2CacheHit : The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache. Value range: 0% (no hit) to 100% (optimal).
• MemUnitBusy : The percentage of GPUTime the memory unit is active. The result includes the stall time (MemUnitStalled). This is measured with all extra fetches and writes and any cache or memory effects taken into account. Value range: 0% to 100% (fetch-bound).
• MemUnitStalled : The percentage of GPUTime the memory unit is stalled. Try reducing the number or size of fetches and writes if possible. Value range: 0% (optimal) to 100% (bad).
• WriteUnitStalled : The percentage of GPUTime the Write unit is stalled. Value range: 0% to 100% (bad).
• ALUStalledByLDS : The percentage of GPUTime ALU units are stalled by the LDS input queue being full or the output queue being not ready. If there are LDS bank conflicts, reduce them. Otherwise, try reducing the number of LDS accesses if possible. Value range: 0% (optimal) to 100% (bad).
• LDSBankConflict : The percentage of GPUTime LDS is stalled by bank conflicts. Value range: 0% (optimal) to 100% (bad).

AMD ROCProfiler API

ROC profiler library. Profiling with perf-counters and derived metrics. Library supports GFX8/GFX9.

HW specific low-level performance analysis interface for profiling of GPU compute applications. The profiling includes HW performance counters with complex performance metrics.

GitHub: https://github.com/ROCm-Developer-Tools/rocprofiler

Metrics

	The link to profiler default metrics XML specification. [https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml]

API specification

	API specification at the GitHub. [https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/doc/rocprofiler_spec.md]

To get sources

To clone ROC Profiler from GitHub:

git clone https://github.com/ROCm-Developer-Tools/rocprofiler

The library source tree:

 * bin
 * rocprof - Profiling tool run script
 * doc - Documentation
 * inc/rocprofiler.h - Library public API
 * src - Library sources
 * core - Library API sources
 * util - Library utils sources
 * xml - XML parser
 * test - Library test suite
 * tool - Profiling tool
 * tool.cpp - tool sources
 * metrics.xml - metrics config file
 * ctrl - Test controll
 * util - Test utils
 * simple_convolution - Simple convolution test kernel

Build

Build environment:

export CMAKE_PREFIX_PATH=<path to hsa-runtime includes>:<path to hsa-runtime library>
export CMAKE_BUILD_TYPE=<debug|release> # release by default
export CMAKE_DEBUG_TRACE=1 # to enable debug tracing

To Build with the current installed ROCm:

To build and install to /opt/rocm/rocprofiler
export CMAKE_PREFIX_PATH=/opt/rocm/include/hsa:/opt/rocm
cd ../rocprofiler
mkdir build
cd build
cmake ..
make
make install

Internal ‘simple_convolution’ test run script:

cd ../rocprofiler/build
./run.sh

To enable error messages logging to ‘/tmp/rocprofiler_log.txt’:

export ROCPROFILER_LOG=1

To enable verbose tracing:

export ROCPROFILER_TRACE=1

AMD ROCTracer API

ROCtracer library, Runtimes Generic Callback/Activity APIs.
The goal of the implementation is to provide a generic independent from
specific runtime profiler to trace API and asyncronous activity.

The API provides functionality for registering the runtimes API callbacks and
asyncronous activity records pool support.

GitHub: https://github.com/ROCm-Developer-Tools/roctracer

API specification

	API specification at the GitHub. [https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/doc/roctracer_spec.md]

To get sources

To clone ROC Tracer from GitHub:

git clone -b amd-master https://github.com/ROCm-Developer-Tools/roctracer

The library source tree:

 * inc/roctracer.h - Library public API
 * src - Library sources
 * core - Library API sources
 * util - Library utils sources
 * test - test suit
 * MatrixTranspose - test based on HIP MatrixTranspose sample

Build and run test

- Python is required
 The required modules: CppHeaderParser, argparse.
 To install:
 sudo pip install CppHeaderParser argparse

- To customize environment, below are defaults
 export HIP_PATH=/opt/rocm/HIP
 export HCC_HOME=/opt/rocm/hcc/
 export CMAKE_PREFIX_PATH=/opt/rocm

- Build ROCtracer
 export CMAKE_BUILD_TYPE=<debug|release> # release by default
 cd <your path>/roctracer && mkdir build && cd build && cmake -DCMAKE_INSTALL_PREFIX=/opt/rocm .. && make -j <nproc>

- To build and run test
 make mytest
 run.sh

- To install
 make install
 or
 make package && dpkg -i *.deb

AMD ROCm Debugger

The AMD ROCm Debugger (ROCgdb) is the AMD ROCm source-level debugger for Linux
based on the GNU Debugger (GDB). It enables heterogeneous debugging on the AMD
ROCm platform of an x86-based host architecture along with AMD GPU
architectures and supported by the AMD Debugger API.

The AMD ROCm Debugger is installed by the rocm-gdb package. The rocm-gdb package is part of the rocm-dev meta-package, which is in the rocm-dkms package.

The current AMD ROCm Debugger (ROCgdb) is an initial prototype that focuses on
source line debugging. Note, symbolic variable debugging capabilities are not
currently supported.

You can use the standard GDB commands for both CPU and GPU code debugging. For
more information about ROCgdb, refer to the ROCgdb User Guide, which is
installed at:

	/opt/rocm/share/info/gdb.info as a texinfo file

	/opt/rocm/share/doc/gdb/gdb.pdf as a PDF file

The AMD ROCm Debugger User Guide is available as a PDF at:

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_User_Guide.pdf

For more information about GNU Debugger (GDB), refer to the GNU Debugger (GDB) web site at: http://www.gnu.org/software/gdb

AMD Debugger API

Introduction

The AMD Debugger API (ROCdbgapi) is a library that provides all the support necessary for a debugger and other tools to perform low level control of
the execution and inspection of execution state of AMD™ commercially available GPU architectures.

For the AMD Debugger API Guide, see

For more information about the AMD ROCm ecosystem, see:

	https://rocmdocs.amd.com/

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCDebugger_API_Guide.pdf

Build the AMD Debugger API Library

The ROCdbgapi library can be built on Ubuntu 16.04, Ubuntu 18.04, Centos
8.1, RHEL 8.1, and SLES 15 Service Pack 1.

Building the ROCdbgapi library has the following prerequisites:

	A C++14 compiler such as GCC 5 or Clang 3.4.

	AMD Code Object Manager Library (ROCcomgr) which can be installed as
part of the AMD ROCm release by the comgr package.

	ROCm CMake modules which can be installed as part of the AMD ROCm
release by the rocm-cmake package.

An example command-line to build and install the ROCdbgapi library on
Linux is:

cd rocdbgapi
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install ..
make

You may substitute a path of your own choosing for
CMAKE_INSTALL_PREFIX.

The built ROCdbgapi library will be placed in:

	build/include/amd-dbgapi.h

	build/librocm-dbgapi.so*

To install the ROCdbgapi library:

make install

The installed ROCdbgapi library will be placed in:

	../install/include/amd-dbgapi.h

	../install/lib/librocm-dbgapi.so*

	../install/share/amd-dbgapi/LICENSE.txt

	../install/share/amd-dbgapi/README.md

To use the ROCdbgapi library, the ROCcomgr library must be installed.
This can be installed as part of the AMD ROCm release by the comgr
package:

	libamd_comgr.so.1

Build the AMD Debugger API Specification Documentation

Generating the AMD Debugger API Specification documentation has the
following prerequisites:

	For Ubuntu 16.04 and Ubuntu 18.04 the following adds the needed
packages:

apt install doxygen graphviz texlive-full

NOTE: The doxygen 1.8.13 that is installed by Ubuntu 18.04 has a
bug that prevents the PDF from being created. doxygen 1.8.11 can
be built from source to avoid the issue.

	For CentOS 8.1 and RHEL 8.1 the following adds the needed packages:

yum install -y doxygen graphviz texlive texlive-xtab texlive-multirow \
 texlive-sectsty texlive-tocloft texlive-tabu texlive-adjustbox

NOTE: The doxygen 1.8.14 that is installed by CentOS 8.1 and RHEL
8.1, has a bug that prevents the PDF from being created. doxygen
1.8.11 can be built from source to avoid the issue.

	For SLES 15 Service Pack 15 the following adds the needed packages:

zypper in doxygen graphviz texlive-scheme-medium texlive-hanging \
 texlive-stackengine texlive-tocloft texlive-etoc texlive-tabu

An example command-line to generate the HTML and PDF documentation after
running the above cmake is:

make doc

The generated ROCdbgapi library documentation is put in:

	doc/html/index.html

	doc/latex/refman.pdf

If the ROCdbgapi library PDF documentation has been generated,
make install will place it in:

	../install/share/doc/amd-dbgapi/amd-dbgapi.pdf

Known Limitations and Restrictions

You can refer to the following sections in the AMD Debugger API
Specification documentation for:

	Supported AMD GPU Architectures provides the list of supported AMD
GPU architectures.

	Known Limitations and Restrictions provides information about known
limitations and restrictions.

The ROCdbgapi library is compatible with the following interface
versions:

	AMD GPU Driver Version

	See KFD_IOCTL_MAJOR_VERSION and KFD_IOCTL_MINOR_VERSION in
src/linux/kfd_ioctl.h which conform to
semver [http://semver.org/].

	AMD GPU Driver Debug ioctl Version

	See KFD_IOCTL_DBG_MAJOR_VERSION and
KFD_IOCTL_DBG_MINOR_VERSION in src/linux/kfd_ioctl.h which
conform to semver [http://semver.org/].

	ROCm Runtime r_debug ABI Version

	See ROCR_RDEBUG_VERSION in src/rocr_rdebug.h.

	Architectures and Firmware Versions

	See s_gfxip_lookup_table in src/os_driver.cpp.

Disclaimer

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been
taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of
noninfringement, merchantability or fitness for particular purposes,with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of AMD products are as set forth in a signed agreement between the
parties or in AMD™ Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, ROCm® and combinations thereof are trademarks of Advanced Micro Devices, Inc. Linux® is the registered trademark of
Linus Torvalds in the U.S. and other countries. PCIe® is a registered trademark of PCI-SIG Corporation. RedHatÂ® and the Shadowman logo are
registered trademarks of Red Hat, Inc. www.redhat.com in the U.S. and other countries. SUSE® is a registered trademark of SUSE LLC in the
United Stated and other countries. Ubuntu® and the Ubuntu logo are registered trademarks of Canonical Ltd. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

Copyright (c) 2019-2021 Advanced Micro Devices, Inc. All rights reserved.

 [image: ../_images/amdblack5.jpg]

ROCm™ Data Center Tool

The ROCm™ Data Center Tool™ simplifies the administration and addresses key infrastructure challenges in AMD GPUs in cluster and datacenter environments. The main features are:

	GPU telemetry

	GPU statistics for jobs

	Integration with third-party tools

	Open source

The tool can be used in stand-alone mode if all components are installed. However, the existing management tools can use the same set of features available in a library format.

Refer to the Starting RDC section in the ROCm Data Center Tool User Guide for details on different modes of operation.

Objective

This user guide is intended to:

	Provide an overview of the ROCm Data Center Tool features

	Describe how system administrators and Data Center (or HPC) users can administer and configure AMD GPUs

	Describe the components

	Provide an overview of the open source developer handbook

Target Audience

The audience for the AMD ROCm Data Center™ tool consists of:

	Administrators: The tool will provide cluster administrator with the capability of monitoring, validating, and configuring policies.

	HPC Users: Provides GPU centric feedback for their workload submissions

	OEM: Add GPU information to their existing cluster management software

	Open Source Contributors: RDC is open source and will accept contributions from the community

Download AMD ROCm Data Center Tool User Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_ROCm_DataCenter_Tool_User_Guide_v4.5.pdf

Download AMD ROCm Data Center Tool API Guide

https://github.com/RadeonOpenCompute/ROCm/blob/master/RDC_API_Manual_4.5.pdf

AMD ROCm Debug Agent Library

Introduction

The AMD ROCm Debug Agent (ROCdebug-agent) is a library that can be loaded by the
ROCm Platform Runtime (ROCr) to provide the following functionality:

	Print the state of all AMD GPU wavefronts that caused a queue error
(for example, causing a memory violation, executing an s_trap 2,
or executing an illegal instruction).

	Print the state of all AMD GPU wavefronts by sending a SIGQUIT signal
to the process (for example, by pressing Ctrl-\) while the
program is executing.

This functionality is provided for all AMD GPUs supported by the ROCm
Debugger API Library (ROCdbgapi).

Usage

To display the source text location with the machine code instructions
around the wavefronts’ pc, compile the AMD GPU code objects with
-ggdb. In addition, -O0, while not required, will help the
source text location displayed to be more intuitive as higher
optimization levels can reorder machine code instructions. If -ggdb
is not used, source line information will not be available and only
machine code instructions starting at the wavefronts’ pc will be
printed. For example:

/opt/rocm/bin/hipcc -O0 -ggdb -o my_program my_program.cpp

To use the ROCdebug-agent set the HSA_TOOLS_LIB environment variable
to the file name or path of the library. For example:

HSA_TOOLS_LIB=/opt/rocm/lib/librocm-debug-agent.so.2 ./my_program

If the application encounters a triggering event, it will print the
state of some or all AMD GPU wavefronts. For example, a sample print out
is:

Queue error (HSA_STATUS_ERROR_EXCEPTION: An HSAIL operation resulted in a hardware exception.)

--
wave_1: pc=0x7fd4f100d0e8 (stopped, reason: ASSERT_TRAP)

system registers:
 m0: 00000000 status: 00012461 trapsts: 20000000 mode: 000003c0
 ttmp4: 00000001 ttmp5: 00000000 ttmp6: f51a0080 ttmp7: 000000d5
 ttmp8: 00000000 ttmp9: 00000000 ttmp10: 00000000 ttmp11: 000000c0
 ttmp13: 00000000
 exec: 0000000000000001 vcc: 0000000000000000
 xnack_mask: 0000000000012460 flat_scratch: 00807fac01000000

scalar registers:
 s0: f520c000 s1: 00007fd5 s2: 00000000 s3: 00ea4fac
 s4: f51a0080 s5: 00007fd5 s6: f520c000 s7: 00007fd5
 s8: f1002000 s9: 00007fd4 s10: 00000000 s11: 00000000
 s12: f1000000 s13: 00007fd4 s14: f1001000 s15: 00007fd4
 s16: f5186070 s17: 00007fd5 s18: f100e070 s19: 00007fd4
 s20: f5186070 s21: 00007fd5 s22: f100e070 s23: 00007fd4
 s24: 00004000 s25: 00010000

vector registers:
 v0: [0] 00000000 [1] f1002004 [2] f1002008 [3] f100200c [4] f1002010 [5] f1002014 [6] f1002018 [7] f100201c [8] f1002020 [9] f1002024 [10] f1002028 [11] f100202c [12] f1002030 [13] f1002034 [14] f1002038 [15] f100203c [16] f1002040 [17] f1002044 [18] f1002048 [19] f100204c [20] f1002050 [21] f1002054 [22] f1002058 [23] f100205c [24] f1002060 [25] f1002064 [26] f1002068 [27] f100206c [28] f1002070 [29] f1002074 [30] f1002078 [31] f100207c [32] f1002080 [33] f1002084 [34] f1002088 [35] f100208c [36] f1002090 [37] f1002094 [38] f1002098 [39] f100209c [40] f10020a0 [41] f10020a4 [42] f10020a8 [43] f10020ac [44] f10020b0 [45] f10020b4 [46] f10020b8 [47] f10020bc [48] f10020c0 [49] f10020c4 [50] f10020c8 [51] f10020cc [52] f10020d0 [53] f10020d4 [54] f10020d8 [55] f10020dc [56] f10020e0 [57] f10020e4 [58] f10020e8 [59] f10020ec [60] f10020f0 [61] f10020f4 [62] f10020f8 [63] f10020fc
 v1: [0] 00000000 [1] 00007fd4 [2] 00007fd4 [3] 00007fd4 [4] 00007fd4 [5] 00007fd4 [6] 00007fd4 [7] 00007fd4 [8] 00007fd4 [9] 00007fd4 [10] 00007fd4 [11] 00007fd4 [12] 00007fd4 [13] 00007fd4 [14] 00007fd4 [15] 00007fd4 [16] 00007fd4 [17] 00007fd4 [18] 00007fd4 [19] 00007fd4 [20] 00007fd4 [21] 00007fd4 [22] 00007fd4 [23] 00007fd4 [24] 00007fd4 [25] 00007fd4 [26] 00007fd4 [27] 00007fd4 [28] 00007fd4 [29] 00007fd4 [30] 00007fd4 [31] 00007fd4 [32] 00007fd4 [33] 00007fd4 [34] 00007fd4 [35] 00007fd4 [36] 00007fd4 [37] 00007fd4 [38] 00007fd4 [39] 00007fd4 [40] 00007fd4 [41] 00007fd4 [42] 00007fd4 [43] 00007fd4 [44] 00007fd4 [45] 00007fd4 [46] 00007fd4 [47] 00007fd4 [48] 00007fd4 [49] 00007fd4 [50] 00007fd4 [51] 00007fd4 [52] 00007fd4 [53] 00007fd4 [54] 00007fd4 [55] 00007fd4 [56] 00007fd4 [57] 00007fd4 [58] 00007fd4 [59] 00007fd4 [60] 00007fd4 [61] 00007fd4 [62] 00007fd4 [63] 00007fd4
 v2: [0] 22222222 [1] 11111125 [2] 1111111b [3] 11111123 [4] 1111111d [5] 1111111c [6] 1111111a [7] 1111111d [8] 1111111a [9] 1111111b [10] 1111111c [11] 11111118 [12] 11111123 [13] 1111111c [14] 11111119 [15] 11111117 [16] 1111111d [17] 11111114 [18] 1111111b [19] 11111117 [20] 1111111a [21] 1111111d [22] 11111118 [23] 11111120 [24] 11111118 [25] 1111111c [26] 1111111d [27] 1111111e [28] 1111111a [29] 11111122 [30] 1111111e [31] 11111120 [32] 11111123 [33] 11111119 [34] 1111111c [35] 1111111d [36] 11111116 [37] 1111111a [38] 1111111d [39] 1111111c [40] 11111113 [41] 11111115 [42] 1111111d [43] 1111111f [44] 1111111e [45] 1111111c [46] 1111111f [47] 1111111e [48] 11111117 [49] 11111115 [50] 1111111a [51] 11111121 [52] 1111111f [53] 1111111b [54] 1111111b [55] 11111124 [56] 11111116 [57] 11111125 [58] 11111123 [59] 1111111b [60] 1111111a [61] 11111119 [62] 11111118 [63] 11111123
 v3: [0] 11111111 [1] 11111111 [2] 11111111 [3] 11111111 [4] 11111111 [5] 11111111 [6] 11111111 [7] 11111111 [8] 11111111 [9] 11111111 [10] 11111111 [11] 11111111 [12] 11111111 [13] 11111111 [14] 11111111 [15] 11111111 [16] 11111111 [17] 11111111 [18] 11111111 [19] 11111111 [20] 11111111 [21] 11111111 [22] 11111111 [23] 11111111 [24] 11111111 [25] 11111111 [26] 11111111 [27] 11111111 [28] 11111111 [29] 11111111 [30] 11111111 [31] 11111111 [32] 11111111 [33] 11111111 [34] 11111111 [35] 11111111 [36] 11111111 [37] 11111111 [38] 11111111 [39] 11111111 [40] 11111111 [41] 11111111 [42] 11111111 [43] 11111111 [44] 11111111 [45] 11111111 [46] 11111111 [47] 11111111 [48] 11111111 [49] 11111111 [50] 11111111 [51] 11111111 [52] 11111111 [53] 11111111 [54] 11111111 [55] 11111111 [56] 11111111 [57] 11111111 [58] 11111111 [59] 11111111 [60] 11111111 [61] 11111111 [62] 11111111 [63] 11111111
 v4: [0] f10115b0 [1] 0000000a [2] 00000005 [3] 00000009 [4] 00000004 [5] 00000001 [6] 00000001 [7] 0000000a [8] 00000004 [9] 00000005 [10] 00000008 [11] 00000002 [12] 00000008 [13] 00000001 [14] 00000006 [15] 00000005 [16] 00000005 [17] 00000001 [18] 00000001 [19] 00000002 [20] 00000006 [21] 00000006 [22] 00000002 [23] 0000000a [24] 00000001 [25] 00000001 [26] 0000000a [27] 00000006 [28] 00000001 [29] 00000008 [30] 0000000a [31] 00000009 [32] 00000009 [33] 00000007 [34] 0000000a [35] 00000007 [36] 00000003 [37] 00000003 [38] 00000008 [39] 00000001 [40] 00000001 [41] 00000002 [42] 00000005 [43] 00000009 [44] 00000005 [45] 00000005 [46] 0000000a [47] 00000003 [48] 00000004 [49] 00000001 [50] 00000002 [51] 0000000a [52] 0000000a [53] 00000001 [54] 00000007 [55] 0000000a [56] 00000004 [57] 0000000a [58] 00000008 [59] 00000006 [60] 00000008 [61] 00000001 [62] 00000004 [63] 00000009
 v5: [0] 00007fd4 [1] 00007fd4 [2] 00007fd4 [3] 00007fd4 [4] 00007fd4 [5] 00007fd4 [6] 00007fd4 [7] 00007fd4 [8] 00007fd4 [9] 00007fd4 [10] 00007fd4 [11] 00007fd4 [12] 00007fd4 [13] 00007fd4 [14] 00007fd4 [15] 00007fd4 [16] 00007fd4 [17] 00007fd4 [18] 00007fd4 [19] 00007fd4 [20] 00007fd4 [21] 00007fd4 [22] 00007fd4 [23] 00007fd4 [24] 00007fd4 [25] 00007fd4 [26] 00007fd4 [27] 00007fd4 [28] 00007fd4 [29] 00007fd4 [30] 00007fd4 [31] 00007fd4 [32] 00007fd4 [33] 00007fd4 [34] 00007fd4 [35] 00007fd4 [36] 00007fd4 [37] 00007fd4 [38] 00007fd4 [39] 00007fd4 [40] 00007fd4 [41] 00007fd4 [42] 00007fd4 [43] 00007fd4 [44] 00007fd4 [45] 00007fd4 [46] 00007fd4 [47] 00007fd4 [48] 00007fd4 [49] 00007fd4 [50] 00007fd4 [51] 00007fd4 [52] 00007fd4 [53] 00007fd4 [54] 00007fd4 [55] 00007fd4 [56] 00007fd4 [57] 00007fd4 [58] 00007fd4 [59] 00007fd4 [60] 00007fd4 [61] 00007fd4 [62] 00007fd4 [63] 00007fd4
 v6: [0] 00007ffe [1] 00007ffe [2] 00007ffe [3] 00007ffe [4] 00007ffe [5] 00007ffe [6] 00007ffe [7] 00007ffe [8] 00007ffe [9] 00007ffe [10] 00007ffe [11] 00007ffe [12] 00007ffe [13] 00007ffe [14] 00007ffe [15] 00007ffe [16] 00007ffe [17] 00007ffe [18] 00007ffe [19] 00007ffe [20] 00007ffe [21] 00007ffe [22] 00007ffe [23] 00007ffe [24] 00007ffe [25] 00007ffe [26] 00007ffe [27] 00007ffe [28] 00007ffe [29] 00007ffe [30] 00007ffe [31] 00007ffe [32] 00007ffe [33] 00007ffe [34] 00007ffe [35] 00007ffe [36] 00007ffe [37] 00007ffe [38] 00007ffe [39] 00007ffe [40] 00007ffe [41] 00007ffe [42] 00007ffe [43] 00007ffe [44] 00007ffe [45] 00007ffe [46] 00007ffe [47] 00007ffe [48] 00007ffe [49] 00007ffe [50] 00007ffe [51] 00007ffe [52] 00007ffe [53] 00007ffe [54] 00007ffe [55] 00007ffe [56] 00007ffe [57] 00007ffe [58] 00007ffe [59] 00007ffe [60] 00007ffe [61] 00007ffe [62] 00007ffe [63] 00007ffe
 v7: [0] 3d3495ac [1] bd0dfb7a [2] bcc1143a [3] bca64d59 [4] bc112d79 [5] 3cbcc8c8 [6] 3ce69f7c [7] 3de967fe [8] bdee8d4d [9] 3c9e426b [10] bc6d380f [11] 3c18495c [12] be38843f [13] bd5a1da8 [14] 3d80c7e4 [15] bc978798 [16] 3cd52d8d [17] bd58d230 [18] 3e2e91ac [19] bca54a71 [20] 3c3cea13 [21] 3c888a4b [22] 3de0a868 [23] 3d220de3 [24] 3ce4d6f8 [25] bc033ce0 [26] bb38519f [27] b9a4b621 [28] bd800802 [29] bdb04d27 [30] bc826d02 [31] bd4aa05d [32] 3dae9483 [33] b921dac8 [34] 3d194f79 [35] bd1ccbd9 [36] bd45f9c5 [37] bc1b4cb0 [38] 3db1ab4b [39] 3e0487ab [40] 3d37f334 [41] 3b983eb8 [42] 3caba2a4 [43] bd8944ea [44] be01bee7 [45] bbbf22d8 [46] 3d076472 [47] bd2eb34c [48] 3c3da426 [49] 3d754b6d [50] 3c08a069 [51] bcdeca32 [52] be12e2e4 [53] 3c92d0e2 [54] 3d1480e4 [55] 3d817751 [56] 3db0072c [57] 3d6fc70b [58] bd6a67a1 [59] 3da0f9ed [60] 3b67b5e6 [61] bdb8002e [62] 3cd0a9b9 [63] 386eee2b

Local memory content:
 0x0000: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0020: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0040: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0060: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0080: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x00a0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x00c0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x00e0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0100: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0120: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0140: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0160: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x0180: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x01a0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x01c0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111
 0x01e0: 22222222 11111111 22222222 11111111 22222222 11111111 22222222 11111111

Disassembly for function vector_add_assert_trap(int*, int*, int*):
 code object: file:////rocm-debug-agent/build/test/rocm-debug-agent-test#offset=14309&size=31336
 loaded at: [0x7fd4f100c000-0x7fd4f100e070]

/rocm-debug-agent/test/vector_add_assert_trap.cpp:
55 c[gid] = a[gid] + b[gid] + (lds_check[0] >> 32);
 0x7fd4f100d0c4 <+196>: s_waitcnt vmcnt(0) lgkmcnt(0)
 0x7fd4f100d0c8 <+200>: v_add3_u32 v2, v2, v4, v3
 0x7fd4f100d0d0 <+208>: global_store_dword v[0:1], v2, off
 0x7fd4f100d0d8 <+216>: s_or_saveexec_b64 s[0:1], s[0:1]
 0x7fd4f100d0dc <+220>: s_xor_b64 exec, exec, s[0:1]
 0x7fd4f100d0e0 <+224>: s_cbranch_execz 65503 # 0x7fd4f100d060 <vector_add_assert_trap(int*, int*, int*)+96>

53 __builtin_trap ();
 0x7fd4f100d0e4 <+228>: s_mov_b64 s[0:1], s[6:7]
 => 0x7fd4f100d0e8 <+232>: s_trap 2
 0x7fd4f100d0ec <+236>: s_endpgm

End of disassembly.
Aborted (core dumped)

The supported triggering events are:

	Memory fault

A memory fault happens when an AMD GPU accesses a page that is not
accessible. The information about the memory fault is printed. For
example:

System event (HSA_AMD_GPU_MEMORY_FAULT_EVENT: page not present or supervisor privilege, write access to a read-only page)
Faulting page: 0x7fbe4cc01000

There could be multiple memory faults, but the information about only
one is printed.

A memory fault does not specify the wavefront that caused it.
However, the stop reason for each wavefront is available. For
example:

wave_0: pc=0x7fbe4cc0d0b4 (stopped, reason: MEMORY_VIOLATION)

	Assert trap

This occurs when an s_trap 2 instruction is executed. The
__builtin_trap() language builtin, or llvm.trap LLVM IR
instruction, can be used to generate this AMD GPU instruction.

	Illegal instruction

This occurs when the hardware detects an illegal instruction.

	SIGQUIT ``(Ctrl-)``

A SIGQUIT signal can be sent to a process with the
kill -s SIGQUIT <pid> command or by pressing Ctrl-\. See the
--disable-linux-signals option for more information.

Options

Options are passed through the ROCM_DEBUG_AGENT_OPTIONS environment
variable. For example:

ROCM_DEBUG_AGENT_OPTIONS="--all --save-code-objects" \
 HSA_TOOLS_LIB=librocm-debug-agent.so.2 ./my_program

The supported options are:

	``-a``, ``–all``

Prints all wavefronts.

If not specified, only wavefronts that have a triggering event are
printed.

	``-s [DIR]``, ``–save-code-objects[=DIR]``

Saves all loaded code objects. If the directory is not specified, the
code objects are saved in the current directory.

The file name in which the code object is saved is the same as the
code object URI with special characters replaced by '_'. For
example, the code object URI:

file:///rocm-debug-agent/rocm-debug-agent-test#offset=14309&size=31336

is saved in a file with the name:

file____rocm-debug-agent_rocm-debug-agent-test_offset_14309_size_31336

	``-o <file-path>``, ``–output=<file-path>``

Saves the output produced by the ROCdebug-agent in the specified
file.

By default, the output is redirected to stderr.

	``-d``, ``–disable-linux-signals``

Disables installing a SIGQUIT signal handler, so that the default
Linux handler may dump a core file.

By default, the ROCdebug-agent installs a SIGQUIT handler to print
the state of all wavefronts when a SIGQUIT signal is sent to the
process.

	``-l <log-level>``, ``–log-level=<log-level>``

Changes the ROCdebug-agent and ROCdbgapi log level. The log level can
be none, info, warning, or error.

The default log level is none.

	``-h``, ``–help``

Displays a usage message and aborts the process.

Build the ROCdebug-agent library

The ROCdebug-agent library can be built on Ubuntu 18.04, Ubuntu 20.04,
Centos 8.1, RHEL 8.1, and SLES 15 Service Pack 1.

Building the ROCdebug-agent library has the following prerequisites:

	A C++17 compiler such as GCC 7 or Clang 5.

	The AMD ROCm software stack which can be installed as part of the AMD
ROCm release by the rocm-dev package.

	For Ubuntu 18.04 the following adds the needed packages:

apt install libelf-dev libdw-dev

	For CentOS 8.1 and RHEL 8.1 the following adds the needed packages:

yum install elfutils-libelf-devel elfutils-devel

	For SLES 15 Service Pack 1 the following adds the needed packages:

zypper install libelf-devel libdw-devel

	Python version 3.6 or later is required to run the tests.

An example command-line to build and install the ROCdebug-agent library
on Linux is:

cd rocm-debug-agent
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=../install ..
make

Use the CMAKE_INSTALL_PREFIX to specify where the ROCdebug-agent
library should be installed. The default location is /usr.

Use CMAKE_MODULE_PATH to specify a ';' separated list of paths
that will be used to locate cmake modules. It is used to locate the HIP
cmake modules required to build the tests. The default is
/opt/rocm/hip/cmake

The built ROCdebug-agent library will be placed in:

	build/librocm-debug-agent.so.2*

To install the ROCdebug-agent library:

make install

The installed ROCdebug-agent library will be placed in:

	<install-prefix>/lib/librocm-debug-agent.so.2*

	<install-prefix>/bin/rocm-debug-agent-test

	<install-prefix>/bin/run-test.py

	<install-prefix>/share/rocm-debug-agent/LICENSE.txt

	<install-prefix>/share/rocm-debug-agent/README.md

To use the ROCdebug-agent library, the ROCdbgapi library must be
installed. This can be installed as part of the ROCm release by the
rocm-dbgapi package.

Test the ROCdebug-agent library

To test the ROCdebug-agent library:

make test

The output should be:

Running tests...
Test project /rocm-debug-agent/build
 Start 1: rocm-debug-agent-test
1/1 Test #1: rocm-debug-agent-test Passed 1.59 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 1.59 sec

Tests can be run individually outside of the CTest harness. For example:

HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 0
HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 1
HSA_TOOLS_LIB=librocm-debug-agent.so.2 test/rocm-debug-agent-test 2

Known Limitations and Restrictions

	A disassembly of the wavefront faulting PC is only provided if it is
within a code object.

Disclaimer

The information contained herein is for informational purposes only and
is subject to change without notice. While every precaution has been
taken in the preparation of this document, it may contain technical
inaccuracies, omissions and typographical errors, and AMD is under no
obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect
to the accuracy or completeness of the contents of this document, and
assumes no liability of any kind, including the implied warranties of
noninfringement, merchantability or fitness for particular purposes,
with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by
estoppel, to any intellectual property rights is granted by this
document. Terms and limitations applicable to the purchase or use of
AMD’s products are as set forth in a signed agreement between the
parties or in AMD’s Standard Terms and Conditions of Sale.

AMD®, the AMD Arrow logo, ROCm® and combinations thereof are trademarks
of Advanced Micro Devices, Inc. Linux® is the registered trademark of
Linus Torvalds in the U.S. and other countries. RedHat® and the
Shadowman logo are registered trademarks of Red Hat, Inc. www.redhat.com
in the U.S. and other countries. SUSE® is a registered trademark of SUSE
LLC in the United Stated and other countries. Ubuntu® and the Ubuntu
logo are registered trademarks of Canonical Ltd. Other product names
used in this publication are for identification purposes only and may be
trademarks of their respective companies.

Copyright (c) 2018-2020 Advanced Micro Devices, Inc. All rights
reserved.

 For the latest HIP Programming Guide documentation, refer to the PDF version at:

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.3.pdf

System Level Debug

ROCm Language & System Level Debug, Flags, and Environment Variables

Kernel options to avoid Ethernet port getting renamed every time you change graphics cards

net.ifnames=0 biosdevname=0

ROCr Error Code

	2 Invalid Dimension

	4 Invalid Group Memory

	8 Invalid (or Null) Code

	32 Invalid Format

	64 Group is too large

	128 Out of VGPR’s

	0x80000000 Debug Trap

Command to dump firmware version and get Linux Kernel version

	sudo cat /sys/kernel/debug/dri/1/amdgpu_firmware_info

	uname -a

Debug Flags

Debug messages when developing/debugging base ROCm dirver. You could enable the printing from libhsakmt.so by setting an environment variable, HSAKMT_DEBUG_LEVEL. Available debug levels are 3~7. The higher level you set, the more messages will print.

	export HSAKMT_DEBUG_LEVEL=3 : only pr_err() will print.

	export HSAKMT_DEBUG_LEVEL=4 : pr_err() and pr_warn() will print.

	export HSAKMT_DEBUG_LEVEL=5 : We currently don’t implement “notice”. Setting to 5 is same as setting to 4.

	export HSAKMT_DEBUG_LEVEL=6 : pr_err(), pr_warn(), and pr_info will print.

	export HSAKMT_DEBUG_LEVEL=7 : Everything including pr_debug will print.

ROCr level env variable for debug

	HSA_ENABLE_SDMA=0

	HSA_ENABLE_INTERRUPT=0

	HSA_SVM_GUARD_PAGES=0

	HSA_DISABLE_CACHE=1

Turn Off Page Retry on GFX9/Vega devices

	sudo –s

	echo 1 > /sys/module/amdkfd/parameters/noretry

HIP Environment Variables

OpenCL Debug Flags

	AMD_OCL_WAIT_COMMAND=1 (0 = OFF, 1 = On)

PCIe-Debug

Refer here for ROCm PCIe Debug

More information here on how to debug and profile HIP applications

	HIP-Debugging [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/HIP_Debugging.html#hip-debugging]

	HIP-Profiling [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/hip_profiling.html#hip-profiling]

ROCmValidationSuite

The ROCm Validation Suite (RVS) is a system administrator’s and cluster manager’s tool for detecting and troubleshooting common problems affecting AMD GPU(s) running in a high-performance computing environment, enabled using the ROCm software stack on a compatible platform.

The RVS is a collection of tests, benchmarks and qualification tools each targeting a specific sub-system of the ROCm platform. All of the tools are implemented in software and share a common command line interface. Each set of tests are implemented in a “module” which is a library encapsulating the functionality specific to the tool. The CLI can specify the directory containing modules to use when searching for libraries to load. Each module may have a set of options that it defines and a configuration file that supports its execution.

ROCmValidationSuite Modules

GPU Properties – GPUP

The GPU Properties module queries the configuration of a target device and returns the device’s static characteristics. These static values can be used to debug issues such as device support, performance and firmware problems.

GPU Monitor – GM module

The GPU monitor tool is capable of running on one, some or all of the GPU(s) installed and will report various information at regular intervals. The module can be configured to halt another RVS modules execution if one of the quantities exceeds a specified boundary value.

PCI Express State Monitor – PESM module?

The PCIe State Monitor tool is used to actively monitor the PCIe interconnect between the host platform and the GPU. The module will register a “listener” on a target GPU’s PCIe interconnect, and log a message whenever it detects a state change. The PESM will be able to detect the following state changes:

	PCIe link speed changes

	GPU power state changes

PCI Express Qualification Tool – PEQT module

The PCIe Qualification Tool consists is used to qualify the PCIe bus on which the GPU is connected. The qualification test will be capable of determining the following characteristics of the PCIe bus interconnect to a GPU:

	Support for Gen 3 atomic completers

	DMA transfer statistics

	PCIe link speed

	PCIe link width

P2P Benchmark and Qualification Tool – PBQT module

The P2P Benchmark and Qualification Tool is designed to provide the list of all GPUs that support P2P and characterize the P2P links between peers. In addition to testing for P2P compatibility, this test will perform a peer-to-peer throughput test between all P2P pairs for performance evaluation. The P2P Benchmark and Qualification Tool will allow users to pick a collection of two or more GPUs on which to run. The user will also be able to select whether or not they want to run the throughput test on each of the pairs.

Please see the web page “ROCm, a New Era in Open GPU Computing” to find out more about the P2P solutions available in a ROCm environment.

PCI Express Bandwidth Benchmark – PEBB module

The PCIe Bandwidth Benchmark attempts to saturate the PCIe bus with DMA transfers between system memory and a target GPU card’s memory. The maximum bandwidth obtained is reported to help debug low bandwidth issues. The benchmark should be capable of targeting one, some or all of the GPUs installed in a platform, reporting individual benchmark statistics for each.

GPU Stress Test - GST module

The GPU Stress Test runs a Graphics Stress test or SGEMM/DGEMM (Single/Double-precision General Matrix Multiplication) workload on one, some or all GPUs. The GPUs can be of the same or different types. The duration of the benchmark should be configurable, both in terms of time (how long to run) and iterations (how many times to run).

The test should be capable driving the power level equivalent to the rated TDP of the card, or levels below that. The tool must be capable of driving cards at TDP-50% to TDP-100%, in 10% incremental jumps. This should be controllable by the user.

Input EDPp Test - IET module

The Input EDPp Test generates EDP peak power on all input rails. This test is used to verify if the system PSU is capable of handling the worst case power spikes of the board. Peak Current at defined period = 1 minute moving average power.

Examples and about config files link [https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/roc-3.0.0/doc/ugsrc/ug1main.md].

Prerequisites

Ubuntu :

sudo apt-get -y update && sudo apt-get install -y libpci3 libpci-dev doxygen unzip cmake git

CentOS :

sudo yum install -y cmake3 doxygen pciutils-devel rpm rpm-build git gcc-c++

RHEL :

sudo yum install -y cmake3 doxygen rpm rpm-build git gcc-c++

wget http://mirror.centos.org/centos/7/os/x86_64/Packages/pciutils-devel-3.5.1-3.el7.x86_64.rpm

sudo rpm -ivh pciutils-devel-3.5.1-3.el7.x86_64.rpm

SLES :

sudo SUSEConnect -p sle-module-desktop-applications/15.1/x86_64

sudo SUSEConnect --product sle-module-development-tools/15.1/x86_64

sudo zypper install -y cmake doxygen pciutils-devel libpci3 rpm git rpm-build gcc-c++

Install ROCm stack, rocblas and rocm_smi64

Install ROCm stack for Ubuntu/CentOS, Refer https://github.com/RadeonOpenCompute/ROCm

Install rocBLAS and rocm_smi64 :

Ubuntu :

sudo apt-get install rocblas rocm_smi64

CentOS & RHEL :

sudo yum install rocblas rocm_smi64

SUSE :

sudo zypper install rocblas rocm_smi64

Note: If rocm_smi64 is already installed but “/opt/rocm/rocm_smi/ path doesn’t exist. Do below:

Ubuntu : sudo dpkg -r rocm_smi64 && sudo apt install rocm_smi64

CentOS & RHEL : sudo rpm -e rocm_smi64 && sudo yum install rocm_smi64

SUSE : sudo rpm -e rocm_smi64 && sudo zypper install rocm_smi64

Building from Source

This section explains how to get and compile current development stream of RVS.

Clone repository

git clone https://github.com/ROCm-Developer-Tools/ROCmValidationSuite.git

Configure and build RVS:

cd ROCmValidationSuite

If OS is Ubuntu and SLES, use cmake

cmake ./ -B./build

make -C ./build

If OS is CentOS and RHEL, use cmake3

cmake3 ./ -B./build

make -C ./build

Build package:

cd ./build

make package

Note:_ based on your OS, only DEB or RPM package will be built. You may ignore an error for the unrelated configuration

Install package:

Ubuntu : sudo dpkg -i rocm-validation-suite*.deb
CentOS & RHEL & SUSE : sudo rpm -i --replacefiles --nodeps rocm-validation-suite*.rpm

Running RVS

Running version built from source code:

cd ./build/bin
sudo ./rvs -d 3
sudo ./rvsqa.new.sh ; It will run complete rvs test suite

Regression

Regression is currently implemented for PQT module only. It comes in the form of a Python script run_regression.py.

The script will first create valid configuration files on $RVS_BUILD/regression folder. It is done by invoking prq_create_conf.py script to generate valid configuration files. If you need different tests, modify the prq_create_conf.py script to generate them.

Then, it will iterate through generated files and invoke RVS to specifying also JSON output and -d 3 logging level.

Finally, it will iterate over generated JSON output files and search for ERROR string. Results are written into $RVS_BUILD/regression/regression_res file.

Results are written into $RVS_BUILD/regression/

Environment variables

Before running the run_regression.py you first need to set the following environment variables for location of RVS source tree and build folders (ajdust for your particular clone):

export WB=/work/yourworkfolder
export RVS=$WB/ROCmValidationSuite
export RVS_BUILD=$RVS/../build

Running the script

Just do:

cd $RVS/regression
./run_regression.py

System Management Interface

A System Management Interface (SMI) event interface is added to the kernel and a ROCm SMI library for system administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS input/output control is enhanced to allow notifications propagation to user mode through the event channel.

On the ROCm SMI lib side, APIs are added to set an event mask and receive event notifications with a timeout option. Further, ROCm SMI API details can be found in the PDF generated by Doxygen from source or by referring to the rocm_smi.h header file (see the rsmi_event_notification_* functions).

For more information, download the latest System Management Interface API guide at:

https://github.com/RadeonOpenCompute/ROCm

ROCm SMI library

ROCm System Management Interface (ROCm SMI) Library

The ROCm System Management Interface Library, or ROCm SMI library, is part of the Radeon Open Compute ROCm [https://github.com/RadeonOpenCompute] software stack . It is a C library for Linux that provides a user space interface for applications to monitor and control GPU applications.

Important note about Versioning and Backward Compatibility

The ROCm SMI library is currently under development, and therefore subject to change either at the ABI or API level. The intention is to keep the API as stable as possible even while in development, but in some cases we may need to break backwards compatibility in order to ensure future stability and usability. Following Semantic Versioning [https://semver.org/] rules, while the ROCm SMI library is in high state of change, the major version will remain 0, and backward compatibility is not ensured.

Once new development has leveled off, the major version will become greater than 0, and backward compatibility will be enforced between major versions.

Building ROCm SMI

Additional Required software for building

In order to build the ROCm SMI library, the following components are required. Note that the software versions listed are what was used in development. Earlier versions are not guaranteed to work:

	CMake (v3.5.0)

	g++ (5.4.0)

In order to build the latest documentation, the following are required:

	Doxygen (1.8.11)

	latex (pdfTeX 3.14159265-2.6-1.40.16)

The source code for ROCm SMI is available on Github [https://github.com/RadeonOpenCompute/rocm_smi_lib].

After the the ROCm SMI library git repository has been cloned to a local Linux machine, building the library is achieved by following the typical CMake build sequence. Specifically,

$ mk -p build
$ cd build
$ cmake <location of root of ROCm SMI library CMakeLists.txt>
$ make
Install library file and header; default location is /opt/rocm
$ make install

The built library will appear in the build folder.

Building Documentation

The documentation PDF file can be built with the following steps (continued from the steps above):

$ make doc
$ cd latex
$ make

The reference manual, refman.pdf will be in the latex directory upon a successful build.

Building Tests

In order to verify the build and capability of ROCm SMI on your system and to see an example of how ROCm SMI can be used, you may build and run the tests that are available in the repo. To build the tests, follow these steps:

Set environment variables used in CMakeLists.txt file
$ ROCM_DIR=<location of ROCm SMI library>
$ mkdir <location for test build>
$ cd <location for test build>
$ cmake -DROCM_DIR=<location of ROCM SMI library .so> <ROCm SMI source root>/tests/rocm_smi_test
$ make

To run the test, execute the program rsmitst that is built from the steps above.

Usage Basics

Device Indices

Many of the functions in the library take a “device index”. The device index is a number greater than or equal to 0, and less than the number of devices detected, as determined by rsmi_num_monitor_devices(). The index is used to distinguish the detected devices from one another. It is important to note that a device may end up with a different index after a reboot, so an index should not be relied upon to be constant over reboots.

Hello ROCm SMI

The only required ROCm-SMI call for any program that wants to use ROCm-SMI is the rsmi_init() call. This call initializes some internal data structures that will be used by subsequent ROCm-SMI calls.

When ROCm-SMI is no longer being used, rsmi_shut_down() should be called. This provides a way to do any releasing of resources that ROCm-SMI may have held. In many cases, this may have no effect, but may be necessary in future versions of the library.

A simple “Hello World” type program that displays the device ID of detected devices would look like this:

#include <stdint.h>
#include "rocm_smi/rocm_smi.h"
int main() {
rsmi_status_t ret;
uint32_t num_devices;
uint64_t dev_id;

// We will skip return code checks for this example, but it
// is recommended to always check this as some calls may not
// apply for some devices or ROCm releases

ret = rsmi_init(0);
ret = rsmi_num_monitor_devices(&num_devices);

for (int i=0; i < num_devices; ++i) {
 ret = rsmi_dev_id_get(i, &dev_id);
 // dev_id holds the device ID of device i, upon a
 // successful call
}
ret = rsmi_shut_down();
return 0;
}

SYSFS Interface

Naming and data format standards for sysfs files

The libsensors library offers an interface to the raw sensors data through the sysfs interface. Since lm-sensors 3.0.0, libsensors is completely chip-independent. It assumes that all the kernel drivers implement the standard sysfs interface described in this document. This makes adding or updating support for any given chip very easy, as libsensors, and applications using it, do not need to be modified. This is a major improvement compared to lm-sensors 2.

Note that motherboards vary widely in the connections to sensor chips. There is no standard that ensures, for example, that the second temperature sensor is connected to the CPU, or that the second fan is on the CPU. Also, some values reported by the chips need some computation before they make full sense. For example, most chips can only measure voltages between 0 and +4V. Other voltages are scaled back into that range using external resistors. Since the values of these resistors can change from motherboard to motherboard, the conversions cannot be hard coded into the driver and have to be done in user space.

For this reason, even if we aim at a chip-independent libsensors, it will still require a configuration file (e.g. /etc/sensors.conf) for proper values conversion, labeling of inputs and hiding of unused inputs.

An alternative method that some programs use is to access the sysfs files directly. This document briefly describes the standards that the drivers follow, so that an application program can scan for entries and access this data in a simple and consistent way. That said, such programs will have to implement conversion, labeling and hiding of inputs. For this reason, it is still not recommended to bypass the library.

Each chip gets its own directory in the sysfs /sys/devices tree. To find all sensor chips, it is easier to follow the device symlinks from /sys/class/hwmon/hwmon*.

Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes in the “physical” device directory. Since lm-sensors 3.0.1, attributes found in the hwmon “class” device directory are also supported. Complex drivers (e.g. drivers for multifunction chips) may want to use this possibility to avoid namespace pollution. The only drawback will be that older versions of libsensors won’t support the driver in question.

All sysfs values are fixed point numbers.

There is only one value per file, unlike the older /proc specification. The common scheme for files naming is: <type><number>_<item>. Usual types for sensor chips are “in” (voltage), “temp” (temperature) and “fan” (fan). Usual items are “input” (measured value), “max” (high threshold, “min” (low threshold). Numbering usually starts from 1, except for voltages which start from 0 (because most data sheets use this). A number is always used for elements that can be present more than once, even if there is a single element of the given type on the specific chip. Other files do not refer to a specific element, so they have a simple name, and no number.

Alarms are direct indications read from the chips. The drivers do NOT make comparisons of readings to thresholds. This allows violations between readings to be caught and alarmed. The exact definition of an alarm (for example, whether a threshold must be met or must be exceeded to cause an alarm) is chip-dependent.

When setting values of hwmon sysfs attributes, the string representation of the desired value must be written, note that strings which are not a number are interpreted as 0! For more on how written strings are interpreted see the “sysfs attribute writes interpretation” section at the end of this file.

	[0-*]

	denotes any positive number starting from 0

	[1-*]

	denotes any positive number starting from 1

	RO

	read only value

	WO

	write only value

	RW

	read/write value

Read/write values may be read-only for some chips, depending on the hardware implementation.

All entries (except name) are optional, and should only be created in a given driver if the chip has the feature.

Global Attributes

	name

	
The chip name.This should be a short, lowercase string, not containing whitespace,

dashes, or the wildcard character ‘*’.This attribute represents the chip name.

It is the only mandatory attribute.I2C devices get this attribute created automatically.

RO

	update_interval

	
The interval at which the chip will update readings.

Unit: millisecond

RW

Some devices have a variable update rate or interval.

This attribute can be used to change it to the desired value.

Voltages

	in[0-*]_min

	
Voltage min value.

Unit: millivolt

RW

	in[0-*]_lcrit

	
Voltage critical min value.

Unit: millivolt

RW

If voltage drops to or below this limit, the system may take drastic action such as power

down or reset. At the very least, it should report a fault.

	in[0-*]_max

	
Voltage max value.

Unit: millivolt

RW

	in[0-*]_crit

	
Voltage critical max value.

Unit: millivolt

RW

If voltage reaches or exceeds this limit, the system may take drastic action such as power

down or reset. At the very least, it should report a fault.

	in[0-*]_input

	
Voltage input value.

Unit: millivolt

RO

Voltage measured on the chip pin.Actual voltage depends on the scaling resistors on the

motherboard, as recommended in the chip datasheet.This varies by chip and by motherboard.

Because of this variation, values are generally NOT scaled by the chip driver, and must be

done by the application.However, some drivers (notably lm87 and via686a) do scale, because

of internal resistors built into a chip.These drivers will output the actual voltage. Rule of

thumb: drivers should report the voltage values at the “pins” of the chip.

	in[0-*]_average

	
Average voltage

Unit: millivolt

RO

	in[0-*]_lowest

	
Historical minimum voltage

Unit: millivolt

RO

	in[0-*]_highest

	
Historical maximum voltage

Unit: millivolt

RO

	in[0-*]_reset_history

	
Reset inX_lowest and inX_highest

WO

	in_reset_history

	
Reset inX_lowest and inX_highest for all sensors

WO

	in[0-*]_label

	
Suggested voltage channel label.

Text string Should only be created if the driver has hints about what this voltage channel

is being used for, and user-space doesn’t. In all other cases, the label is provided by

user-space.

RO

	in[0-*]_enable

	
Enable or disable the sensors.

When disabled the sensor read will return -ENODATA.

1: Enable

0: Disable

RW

	cpu[0-*]_vid

	
CPU core reference voltage.

Unit: millivolt

RO

Not always correct.

	vrm

	
Voltage Regulator Module version number.

RW (but changing it should no more be necessary)

Originally the VRM standard version multiplied by 10, but now an arbitrary number, as not

all standards have a version number.Affects the way the driver calculates the CPU core

reference voltage from the vid pins.

Also see the Alarms section for status flags associated with voltages.

Fans

	fan[1-*]_min

	
Fan minimum value

Unit: revolution/min (RPM)

RW

	fan[1-*]_max

	
Fan maximum value

Unit: revolution/min (RPM)

Only rarely supported by the hardware.

RW

	fan[1-*]_input

	
Fan input value.

Unit: revolution/min (RPM)

RO

	fan[1-*]_div

	
Fan divisor.

Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).

RW

Some chips only support values 1, 2, 4 and 8.

Note that this is actually an internal clock divisor, which

affects the measurable speed range, not the read value.

	fan[1-*]_pulses

	
Number of tachometer pulses per fan revolution.

Integer value, typically between 1 and 4.

RW

This value is a characteristic of the fan connected to the device’s input,

so it has to be set in accordance with the fan model.Should only be created

if the chip has a register to configure the number of pulses. In the absence

of such a register (and thus attribute) the value assumed by all devices is 2 pulses

per fan revolution.

	fan[1-*]_target

	
Desired fan speed

Unit: revolution/min (RPM)

RW

Only makes sense if the chip supports closed-loop fan speed

control based on the measured fan speed.

	fan[1-*]_label

	
Suggested fan channel label.

Text string

Should only be created if the driver has hints about what this fan channel is being

used for, and user-space doesn’t.In all other cases, the label is provided by user-space.

RO

	fan[1-*]_enable

	
Enable or disable the sensors

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Also see the Alarms section for status flags associated with fans.

Pulse with Modulation

	pwm[1-*]

	
Pulse width modulation fan control.

Integer value in the range 0 to 255

RW

255 is max or 100%.

	pwm[1-*]_enable

	
Fan speed control method:

0: no fan speed control (i.e. fan at full speed)

1: manual fan speed control enabled (using pwm[1-*])

2+: automatic fan speed control enabled

Check individual chip documentation files for automatic mode details.

RW

	pwm[1-*]_mode

	
0: DC mode (direct current)

1: PWM mode (pulse-width modulation)

RW

	pwm[1-*]_freq

	
Base PWM frequency in Hz.

Only possibly available when pwmN_mode is PWM, but not always present even then.

RW

	pwm[1-*]_auto_channels_temp

	
Select which temperature channels affect this PWM output in auto mode. Bitfield,

1 is temp1, 2 is temp2, 4 is temp3 etc…

Which values are possible depend on the chip used.

RW

	
pwm[1-]_auto_point[1-]_pwm

pwm[1-]_auto_point[1-]_temp

pwm[1-]_auto_point[1-]_temp_hyst

	
Define the PWM vs temperature curve. Number of trip points is chip-dependent.Use this

for chips which associate trip points to PWM output channels.

RW

	
temp[1-]_auto_point[1-]_pwm

temp[1-]_auto_point[1-]_temp

temp[1-]_auto_point[1-]_temp_hyst

	
Define the PWM vs temperature curve. Number of trip points is chip dependent.

Use this for chips which associate trip points to temperature channels.

RW

There is a third case where trip points are associated to both PWM output channels and temperature channels: the PWM values are associated to PWM output channels while the temperature values are associated to temperature channels. In that case, the result is determined by the mapping between temperature inputs and PWM outputs. When several temperature inputs are mapped to a given PWM output, this leads to several candidate PWM values.The actual result is up to the chip, but in general the highest candidate
value (fastest fan speed) wins.

Temperatures

	temp[1-*]_type

	
Sensor type selection.

Integers 1 to 6

RW

1: CPU embedded diode

2: 3904 transistor

3: thermal diode

4: thermistor

5: AMD AMDSI

6: Intel PECI

Not all types are supported by all chips

	temp[1-*]_max

	
Temperature max value.

Unit: millidegree Celsius (or millivolt, see below)

RW

	temp[1-*]_min

	
Temperature min value.

Unit: millidegree Celsius

RW

	temp[1-*]_max_hyst

	
Temperature hysteresis value for max limit.

Unit: millidegree Celsius

Must be reported as an absolute temperature, NOT a delta from the max value.

RW

	temp[1-*]_min_hyst

	
Temperature hysteresis value for min limit.

Unit: millidegree Celsius

Must be reported as an absolute temperature, NOT a delta from the min value.

RW

	temp[1-*]_input

	
Temperature input value.

Unit: millidegree Celsius

RO

	temp[1-*]_crit

	
Temperature critical max value, typically greater than

corresponding temp_max values.

Unit: millidegree Celsius

RW

	temp[1-*]_crit_hyst

	
Temperature hysteresis value for critical limit.

Unit: millidegree Celsius

Must be reported as an absolute temperature, NOT a delta from the critical value.

RW

	temp[1-*]_emergency

	
Temperature emergency max value, for chips supporting more than two upper

temperature limits. Must be equal or greater than corresponding temp_crit values.

Unit: millidegree Celsius

RW

	temp[1-*]_emergency_hyst

	
Temperature hysteresis value for emergency limit.

Unit: millidegree Celsius

Must be reported as an absolute temperature, NOT a delta from the emergency value.

RW

	temp[1-*]_lcrit

	
Temperature critical min value, typically lower than corresponding temp_min values.

Unit: millidegree Celsius

RW

	temp[1-*]_lcrit_hyst

	
Temperature hysteresis value for critical min limit.

Unit: millidegree Celsius

Must be reported as an absolute temperature, NOT a delta from the critical min value.

RW

	temp[1-*]_offset

	
Temperature offset which is added to the temperature reading by the chip.

Unit: millidegree Celsius

Read/Write value.

	temp[1-*]_label

	
Suggested temperature channel label.

Text string Should only be created if the driver has hints about what this temperature

channel is being used for, and user-space doesn’t. In all other cases, the label is

provided by user-space.

RO

	temp[1-*]_lowest

	
Historical minimum temperature

Unit: millidegree Celsius

RO

	temp[1-*]_highest

	
Historical maximum temperature

Unit: millidegree Celsius

RO

	temp[1-*]_reset_history

	
Reset temp_lowest and temp_highest

WO

	temp_reset_history

	
Reset temp_lowest and temp_highest for all sensors

WO

	temp[1-*]_enable

	
Enable or diable the sensors

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Some chips measure temperature using external thermistors and an ADC, and report the temperature measurement as a voltage. Converting this voltage back to a temperature (or the other way around for limits) requires mathematical functions not available in the kernel, so the conversion must occur in user space. For these chips, all temp* files described above should contain values expressed in millivolt instead of millidegree Celsius. In other words, such temperature channels are handled as voltage channels by the driver.

Also see the Alarms section for status flags associated with temperatures.

Currents

	curr[1-*]_max

	
Current max value

Unit: milliampere

RW

	curr[1-*]_min

	
Current min value.

Unit: milliampere

RW

	curr[1-*]_lcrit

	
Current critical low value

Unit: milliampere

RW

	curr[1-*]_crit

	
Current critical high value.

Unit: milliampere

RW

	curr[1-*]_input

	
Current input value

Unit: milliampere

RO

	curr[1-*]_average

	
Average current use

Unit: milliampere

RO

	curr[1-*]_lowest

	
Historical minimum current

Unit: milliampere

RO

	curr[1-*]_highest

	
Historical maximum current

Unit: milliampere

RO

	curr[1-*]_reset_history

	
Reset currX_lowest and currX_highest

WO

	curr_reset_history

	
Reset currX_lowest and currX_highest for all sensors

WO

	curr[1-*]_enable

	
Enable or disable the sensors

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Also see the Alarms section for status flags associated with currents.

Power

	power[1-*]_average

	
Average power use

Unit: microWatt

RO

	power[1-*]_average_interval

	
Power use averaging interval. A poll notification is sent to this

file if the hardware changes the averaging interval.

Unit: milliseconds

RW

	power[1-*]_average_interval_max

	
Maximum power use averaging interval

Unit: milliseconds

RO

	power[1-*]_average_interval_min

	
Minimum power use averaging interval

Unit: milliseconds

RO

	power[1-*]_average_highest

	
Historical average maximum power use

Unit: microWatt

RO

	power[1-*]_average_lowest

	
Historical average minimum power use

Unit: microWatt

RO

	power[1-*]_average_max

	
A poll notification is sent to power[1-*]_average when power use

rises above this value.

Unit: microWatt

RW

	power[1-*]_average_min

	
A poll notification is sent to power[1-*]_average when power use

sinks below this value.

Unit: microWatt

RW

	power[1-*]_input

	
Instantaneous power use

Unit: microWatt

RO

	power[1-*]_input_highest

	
Historical maximum power use

Unit: microWatt

RO

	power[1-*]_input_lowest

	
Historical minimum power use

Unit: microWatt

RO

	power[1-*]_reset_history

	
Reset input_highest, input_lowest,

average_highest and average_lowest.

WO

	power[1-*]_accuracy

	
Accuracy of the power meter.

Unit: Percent

RO

	power[1-*]_cap

	
If power use rises above this limit, the system should take action to

reduce power use.A poll notification is sent to this file if the cap is

changed by the hardware.The *_cap files only appear if the cap is known

to be enforced by hardware.

Unit: microWatt

RW

	power[1-*]_cap_hyst

	
Margin of hysteresis built around capping and notification.

Unit: microWatt

RW

	power[1-*]_cap_max

	
Maximum cap that can be set.

Unit: microWatt

RO

	power[1-*]_cap_min

	
Minimum cap that can be set.

Unit: microWatt

RO

	power[1-*]_max

	
Maximum power.

Unit: microWatt

RW

	power[1-*]_crit

	
Critical maximum power.

If power rises to or above this limit, the system is expected take drastic

action to reduce power consumption, such as a system shutdown or

a forced powerdown of some devices.

Unit: microWatt

RW

	power[1-*]_enable

	
Enable or disable the sensors.

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Also see the Alarms section for status flags associated with power readings.

Energy

	energy[1-*]_input

	
Cumulative energy use

Unit: microJoule

RO

	energy[1-*]_enable

	
Enable or disable the sensors

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Humidity

	humidity[1-*]_input

	
Humidity

Unit: milli-percent (per cent mille, pcm)

RO

	humidity[1-*]_enable

	
Enable or disable the sensors

When diabled the sensor read will return -ENODATA

1: Enable

0: Disable

RW

Alarms

Each channel or limit may have an associated alarm file, containing a
boolean value. 1 means than an alarm condition exists, 0 means no alarm.

Usually a given chip will either use channel-related alarms, or
limit-related alarms, not both. The driver should just reflect the hardware
implementation.

	
in[0-*]_alarm

curr[1-*]_alarm

power[1-*]_alarm

fan[1-*]_alarm

temp[1-*]_alarm

	
Channel alarm

0: no alarm

1: alarm

RO

OR

	
in[0-*]_min_alarm

in[0-*]_max_alarm

in[0-*]_lcrit_alarm

in[0-*]_crit_alarm

curr[1-*]_min_alarm

curr[1-*]_max_alarm

curr[1-*]_lcrit_alarm

curr[1-*]_crit_alarm

power[1-*]_cap_alarm

power[1-*]_max_alarm

power[1-*]_crit_alarm

fan[1-*]_min_alarm

fan[1-*]_max_alarm

temp[1-*]_min_alarm

temp[1-*]_max_alarm

temp[1-*]_lcrit_alarm

temp[1-*]_crit_alarm

temp[1-*]_emergency_alarm

	
Limit alarm

0: no alarm

1: alarm

RO

Each input channel may have an associated fault file. This can be used
to notify open diodes, unconnected fans etc. where the hardware
supports it. When this boolean has value 1, the measurement for that
channel should not be trusted.

	
fan[1-*]_fault

temp[1-*]_fault

	
Input fault condition

0: no fault occurred

1: fault condition

RO

Some chips also offer the possibility to get beeped when an alarm occurs:

	beep_enable

	
Master beep enable

0: no beeps

1: beeps

RW

	
in[0-*]_beep

curr[1-*]_beep

fan[1-*]_beep

temp[1-*]_beep

	
Channel beep

0: disable

1: enable

RW

In theory, a chip could provide per-limit beep masking, but no such chip
was seen so far.

Old drivers provided a different, non-standard interface to alarms and
beeps. These interface files are deprecated, but will be kept around
for compatibility reasons:

	alarms

	
Alarm bitmask.

RO

Integer representation of one to four bytes.

A ‘1’ bit means an alarm.

Chips should be programmed for ‘comparator’ mode so that

the alarm will ‘come back’ after you read the register

if it is still valid.

Generally a direct representation of a chip’s internal

alarm registers; there is no standard for the position

of individual bits. For this reason, the use of this

interface file for new drivers is discouraged. Use

individual *_alarm and *_fault files instead.

Bits are defined in kernel/include/sensors.h.

	beep_mask

	
Bitmask for beep.

Same format as ‘alarms’ with the same bit locations,

use discouraged for the same reason. Use individual

*_beep files instead.

RW

Intrusion detection

	intrusion[0-*]_alarm

	
Chassis intrusion detection

0: OK

1: intrusion detected

RW

Contrary to regular alarm flags which clear themselves

automatically when read, this one sticks until cleared by

the user. This is done by writing 0 to the file. Writing

other values is unsupported.

	intrusion[0-*]_beep

	
Chassis intrusion beep

0: disable

1: enable

RW

Average Sample Configuration

Devices allowing for reading {in,power,curr,temp}_average values may export attributes for controlling number of samples used to compute average.

	samples

	
Sets number of average samples for all types of measurements.

RW

	in_samples

	
Sets number of average samples for specific type of measurements.

	power_samples

	
Note that on some devices it won’t be possible to set all of

	curr_samples

	
them to different values so changing one might also change

	curr_samples

	
some others.

RW

sysfs attribute writes interpretation

hwmon sysfs attributes always contain numbers, so the first thing to do is to convert the input to a number, there are 2 ways todo this depending whether the number can be negative or not:
unsigned long u = simple_strtoul(buf, NULL, 10); long s = simple_strtol(buf, NULL, 10);

With buf being the buffer with the user input being passed by the kernel. Notice that we do not use the second argument of strto[u]l, and thus cannot tell when 0 is returned, if this was really 0 or is caused by invalid input. This is done deliberately as checking this everywhere would add a lot of code to the kernel.

Notice that it is important to always store the converted value in an unsigned long or long, so that no wrap around can happen before any further checking.

After the input string is converted to an (unsigned) long, the value should be checked if its acceptable. Be careful with further conversions on the value before checking it for validity, as these conversions could still cause a wrap around before the check. For example do not multiply the result, and only
add/subtract if it has been divided before the add/subtract.

What to do if a value is found to be invalid, depends on the type of the sysfs attribute that is being set. If it is a continuous setting like a tempX_max or inX_max attribute, then the value should be clamped to its limits using clamp_val(value, min_limit, max_limit). If it is not continuous like for example a tempX_type, then when an invalid value is written, -EINVAL should be returned.

Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees):

long v = simple_strtol(buf, NULL, 10) / 1000;
v = clamp_val(v, -128, 127);
/* write v to register */

Example2, fan divider setting, valid values 2, 4 and 8:

unsigned long v = simple_strtoul(buf, NULL, 10);

switch (v) {
case 2: v = 1; break;
case 4: v = 2; break;
case 8: v = 3; break;
default:
 return -EINVAL;
}
/* write v to register */

Performance

The pcie_bw sysfs file will report the usage of the PCIe bus over the last second, as a string with 3 integers: “bytes-received bytes-sent mps” . As there is no efficient way to calculate the size of each packet transmitted to and from the GPU in real time, the maximum payload size (mps), or the largest size of a PCIe packet, is included. The estimated bandwidth can then be calculated using by “bytes-received*mps + bytes-sent*mps” sed and multiplied by the number of packets received and sent.

KFD Topology

Application software needs to understand the properties of the underlying hardware to leverage the performance capabilities of the platform for feature utilization and task scheduling. The sysfs topology exposes this information in a loosely hierarchal order. The information is populated by the KFD driver is gathered from ACPI (CRAT) and AMDGPU base driver.

The sysfs topology is arranged hierarchically as following. The root directory of the topology is

/sys/devices/virtual/kfd/kfd/topology/nodes/

Based on the platform inside this directory there will be sub-directories corresponding to each HSA Agent. A system with N HSA Agents will have N directories as shown below.

/sys/devices/virtual/kfd/kfd/topology/nodes/0/

/sys/devices/virtual/kfd/kfd/topology/nodes/1/

.

.

/sys/devices/virtual/kfd/kfd/topology/nodes/N-1/

HSA Agent Information

The HSA Agent directory and the sub-directories inside that contains all the information about that agent. The following are the main information available.

Node Information

This is available in the root directory of the HSA agent. This provides information about the compute capabilities of the agent which includes number of cores or compute units, SIMD count and clock speed.

Memory

The memory bank information attached to this agent is populated in “mem_banks” subdirectory.
/sys/devices/virtual/kfd/kfd/topology/nodes/N/mem_banks

Cache

The caches available for this agent is populated in “cache” subdirectory
/sys/devices/virtual/kfd/kfd/topology/nodes/N/cache

IO-LINKS

The IO links provides HSA agent interconnect information with latency (cost) between agents. This is useful for peer-to-peer transfers.

How to use topology information

The information provided in sysfs should not be directly used by application software. Application software should always use Thunk library API (libhsakmt) to access topology information. Please refer to Thunk API for more information.

The data are associated with a node ID, forming a per-node element list which references the elements contained at relative offsets within that list. A node associates with a kernel agent or agent. Node ID’s should be 0-based, with the “0” ID representing the primary elements of the system (e.g., “boot cores”, memory) if applicable. The enumeration order and—if applicable—values of the ID should match other information reported through mechanisms outside of the scope of the requirements;

For example, the data and enumeration order contained in the ACPI SRAT table on some systems should match the memory order and properties reported through HSA. Further detail is out of the scope of the System Architecture and outlined in the Runtime API specification.

[image: ../_images/simple_platform.png]
Each of these nodes is interconnected with other nodes in more advanced systems to the level necessary to adequately describe the topology.

[image: ../_images/More_advanced_topology.png]
Where applicable, the node grouping of physical memory follows NUMA principles to leverage memory locality in software when multiple physical memory blocks are available in the system and agents have a different “access cost” (e.g., bandwidth/latency) to that memory.

KFD Topology structure for AMDGPU :

sysfs-class-kfd

sysfs-class-kfd-topology

sysfs-class-kfd-topology-nodes-N

sysfs-class-kfd-topology-nodes-N-io_links-X

sysfs-class-kfd-topology-nodes-N-membanks-X

sysfs-class-kfd-topology-nodes-N-caches

[–setsclk LEVEL [LEVEL …]] [–setmclk LEVEL [LEVEL …]] [–setpcie LEVEL [LEVEL …]] [–setslevel

SMI Event Interface and Library

An SMI event interface is added to the kernel and ROCm SMI lib for system administrators to get notified when specific events occur. On the kernel side, AMDKFD_IOC_SMI_EVENTS input/output control is added to allow notifications propagation to user mode through the event channel.

On the ROCm SMI lib side, APIs are added to set an event mask and receive event notifications with a timeout option. Further, ROCm SMI API details can be found in the PDF generated by Doxygen from source or by referring to the rocm_smi.h header file (see the rsmi_event_notification_* functions).

ROCR_VISIBLE_DEVICES

It is possible to rearrange or isolate the collection of ROCm GPU/GCD devices that are available on a ROCm platform. This can be achieved at the start of an application by way of ROCR_VISIBLE_DEVICES environment variable.

To make devices visible to an application, they must be specified as a comma-separated list of enumerable devices, where devices are identified by their enumeration index or UUID.

For example, consider a ROCm platform with the following devices:

	Device

	Enumeration Index

	UUID

	Device 1

	0

	GPU-365628c172834d70

	Device 2

	1

	GPU-368988c172123d70

	Device 3

	2

	GPU-367458c172345d70

	Device 4

	4

	GPU-363688c172386d70

To use devices 0 and 2 from the above-mentioned ROCm platform and to enumerate them in that order, one can employ ROCR_VISIBLE_DEVICES in the following ways:

	ROCR_VISIBLE_DEVICES=0,2

	ROCR_VISIBLE_DEVICES=0,GPU-367458c172345d70

	ROCR_VISIBLE_DEVICES=GPU-365628c172834d70,2

	ROCR_VISIBLE_DEVICES=GPU-365628c172834d70,GPU-363688c172386d70

Cooperative applications can use this to effectively allocate GPU/GCDs among themselves.

Interaction between ROCR_VISIBLE_DEVICES and CUDA_VISIBLE_DEVICES

The ROCR_VISIBLE_DEVICES (RVD) environment is defined by ROCm stack to operate at the ROCr level. The ROCr implementation surfaces all GPU devices when users have not explicitly defined the environment. If defined, ROCr surfaces only those GPU devices that fulfil user requests.

CUDA_VISIBLE_DEVICES (CVD) controls the subset of GPU devcies that are available to an application. It builds on GPU devices surfaced by ROCr. The CVD value is legal only if it is a subset of the GPU device indices surfaced by ROCr.

This is best illustrated by the following example:

	Consider a system that has 8 devices - 0, 1, 2, 3, 4, 5, 6, 7

	User specifies RVD to select 4 devices - 4, 5, 6, 7

	These four devices will be available to application as 0, 1, 2, 3

Note the indices of GPU devices as they become available to an application. Users can specify CVD to select a subset of these 4 devices. For example, they can specify CVD as 1,2 or 1,3 or 0,3 or 3,2 etc

Setting both RVD and CVD is typically unnecessary and may be harmful. Use of both environments can play a role when using multiple GPUs and mixing high level languages within a single process. For example, if a single Linux process uses both HIP and OpenCL and wants to use two GPUs such that HIP uses one GPU and OpenCL uses the other, then RVD will select the two GPUs that are assigned to the process, and CVD will select a single GPU (index 0 or 1), from those allowed by RVD, for use by HIP. OpenCL has its own variable enabling it to use the other GPU as allowed by RVD.

Usually, users will not need per language controls either because the process only runs one language or the languages need to cooperate within the same device and will be best served by RVD alone.

It is therefore recommended that ROCm applications use RVD.

Device cgroup

At a system administration level, the GPU/GCD isolation is possible using the device control group (cgroup). For all the AMD GPUs in a compute node, the ROCk-Kernel-Driver exposes a single compute device file /dev/kfd and a separate (Direct Rendering Infrastructure) render device files /dev/dri/renderDN for each device. To participate in the Linux kernel’s cgroup infrastructure, the ROCk driver relies on the render device files.

For example, consider a compute node with the two AMD GPUs. The ROCk-Kernel-Driver exposes the following device files:

crw-rw-rw- 1 root root 240, 0 Apr 22 10:31 /dev/kfd

crw-rw—- 1 root video 226, 128 Apr 22 10:31 /dev/dri/renderD128

crw-rw—- 1 root video 226, 129 Apr 22 10:31 /dev/dri/renderD129

A ROCm application running on this compute node can use both GPUs only if it has access to all the above-listed device files. The administrator can restrict the devices an application can access by using device cgroup. The device cgroup subsystem allows or denies access to devices by applications in a cgroup. If a cgroup has whitelisted only /dev/kfd and /dev/dri/renderD129, then applications in that cgroup will have access only to that single GPU.

Refer to the Linux kernel’s cgroup documentation for information on how to create a cgroup and whitelist devices.

For cgroup-v1, refer https://www.kernel.org/doc/Documentation/cgroup-v1/devices.txt

For cgroup-v2, refer https://www.kernel.org/doc/Documentation/cgroup-v2.txt

 [image: ../_images/amdblack4.jpg]

ROCm Command Line Interface

Clock and Temperature Management

This repository includes the AMD ROCm-SMI tool. This tool exposes functionality for clock and temperature management of the
ROCm-enabled system.

For detailed and up to date usage information, use:

/opt/rocm/bin/rocm-smi -h

Or see below for information on:

	Optional Arguments

	Display Options

	Topology

	Pages Information

	Hardware-related Information

	Software-related/controlled Information

	Set Options

	Reset Options

	Auto-response Options

	Output Options

Installation

You may find rocm-smi at the following location after installing the rocm package:

/opt/rocm/bin/rocm-smi

Alternatively, you may clone this repository and run the tool directly.

Version

The SMI will report a “version” which is the version of the kernel installed:

AMD ROCm System Management Interface v$(uname)

For ROCk installations, this will be the AMDGPU module version (e.g. 5.0.71) For non-ROCk or monolithic ROCk installations, this will be the kernel version, which will be equivalent to the following bash command:

$(uname -a) | cut -d ' ' -f 3)

Usage

For detailed and up to date usage information, see:

/opt/rocm/bin/rocm-smi -h

For your convenience, the output from the -h flag is as follows:

AMD ROCm System Management Interface | ROCM-SMI version: 1.4.1 | Kernel version: 5.6.20

	usage: rocm-smi [-h] [-d DEVICE [DEVICE …]] [–alldevices] [–showhw] [-a] [-i] [-v] [–showdriverversion]
	[–showfwinfo [BLOCK [BLOCK …]]] [–showmclkrange] [–showmemvendor] [–showsclkrange]
[–showproductname] [–showserial] [–showuniqueid] [–showvoltagerange] [–showbus] [–showpagesinfo]
[–showpendingpages] [–showretiredpages] [–showunreservablepages] [-f] [-P] [-t] [-u] [–showmemuse]
[–showvoltage] [-b] [-c] [-g] [-l] [-M] [-m] [-o] [-p] [-S] [-s] [–showmeminfo TYPE [TYPE …]]
[–showpids] [–showpidgpus [SHOWPIDGPUS [SHOWPIDGPUS …]]] [–showreplaycount]
[–showrasinfo [SHOWRASINFO [SHOWRASINFO …]]] [–showvc] [–showxgmierr] [–showtopo]
[–showtopoweight] [–showtopohops] [–showtopotype] [–showtoponuma] [-r] [–resetfans]
[–resetprofile] [–resetpoweroverdrive] [–resetxgmierr] [–setsclk LEVEL [LEVEL …]]
[–setmclk LEVEL [LEVEL …]] [–setpcie LEVEL [LEVEL …]] [–setslevel SCLKLEVEL SCLK SVOLT]
[–setmlevel MCLKLEVEL MCLK MVOLT] [–setvc POINT SCLK SVOLT] [–setsrange MINMAX SCLK]
[–setmrange MINMAX SCLK] [–setfan LEVEL] [–setperflevel LEVEL] [–setoverdrive %]
[–setmemoverdrive %] [–setpoweroverdrive WATTS] [–setprofile SETPROFILE] [–rasenable BLOCK ERRTYPE]
[–rasdisable BLOCK ERRTYPE] [–rasinject BLOCK] [–gpureset] [–load FILE | –save FILE]
[–autorespond RESPONSE] [–loglevel LEVEL] [–json] [–csv]

	Optional Arguments

	

	-h, –help

	show this help message and exit

	–gpureset

	Reset specified GPU (One GPU must be specified)

	–load FILE

	Load Clock, Fan, Performance and Profile settings from FILE

	–save FILE

	Save Clock, Fan, Performance and Profile settings to FILE

-d DEVICE [DEVICE …], –device DEVICE [DEVICE …] Execute command on specified device

	Display Options

	

	–alldevices

	

	–showhw

	Show Hardware details

	-a, –showallinfo

	Show Temperature, Fan and Clock values

	Topology

	

	-i, –showid

	Show GPU ID

	-v, –showvbios

	Show VBIOS version

	–showdriverversion

	Show kernel driver version

	–showfwinfo [BLOCK [BLOCK …]]

	Show FW information

	–showmclkrange

	Show mclk range

	–showmemvendor

	Show GPU memory vendor

	–showsclkrange

	Show sclk range

	–showproductname

	Show SKU/Vendor name

	–showserial

	Show GPU’s Serial Number

	–showuniqueid

	Show GPU’s Unique ID

	–showvoltagerange

	Show voltage range

	–showbus

	Show PCI bus number

	Pages Information

	

	–showpagesinfo

	Show retired, pending and unreservable pages

	–showpendingpages

	Show pending retired pages

	–showretiredpages

	Show retired pages

	–showunreservablepages

	Show unreservable pages

	Hardware-related Information

	

	-f, –showfan

	Show current fan speed

	-P, –showpower

	Show current Average Graphics Package Power Consumption

	-t, –showtemp

	Show current temperature

	-u, –showuse

	Show current GPU use

	–showmemuse

	Show current GPU memory used

	–showvoltage

	Show current GPU voltage

	Software-related/controlled information

	

	-b, –showbw

	Show estimated PCIe use

	-c, –showclocks

	Show current clock frequencies

	-g, –showgpuclocks

	Show current GPU clock frequencies

	-l, –showprofile

	Show Compute Profile attributes

	-M, –showmaxpower

	Show maximum graphics package power this GPU will consume

	-m, –showmemoverdrive

	Show current GPU Memory Clock OverDrive level

	-o, –showoverdrive

	Show current GPU Clock OverDrive level

	-p, –showperflevel

	Show current DPM Performance Level

	-S, –showclkvolt

	Show supported GPU and Memory Clocks and Voltages

	-s, –showclkfrq

	Show supported GPU and Memory Clock

	–showmeminfo TYPE [TYPE …]

	Show Memory usage information for given block(s) TYPE

	–showpids

	Show current running KFD PIDs

	–showpidgpus [SHOWPIDGPUS [SHOWPIDGPUS …]]

	Show GPUs used by specified KFD PIDs (all if no arg given)

	–showreplaycount

	Show PCIe Replay Count

	–showrasinfo [SHOWRASINFO [SHOWRASINFO …]]

	Show RAS enablement information and error counts for the
specified block(s) (all if no arg given)

	–showvc

	Show voltage curve

	–showxgmierr

	Show XGMI error information since last read

	–showtopo

	Show hardware topology information

	–showtopoweight

	Shows the relative weight between GPUs

	–showtopohops

	Shows the number of hops between GPUs

	–showtopotype

	Shows the link type between GPUs

	–showtoponuma

	Shows the numa nodes

	Set Options

	

	–setsclk LEVEL [LEVEL …]

	Set GPU Clock Frequency Level(s) (requires manual Perf level)

	–setmclk LEVEL [LEVEL …]

	Set GPU Memory Clock Frequency Level(s) (requires manual Perf
level)

	–setpcie LEVEL [LEVEL …]

	Set PCIE Clock Frequency Level(s) (requires manual Perf level)

	–setslevel SCLKLEVEL SCLK SVOLT

	Change GPU Clock frequency (MHz) and Voltage (mV) for a specific
Level

	–setmlevel MCLKLEVEL MCLK MVOLT

	Change GPU Memory clock frequency (MHz) and Voltage for (mV) a
specific Level

	–setvc POINT SCLK SVOLT

	Change SCLK Voltage Curve (MHz mV) for a specific point

	–setsrange MINMAX SCLK

	Set min(0) or max(1) SCLK speed

	–setmrange MINMAX SCLK

	Set min(0) or max(1) MCLK speed

	–setfan LEVEL

	Set GPU Fan Speed (Level or %)

	–setperflevel LEVEL

	Set Performance Level

	–setoverdrive %

	Set GPU OverDrive level (requires manual|high Perf level)

	–setmemoverdrive %

	Set GPU Memory Overclock OverDrive level (requires manual|high
Perf level)

	–setpoweroverdrive WATTS

	Set the maximum GPU power using Power OverDrive in Watts

	–setprofile SETPROFILE

	Specify Power Profile level (#) or a quoted string of CUSTOM
Profile attributes “# # # #…” (requires manual Perf level)

	–rasenable BLOCK ERRTYPE

	Enable RAS for specified block and error type

	–rasdisable BLOCK ERRTYPE

	Disable RAS for specified block and error type

	–rasinject BLOCK

	Inject RAS poison for specified block (ONLY WORKS ON UNSECURE
BOARDS)

	Reset Options

	

	-r, –resetclocks

	Reset clocks and OverDrive to default

	–resetfans

	Reset fans to automatic (driver) control

	–resetprofile

	Reset Power Profile back to default

	–resetpoweroverdrive

	Set the maximum GPU power back to the device deafult state

	–resetxgmierr

	Reset XGMI error count

	Auto-response Options

	

	–autorespond RESPONSE

	Response to automatically provide for all prompts (NOT
RECOMMENDED)

	Output Options

	

	–loglevel LEVEL

	How much output will be printed for what program is doing, one
of debug/info/warning/error/critical

	–json

	Print output in JSON format

	–csv

	Print output in CSV format

Detailed Option Descriptions

–setsclk/–setmclk # [# # …]: This allows you to set a mask for the levels. For example, if a GPU has 8 clock levels, you can set a mask to use levels 0, 5, 6 and 7 with –setsclk 0 5 6 7 . This will only use the base level, and the top 3 clock levels. This will allow you to keep the GPU at base level when there is no GPU load, and the top 3 levels when the GPU load increases.

–setfan LEVEL: This sets the fan speed to a value ranging from 0 to 255 (not from 0-100%).
If the level ends with a %, the fan speed is calculated as pct*maxlevel/100 (maxlevel is usually 255, but is determined by the ASIC)
.. NOTE:

While the hardware is usually capable of overriding this value when required, it is
recommended to not set the fan level lower than the default value for extended periods
of time

–setperflevel LEVEL: This lets you use the pre-defined Performance Level values, which can include: auto (Automatically change PowerPlay values based on GPU workload) low (Keep PowerPlay values low, regardless of workload) high (Keep PowerPlay values high, regardless of workload) manual (Only use values defined in sysfs values)

–setoverdrive/–setmemoverdrive #: DEPRECATED IN NEWER KERNEL VERSIONS (use –setslevel/–setmlevel instead) This sets the percentage above maximum for the max Performance Level. For example, –setoverdrive 20 will increase the top sclk level by 20%. If the maximum sclk level is 1000MHz, then –setoverdrive 20 will increase the maximum sclk to 1200MHz

–setpoweroverdrive/–resetpoweroverdrive #: This allows users to change the maximum power available to a GPU package. The input value is in Watts. This limit is enforced by the hardware, and some cards allow users to set it to a higher value than the default that ships with the GPU. This Power OverDrive mode allows the GPU to run at higher frequencies for longer periods of time, though this may mean the GPU uses more power than it is allowed to use per power supply specifications. Each GPU has a model-specific maximum Power OverDrive that is will take; attempting to set a higher limit than that will cause this command to fail.

–setprofile SETPROFILE: The Compute Profile accepts 1 or n parameters, either the Profile to select (see –showprofile for a list of preset Power Profiles) or a quoted string of values for the CUSTOM profile.

NOTE: These values can vary based on the ASIC, and may include: SCLK_PROFILE_ENABLE - Whether or not to apply the 3 following SCLK settings (0=disable,1=enable)

NOTE: This is a hidden field. If set to 0, the following 3 values are displayed as ‘-‘ SCLK_UP_HYST

	Delay before sclk is increased (in milliseconds) SCLK_DOWN_HYST

	Delay before sclk is decresed (in milliseconds) SCLK_ACTIVE_LEVEL

	Workload required before sclk levels change (in %) MCLK_PROFILE_ENABLE

	Whether or not to apply the 3 following MCLK settings (0=disable,1=enable)

NOTE: This is a hidden field. If set to 0, the following 3 values are displayed as ‘-‘ MCLK_UP_HYST

	Delay before mclk is increased (in milliseconds) MCLK_DOWN_HYST

	Delay before mclk is decresed (in milliseconds) MCLK_ACTIVE_LEVEL

	Workload required before mclk levels change (in %)

BUSY_SET_POINT - Threshold for raw activity level before levels change
FPS - Frames Per Second
USE_RLC_BUSY - When set to 1, DPM is switched up as long as RLC busy message is received
MIN_ACTIVE_LEVEL - Workload required before levels change (in %)

Note

When a compute queue is detected, these values will be automatically applied to the system
Compute Power Profiles are only applied when the Performance Level is set to “auto”

The CUSTOM Power Profile is only applied when the Performance Level is set to “manual”
so using this flag will automatically set the performance level to “manual”

It is not possible to modify the non-CUSTOM Profiles. These are hard-coded by the kernel

-P, –showpower: Show Average Graphics Package power consumption

“Graphics Package” refers to the GPU plus any HBM (High-Bandwidth memory) modules, if present

-M, –showmaxpower: Show the maximum Graphics Package power that the GPU will attempt to consume. This limit is enforced by the hardware.

–loglevel: This will allow the user to set a logging level for the SMI’s actions. Currently this is only implemented for sysfs writes, but can easily be expanded upon in the future to log other things from the SMI

–showmeminfo: This allows the user to see the amount of used and total memory for a given block (vram, vis_vram, gtt). It returns the number of bytes used and total number of bytes for each block ‘all’ can be passed as a field to return all blocks, otherwise a quoted-string is used for multiple values (e.g. “vram vis_vram”) vram refers to the Video RAM, or graphics memory, on the specified device vis_vram refers to Visible VRAM, which is the CPU-accessible video memory on the device gtt refers to the Graphics Translation Table

-b, –showbw: This shows an approximation of the number of bytes received and sent by the GPU over the last second through the PCIe bus. Note that this will not work for APUs since data for the GPU portion of the APU goes through the memory fabric and does not ‘enter/exit’ the chip via the PCIe interface, thus no accesses are generated, and the performance counters can’t count accesses that are not generated. NOTE: It is not possible to easily grab the size of every packet that is transmitted in real time, so the kernel estimates the bandwidth by taking the maximum payload size (mps), which is the max size that a PCIe packet can be. and multiplies it by the number of packets received and sent. This means that the SMI will report the maximum estimated bandwidth, the actual usage could (and likely will be) less

–showrasinfo: This shows the RAS information for a given block. This includes enablement of the block (currently GFX, SDMA and UMC are the only supported blocks) and the number of errors ue - Uncorrectable errors ce - Correctable errors

Clock Type Descriptions

DCEFCLK - DCE (Display) FCLK - Data fabric (VG20 and later) - Data flow from XGMI, Memory, PCIe SCLK - GFXCLK (Graphics core)

Note

SOCCLK split from SCLK as of Vega10. Pre-Vega10 they were both controlled by SCLK

MCLK - GPU Memory (VRAM) PCLK - PCIe bus

Note

This gives 2 speeds, PCIe Gen1 x1 and the highest available based on the hardware

SOCCLK - System clock (VG10 and later)- Data Fabric (DF), MM HUB, AT HUB, SYSTEM HUB, OSS, DFD Note - DF split from SOCCLK as of Vega20. Pre-Vega20 they were both controlled by SOCCLK

–gpureset: This flag will attempt to reset the GPU for a specified device. This will invoke the GPU reset through the kernel debugfs file amdgpu_gpu_recover. Note that GPU reset will not always work, depending on the manner in which the GPU is hung.

—showdriverversion: This flag will print out the AMDGPU module version for amdgpu-pro or ROCK kernels. For other kernels, it will simply print out the name of the kernel (uname)

–showserial: This flag will print out the serial number for the graphics card NOTE: This is currently only supported on Vega20 server cards that support it. Consumer cards and cards older than Vega20 will not support this feature.

–showproductname: This uses the pci.ids file to print out more information regarding the GPUs on the system. ‘update-pciids’ may need to be executed on the machine to get the latest PCI ID snapshot, as certain newer GPUs will not be present in the stock pci.ids file, and the file may even be absent on certain OS installation types

–showpagesinfo | –showretiredpages | –showpendingpages | –showunreservablepages: These flags display the different “bad pages” as reported by the kernel. The three types of pages are: Retired pages (reserved pages) - These pages are reserved and are unable to be used Pending pages - These pages are pending for reservation, and will be reserved/retired Unreservable pages - These pages are not reservable for some reason.

–showmemuse | –showuse | –showmeminfo –showuse and –showmemuse are used to indicate how busy the respective blocks are. For example, for –showuse (gpu_busy_percent sysfs file), the SMU samples every ms or so to see if any GPU block (RLC, MEC, PFP, CP) is busy. If so, that’s 1 (or high). If not, that’s 0 (low). If we have 5 high and 5 low samples, that means 50% utilization (50% GPU busy, or 50% GPU use). The windows and sampling vary from generation to generation, but that is how GPU and VRAM use is calculated in a generic sense. –showmeminfo (and VRAM% in concise output) will show the amount of VRAM used (visible, total, GTT), as well as the total available for those partitions. The percentage shown there indicates the amount of used memory in terms of current allocations
OverDrive settings

	Enabling OverDrive requires both a card that support OverDrive and a driver parameter that enables its use.

	Because OverDrive features can damage your card, most workstation and server GPUs cannot use OverDrive.

	Consumer GPUs that can use OverDrive must enable this feature by setting bit 14 in the amdgpu driver’s ppfeaturemask module parameter

For OverDrive functionality, the OverDrive bit (bit 14) must be enabled (by default, the OverDrive bit is disabled on the ROCK and upstream kernels). This can be done by setting amdgpu.ppfeaturemask accordingly in the kernel parameters, or by changing the default value inside amdgpu_drv.c (if building your own kernel).

As an example, if the ppfeaturemask is set to 0xffffbfff (11111111111111111011111111111111), then enabling the OverDrive bit would make it 0xffffffff (11111111111111111111111111111111).
These are the flags that require OverDrive functionality to be enabled for the flag to work:

--showclkvolt
--showvoltagerange
--showvc
--showsclkrange
--showmclkrange
--setslevel
--setmlevel
--setoverdrive
--setpoweroverdrive
--resetpoweroverdrive
--setvc
--setsrange
--setmrange

Testing changes

After making changes to the SMI, run the test script to ensure that all functionality remains intact before uploading the patch. This can be done using:

./test-rocm-smi.sh /opt/rocm/bin/rocm-smi

The test can run all flags for the SMI, or specific flags can be tested with the -s option.

Any new functionality added to the SMI should have a corresponding test added to the test script.

SDMA Usage Per-process

The SDMA usage per-process is available using the following command,

$ rocm-smi -showpids

Hardware Topology

This feature provides a matrix representation of the GPUs present in a system by providing information of the manner in which the nodes are
connected.

[image: ../_images/CLI1.PNG]
This is represented in terms of weights, hops, and link types between two given GPUs. It also provides the numa node and the CPU
affinity associated with every GPU.

[image: ../_images/CLI2.PNG]
For more information about ROCm SMI API libraries, refer to the ROCm SMI API Guide at

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_SMI_API_Guide_v3.10.pdf

GCN ISA Manuals

GCN 1.1

ISA Manual for Hawaii pdf [http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture1.pdf]

GCN 2.0

ISA Manual for Fiji and Polaris pdf [http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf]

Vega

	“Vega” Instruction Set Architecture

Inline GCN ISA Assembly Guide

The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. We have previously described how to combine several languages in a single program using ROCm and Hsaco. This article explains how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture. I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s capabilities. Some reasons are the following:

	The program may be written in a high level language that does not expose all of the features available on the hardware.

	The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra]). Recent hardware architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To become more familiar with the instruction set, review the GCN ISA Reference Guide [https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf]. Note: the assembler is currently experimental; some of syntax we describe may change.

DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index, __global uint * out)
{
 size_t i = get_global_id(0);
 out[i] = in[index[i]];
}

Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding between variables—except to honor the requirements of natural alignment and any align qualifier. The example host program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like the following:

/*
* This is the host-side representation of the kernel arguments that the simplePermute kernel expects.
*/
struct simplePermute_args_t {
 uint32_t * in;
 uint32_t * index;
 uint32_t * out;
};
/*
 * Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate(kernarg_region, sizeof(simplePermute_args_t), (void**)(&args));
assert(HSA_STATUS_SUCCESS == status);
aql->kernarg_address = args;
/*
* Write the args directly to the kernargs buffer;
* the code assumes that memory is already allocated for the
* buffers that in_ptr, index_ptr and out_ptr point to
*/
args->in = in_ptr;
args->index = index_ptr;
args->out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 * sizeof(void*))) { return false; }

// Create buffers
Buffer *in, *index, *out;
in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer(size);

// Fill Kernarg memory
Kernarg(in); // Add base pointer to “in” buffer
Kernarg(index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the kernel, such as

	The LDS size

	The number of GPRs

	Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in the AMDGPU-ABI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer#introduction] specification. This is what it looks like in source code:

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
compute_pgm_rsrc1_vgprs = 1
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5
.end_amd_kernel_code_t

s_load_dwordx2 s[4:5], s[0:1], 0x10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_lshlrev_b32 v0, 2, v0
s_waitcnt lgkmcnt(0)
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc
flat_load_dword v1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vmcnt(0) & lgkmcnt(0)
v_lshlrev_b32 v1, 2, v1
ds_bpermute_b32 v1, v1, v2
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkmcnt(0)
flat_store_dword v[3:4], v1
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully, this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension. Registers v1 and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1] registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is the scheme showing initial state for our kernel.

[image: ../_images/initial_state-768x387.png]

The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward, however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wavefront_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs v0–v4, so workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0–s5, since the special registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Previous generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers. The fields compute_pgm_rsrc1_*gprs contain a device-specific number for each register-block type to allocate for a wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following formulas for all three GCN GPU generations:

compute_pgm_rsrc1_vgprs = (workitem_vgpr_count-1)/4

compute_pgm_rsrc1_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into s[2:3] from kernarg
v_lshlrev_b32 v0, 2, v0 // v0 *= 4;
s_waitcnt lgkmcnt(0) // wait for memory reads to finish

// compute address of corresponding element of index buffer
// i.e. v[1:2] = &index[workitem_id]
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer
// i.e. v[3:4] = &in[workitem_id]
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword v1, v[1:2] // load index[workitem_id] into v1
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vmcnt(0) & lgkmcnt(0) // wait for memory reads to finish

// v1 *= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_lshlrev_b32 v1, 2, v1

// perform permutation
// temp[thread_id] = v2
// v1 = temp[v1]
// effectively we got v1 = in[index[thread_id]]
ds_bpermute_b32 v1, v1, v2

// compute address of corresponding element of out buffer
// i.e. v[3:4] = &out[workitem_id]
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc

s_waitcnt lgkmcnt(0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = v1
flat_store_dword v[3:4], v1

s_endpgm

Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so you can use Clang to do all the necessary magic:

clang -x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The GitHub examples [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra] use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

Remote Device Programming

ROCmRDMA

Peer-to-Peer bridge driver for PeerDirect - Deprecated Repo

This is now included as part of the ROCK Kernel Driver [https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver]
ROCmRDMA is the solution designed to allow third-party kernel drivers to utilize DMA access to the GPU memory. It allows direct path for data exchange (peer-to-peer) using the standard features of PCI Express.

Currently ROCmRDMA provides the following benefits:

	Direct access to ROCm memory for 3rd party PCIe devices

	Support for PeerDirect(c) interface to offloads the CPU when dealing
with ROCm memory for RDMA network stacks;

Restrictions and limitations

To fully utilize ROCmRDMA the number of limitation could apply impacting either performance or functionality in the whole:

	It is recommended that devices utilizing ROCmRDMA share the same upstream PCI Express root complex. Such limitation depends on PCIe chipset manufacturses and outside of GPU controls;

	To provide peer-to-peer DMA access all GPU local memory must be exposed via PCI memory BARs (so called large-BAR configuration);

	It is recommended to have IOMMU support disabled or configured in pass-through mode due to limitation in Linux kernel to support local PCIe device memory for any form transition others then 1:1 mapping.

ROCmRDMA interface specification

The implementation of ROCmRDMA interface can be found in [amd_rdma.h] [https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/include/drm/amd_rdma.h] file.

API versions

ROCm up to and including v4.1 supported RDMA version 1.0.

ROCm 4.2 has enhanced the API version to 2.0, introduced the following definitions to allow users to detect the API version, and apply conditional compilation as needed:

/* API versions:
 * 1.0 Original API until ROCm 4.1, AMD_RDMA_MAJOR/MINOR undefined
 * 2.0 Added IOMMU (dma-mapping) support, removed p2p_info.kfd_proc
 * Introduced AMD_RDMA_MAJOR/MINOR version definition
 */
#define AMD_RDMA_MAJOR 2
#define AMD_RDMA_MINOR 0

Data structures

/**
 * Structure describing information needed to P2P access from another device
 * to specific location of GPU memory
 */
struct amd_p2p_info {
 uint64_t va; /**< Specify user virt. address
 * which this page table
 * described
 */
 uint64_t size; /**< Specify total size of
 * allocation
 */
 struct pid *pid; /**< Specify process pid to which
 * virtual address belongs
 */
 struct sg_table *pages; /**< Specify DMA/Bus addresses */
 void *priv; /**< Pointer set by AMD kernel
 * driver
 */
};

/**
 * Structure providing function pointers to support rdma/p2p requirements.
 * to specific location of GPU memory
 */
struct amd_rdma_interface {
 int (*get_pages)(uint64_t address, uint64_t length, struct pid *pid,
 struct device *dma_dev,
 struct amd_p2p_info **amd_p2p_data,
 void (*free_callback)(void *client_priv),
 void *client_priv);
 int (*put_pages)(struct amd_p2p_info **amd_p2p_data);
 int (*is_gpu_address)(uint64_t address, struct pid *pid);
 int (*get_page_size)(uint64_t address, uint64_t length, struct pid *pid,
 unsigned long *page_size);
};

The function to query ROCmRDMA interface

/**
 * amdkfd_query_rdma_interface - Return interface (function pointers table) for
 * rdma interface
 *
 *
 * \param interace - OUT: Pointer to interface
 * \return 0 if operation was successful.
 */
int amdkfd_query_rdma_interface(const struct amd_rdma_interface **rdma);

ROCmRDMA interface functions description

/**
 * This function makes the pages underlying a range of GPU virtual memory
 * accessible for DMA operations from another PCIe device
 *
 * \param address - The start address in the Unified Virtual Address
 * space in the specified process
 * \param length - The length of requested mapping
 * \param pid - Pointer to structure pid to which address belongs.
 * Could be NULL for current process address space.
 * \param dma_dev - Device that will need a DMA mapping of the memory
 * \param amd_p2p_data - On return: Pointer to structure describing
 * underlying pages/locations
 * \param free_callback - Pointer to callback which will be called when access
 * to such memory must be stopped immediately: Memory
 * was freed, GECC events, etc.
 * Client should immediately stop any transfer
 * operations and returned as soon as possible.
 * After return all resources associated with address
 * will be release and no access will be allowed.
 * \param client_priv - Pointer to be passed as parameter on
 * 'free_callback;
 *
 * \return 0 if operation was successful
 */
 int get_pages(uint64_t address, uint64_t length, struct pid *pid,
 struct device *dma_dev, struct amd_p2p_info **amd_p2p_data,
 void (*free_callback)(void *client_priv),
 void *client_priv);

/**
 * This function release resources previously allocated by get_pages() call.
 * \param p_p2p_data - A pointer to pointer to amd_p2p_info entries
 * allocated by get_pages() call.
 * \return 0 if operation was successful
 */
 int put_pages(struct amd_p2p_info **p_p2p_data)

/**
 * Check if given address belongs to GPU address space.
 * \param address - Address to check
 * \param pid - Process to which given address belongs.
 * Could be NULL if current one.
 * \return 0 - This is not GPU address managed by AMD driver
 * 1 - This is GPU address managed by AMD driver
 */
 int is_gpu_address(uint64_t address, struct pid *pid);

/**
 * Return the single page size to be used when building scatter/gather table
 * for given range.
 * \param address - Address
 * \param length - Range length
 * \param pid - Process id structure. Could be NULL if current one.
 * \param page_size - On return: Page size
 * \return 0 if operation was successful
 */
int get_page_size(uint64_t address, uint64_t length, struct pid *pid,
 unsigned long *page_size);

UCX

What is UCX ?

Unified Communication X (UCX) is a communication library for building Message Passing (MPI), PGAS/OpenSHMEM libraries and RPC/data-centric applications. UCX utilizes high-speed networks for inter-node and shared memory mechanisms for intra-node communication. For more information, visit http://openucx.github.io/ucx/

How to install UCX with ROCm ?

See How to install UCX and OpenMPI [https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI]

How to enable ROCm transport during configuration and runtime

Access the following links to enable ROCm transport during configuration and runtime:

	For release builds: ./contrib/configure-release –prefix=/path/to/install –with-rocm=/path/to/rocm

	For debug builds: ./contrib/configure-devel –prefix=/path/to/install –with-rocm=/path/to/rocm

OpenMPI

OpenMPI and OpenSHMEM installation

1. Get latest-and-gratest OpenMPI version:

$ git clone https://github.com/open-mpi/ompi.git

2. Autogen:

$ cd ompi
$./autogen.pl

3. Configure with UCX

$ mkdir build
$ cd build
../configure --prefix=/your_install_path/ --with-ucx=/path_to_ucx_installation

4. Build:

$ make
$ make install

Running Open MPI with UCX

Example of the command line (for InfiniBand RC + shared memory):

$ mpirun -np 2 -mca pml ucx -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_TLS=rc,sm ./app

Open MPI runtime optimizations for UCX

	By default OpenMPI enables build-in transports (BTLs), which may result in additional software overheads in the OpenMPI progress function. In order to workaround this issue you may try to disable certain BTLs.

$ mpirun -np 2 -mca pml ucx --mca btl ^vader,tcp,openib -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_TLS=rc,sm ./app

	OpenMPI version https://github.com/open-mpi/ompi/commit/066370202dcad8e302f2baf8921e9efd0f1f7dfc leverages more efficient timer mechanism and there fore reduces software overheads in OpenMPI progress

MPI and OpenSHMEM release versions tested with UCX master

	UCX current tarball: https://github.com/openucx/ucx/archive/master.zip

	The table of MPI and OpenSHMEM distributions that are tested with the HEAD of UCX master

	MPI/OpenSHMEM

	project

	OpenMPI/OSHMEM

	2.1.0

	MPICH

	Latest

IPC API

New Datatypes

hsa_amd_ipc_memory_handle_t

/** IPC memory handle to by passed from one process to another */
typedef struct hsa_amd_ipc_memory_handle_s {
 uint64_t handle;
} hsa_amd_ipc_memory_handle_t;

hsa_amd_ipc_signal_handle_t

/** IPC signal handle to by passed from one process to another */
typedef struct hsa_amd_ipc_signal_handle_s {
 uint64_t handle;
} hsa_amd_ipc_signal_handle_t;

Memory sharing API

Allows sharing of HSA allocated memory between different processes.

hsa_amd_ipc_get_memory_handle

The purpose of this API is to get / export an IPC handle for an existing allocation from pool.

hsa_status_t HSA_API

hsa_amd_ipc_get_memory_handle(void *ptr, hsa_amd_ipc_memory_handle_t *ipc_handle);

where:

IN: ptr - Pointer to memory previously allocated via hsa_amd_memory_pool_allocate() call

OUT: ipc_handle - Unique IPC handle to be used in IPC.

Application must pass this handle to another process.

hsa_amd_ipc_close_memory_handle

Close IPC memory handle previously received via “hsa_amd_ipc_get_memory_handle()” call .

hsa_status_t HSA_API

hsa_amd_ipc_close_memory_handle(hsa_amd_ipc_memory_handle_t ipc_handle);

where:

IN: ipc_handle - IPC Handle to close

hsa_amd_ipc_open_memory_handle

Open / import an IPC memory handle exported from another process and return address to be used in the current process.

hsa_status_t HSA_API

hsa_amd_ipc_open_memory_handle(hsa_amd_ipc_memory_handle_t ipc_handle, void **ptr);

where:

IN: ipc_handle - IPC Handle

OUT: ptr- Address which could be used in the given process for access to the memory

Client should call hsa_amd_memory_pool_free() when access to this resource is not needed any more.

Signal sharing API

Allows sharing of HSA signals between different processes.

hsa_amd_ipc_get_signal_handle

The purpose of this API is to get / export an IPC handle for an existing signal.

hsa_status_t HSA_API

hsa_amd_ipc_get_signal_handle(hsa_signal_t signal, hsa_amd_ipc_signal_handle_t *ipc_handle);

where:

IN: signal - Signal handle created as the result of hsa_signal_create() call.

OUT: ipc_handle - Unique IPC handle to be used in IPC.

Application must pass this handle to another process.

hsa_amd_ipc_close_signal_handle

Close IPC signal handle previously received via “hsa_amd_ipc_get_signal_handle()” call .

hsa_status_t HSA_API

hsa_amd_ipc_close_signal_handle(hsa_amd_ipc_signal_handle_t ipc_handle);

where:

IN: ipc_handle - IPC Handle to close

hsa_amd_ipc_open_signal_handle

Open / import an IPC signal handle exported from another process and return address to be used in the current process.

hsa_status_t HSA_API

hsa_amd_ipc_open_signal_handle(hsa_amd_ipc_signal_handle_t ipc_handle, hsa_signal_t &signal);

where:

IN: ipc_handle - IPC Handle

OUT: signal - Signal handle to be used in the current process

Client should call hsa_signal_destroy() when access to this resource is not needed any more.

Query API

Query memory information

Allows query information about memory resource based on address. It is partially overlapped with the following requirement Memory info interface so it may be possible to merge those two interfaces.

typedef enum hsa_amd_address_info_s {

 /* Return uint32_t / boolean if address was allocated via HSA stack */
 HSA_AMD_ADDRESS_HSA_ALLOCATED = 0x1,

 /** Return agent where such memory was allocated */
 HSA_AMD_ADDRESS_AGENT = 0x2,

 /** Return pool from which this address was allocated */
 HSA_AMD_ADDRESS_POOL = 0x3,

 /** Return size of allocation */
 HSA_AMD_ADDRESS_ALLOC_SIZE = 0x4

 } hsa_amd_address_info_t;

hsa_status_t HSA_API

hsa_amd_get_address_info(void ptr, hsa_amd_address_info_t attribute, void value);

where:

ptr - Address information about which to query

attribute - Attribute to query

MPICH

MPICH is a high-performance and widely portable implementation of the MPI-3.1 standard.

For more information about MPICH, refer to https://www.mpich.org/

Building and Installing MPICH

To build and install MPICH with UCX and ROCm support, see the instructions below.

git clone https://github.com/pmodels/mpich.git
cd mpich
git checkout v3.4
git submodule update --init --recursive
./autogen.sh
./configure --prefix=</mpich/install/location> --with-device=ch4:ucx --with-ucx=</ucx/install/location>
make -j && make install

 [image: ../_images/amdblack.jpg]

v4.1 ROCm Installation

	Deploying ROCm

	Prerequisites

	Supported Operating Systems

	Ubuntu

	CentOS RHEL

	SLES 15 Service Pack 2

	ROCm Installation Known Issues and Workarounds

	Getting the ROCm Source Code

Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

ROCm Repositories

	For major releases - https://repo.radeon.com/rocm/yum/rpm/

	For point releases - https://repo.radeon.com/rocm/yum/4.1.x/

Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

	Remove rock-dkms before the upgrade.

	Install the new kernel.

	Reboot the system.

	Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

	Ubuntu 20.04.1 (5.4 and 5.6-oem) and 18.04.5 (Kernel 5.4)

	CentOS 7.9 (3.10.0-1127) & RHEL 7.9 (3.10.0-1160.6.1.el7) (Using devtoolset-7 runtime support)

	CentOS 8.3 (4.18.0-193.el8) and RHEL 8.3 (4.18.0-193.1.1.el8) (devtoolset is not required)

	SLES 15 SP2

Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default package repositories. Use the following commands to add repositories that have the required Perl packages:

	For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

	For CentOS8.3

sudo yum config-manager --set-enabled powertools

	For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

Complete Reinstallation OF AMD ROCm V4.1 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade from previous releases to AMD ROCm v4.1 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.

	For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

	For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an operating system upgrade.

Note: render group is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to use video group.

	For ROCm v3.5 and releases thereafter, the clinfo path is changed to /opt/rocm/opencl/bin/clinfo.

	For ROCm v3.3 and older releases, the clinfo path remains /opt/rocm/opencl/bin/x86_64/clinfo.

Multi-version Installation Updates

With the AMD ROCm v4.1 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.

	Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions.
For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

	‘version’ files should be created for each multi-version rocm <= 4.1.0

	command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

	example: echo 4.1.0 | sudo tee /opt/rocm-4.1.0/.info/version

	The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

	ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users must set LD_LIBRARY_PATH to load the ROCm library version of choice.

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.

SETTING PERMISSIONS for GROUPS

Note: render group is required only for Ubuntu v20.04. For all other ROCm supported operating systems, continue to use video group. By default, you must add any future users to the video and render groups.

To add future users to the video and render groups, run the following command:

 echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

 echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

 echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Note: Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related issues.

Supported Operating Systems

Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

	Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

	Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Note: The public key has changed to reflect the new location. You must update to the new location as the old key will be removed in a future release.

	Old Key: https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key

	New Key: https://repo.radeon.com/rocm/rocm.gpg.key

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository.

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

e85a40d1a43453fe37d63aa6899bc96e08f2817a rocm.gpg.key

	Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

	Restart the system.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules

CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7 environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

	The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

	Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

	Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8 repository RPM:

sudo rpm -ivh <repo>

For more details,

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

	Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

Installing ROCm

To install ROCm on your system, follow the instructions below:

	Delete the previous versions of ROCm before installing the latest version.

	Create a /etc/yum.repos.d/rocm.repo file with the following contents:

	CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

	CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/4.1/
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/yum/

	Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

	Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

	Restart the system.

	Test the ROCm installation.

Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environment:

scl enable devtoolset-7 bash

Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

	Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

	Add the ROCm repo.

sudo zypper clean –all
sudo zypper addrepo https://repo.radeon.com/rocm/zyp/4.1/
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/zyp/

	Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

	Verify the ROCm installation.

	Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the ROCm installation is successful.

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a /etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed.
Note: Ensure all the content in the /opt/rocm directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you remove them individually.

Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with a limited amount of storage space, or which will only run a small collection of known applications, you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support. These components are only available through the ROCm repositories, and they may be deprecated or become open source components in the future. These components are made available in the following packages:

	hsa-ext-rocr-dev

Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.1.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

Index

 H

H

 	
 	hipChooseDevice (C++ function)

 	hipCtxCreate (C++ function)

 	hipCtxDestroy (C++ function)

 	hipDeviceCanAccessPeer (C++ function)

 	hipDeviceComputeCapability (C++ function)

 	hipDeviceDisablePeerAccess (C++ function)

 	hipDeviceEnablePeerAccess (C++ function)

 	hipDeviceGet (C++ function)

 	hipDeviceGetAttribute (C++ function)

 	hipDeviceGetByPCIBusId (C++ function)

 	hipDeviceGetCacheConfig (C++ function)

 	hipDeviceGetLimit (C++ function)

 	hipDeviceGetName (C++ function)

 	hipDeviceGetPCIBusId (C++ function)

 	hipDeviceGetSharedMemConfig (C++ function)

 	hipDeviceGetStreamPriorityRange (C++ function)

 	hipDevicePrimaryCtxGetState (C++ function)

 	hipDevicePrimaryCtxRelease (C++ function)

 	hipDevicePrimaryCtxReset (C++ function)

 	hipDevicePrimaryCtxRetain (C++ function)

 	hipDevicePrimaryCtxSetFlags (C++ function)

 	hipDeviceReset (C++ function)

 	hipDeviceSetCacheConfig (C++ function)

 	hipDeviceSetSharedMemConfig (C++ function)

 	hipDeviceSynchronize (C++ function)

 	hipDeviceTotalMem (C++ function)

 	hipDriverGetVersion (C++ function)

 	hipEventCreate (C++ function)

 	hipEventCreateWithFlags (C++ function)

 	hipEventDestroy (C++ function)

 	hipEventElapsedTime (C++ function)

 	hipEventQuery (C++ function)

 	hipEventRecord (C++ function)

 	hipEventSynchronize (C++ function)

 	hipFree (C++ function)

 	hipFreeArray (C++ function)

 	hipFuncSetCacheConfig (C++ function)

 	hipGetDevice (C++ function)

 	hipGetDeviceCount (C++ function)

 	hipGetDeviceProperties (C++ function)

 	hipGetErrorName (C++ function)

 	hipGetErrorString (C++ function)

 	hipGetLastError (C++ function)

 	hipHostGetDevicePointer (C++ function)

 	hipHostGetFlags (C++ function)

 	hipHostMalloc (C++ function)

 	hipHostRegister (C++ function)

 	hipHostUnregister (C++ function)

 	hipInit (C++ function)

 	hipMalloc (C++ function)

 	hipMalloc3DArray (C++ function)

 	hipMallocPitch (C++ function)

 	hipMemcpy (C++ function)

 	hipMemcpy2D (C++ function)

 	hipMemcpy2DToArray (C++ function)

 	hipMemcpy3D (C++ function)

 	hipMemcpyDtoD (C++ function)

 	hipMemcpyDtoDAsync (C++ function)

 	hipMemcpyDtoH (C++ function)

 	hipMemcpyDtoHAsync (C++ function)

 	hipMemcpyHtoD (C++ function)

 	hipMemcpyHtoDAsync (C++ function)

 	hipMemcpyPeer (C++ function)

 	hipMemcpyToArray (C++ function)

 	hipMemGetAddressRange (C++ function)

 	hipMemGetInfo (C++ function)

 	hipMemPtrGetInfo (C++ function)

 	hipMemset (C++ function)

 	hipMemset2D (C++ function)

 	hipMemsetD8 (C++ function)

 	hipModuleGetFunction (C++ function)

 	hipModuleGetGlobal (C++ function)

 	hipModuleLaunchKernel (C++ function)

 	hipModuleLoad (C++ function)

 	hipModuleLoadData (C++ function)

 	hipModuleLoadDataEx (C++ function)

 	hipModuleUnload (C++ function)

 	hipPeekAtLastError (C++ function)

 	hipPointerGetAttributes (C++ function)

 	hipProfilerStart (C++ function)

 	hipRuntimeGetVersion (C++ function)

 	hipSetDevice (C++ function)

 	hipSetDeviceFlags (C++ function)

 	hipStreamAddCallback (C++ function)

 	hipStreamCreate (C++ function)

 	hipStreamCreateWithFlags (C++ function)

 	hipStreamCreateWithPriority (C++ function)

 	hipStreamDestroy (C++ function)

 	hipStreamGetFlags (C++ function)

 	hipStreamGetPriority (C++ function)

 	hipStreamQuery (C++ function)

 	hipStreamSynchronize (C++ function)

 	hipStreamWaitEvent (C++ function)

 	hsa_access_permission_t (C++ enum)

 	hsa_access_permission_t::HSA_ACCESS_PERMISSION_RO (C++ enumerator)

 	hsa_access_permission_t::HSA_ACCESS_PERMISSION_RW (C++ enumerator)

 	hsa_access_permission_t::HSA_ACCESS_PERMISSION_WO (C++ enumerator)

 	hsa_agent_dispatch_packet_t (C++ struct)

 	hsa_agent_feature_t (C++ enum)

 	hsa_agent_feature_t::HSA_AGENT_FEATURE_AGENT_DISPATCH (C++ enumerator)

 	hsa_agent_feature_t::HSA_AGENT_FEATURE_KERNEL_DISPATCH (C++ enumerator)

 	hsa_agent_info_t (C++ enum)

 	hsa_agent_info_t::HSA_AGENT_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_CACHE_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_DEFAULT_FLOAT_ROUNDING_MODE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_DEVICE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_EXTENSIONS (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_FAST_F16_OPERATION (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_FBARRIER_MAX_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_FEATURE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_GRID_MAX_DIM (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_GRID_MAX_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_ISA (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_MACHINE_MODEL (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_NAME (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_NODE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_PROFILE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_QUEUE_MAX_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_QUEUE_MIN_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_QUEUE_TYPE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_QUEUES_MAX (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_VENDOR_NAME (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_VERSION_MAJOR (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_VERSION_MINOR (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_WAVEFRONT_SIZE (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_WORKGROUP_MAX_DIM (C++ enumerator)

 	hsa_agent_info_t::HSA_AGENT_INFO_WORKGROUP_MAX_SIZE (C++ enumerator)

 	hsa_barrier_and_packet_t (C++ struct)

 	hsa_barrier_or_packet_t (C++ struct)

 	hsa_cache_info_t (C++ enum)

 	hsa_cache_info_t::HSA_CACHE_INFO_LEVEL (C++ enumerator)

 	hsa_cache_info_t::HSA_CACHE_INFO_NAME (C++ enumerator)

 	hsa_cache_info_t::HSA_CACHE_INFO_NAME_LENGTH (C++ enumerator)

 	hsa_cache_info_t::HSA_CACHE_INFO_SIZE (C++ enumerator)

 	hsa_code_object_type_t (C++ enum)

 	hsa_code_object_type_t::HSA_CODE_OBJECT_TYPE_PROGRAM (C++ enumerator)

 	hsa_code_symbol_info_t (C++ enum)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_IS_DEFINITION (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_CALL_CONVENTION (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_LINKAGE (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_MODULE_NAME (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_MODULE_NAME_LENGTH (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_NAME (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_NAME_LENGTH (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_TYPE (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_VARIABLE_ALIGNMENT (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_VARIABLE_ALLOCATION (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_VARIABLE_IS_CONST (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_VARIABLE_SEGMENT (C++ enumerator)

 	hsa_code_symbol_info_t::HSA_CODE_SYMBOL_INFO_VARIABLE_SIZE (C++ enumerator)

 	hsa_default_float_rounding_mode_t (C++ enum)

 	hsa_default_float_rounding_mode_t::HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT (C++ enumerator)

 	hsa_default_float_rounding_mode_t::HSA_DEFAULT_FLOAT_ROUNDING_MODE_NEAR (C++ enumerator)

 	hsa_default_float_rounding_mode_t::HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO (C++ enumerator)

 	hsa_device_type_t (C++ enum)

 	hsa_device_type_t::HSA_DEVICE_TYPE_CPU (C++ enumerator)

 	hsa_device_type_t::HSA_DEVICE_TYPE_DSP (C++ enumerator)

 	hsa_device_type_t::HSA_DEVICE_TYPE_GPU (C++ enumerator)

 	hsa_dim3_t (C++ struct)

 	hsa_endianness_t (C++ enum)

 	hsa_endianness_t::HSA_ENDIANNESS_BIG (C++ enumerator)

 	hsa_endianness_t::HSA_ENDIANNESS_LITTLE (C++ enumerator)

 	hsa_exception_policy_t (C++ enum)

 	hsa_exception_policy_t::HSA_EXCEPTION_POLICY_BREAK (C++ enumerator)

 	hsa_exception_policy_t::HSA_EXCEPTION_POLICY_DETECT (C++ enumerator)

 	hsa_executable_info_t (C++ enum)

 	hsa_executable_info_t::HSA_EXECUTABLE_INFO_DEFAULT_FLOAT_ROUNDING_MODE (C++ enumerator)

 	hsa_executable_info_t::HSA_EXECUTABLE_INFO_PROFILE (C++ enumerator)

 	hsa_executable_info_t::HSA_EXECUTABLE_INFO_STATE (C++ enumerator)

 	hsa_executable_state_t (C++ enum)

 	hsa_executable_state_t::HSA_EXECUTABLE_STATE_FROZEN (C++ enumerator)

 	hsa_executable_state_t::HSA_EXECUTABLE_STATE_UNFROZEN (C++ enumerator)

 	hsa_executable_symbol_info_t (C++ enum)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_AGENT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_OBJECT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_IS_DEFINITION (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_CALL_CONVENTION (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE (C++ enumerator)

 	
 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_LINKAGE (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_NAME (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_TYPE (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALIGNMENT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_IS_CONST (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SEGMENT (C++ enumerator)

 	hsa_executable_symbol_info_t::HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE (C++ enumerator)

 	hsa_executable_symbol_t (C++ struct)

 	hsa_ext_finalizer_call_convention_t (C++ enum)

 	hsa_ext_finalizer_call_convention_t::HSA_EXT_FINALIZER_CALL_CONVENTION_AUTO (C++ enumerator)

 	hsa_ext_program_info_t (C++ enum)

 	hsa_ext_program_info_t::HSA_EXT_PROGRAM_INFO_DEFAULT_FLOAT_ROUNDING_MODE (C++ enumerator)

 	hsa_ext_program_info_t::HSA_EXT_PROGRAM_INFO_MACHINE_MODEL (C++ enumerator)

 	hsa_ext_program_info_t::HSA_EXT_PROGRAM_INFO_PROFILE (C++ enumerator)

 	hsa_extension_t (C++ enum)

 	hsa_extension_t::HSA_AMD_FIRST_EXTENSION (C++ enumerator)

 	hsa_extension_t::HSA_AMD_LAST_EXTENSION (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_AMD_AQLPROFILE (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_AMD_LOADER (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_AMD_PROFILER (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_FINALIZER (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_IMAGES (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_PERFORMANCE_COUNTERS (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_PROFILING_EVENTS (C++ enumerator)

 	hsa_extension_t::HSA_EXTENSION_STD_LAST (C++ enumerator)

 	hsa_fence_scope_t (C++ enum)

 	hsa_fence_scope_t::HSA_FENCE_SCOPE_AGENT (C++ enumerator)

 	hsa_fence_scope_t::HSA_FENCE_SCOPE_NONE (C++ enumerator)

 	hsa_fence_scope_t::HSA_FENCE_SCOPE_SYSTEM (C++ enumerator)

 	hsa_flush_mode_t (C++ enum)

 	hsa_flush_mode_t::HSA_FLUSH_MODE_FTZ (C++ enumerator)

 	hsa_flush_mode_t::HSA_FLUSH_MODE_NON_FTZ (C++ enumerator)

 	hsa_fp_type_t (C++ enum)

 	hsa_fp_type_t::HSA_FP_TYPE_16 (C++ enumerator)

 	hsa_fp_type_t::HSA_FP_TYPE_32 (C++ enumerator)

 	hsa_fp_type_t::HSA_FP_TYPE_64 (C++ enumerator)

 	hsa_isa_info_t (C++ enum)

 	hsa_isa_info_t::HSA_ISA_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_CALL_CONVENTION_COUNT (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONT_SIZE (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONTS_PER_COMPUTE_UNIT (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_DEFAULT_FLOAT_ROUNDING_MODES (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_FAST_F16_OPERATION (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_FBARRIER_MAX_SIZE (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_GRID_MAX_DIM (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_GRID_MAX_SIZE (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_MACHINE_MODELS (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_NAME (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_NAME_LENGTH (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_PROFILES (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_WORKGROUP_MAX_DIM (C++ enumerator)

 	hsa_isa_info_t::HSA_ISA_INFO_WORKGROUP_MAX_SIZE (C++ enumerator)

 	hsa_kernel_dispatch_packet_setup_t (C++ enum)

 	hsa_kernel_dispatch_packet_setup_t::HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS (C++ enumerator)

 	hsa_kernel_dispatch_packet_t (C++ struct)

 	hsa_machine_model_t (C++ enum)

 	hsa_machine_model_t::HSA_MACHINE_MODEL_LARGE (C++ enumerator)

 	hsa_machine_model_t::HSA_MACHINE_MODEL_SMALL (C++ enumerator)

 	hsa_packet_header_t (C++ enum)

 	hsa_packet_header_t::HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_t::HSA_PACKET_HEADER_BARRIER (C++ enumerator)

 	hsa_packet_header_t::HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_t::HSA_PACKET_HEADER_SCACQUIRE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_t::HSA_PACKET_HEADER_SCRELEASE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_t::HSA_PACKET_HEADER_TYPE (C++ enumerator)

 	hsa_packet_header_width_t (C++ enum)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_ACQUIRE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_BARRIER (C++ enumerator)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_RELEASE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_SCACQUIRE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_SCRELEASE_FENCE_SCOPE (C++ enumerator)

 	hsa_packet_header_width_t::HSA_PACKET_HEADER_WIDTH_TYPE (C++ enumerator)

 	hsa_packet_type_t (C++ enum)

 	hsa_packet_type_t::HSA_PACKET_TYPE_AGENT_DISPATCH (C++ enumerator)

 	hsa_packet_type_t::HSA_PACKET_TYPE_BARRIER_AND (C++ enumerator)

 	hsa_packet_type_t::HSA_PACKET_TYPE_BARRIER_OR (C++ enumerator)

 	hsa_packet_type_t::HSA_PACKET_TYPE_INVALID (C++ enumerator)

 	hsa_packet_type_t::HSA_PACKET_TYPE_KERNEL_DISPATCH (C++ enumerator)

 	hsa_packet_type_t::HSA_PACKET_TYPE_VENDOR_SPECIFIC (C++ enumerator)

 	hsa_profile_t (C++ enum)

 	hsa_profile_t::HSA_PROFILE_BASE (C++ enumerator)

 	hsa_profile_t::HSA_PROFILE_FULL (C++ enumerator)

 	hsa_queue_feature_t (C++ enum)

 	hsa_queue_feature_t::HSA_QUEUE_FEATURE_AGENT_DISPATCH (C++ enumerator)

 	hsa_queue_feature_t::HSA_QUEUE_FEATURE_KERNEL_DISPATCH (C++ enumerator)

 	hsa_queue_type_t (C++ enum)

 	hsa_queue_type_t::HSA_QUEUE_TYPE_MULTI (C++ enumerator)

 	hsa_queue_type_t::HSA_QUEUE_TYPE_SINGLE (C++ enumerator)

 	hsa_region_global_flag_t (C++ enum)

 	hsa_region_global_flag_t::HSA_REGION_GLOBAL_FLAG_COARSE_GRAINED (C++ enumerator)

 	hsa_region_global_flag_t::HSA_REGION_GLOBAL_FLAG_FINE_GRAINED (C++ enumerator)

 	hsa_region_global_flag_t::HSA_REGION_GLOBAL_FLAG_KERNARG (C++ enumerator)

 	hsa_region_info_t (C++ enum)

 	hsa_region_info_t::HSA_REGION_INFO_ALLOC_MAX_PRIVATE_WORKGROUP_SIZE (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_ALLOC_MAX_SIZE (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_GLOBAL_FLAGS (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_RUNTIME_ALLOC_ALIGNMENT (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_RUNTIME_ALLOC_ALLOWED (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_RUNTIME_ALLOC_GRANULE (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_SEGMENT (C++ enumerator)

 	hsa_region_info_t::HSA_REGION_INFO_SIZE (C++ enumerator)

 	hsa_region_segment_t (C++ enum)

 	hsa_region_segment_t::HSA_REGION_SEGMENT_GLOBAL (C++ enumerator)

 	hsa_region_segment_t::HSA_REGION_SEGMENT_GROUP (C++ enumerator)

 	hsa_region_segment_t::HSA_REGION_SEGMENT_KERNARG (C++ enumerator)

 	hsa_region_segment_t::HSA_REGION_SEGMENT_PRIVATE (C++ enumerator)

 	hsa_region_segment_t::HSA_REGION_SEGMENT_READONLY (C++ enumerator)

 	hsa_round_method_t (C++ enum)

 	hsa_round_method_t::HSA_ROUND_METHOD_DOUBLE (C++ enumerator)

 	hsa_round_method_t::HSA_ROUND_METHOD_SINGLE (C++ enumerator)

 	hsa_signal_condition_t (C++ enum)

 	hsa_signal_condition_t::HSA_SIGNAL_CONDITION_EQ (C++ enumerator)

 	hsa_signal_condition_t::HSA_SIGNAL_CONDITION_GTE (C++ enumerator)

 	hsa_signal_condition_t::HSA_SIGNAL_CONDITION_LT (C++ enumerator)

 	hsa_signal_condition_t::HSA_SIGNAL_CONDITION_NE (C++ enumerator)

 	hsa_signal_group_t (C++ struct)

 	hsa_signal_t (C++ struct)

 	hsa_signal_value_t (C++ type)

 	hsa_status_t (C++ enum)

 	hsa_status_t::HSA_STATUS_ERROR (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_EXCEPTION (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_FATAL (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_FROZEN_EXECUTABLE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_AGENT (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_ALLOCATION (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_ARGUMENT (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_CACHE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_CODE_OBJECT (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_CODE_OBJECT_READER (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_CODE_SYMBOL (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_EXECUTABLE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_EXECUTABLE_SYMBOL (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_FILE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_INDEX (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_ISA (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_ISA_NAME (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_PACKET_FORMAT (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_QUEUE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_QUEUE_CREATION (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_REGION (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_RUNTIME_STATE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_SIGNAL (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_SIGNAL_GROUP (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_SYMBOL_NAME (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_INVALID_WAVEFRONT (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_NOT_INITIALIZED (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_OUT_OF_RESOURCES (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_REFCOUNT_OVERFLOW (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_RESOURCE_FREE (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED (C++ enumerator)

 	hsa_status_t::HSA_STATUS_ERROR_VARIABLE_UNDEFINED (C++ enumerator)

 	hsa_status_t::HSA_STATUS_INFO_BREAK (C++ enumerator)

 	hsa_status_t::HSA_STATUS_SUCCESS (C++ enumerator)

 	hsa_symbol_kind_t (C++ enum)

 	hsa_symbol_kind_t::HSA_SYMBOL_KIND_INDIRECT_FUNCTION (C++ enumerator)

 	hsa_symbol_kind_t::HSA_SYMBOL_KIND_KERNEL (C++ enumerator)

 	hsa_symbol_kind_t::HSA_SYMBOL_KIND_VARIABLE (C++ enumerator)

 	hsa_symbol_linkage_t (C++ enum)

 	hsa_symbol_linkage_t::HSA_SYMBOL_LINKAGE_MODULE (C++ enumerator)

 	hsa_symbol_linkage_t::HSA_SYMBOL_LINKAGE_PROGRAM (C++ enumerator)

 	hsa_system_info_t (C++ enum)

 	hsa_system_info_t::HSA_AMD_SYSTEM_INFO_BUILD_VERSION (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_ENDIANNESS (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_EXTENSIONS (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_MACHINE_MODEL (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_SIGNAL_MAX_WAIT (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_TIMESTAMP (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_TIMESTAMP_FREQUENCY (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_VERSION_MAJOR (C++ enumerator)

 	hsa_system_info_t::HSA_SYSTEM_INFO_VERSION_MINOR (C++ enumerator)

 	hsa_variable_allocation_t (C++ enum)

 	hsa_variable_allocation_t::HSA_VARIABLE_ALLOCATION_AGENT (C++ enumerator)

 	hsa_variable_allocation_t::HSA_VARIABLE_ALLOCATION_PROGRAM (C++ enumerator)

 	hsa_variable_segment_t (C++ enum)

 	hsa_variable_segment_t::HSA_VARIABLE_SEGMENT_GLOBAL (C++ enumerator)

 	hsa_variable_segment_t::HSA_VARIABLE_SEGMENT_READONLY (C++ enumerator)

 	hsa_wait_state_t (C++ enum)

 	hsa_wait_state_t::HSA_WAIT_STATE_ACTIVE (C++ enumerator)

 	hsa_wait_state_t::HSA_WAIT_STATE_BLOCKED (C++ enumerator)

 	hsa_wavefront_info_t (C++ enum)

 	hsa_wavefront_info_t::HSA_WAVEFRONT_INFO_SIZE (C++ enumerator)

 [image: _images/amdblack.jpg]

ROCm Installation v4.3

	Deploying ROCm

	Prerequisites

	Supported Operating Systems

	Ubuntu

	CentOS RHEL

	SLES 15 Service Pack 2

	ROCm Installation Known Issues and Workarounds

	Getting the ROCm Source Code

Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

ROCm Repositories

Use the following ROCm repositories for the required major and point releases:

	Major releases - https://repo.radeon.com/rocm/yum/rpm/

	Point releases - https://repo.radeon.com/rocm/yum/4.3/

Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

	Remove rock-dkms before the upgrade.

	Install the new kernel.

	Reboot the system.

	Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

[image: OSKernelupdated.PNG]
Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default package repositories. Use the following commands to add repositories that have the required Perl packages:

	For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

	For CentOS8.3

sudo yum config-manager --set-enabled powertools

	For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

Complete Reinstallation OF AMD ROCm V4.3 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade from previous releases to AMD ROCm v4.3 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.

	For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

	For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an operating system upgrade.

Multi-version Installation Updates

With the AMD ROCm v4.3 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.

	Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions.
For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

	‘version’ files should be created for each multi-version rocm <= 4.3.0

	command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

	example: echo 4.3.0 | sudo tee /opt/rocm-4.3.0/.info/version

	The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

	ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users must set LD_LIBRARY_PATH to load the ROCm library version of choice.

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.

Note: Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related issues.

Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

	Issue the following command to check the groups in your system:

groups

	Add yourself to the video group using the following instruction:

sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use video group. By default, you can add any future users to the video and render groups.

Note: render group is required only for Ubuntu v20.04.

	To add future users to the video and render groups, run the following command:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Supported Operating Systems

Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

	Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

	Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Key: https://repo.radeon.com/rocm/rocm.gpg.key

sudo apt install wget gnupg2

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

For example

For the current version of ROCm, ensure you replace <ROCm_version#> with debian.

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

For older versions of ROCm, replace <ROCm_version#> with any ROCm versions number like 4.3.1, 4.3 or 4.2.

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.3/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For ROCm v4.1 and lower, use ‘xenial main’, instead of ‘ubuntu main’, as shown below.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/<ROCm_version#>/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

For example,

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository.

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

777947b2579611bf4d377687b5013c69642c5762 rocm.gpg.key

	Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

	Restart the system.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules

CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7 environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

	The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

	Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

	Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8 repository RPM:

sudo rpm -ivh <repo>

For more details,

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

	Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

	Add the ROCm GPG key

sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key

Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

Installing ROCm

To install ROCm on your system, follow the instructions below:

	Delete the previous versions of ROCm before installing the latest version.

	Create a /etc/yum.repos.d/rocm.repo file with the following contents:

	CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

	CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/rpm
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/yum/

	Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

	Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

	Restart the system.

	Test the ROCm installation.

Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environment:

scl enable devtoolset-7 bash

Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

	Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

	Add the ROCm repo.

sudo zypper clean –all
sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/zyp/

	Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

	Verify the ROCm installation.

	Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the ROCm installation is successful.

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a /etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed.
Note: Ensure all the content in the /opt/rocm directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you remove them individually.

Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with a limited amount of storage space, or which will only run a small collection of known applications, you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support. These components are only available through the ROCm repositories, and they may be deprecated or become open source components in the future. These components are made available in the following packages:

	hsa-ext-rocr-dev

Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.3.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

 [image: _images/amdblack3.jpg]

AMD ROCm Documentation

Release Notes [http://rocm-documentation.readthedocs.io/en/latest/Current_Release_Notes/Current-Release-Notes.html#rocm-1-8-what-new]

Release Notes for the latest version of AMD ROCm.

Installation Guide [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide]

	AMD ROCm Repositories [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installing-from-amd-rocm-repositories]

	Ubuntu Debian Repository [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#ubuntu-support-installing-from-a-debian-repository]

	Yum Repository [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#centos-rhel-7-both-7-4-and-7-5-support]

	Getting ROCm Source Code [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#getting-rocm-source-code]

	Installing ROCk-Kernel [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/ROCk-kernel.html#rock-kernel]

	Installation FAQ [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/FAQ-on-Installation.html#faq-on-installation]

Programming Guide [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#programming-guide]

This guide provides documentation on the ROCm programming model and programming interface. It describes the hardware implementation and provides guidance on how to achieve maximum performance. The appendices include:

	a list of all ROCm-enabled devices

	detailed description of all extensions to the C language

	listings of supported mathematical functions

	C++ features supported in host and device code

	technical specifications of various devices

	introduction to the low-level driver API

- ROCm Languages [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#rocm-languages]

ROCm stack offers options for multiple programming-languages

- HC Programing Guide [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hc-programing-guide]

Heterogeneous Compute (HC) programming installation requirements, methods to install on various platforms, and how to build it from source

- HC Best Practices [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hc-best-practices]

Build-in Macros, HCC Profiler mode, and API Documentaion

- HIP Programing Guide [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-programing-guide]

HIP programming, installation requirements, methods to install on various platfroms, and how to build it from source

- HIP Best Practices [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-best-practices]

HIP Porting, Debugging, Bugs, FAQ and other aspects of HIP

- OpenCL Programing Guide [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#opencl-programing-guide]

OpenCL Architecture, AMD Implementation, Profiling, and other aspects of OpenCL

- OpenCL Best Practices [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#opencl-best-practices]

Performance and optimization for various device types such as GCN devices

GCN ISA Manuals [http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#gcn-isa-manuals]

	GCN 1.1 [http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#gcn-1-1] - For information on ISA Manual for Hawaii (Sea Islands Series Instruction Set Architecture)

	GCN 2.0 [http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#gcn-2-0] - For information on ISA Manual for Fiji and Polaris (AMD Accelerated Parallel Processing technology)

	Vega [http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#vega] - Provides “Vega” Instruction Set Architecture, Program Organization, Mode register and more details.

	Inline GCN ISA Assembly Guide [http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#inline-gcn-isa-assembly-guide] - Covers various concepts of AMDGCN Assembly, DS Permute Instructions, Parameters to a Kernel, GPR Counting.

ROCm API References [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#rocm-api-references]

	ROCr System Runtime API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#rocr-system-runtime-api]

	HCC Language Runtime API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hcc-language-runtime-api]

	HIP Language Runtime API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hip-language-runtime-api]

	HIP Math API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hip-math-api]

	Thrust API Documentation [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#thrust-api-documentation]

	Math Library API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#math-library-api-s] - Includes HIP MAth API with hcRNG, clBLAS, clSPARSE APIs

	Deep Learning API [http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#deep-learning-api-s] - Includes MIOpen API and MIOpenGEMM APIs

ROCm Tools [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-tools]

	Heterogeneous Compute Compiler (HCC) [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#hcc]

	GCN Assembler and Disassembler [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gcn-assembler-and-disassembler]

	GCN Assembler Tools [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gcn-assembler-tools] - AMDGPU ISA Assembler

	ROCm-GDB [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-gdb] - ROCm-GDB tool includes installtion, configuration, and working of Debugger and APIs

	ROCm-Profiler [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-profiler] - Radeon Compute Profiler- performance analysis tool

	ROCm-Tracer [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#roc-tracer] - ROCm Tracer - provides a generic independent from specific runtime profiler to trace API and asynchronous activity. Includes details on library source tree, steps to build and run the test

	CodeXL [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#codexl]

	GPUperfAPI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gpuperfapi] - GPU Performance API, cloning, system requiments, and source code directory layout

AOMP [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#aomp-v-0-7-5]

Provides details on AOMP, a scripted build of LLVM and supporting software. Supports OpenMP target offload on AMD GPUs. Since AOMP is a clang/llvm compiler, it also supports GPU offloading with HIP, CUDA, and OpenCL.

ROCmValidationSuite [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocmvalidationsuite]

Provides details on ROCm Validation Suite (RVS), a system administrator’s and cluster manager’s tool for detecting and troubleshooting common problems affecting AMD GPU(s) running in a high-performance computing environment, enabled using the ROCm software stack on a compatible platform.

ROCm Libraries [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm-Libraries.html]

rocFFT [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocFFT.html#rocfft]

This section provides details on rocFFT,it is a AMD’s software library compiled with the CUDA compiler using HIP tools for running on Nvidia GPU devices.

rocBLAS [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocblas.html#rocblas]

This section provides details on rocBLAS, it is a library for BLAS on ROCm.rocBLAS is implemented in the HIP programming language and optimized for AMD’s latest discrete GPUs.

hipBLAS [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hipBLAS.html#hip8las]

This section provides details on hipBLAS, it is a BLAS marshalling library, with multiple supported backends. hipBLAS exports an interface that does not require the client to change. Currently,it supports rocBLAS and cuBLAS as backends.

hcRNG [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hcRNG.html#hcrng]

This section provides details on hcRNG. It is a software library ,where uniform random number generators targeting the AMD heterogeneous hardware via HCC compiler runtime is implemented..

hipeigen [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hipeigen.html#hipeigen]

This section provides details on Eigen.It is a C++ template library which provides linear algebra for matrices, vectors, numerical solvers, and related algorithms.

clFFT [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clFFT.html#c1fft]

This section provides details on clFFT.It is a software library which contains FFT functions written in OpenCL,and clFFt also supports running on CPU devices to facilitate debugging and heterogeneous programming.

clBLAS [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clBLA.html#clbla]

This section provides details on clBLAS. It makes easier for developers to utilize the inherent performance and power efficiency benefits of heterogeneous computing.

clSPARSE [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clSPARSE.html#clsparse1]

This section provides details on clSPARSE, it is an OpenCL library which implements Sparse linear algebra routines.

clRNG [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clRNG.html#cl1rng]

This section provides details on clRNG,This is a library for uniform random number generation in OpenCL.

hcFFT [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hcFFT.html#hcfft]

This section provides details on hcFFT, it hosts the HCC based FFT Library and targets GPU acceleration of FFT routines on AMD devices.

Tensile [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/tensile.html#tensile]

This section provides details on Tensile. It is a tool for creating a benchmark-driven backend library for GEMMs,N-dimensional tensor contractions and multiplies two multi-dimensional objects together on a GPU.

rocALUTION [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocalution]

This section provides details on rocALUTION. It is a sparse linear algebra library with focus on exploring fine-grained parallelism, targeting modern processors and accelerators including multi/many-core CPU and GPU platforms. It can be seen as middle-ware between different parallel backends and application specific packages.

rocSPARSE [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id38]

This section provides details on rocSPARSE.It is a library that contains basic linear algebra subroutines for sparse matrices and vectors written in HiP for GPU devices. It is designed to be used from C and C++ code.

rocThrust [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocthrust]

This section provides details on rocThrust. It is a parallel algorithmn library.

hipCUB [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#hipcub] This section provides details on hipCUB.

It is a thin wrapper library on top of rocPRIM or CUB. It enables developers to port the project using CUB library to the HIP layer and to

run them on AMD hardware.

ROCm SMI Library [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocm-smi-library] This section provides details on ROCm SMI library. The ROCm System Management Interface Library, or ROCm SMI library is part of the Radeon Open Compute ROCm software stack. It is a C library for linux that provides a user space interface for applications to monitor and control GPU aplications.

RCCL [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rccl] This section provides details on ROCm Communications Collectives Library. It is a stand alone library of standard collective communication routines for GPUS, implememting all-reduce, all gather, reduce, broadcast, and reduce scatter.

AMD MivisionX [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#amd-migraphx]

This section provides information on AMD’s graph optimization engine.

ROCm Compiler SDK [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#rocm-compiler-sdk]

GCN Native ISA LLVM Code Generator [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#gcn-native-isa-llvm-code-generator]

This section provide complete description on LLVM such as introduction, Code Object, Code conventions, Source languages, etc.,

ROCm Code Object Format [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#rocm-code-object-format]

This section describes about application binary interface (ABI) provided by the AMD, implementation of the HSA runtime. It also provides details on Kernel, AMD Queue and Signals.

ROCm Device Library [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#roc-device-library]

Documentation on instruction related to ROCm Device Library overview,Building and Testing related information with respect to Device Library is provided.

ROCr Runtime [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#rocr-runtime]

This section refers the user-mode API interfaces and libraries necessary for host applications to launch compute kernels to available HSA ROCm kernel agents. we can find installation details and Infrastructure details related to ROCr.

ROCm System Management [http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#rocm-system-management]

ROCm-SMI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#rocm-smi]

ROCm System Management Interface a complete guide to use and work with rocm-smi tool.

SYSFS Interface [http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#sysfs-interface]

This section provides information on sysfs file structure with details related to file structure related to system are captured in sysfs.

KFD Topology [http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#kfd-topology]

KFD Kernel Topology is the system file structure which describes about AMD GPU related information such as nodes, Memory, Cache and IO-links.

ROCm Virtualization & Containers [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Virtualization_Containers/ROCm-Virtualization-&-Containers.html#rocm-virtualization-containers]

PCIe Passthrough on KVM [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Virtualization_Containers/ROCm-Virtualization-&-Containers.html#pcie-passthrough-on-kvm]

Here PCIe Passthrough on KVM is described. A KVM-based instructions assume a headless host with an input/output memory management unit (IOMMU) to pass peripheral devices such as a GPU to guest virtual machines.more information can be found on the same here.

ROCm-Docker [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Virtualization_Containers/ROCm-Virtualization-&-Containers.html#rocm-docker]

A framework for building the software layers defined in the Radeon Open Compute Platform into portable docker images. Detailed Information related to ROCm-Docker can be found.

Remote Device Programming [http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#remote-device-programming]

ROCnRDMA [http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#rocnrdma]

ROCmRDMA is the solution designed to allow third-party kernel drivers to utilize DMA access to the GPU memory. Complete indoemation related to ROCmRDMA is Documented here.

UCX [http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#ucx]

This section gives information related to UCX, How to install, Running UCX and much more

MPI [http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#mpi]

This section gives information related to MPI.

IPC [http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#ipc]

This section gives information related to IPC.

Deep Learning on ROCm [http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#deep-learning-on-rocm]

This section provides details on ROCm Deep Learning concepts.

Porting from cuDNN to MIOpen [http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#porting-from-cudnn-to-miopen]

The porting guide highlights the key differences between the current cuDNN and MIOpen APIs.

Deep Learning Framework support for ROCm [http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#deep-learning-framework-support-for-rocm]

This section provides detailed chart of Frameworks supported by ROCm and repository details.

Tutorials [http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#tutorials]

Here Tutorials on different DeepLearning Frameworks are documented.

System Level Debug [http://rocm-documentation.readthedocs.io/en/latest/Other_Solutions/Other-Solutions.html#system-level-debug]

ROCm Language & System Level Debug, Flags and Environment Variables [http://rocm-documentation.readthedocs.io/en/latest/Other_Solutions/Other-Solutions.html#rocm-language-system-level-debug-flags-and-environment-variables]

Here in this section we have details regardinf various system related debugs and commands for isssues faced while using ROCm.

Tutorial [http://rocm-documentation.readthedocs.io/en/latest/Tutorial/Tutorial.html#tutorial]

This section Provide details related to few Concepts of HIP and other sections.

ROCm Glossary [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Glossary/ROCm-Glossary.html#rocm-glossary]

ROCm Glossary gives highlight concept and their main concept of how they work.

1.0 Current Release Notes

2.0 Installation Guide

2.1 Quick Start Guide

2.2 Installation Guide Ubuntu

2.3 Installation Guide Fedora

3.0 Programing Guides

3.1 HC Programing Guide

3.1.1 Programing Model

	Kernels

	Thread Hierarchy

	Memory Hierarchy

	Heterogeneous Programing

	Compute Capability

3.1.2 Programing Interface

	Compilation with HCC

	HC C++ Runtime

3.1.3 Performance Guidelines

3.1.4 Language Extensions

3.1.5 Mathematical Functions

3.1.6 Textures

3.1.6 Environment Variables

3.2 HC Best Practices

3.2.1 Assessing Your Application

3.2.2 Heterogeneous Computing

3.2.3 Application Profiling

3.2.4 Parallelizing your Application

3.2.5 Getting Started with your First Application

3.2.6 Driving Application Correctness

3.2.7 Optimizing your Application

3.2.8 Performance Metrics

3.2.9 Memory Optimizations

3.2.10 GPU Device Architecture Software Optimizations

3.2.11 Instruction Level Optimizations

3.2.12 Control Flow

3.2.13 Deploying HCC Application

3.2.14 Recommended Best Practices

3.2.115 HCC compiler switches

3.3 HIP Programing Guide

3.3.1 Programing Model

	Kernels

	Thread Hierarchy

	Memory Hierarchy

	Heterogeneous Programing

	Compute Capability

3.3.2 Programing Interface

	Compilation with HCC

	HC C++ Runtime

3.3.3 Performance Guidelines

3.3.4 Language Extensions

3.3.5 Mathematical Functions

3.3.6 Textures

3.3.7 Environment Variables

3.4 HIP Best Practices

3.4.1 Assessing Your Application

3.4.2 Heterogeneous Computing

3.4.3 Application Profiling

3.4.4 Parallelizing your Application

3.4.5 Getting Started with your First application

3.4.6 Driving Application Correctness

3.4.7 Optimizing your Application

3.4.8 Performance Metrics

3.4.9 Memory Optimizations

3.4.10 GPU Device Architecture Software Optimizations

3.4.11 Instruction Level Optimizations

3.4.12 Control Flow

3.4.13 Deploying HIP Application

3.4.14 Recommended Best Practices

3.4.15 HCC compiler switches

3.5 OpenCL Programing Guide

3.5.1 Programing Model

	Kernels

	Thread Hierarchy

	Memory Hierarchy

	Heterogeneous Programing

	Compute Capability

3.5.2 Programing Interface

	Compilation with OpenCL

	OpenCL Runtime

3.5.3 Performance Guidelines

3.5.4 Language Extensions

3.5.5 Mathematical Functions

3.5.6 Textures

3.57 Environment Variables

3.6 OpenCL Best Practices

3.6.1 Assessing Your Application

3.6.2 Heterogeneous Computing

3.6.3 Application Profiling

3.6.4 Parallelizing your Application

3.6.5 Getting Started with your First application

3.6.6 Driving Application Correctness

3.6.7 Optimizing your Application

3.6.8 Performance Metrics

3.6.9 Memory Optimizations

3.6.10 GPU Device Architecture Software Optimizations

3.6.11 Instruction Level Optimizations

3.6.12 Control Flow

3.6.13 Deploying OpenCL Application

3.6.14 Recommended Best Practices

3.6.15 OpenCL compiler switches

5.0 GCN ISA Manuals

5.1 GCN 1.1 Hawaii

5.2 GCN 2.0 Fiji and Polaris

5.2 GCN - Vega

5.4 Inline GCN ISA Assembly Guide

6.0 ROCm API References

6.1 ROCr System Runtime API

6.2 HCC Language Runtime API

6.3 HIP Language Runtime API

6.4 HIP Device Runtime API

6.5 HIP Math API

6.6 Math Libarary API’s

6.6.1 rocBLAS

6.6.2 rocFFT

6.6.3 hcRAND

6.6.4 hsSPARSE

6.6.5 clBLAS

6.6.6 clFFT

6.6.7 clSPARSE

6.6.8 clRAND

6.7 Deep Learning API’s

6.7.1 MIOpen

7.0 ROCm Tools

7.1 HCC

7.2 GCN Assembler and Disassembler

7.3 GCN Assembler Tools

7.4 ROCm-GDB

7.5 ROCm Debugger API

7.6 ROCm-Profiler

7.7 CodeXL

7.8 GPUperfAPI

7.9 ROCm Binary Utilities

8.0 ROCm Compiler SDK

8.1 GCN Native ISA LLVM Code Generator

8.2 ROCm Code Object Format

8.3 ROC Device Library

	OCML

	OKML

8.4 ROCr Runtime

8.4.1 Introduction

8.4.2 Programing Model

	Initialization and agent discovery

	Queues and AQL Packets

	Signals and packet launch

8.4.3 Programing Guide

	Initialization and shut down

	Runtime Notifications

	System and agent information

	Signals

	Queues

	Architected Queuing Language Packets

	Memory

	Code Object Loading

	Common definitions

8.4.4 Best Practices Mapping Programing Language to ROCr runtime

9.0 ROCM System Managment

9.1 ROCm-SMI

9.2 Programing ROCm-SMI

9.3 SYSFS Interface

10 ROCm Virtualization & Containers

10.1 KVM Passthrough

10.2 ROCm-Docker

11 Remote Device Programing

11.1 ROCnRDMA

11.2 UCX

11.3 MPI

11.4 IPC

12 Other Solutions

12.1 ROCr Error Codes

13 ROCm Glossary

 [image: ../_images/amdblack.jpg]

ROCm Installation

	Deploying ROCm

	Prerequisites

	Supported Operating Systems

	Ubuntu

	CentOS RHEL

	SLES 15 Service Pack 2

	ROCm Installation Known Issues and Workarounds

	Getting the ROCm Source Code

Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v4.x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-dkms and rock-dkms packages.

Note: You must use either ROCm or the amdgpu-pro driver. Using both drivers will result in an installation error.

Important - Mellanox ConnectX NIC Users: If you are using Mellanox ConnectX NIC, you must install Mellanox OFED before installing ROCm.

For more information about installing Mellanox OFED, refer to:

https://docs.mellanox.com/display/MLNXOFEDv461000/Installing+Mellanox+OFED

ROCm Repositories

	For major releases - https://repo.radeon.com/rocm/yum/rpm/

	For point releases - https://repo.radeon.com/rocm/yum/4.2.x/

Base Operating System Kernel Upgrade

For SUSE, it is strongly recommended to follow the steps below when upgrading the base operating system kernel:

	Remove rock-dkms before the upgrade.

	Install the new kernel.

	Reboot the system.

	Reinstall rock-dkms.

Implementing these steps ensures correct loading of amdgpu and amdkfd after the kernel upgrade and prevents any issue caused by an incomplete DKMS upgrade. Fedora and Ubuntu do not have this restriction.

Prerequisites

The AMD ROCm platform is designed to support the following operating systems:

	Ubuntu 20.04.2 HWE (5.4 and 5.6-oem) and 18.04.5 (Kernel 5.4)

	CentOS 7.9 (3.10.0-1127) & RHEL 7.9 (3.10.0-1160.6.1.el7) (Using devtoolset-7 runtime support)

	CentOS 8.3 (4.18.0-193.el8)and RHEL 8.3 (4.18.0-193.1.1.el8) (devtoolset is not required)

	SLES 15 SP2

Note: Ubuntu versions lower than 18 are no longer supported.

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Perl Modules for HIP-Base Package

The hip-base package has a dependency on Perl modules that some operating systems may not have in their default package repositories. Use the following commands to add repositories that have the required Perl packages:

	For SLES 15 SP2

sudo zypper addrepo

For more information, see

https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo

	For CentOS8.3

sudo yum config-manager --set-enabled powertools

	For RHEL8.3

sudo subscription-manager repos --enable codeready-builder-for-rhel-8-x86_64-rpms

Complete Reinstallation OF AMD ROCm V4.2 Recommended

Complete uninstallation of previous ROCm versions is required before installing a new version of ROCm. An upgrade from previous releases to AMD ROCm v4.2 is not supported.

Note: AMD ROCm release v3.3 or prior releases are not fully compatible with AMD ROCm v3.5 and higher versions. You must perform a fresh ROCm installation if you want to upgrade from AMD ROCm v3.3 or older to 3.5 or higher versions and vice-versa.

	For ROCm v3.5 and releases thereafter, the clinfo path is changed to - /opt/rocm/opencl/bin/clinfo.

	For ROCm v3.3 and older releases, the clinfo path remains unchanged - /opt/rocm/opencl/bin/x86_64/clinfo.

Note: After an operating system upgrade, AMD ROCm may upgrade automatically and result in an error. This is because AMD ROCm does not support upgrades currently. You must uninstall and reinstall AMD ROCm after an operating system upgrade.

Multi-version Installation Updates

With the AMD ROCm v4.2 release, the following ROCm multi-version installation changes apply:

The meta packages rocm-dkms<version> are now deprecated for multi-version ROCm installs. For example, rocm-dkms3.7.0, rocm-dkms3.8.0.

	Multi-version installation of ROCm should be performed by installing rocm-dev<version> using each of the desired ROCm versions.
For example, rocm-dev3.7.0, rocm-dev3.8.0, rocm-dev3.9.0.

	‘version’ files should be created for each multi-version rocm <= 4.2.0

	command: echo <version> | sudo tee /opt/rocm-<version>/.info/version

	example: echo 4.2.0 | sudo tee /opt/rocm-4.2.0/.info/version

	The rock-dkms loadable kernel modules should be installed using a single rock-dkms package.

	ROCm v3.9 and above will not set any ldconfig entries for ROCm libraries for multi-version installation. Users must set LD_LIBRARY_PATH to load the ROCm library version of choice.

NOTE: The single version installation of the ROCm stack remains the same. The rocm-dkms package can be used for single version installs and is not deprecated at this time.

Note: Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related issues.

Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources.

	Issue the following command to check the groups in your system:

groups

	Add yourself to the video group using the following instruction:

sudo usermod -a -G video $LOGNAME

For all ROCm supported operating systems, continue to use video group. By default, you can add any future users to the video and render groups.

Note: render group is required only for Ubuntu v20.04.

	To add future users to the video and render groups, run the following command:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

Supported Operating Systems

Ubuntu

Note: AMD ROCm only supports Long Term Support (LTS) versions of Ubuntu. Versions other than LTS may work with ROCm, however, they are not officially supported.

Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

	Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

	Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

Note: The public key has changed to reflect the new location. You must update to the new location as the old key will be removed in a future release.

	Old Key: https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key

	New Key: https://repo.radeon.com/rocm/rocm.gpg.key

sudo apt install wget gnupg2

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/debian/ ubuntu main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For ROCm v4.1 and lower, use ‘xenial main’ as shown below

wget -q -O - https://repo.radeon.com/rocm/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] https://repo.radeon.com/rocm/apt/4.1/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/apt/

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository.

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

e85a40d1a43453fe37d63aa6899bc96e08f2817a rocm.gpg.key

	Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms && sudo reboot

	Restart the system.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/rocprofiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 20.04 or Ubuntu 18.04.5, run the following command:

sudo apt autoremove rocm-opencl rocm-dkms rocm-dev rocm-utils && sudo reboot

Using Debian-based ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules

CentOS RHEL

This section describes how to install ROCm on supported RPM-based systems such as CentOS/RHEL.

Preparing RHEL for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7 environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

	The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

	Enable the following repositories for RHEL v7.x:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

	Enable additional repositories by downloading and installing the epel-release-latest-7/epel-release-latest-8 repository RPM:

sudo rpm -ivh <repo>

For more details,

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm for RHEL v7.x

	see https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm for RHEL v8.x

	Install and set up Devtoolset-7.

Note: Devtoolset is not required for CentOS/RHEL v8.x

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

Installing CentOS for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

Installing ROCm

To install ROCm on your system, follow the instructions below:

	Delete the previous versions of ROCm before installing the latest version.

	Create a /etc/yum.repos.d/rocm.repo file with the following contents:

	CentOS/RHEL 7.x : https://repo.radeon.com/rocm/yum/rpm

	CentOS/RHEL 8.x : https://repo.radeon.com/rocm/centos8/rpm

[ROCm]
name=ROCm
baseurl=https://repo.radeon.com/rocm/yum/rpm
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key

Note: The URL of the repository must point to the location of the repositories’ repodata database. For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/yum/

	Install ROCm components using the following command:

sudo yum install rocm-dkms && sudo reboot

	Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

	Restart the system.

	Test the ROCm installation.

Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin' | sudo tee -a /etc/profile.d/rocm.sh

Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environment:

scl enable devtoolset-7 bash

Uninstalling ROCm from CentOS/RHEL

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-opencl rocm-dkms rock-dkms

Using ROCm on CentOS/RHEL with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. The kernel used must have the HSA kernel driver option enabled and compiled into the amdgpu kernel driver. To install only ROCm user-level software, run the following commands instead of installing rocm-dkms:

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Note: Ensure you restart the system after ROCm installation.

Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

SLES 15 Service Pack 2

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 2.

Note: For SUSE-based distributions (SLE, OpenSUSE, etc), upgrading the base kernel after installing ROCm may result in a broken installation. This is due to policies regarding unsupported kernel modules. To mitigate this, make the following change before initializing the amdgpu module:

#Allow Unsupported Driver and Load Driver
cat <<EOF | tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF

For more information, refer to https://www.suse.com/support/kb/doc/?id=000016939

Installation

	Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.2/x86_64
sudo zypper install dkms

	Add the ROCm repo.

sudo zypper clean –all
sudo zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15/devel:languages:perl.repo
sudo zypper ref
sudo rpm --import https://repo.radeon.com/rocm/rocm.gpg.key
sudo zypper --gpg-auto-import-keys install rocm-dkms
sudo reboot

Note: For developer systems or Docker containers (where it could be beneficial to use a fixed ROCm version), select a versioned repository from:

https://repo.radeon.com/rocm/zyp/

	Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

	Verify the ROCm installation.

	Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/clinfo commands to list the GPUs and verify that the ROCm installation is successful.

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin’|sudo tee -a /etc/profile.d/rocm.sh

Using ROCm on SLES with Upstream Kernel Drivers

sudo zypper install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/udev/rules.d/70-kfd.rules
sudo reboot

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-opencl rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed.
Note: Ensure all the content in the /opt/rocm directory is completely removed. If the command does not remove all the ROCm components/packages, ensure you remove them individually.

Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with a limited amount of storage space, or which will only run a small collection of known applications, you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel && sudo reboot

ROCm Installation Known Issues and Workarounds

The ROCm platform relies on some closed source components to provide functionalities like HSA image support. These components are only available through the ROCm repositories, and they may be deprecated or become open source components in the future. These components are made available in the following packages:

	hsa-ext-rocr-dev

Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to download the source code for ROCm software.

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-4.2.x
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

GCN asm Tutorial

The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. In a previous blog we described how to combine several languages in a single program using ROCm and Hsaco. This article explains how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture. I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s capabilities. Some reasons are the following:

	The program may be written in a high level language that does not expose all of the features available on the hardware.

	The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra]). Recent hardware architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To become more familiar with the instruction set, review the GCN ISA Reference Guide. Note: the assembler is currently experimental; some of syntax we describe may change.

DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index, __global uint * out)
{
 size_t i = get_global_id(0);
 out[i] = in[index[i]];
}

Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding between variables—except to honor the requirements of natural alignment and any align qualifier. The example host program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like the following:

/*
* This is the host-side representation of the kernel arguments that the simplePermute kernel expects.
*/
struct simplePermute_args_t {
 uint32_t * in;
 uint32_t * index;
 uint32_t * out;
};
/*
 * Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate(kernarg_region, sizeof(simplePermute_args_t), (void**)(&args));
assert(HSA_STATUS_SUCCESS == status);
aql->kernarg_address = args;
/*
* Write the args directly to the kernargs buffer;
* the code assumes that memory is already allocated for the
* buffers that in_ptr, index_ptr and out_ptr point to
*/
args->in = in_ptr;
args->index = index_ptr;
args->out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 * sizeof(void*))) { return false; }

// Create buffers
Buffer *in, *index, *out;
in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer(size);

// Fill Kernarg memory
Kernarg(in); // Add base pointer to “in” buffer
Kernarg(index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the kernel, such as

	The LDS size

	The number of GPRs

	Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in the AMDGPU-ABI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer] specification. This is what it looks like in source code:

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
compute_pgm_rsrc1_vgprs = 1
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5
.end_amd_kernel_code_t

s_load_dwordx2 s[4:5], s[0:1], 0x10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_lshlrev_b32 v0, 2, v0
s_waitcnt lgkmcnt(0)
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc
flat_load_dword v1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vmcnt(0) & lgkmcnt(0)
v_lshlrev_b32 v1, 2, v1
ds_bpermute_b32 v1, v1, v2
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkmcnt(0)
flat_store_dword v[3:4], v1
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully, this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension. Registers v1 and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1] registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is the scheme showing initial state for our kernel. initial_state

The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward, however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wavefront_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs v0–v4, so workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0–s5, since the special registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Previous generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers. The fields compute_pgm_rsrc1_*gprs contain a device-specific number for each register-block type to allocate for a wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following formulas for all three GCN GPU generations:

compute_pgm_rsrc1_vgprs = (workitem_vgpr_count-1)/4

compute_pgm_rsrc1_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into s[2:3] from kernarg
v_lshlrev_b32 v0, 2, v0 // v0 *= 4;
s_waitcnt lgkmcnt(0) // wait for memory reads to finish

// compute address of corresponding element of index buffer
// i.e. v[1:2] = &index[workitem_id]
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer
// i.e. v[3:4] = &in[workitem_id]
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword v1, v[1:2] // load index[workitem_id] into v1
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vmcnt(0) & lgkmcnt(0) // wait for memory reads to finish

// v1 *= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_lshlrev_b32 v1, 2, v1

// perform permutation
// temp[thread_id] = v2
// v1 = temp[v1]
// effectively we got v1 = in[index[thread_id]]
ds_bpermute_b32 v1, v1, v2

// compute address of corresponding element of out buffer
// i.e. v[3:4] = &out[workitem_id]
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc

s_waitcnt lgkmcnt(0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = v1
flat_store_dword v[3:4], v1

s_endpgm

Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so you can use Clang to do all the necessary magic:

clang -x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The GitHub examples [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra] use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

MXNet

[image: ../_images/MXNet_image1.png]
MXNet is a deep learning framework that has been ported to the HIP port of MXNet. It works both on HIP/ROCm and HIP/CUDA platforms.
Mxnet makes use of rocBLAS,rocRAND,hcFFT and MIOpen APIs.

It allows you to mix symbolic and imperative programming [https://mxnet.incubator.apache.org/architecture/index.html#deep-learning-system-design-concepts] to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.

MXNet is more than a deep learning project. It is a collection of blue prints and guidelines [https://mxnet.incubator.apache.org/architecture/index.html#deep-learning-system-design-concepts] for building deep learning systems, and interesting insights of DL systems for hackers.

Installation Guide for MXNet library

Prerequisites

GCC 4.8 [https://gcc.gnu.org/gcc-4.8/] or later to compile C++ 11.
GNU Make [https://www.gnu.org/software/make/]

Install Dependencies to build mxnet for HIP/ROCm

	Install ROCm following AMD ROCm’s Installation Guide [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installing-from-amd-rocm-repositories] to setup MXNet with GPU support.

	Install ROCm Libraries

sudo apt install -y rocm-device-libs rocm-libs rocblas hipblas rocrand rocfft

	Install ROCm opencl

sudo apt install -y rocm-opencl rocm-opencl-dev

	Install MIOpen for acceleration

sudo apt install -y miopengemm miopen-hip

	Install rocthrust,rocprim, hipcub Libraries

sudo apt install -y rocthrust rocprim hipcub

Install Dependencies to build mxnet for HIP/CUDA

Install CUDA following the NVIDIA’s installation guide [http://docs.nvidia.com/cuda/cuda-installation-guide-linux/] to setup MXNet with GPU support

Note

	Make sure to add CUDA install path to LD_LIBRARY_PATH

	Example - export LD_LIBRARY_PATH=/usr/local/cuda/lib64/:$LD_LIBRARY_PATH

Install the dependencies hipblas, rocrand, hcfft from source.

Build the MXNet library

Step 1: Install build tools.

$ sudo apt-get update
$ sudo apt-get install -y build-essential

Step 2: Install OpenBLAS.
MXNet uses BLAS and LAPACK libraries for accelerated numerical computations on CPU machine. There are several flavors of BLAS/LAPACK libraries - OpenBLAS, ATLAS and MKL. In this step we install OpenBLAS. You can choose to install ATLAS or MKL.

$ sudo apt-get install -y libopenblas-dev liblapack-dev libomp-dev libatlas-dev libatlas-base-dev

Step 3: Install OpenCV.
Install OpenCV <https://opencv.org/>`_ here.
MXNet uses OpenCV for efficient image loading and augmentation operations.

$ sudo apt-get install -y libopencv-dev

Step 4: Download MXNet sources and build MXNet core shared library.

$ git clone --recursive https://github.com/ROCmSoftwarePlatform/mxnet.git
$ cd mxnet
$ export PATH=/opt/rocm/bin:$PATH

Step 5:

To compile on HCC PLATFORM(HIP/ROCm):

$ export HIP_PLATFORM=hcc

To compile on NVCC PLATFORM(HIP/CUDA):

$ export HIP_PLATFORM=nvcc

Step 6: To enable MIOpen for higher acceleration :

USE_CUDNN=1

Step 7:
If building on CPU:

make -jn(n=number of cores) USE_GPU=0 (For Ubuntu 16.04)
make -jn(n=number of cores) CXX=g++-6 USE_GPU=0 (For Ubuntu 18.04)

If building on GPU:

make -jn(n=number of cores) USE_GPU=1 (For Ubuntu 16.04)
make -jn(n=number of cores) CXX=g++-6 USE_GPU=1 (For Ubuntu 18.04)

On succesfull compilation a library called libmxnet.so is created in mxnet/lib path.

	Note:
	
	USE_CUDA(to build on GPU), USE_CUDNN(for acceleration) flags can be changed in make/config.mk.

	To compile on HIP/CUDA make sure to set USE_CUDA_PATH to right CUDA installation path in make/config.mk. In most cases it is - /usr/local/cuda.

Install the MXNet Python binding

Step 1: Install prerequisites - python, setup-tools, python-pip and numpy.

$ sudo apt-get install -y python-dev python-setuptools python-numpy python-pip python-scipy
$ sudo apt-get install python-tk
$ sudo apt install -y fftw3 fftw3-dev pkg-config

Step 2: Install the MXNet Python binding.

$ cd python
$ sudo python setup.py install

Step 3: Execute sample example

$ cd example/
$ cd bayesian-methods/

To run on gpu change mx.cpu() to mx.gpu() in python script (Example- bdk_demo.py)

	::
	$ python bdk_demo.py

hipCaffe: the HIP Port of Caffe

Introduction

This repository hosts the HIP port of Caffe (or hipCaffe, for short). For details on HIP, please refer here. This HIP-ported framework is able to target both AMD ROCm and Nvidia CUDA devices from the same source code. Hardware-specific optimized library calls are also supported within this codebase.

Prerequisites

Hardware Requirements

	For ROCm hardware requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#system-requirement] .

Software and Driver Requirements

	For ROCm software requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu]

Installation

AMD ROCm Installation

For further background information on ROCm, refer here <http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu>`_.

Installing ROCm Debian packages:

PKG_REPO="http://repo.radeon.com/rocm/apt/debian/"

wget -qO - $PKG_REPO/rocm.gpg.key | sudo apt-key add -

sudo sh -c "echo deb [arch=amd64] $PKG_REPO xenial main > /etc/apt/sources.list.d/rocm.list"

sudo apt-get update

sudo apt-get install rocm rocm-utils rocm-opencl rocm-opencl-dev rocm-profiler cxlactivitylogger

echo 'export PATH=/opt/rocm/bin:$PATH' >> $HOME/.bashrc

echo 'export LD_LIBRARY_PATH=/opt/rocm/lib:$LD_LIBRARY_PATH' >> $HOME/.bashrc

source $HOME/.bashrc

sudo reboot

Then, verify the installation. Double-check your kernel (at a minimum, you should see “kfd” in the name):

uname -r

In addition, check that you can run the simple HSA vector_copy sample application:

cd /opt/rocm/hsa/sample
make
./vector_copy

Pre-requisites Installation

Install Caffe dependencies:

sudo apt-get install \
 pkg-config \
 protobuf-compiler \
 libprotobuf-dev \
 libleveldb-dev \
 libsnappy-dev \
 libhdf5-serial-dev \
 libatlas-base-dev \
 libboost-all-dev \
 libgflags-dev \
 libgoogle-glog-dev \
 liblmdb-dev \
 python-numpy python-scipy python3-dev python-yaml python-pip \
 libopencv-dev \
 libfftw3-dev \
 libelf-dev

Install the necessary ROCm compute libraries:

sudo apt-get install rocm-libs miopen-hip miopengemm

hipCaffe Build Steps

Clone hipCaffe:

git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git

cd hipCaffe

You may need to modify the Makefile.config file for your own installation. Then, build it:

cp ./Makefile.config.example ./Makefile.config
make

To improve build time, consider invoking parallel make with the “-j$(nproc)” flag.

Unit Testing

Run the following commands to perform unit testing of different components of Caffe.

make test
./build/test/test_all.testbin

Example Workloads

MNIST training

Steps:

./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

CIFAR-10 training

Steps:

./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt

CaffeNet inference

Steps:

./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \data/ilsvrc12/imagenet_mean.binaryproto \data/ilsvrc12/synset_words.txt \examples/images/cat.jpg

Soumith’s Convnet benchmarks

Steps:

git clone https://github.com/soumith/convnet-benchmarks.git
cd convnet-benchmarks/caffe

OPTIONAL: reduce the batch sizes to avoid running out of memory for GoogleNet and VGG. For example, these configs work on Fiji: sed -i ‘s|input_dim: 128|input_dim: 8|1’ imagenet_winners/googlenet.prototxt

export CAFFE_ROOT=/path/to/your/caffe/installation
sed -i 's#./caffe/build/tools/caffe#$CAFFE_ROOT/build/tools/caffe#' ./run_imagenet.sh
./run_imagenet.sh

Known Issues

Temp workaround for multi-GPU data transfer error

Sometimes when training with multiple GPUs, we hit this type of error signature:

*** SIGSEGV (@0x0) received by PID 57122 (TID 0x7fd841500b80) from PID 0; stack trace: ***
 @ 0x7fd8409a1390 (unknown)
 @ 0x7fd8400a71f7 (unknown)
 @ 0x7fd840515263 (unknown)
 @ 0x7fd81f5ef907 UnpinnedCopyEngine::CopyHostToDevice()
 @ 0x7fd81f5d3bb9 HSACopy::syncCopyExt()
 @ 0x7fd81f5d28bc Kalmar::HSAQueue::copy_ext()
 @ 0x7fd8410dba5b ihipStream_t::locked_copySync()
 @ 0x7fd8411030bf hipMemcpy
 @ 0x6cfd43 caffe::caffe_gpu_rng_uniform()
 @ 0x5a32ba caffe::DropoutLayer<>::Forward_gpu()
 @ 0x430bbf caffe::Layer<>::Forward()
 @ 0x6fefe7 caffe::Net<>::ForwardFromTo()
 @ 0x6feeff caffe::Net<>::Forward()
 @ 0x801e8c caffe::Solver<>::Step()
 @ 0x8015c3 caffe::Solver<>::Solve()
 @ 0x71a277 caffe::P2PSync<>::Run()
 @ 0x42dcbc train()

See this comment [https://github.com/ROCmSoftwarePlatform/hipCaffe/issues/11#issuecomment-318518802].

In short, here’s the temporary workaround:

export HCC_UNPINNED_COPY_MODE=2

Tutorials

hipCaffe Quickstart Guide

hipCaffe Quickstart Guide

In this quickstart guide, we’ll walk through the steps for ROCm installation. Then, we’ll run a few training and inference experiments and check their accuracy.

Install ROCm

Here are the main ROCm components we’ll be using:

sudo apt-get install rocm
sudo apt-get install rocm-libs
sudo apt-get install miopen-hip miopengemm

And some misc packages:

sudo apt-get install -y \
 g++-multilib \
 libunwind-dev \
 git \
 cmake cmake-curses-gui \
 vim \
 emacs-nox \
 curl \
 wget \
 rpm \
 unzip \
 bc

Verify ROCm

Test a simple HIP sample:

cp -r /opt/rocm/hip/samples ~/hip-samples && cd ~/hip-samples/0_Intro/square/

make

./square.hip.out

Install hipCaffe

Handle the Caffe dependencies first:

sudo apt-get install -y \
 pkg-config \
 protobuf-compiler \
 libprotobuf-dev \
 libleveldb-dev \
 libsnappy-dev \
 libhdf5-serial-dev \
 libatlas-base-dev \
 libboost-all-dev \
 libgflags-dev \
 libgoogle-glog-dev \
 liblmdb-dev \
 python-numpy python-scipy python3-dev python-yaml python-pip \
 python-skimage python-opencv python-protobuf \
 libopencv-dev \
 libfftw3-dev \
 libelf-dev

Note that you might need minor changes to Makefile.config (system dependent):

cd ~

git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git

cd hipCaffe

cp ./Makefile.config.example ./Makefile.config

make -j$(nproc)

Workloads

MNIST training

Details on MNIST training can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/mnist/readme.md].

Here are the basic instructions:

./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

Expected result: >99% accuracy after 10000 iterations

I0717 21:06:03.349702 9965 solver.cpp:279] Solving LeNet
I0717 21:06:03.349711 9965 solver.cpp:280] Learning Rate Policy: inv
I0717 21:06:03.351486 9965 solver.cpp:337] Iteration 0, Testing net (#0)
I0717 21:06:05.472965 9965 solver.cpp:404] Test net output #0: accuracy = 0.1296
I0717 21:06:05.473023 9965 solver.cpp:404] Test net output #1: loss = 2.49735 (* 1 = 2.49735 loss)
I0717 21:06:08.612304 9965 solver.cpp:228] Iteration 0, loss = 2.42257
I0717 21:06:08.612390 9965 solver.cpp:244] Train net output #0: loss = 2.42257 (* 1 = 2.42257 loss)
I0717 21:06:08.612417 9965 sgd_solver.cpp:106] Iteration 0, lr = 0.01
...
I0717 21:06:58.502200 9965 solver.cpp:317] Iteration 10000, loss = 0.00258486
I0717 21:06:58.502228 9965 solver.cpp:337] Iteration 10000, Testing net (#0)
I0717 21:06:58.701591 9965 solver.cpp:404] Test net output #0: accuracy = 0.9917
I0717 21:06:58.701642 9965 solver.cpp:404] Test net output #1: loss = 0.0269806 (* 1 = 0.0269806 loss)
I0717 21:06:58.701668 9965 solver.cpp:322] Optimization Done.

CIFAR-10 training

Details on CIFAR-10 training can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/cifar10/readme.md].

Here are the basic instructions:

./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt

Expected result: >70% accuracy after 4000 iterations

I0727 18:29:35.248363 33 solver.cpp:279] Solving CIFAR10_quick
I0727 18:29:35.248366 33 solver.cpp:280] Learning Rate Policy: fixed
I0727 18:29:35.248883 33 solver.cpp:337] Iteration 0, Testing net (#0)
I0727 18:29:37.263290 33 solver.cpp:404] Test net output #0: accuracy = 0.0779
I0727 18:29:37.263319 33 solver.cpp:404] Test net output #1: loss = 2.30241 (* 1 = 2.30241 loss)
I0727 18:29:40.074849 33 solver.cpp:228] Iteration 0, loss = 2.3028
I0727 18:29:40.074874 33 solver.cpp:244] Train net output #0: loss = 2.3028 (* 1 = 2.3028 loss)
I0727 18:29:40.074894 33 sgd_solver.cpp:106] Iteration 0, lr = 0.001
...
I0727 18:30:13.425905 33 solver.cpp:317] Iteration 4000, loss = 0.536751
I0727 18:30:13.425920 33 solver.cpp:337] Iteration 4000, Testing net (#0)
I0727 18:30:13.722070 33 solver.cpp:404] Test net output #0: accuracy = 0.7124
I0727 18:30:13.722090 33 solver.cpp:404] Test net output #1: loss = 0.848089 (* 1 = 0.848089 loss)
I0727 18:30:13.722095 33 solver.cpp:322] Optimization Done.

CaffeNet inference

Details on CaffeNet inference can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/cpp_classification/readme.md].

Here are the basic instructions:

./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin models/bvlc_reference_caffenet/deploy.prototxt models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel data/ilsvrc12/imagenet_mean.binaryproto data/ilsvrc12/synset_words.txt examples/images/cat.jpg

Expected result: (note the ordering and associated percentages)

---------- Prediction for examples/images/cat.jpg ----------
0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"

mini-nbody: A simple N-body Code

	Github [https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/master/mini-nbody]

A simple gravitational N-body simulation in less than 100 lines of C code, with CUDA optimizations.

Benchmarks

There are 5 different benchmarks provided for CUDA and MIC platforms.

	nbody-orig : the original, unoptimized simulation (also for CPU)

	nbody-soa : Conversion from array of structures (AOS) data layout to structure of arrays (SOA) data layout

	nbody-flush : Flush denormals to zero (no code changes, just a command line option)

	nbody-block : Cache blocking

	nbody-unroll / nbody-align : platform specific final optimizations (loop unrolling in CUDA, and data alignment on MIC)

Files

nbody.c : simple, unoptimized OpenMP C code timer.h : simple cross-OS timing code

Each directory below includes scripts for building and running a “shmoo” of five successive optimizations of the code over a range of data sizes from 1024 to 524,288 bodies.

cuda/ : folder containing CUDA optimized versions of the original C code (in order of performance on Tesla K20c GPU)

	nbody-orig.cu : a straight port of the code to CUDA (shmoo-cuda-nbody-orig.sh)

	nbody-soa.cu : conversion to structure of arrays (SOA) data layout (shmoo-cuda-nbody-soa.sh)

	nbody-soa.cu + ftz : Enable flush denorms to zero (shmoo-cuda-nbody-ftz.sh)

	nbody-block.cu : cache blocking in CUDA shared memory (shmoo-cuda-nbody-block.sh)

	nbody-unroll.cu : addition of “#pragma unroll” to inner loop (shmoo-cuda-nbody-unroll.sh)

HIP/ : folder containing HIP optimized versions of the original C code (in order of performance on FIJI NANO)

1.nbody-orig.cpp : a straight port of the code to HIP (HIP-nbody-orig.sh)
2.nbody-soa.cpp : conversion to structure of arrays (SOA) data layout (HIP-nbody-soa.sh)
3.nbody-block.cu : cache blocking in CUDA shared memory (shmoo-cuda-nbody-block.sh)

mic/ : folder containing Intel Xeon Phi (MIC) optimized versions of the original C code (in order of performance on Xeon Phi 7110P)

../nbody-orig.cu : original code (shmoo-mic-nbody-orig.sh)

1.nbody-soa.c : conversion to structure of arrays (SOA) data layout (shmoo-mic-nbody-soa.sh)
2.nbody-soa.cu + ftz : Enable flush denorms to zero (shmoo-mic-nbody-ftz.sh)
3.nbody-block.c : cache blocking via loop splitting (shmoo-mic-nbody-block.sh)
4.nbody-align.c : aligned memory allocation and vector access (shmoo-mic-nbody-align.sh)

What APIs and features does HIP support?

HIP provides the following:

	Devices (hipSetDevice(), hipGetDeviceProperties(), etc.)

	Memory management (hipMalloc(), hipMemcpy(), hipFree(), etc.)

	Streams (hipStreamCreate(),hipStreamSynchronize(), hipStreamWaitEvent(), etc.)

	Events (hipEventRecord(), hipEventElapsedTime(), etc.)

	Kernel launching (hipLaunchKernelGGL is a standard C/C++ function that replaces <<< >>>)

	HIP Module API to control when adn how code is loaded.

	CUDA*style kernel coordinate functions (threadIdx, blockIdx, blockDim, gridDim)

	Cross*lane instructions including shfl, ballot, any, all

	Most device*side math built*ins

	Error reporting (hipGetLastError(), hipGetErrorString())

The HIP API documentation describes each API and its limitations, if any, compared with the equivalent CUDA API.

What is not supported?

Runtime/Driver API features

At a high*level, the following features are not supported:

	Textures

	Dynamic parallelism (CUDA 5.0)

	Managed memory (CUDA 6.5)

	Graphics interoperability with OpenGL or Direct3D

	CUDA Driver API

	CUDA IPC Functions (Under Development)

	CUDA array, mipmappedArray and pitched memory

	MemcpyToSymbol functions

	Queue priority controls

See the [API Support Table](CUDA_Runtime_API_functions_supported_by_HIP.md) for more detailed information.

Kernel language features

	Device*side dynamic memory allocations (malloc, free, new, delete) (CUDA 4.0)

	Virtual functions, indirect functions and try/catch (CUDA 4.0)

	__prof_trigger

	PTX assembly (CUDA 4.0). HCC supports inline GCN assembly.

	Several kernel features are under development. See the HIP Kernel Language for more information.

These include

	printf

	assert

	__restrict__

	__threadfence*_, __syncthreads*

	Unbounded loop unroll

Is HIP a drop*in replacement for CUDA?

No. HIP provides porting tools which do most of the work to convert CUDA code into portable C++ code that uses the HIP APIs.
Most developers will port their code from CUDA to HIP and then maintain the HIP version.
HIP code provides the same performance as native CUDA code, plus the benefits of running on AMD platforms.

What specific version of CUDA does HIP support?

HIP APIs and features do not map to a specific CUDA version. HIP provides a strong subset of functionality provided in CUDA, and the hipify tools can
scan code to identify any unsupported CUDA functions * this is useful for identifying the specific features required by a given application.

However, we can provide a rough summary of the features included in each CUDA SDK and the support level in HIP:

	
	CUDA 4.0 and earlier :
	
	HIP supports CUDA 4.0 except for the limitations described above.

	
	CUDA 5.0 :
	
	Dynamic Parallelism (not supported)

	cuIpc functions (under development).

	
	CUDA 5.5 :
	
	CUPTI (not directly supported), AMD GPUPerfAPI [http://developer.amd.com/tools*and*sdks/graphics*development/gpuperfapi/] can be used as an alternative in some cases)

	
	CUDA 6.0
	
	Managed memory (under development)

	
	CUDA 6.5
	
	__shfl instriniscs (supported)

	
	CUDA 7.0
	
	Per*thread*streams (under development)

	C++11 (HCC supports all of C++11, all of C++14 and some C++17 features)

	
	CUDA 7.5
	
	float16

	
	CUDA 8.0
	
	TBD.

What libraries does HIP support?

HIP includes growing support for the 4 key math libraries using hcBlas, hcFft, hcrng and hcsparse.
These offer pointer*based memory interfaces (as opposed to opaque buffers) and can be easily interfaced with other HCC applications. Developers should use conditional compilation if portability to nvcc systems is desired * using calls to cu* routines on one path and hc* routines on the other.

	rocblas [https://github.com/ROCmSoftwarePlatform/rocBLAS]

	rocfft [https://github.com/ROCmSoftwarePlatform/rocFFT]

	MIOpen [https://github.com/ROCmSoftwarePlatform/MIOpen]

	hipRAND Under Development

Additionally, some of the cublas routines are automatically converted to hipblas equivalents by the hipify*clang tool. These APIs use cublas or hcblas depending on the platform, and replace the need
to use conditional compilation.

How does HIP compare with OpenCL?

Both AMD and Nvidia support OpenCL 1.2 on their devices, so developers can write portable code.
HIP offers several benefits over OpenCL:

	Developers can code in C++ as well as mix host and device C++ code in their source files. HIP C++ code can use templates, lambdas, classes and so on.

	The HIP API is less verbose than OpenCL and is familiar to CUDA developers.

	Because both CUDA and HIP are C++ languages, porting from CUDA to HIP is significantly easier than porting from CUDA to OpenCL.

	HIP uses the best available development tools on each platform: on Nvidia GPUs, HIP code compiles using NVCC and can employ the nSight profiler and debugger (unlike OpenCL on Nvidia GPUs).

	HIP provides pointers and host*side pointer arithmetic.

	HIP provides device*level control over memory allocation and placement.

	HIP offers an offline compilation model.

How does porting CUDA to HIP compare to porting CUDA to OpenCL?

Both HIP and CUDA are dialects of C++, and thus porting between them is relatively straightforward.

Both dialects support templates, classes, lambdas, and other C++ constructs.

As one example, the hipify tool was originally a Perl script that used simple text conversions from CUDA to HIP.
HIP and CUDA provide similar math library calls as well. In summary, the HIP philosophy was to make the HIP language close enough to CUDA that the porting effort is relatively simple.

This reduces the potential for error, and also makes it easy to automate the translation. HIP’s goal is to quickly get the ported program running on both platforms with little manual intervention,
so that the programmer can focus on performance optimizations.

There have been several tools that have attempted to convert CUDA into OpenCL, such as CU2CL. OpenCL is a C99*based kernel language (rather than C++) and also does not support single*source compilation.
As a result, the OpenCL syntax is different from CUDA, and the porting tools have to perform some heroic transformations to bridge this gap.

The tools also struggle with more complex CUDA applications, in particular those that use templates, classes, or other C++ features inside the kernel.

What hardware does HIP support?

	For AMD platforms, HIP runs on the same hardware that the HCC “hc” mode supports. See the ROCm documentation for the list of supported platforms.

	For Nvidia platforms, HIP requires Unified Memory and should run on any device supporting CUDA SDK 6.0 or newer. We have tested the Nvidia Titan and Tesla K40.

Does Hipify automatically convert all source code?

Typically, hipify can automatically convert almost all run*time code, and the coordinate indexing device code (threadIdx.x *> hipThreadIdx_x).

Most device code needs no additional conversion, since HIP and CUDA have similar names for math and built*in functions.
The hipify*clang tool will automatically modify the kernel signature as needed (automating a step that used to be done manually)

Additional porting may be required to deal with architecture feature queries or with CUDA capabilities that HIP doesn’t support.

In general, developers should always expect to perform some platform*specific tuning and optimization.

What is NVCC?

NVCC is Nvidia’s compiler driver for compiling “CUDA C++” code into PTX or device code for Nvidia GPUs. It’s a closed*source binary compiler that is provided by the CUDA SDK.

What is HCC?

HCC is AMD’s compiler driver which compiles “heterogeneous C++” code into HSAIL or GCN device code for AMD GPUs. It’s an open*source compiler based on recent versions of CLANG/LLVM.

Why use HIP rather than supporting CUDA directly?

While HIP is a strong subset of the CUDA, it is a subset. The HIP layer allows that subset to be clearly defined and documented.

Developers who code to the HIP API can be assured their code will remain portable across Nvidia and AMD platforms.
In addition, HIP defines portable mechanisms to query architectural features, and supports a larger 64*bit wavesize which expands the return type for cross*lane functions like ballot and shuffle from 32*bit ints to 64*bit ints.

Can I develop HIP code on an Nvidia CUDA platform?

Yes. HIP’s CUDA path only exposes the APIs and functionality that work on both NVCC and HCC back*ends.
“Extra” APIs, parameters, and features which exist in CUDA but not in HCC will typically result in compile* or run*time errors.

Developers need to use the HIP API for most accelerator code, and bracket any CUDA*specific code with preprocessor conditionals.

Developers concerned about portability should of course run on both platforms, and should expect to tune for performance.
In some cases CUDA has a richer set of modes for some APIs, and some C++ capabilities such as virtual functions * see the HIP @API documentation for more details.

Can I develop HIP code on an AMD HCC platform?

Yes. HIP’s HCC path only exposes the APIs and functions that work on both NVCC and HCC back ends. “Extra” APIs, parameters and features that appear in HCC but not CUDA will typically cause compile* or run*time errors. Developers must use the HIP API for most accelerator code and bracket any HCC*specific code with preprocessor conditionals.

Those concerned about portability should, of course, test their code on both platforms and should tune it for performance. Typically, HCC supports a more modern set of C++11/C++14/C++17 features, so HIP developers who want portability should be careful when using advanced C++ features on the hc path.

PCIe Features

ROCm Use of Advanced PCIe Features and Overview of How BAR Memory is Used In ROCm Enabled System

ROCm is an extension of HSA platform architecture, so it shares the queueing model, memory model, signaling and synchronization protocols. Platform atomics are integral to perform queuing and signaling memory operations where there may be multiple-writers across CPU and GPU agents.

The full list of HSA system architecture platform requirements is here: HSA Sys Arch Features [http://www.hsafoundation.com/html/HSA_Library.htm#SysArch/Topics/01_Overview/list_of_requirements.html].

The ROCm Platform uses the new PCI Express 3.0 (PCIe 3.0) features for Atomic Read-Modify-Write Transactions which extends inter-processor synchronization mechanisms to IO to support the defined set of HSA capbilities needed for queuing and signaling memory operations.

The new PCIe AtomicOps operate as completers for CAS(Compare and Swap), FetchADD, SWAP atomics. The AtomicsOps are initiated by the I/O device which support 32-, 64- and 128-bit operand which target address have to be naturally aligned to operation sizes.

Currently ROCm use this capability as following:

	Update HSA queue’s read_dispatch_id: 64bit atomic add used by the command processor on the GPU agent to update the packet ID it processed.

	Update HSA queue’s write_dispatch_id: 64bit atomic add used by the CPU and GPU agent to support multi-writer queue insertions.

	Update HSA Signals – 64bit atomic ops are used for CPU & GPU synchronization.

The PCIe 3.0 AtomicOp feature allows atomic transactions to be requested by, routed through and completed by PCIe components. Routing and completion does not require software support. Component support for each is detectable via the DEVCAP2 register. Upstream bridges need to have AtomicOp routing enabled or the Atomic Operations will fall even though PCIe endpoint and PCIe I/O Devices has the capability to Atomics Operations.

To do AtomicOp routing capability between two or more Root Ports, each associated Root Port must indicate that capability via the AtomicOp Routing Supported bit in the Device Capabilities 2 register.

If your system has a PCIe Express Switch it needs to support AtomicsOp routing. Again AtomicOp requests are permitted only if a component’s DEVCTL2.ATOMICOP_REQUESTER_ENABLE field is set. These requests can only be serviced if the upstream components support AtomicOp completion and/or routing to a component which does. AtomicOp Routing Support=1 Routing is supported, AtomicOp Routing Support=0 routing is not supported.

Atomic Operation is a Non-Posted transaction supporting 32- and 64-bit address formats, there must be a response for Completion containing the result of the operation. Errors associated with the operation (uncorrectable error accessing the target location or carrying out the Atomic operation) are signaled to the requester by setting the Completion Status field in the completion descriptor, they are set to to Completer Abort (CA) or Unsupported Request (UR).

To understand more about how PCIe Atomic operations work PCIe Atomics [https://pcisig.com/sites/default/files/specification_documents/ECN_Atomic_Ops_080417.pdf].

Linux Kernel Patch to pci_enable_atomic_request [https://patchwork.kernel.org/patch/7261731/].

There are also a number of papers which talk about these new capabilities:

	Atomic Read Modify Write Primitives by Intel [https://www.intel.es/content/dam/doc/white-paper/atomic-read-modify-write-primitives-i-o-devices-paper.pdf]

	PCI express 3 Accelerator Whitepaper by Intel [https://www.intel.sg/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf]

	Intel PCIe Generation 3 Hotchips Paper [https://www.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf]

	PCIe Generation 4 Base Specification includes Atomics Operation [http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_4.0.Ver.0.3.pdf]

Other I/O devices with PCIe Atomics support

	Mellanox ConnectX-5 InfiniBand Card [http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf]

	Cray Aries Interconnect [http://www.hoti.org/hoti20/slides/Bob_Alverson.pdf]

	Xilinx PCIe Ultrascale Whitepaper [https://www.xilinx.com/support/documentation/white_papers/wp464-PCIe-ultrascale.pdf]

	Xilinx 7 Series Devices [https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_1/pg054-7series-pcie.pdf]

Future bus technology with richer I/O Atomics Operation Support

	GenZ [http://genzconsortium.org/faq/gen-z-technology/#33]

New PCIe Endpoints with support beyond AMD Ryzen and EPIC CPU; Intel Haswell or newer CPU’s with PCIe Generation 3.0 support.

	Mellanox Bluefield SOC [http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf]

	Cavium Thunder X2 [http://www.cavium.com/ThunderX2_ARM_Processors.html]

In ROCm, we also take advantage of PCIe ID based ordering technology for P2P when the GPU originates two writes to two different targets:

	write to another GPU memory

	then write to system memory to indicate transfer complete

They are routed off to different ends of the computer but we want to make sure the write to system memory to indicate transfer complete occurs AFTER P2P write to GPU has complete.

Good Paper on Understanding PCIe Generation 3 Throughput [https://www.altera.com/en_US/pdfs/literature/an/an690.pdf].

BAR Memory Overview

On a Xeon E5 based system in the BIOS we can turn on above 4GB PCIe addressing, if so he need to set MMIO Base address (MMIOH Base) and Range (MMIO High Size) in the BIOS.

In SuperMicro system in the system bios you need to see the following

	Advanced->PCIe/PCI/PnP configuration-> Above 4G Decoding = Enabled

	Advanced->PCIe/PCI/PnP Configuration->MMIOH Base = 512G

	Advanced->PCIe/PCI/PnP Configuration->MMIO High Size = 256G

When we support Large Bar Capbility there is a Large Bar Vbios which also disable the IO bar.

For GFX9 and Vega10 which have Physical Address up 44 bit and 48 bit Virtual address.

	BAR0-1 registers: 64bit, prefetchable, GPU memory. 8GB or 16GB depending on Vega10 SKU. Must be placed < 2^44 to support P2P access from other Vega10.

	BAR2-3 registers: 64bit, prefetchable, Doorbell. Must be placed < 2^44 to support P2P access from other Vega10.

	BAR4 register: Optional, not a boot device.

	BAR5 register: 32bit, non-prefetchable, MMIO. Must be placed < 4GB.

Here is how our BAR works on GFX 8 GPU’s with 40 bit Physical Address Limit

11:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Fiji [Radeon R9 FURY / NANO Series] (rev c1)

Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0b35

Flags: bus master, fast devsel, latency 0, IRQ 119

Memory at bf40000000 (64-bit, prefetchable) [size=256M]

Memory at bf50000000 (64-bit, prefetchable) [size=2M]

I/O ports at 3000 [size=256]

Memory at c7400000 (32-bit, non-prefetchable) [size=256K]

Expansion ROM at c7440000 [disabled] [size=128K]

Legend:

1 : GPU Frame Buffer BAR – In this example it happens to be 256M, but typically this will be size of the GPU memory (typically 4GB+). This BAR has to be placed < 2^40 to allow peer-to-peer access from other GFX8 AMD GPUs. For GFX9 (Vega GPU) the BAR has to be placed < 2^44 to allow peer-to-peer access from other GFX9 AMD GPUs.

2 : Doorbell BAR – The size of the BAR is typically will be < 10MB (currently fixed at 2MB) for this generation GPUs. This BAR has to be placed < 2^40 to allow peer-to-peer access from other current generation AMD GPUs.

3 : IO BAR - This is for legacy VGA and boot device support, but since this the GPUs in this project are not VGA devices (headless), this is not a concern even if the SBIOS does not setup.

4 : MMIO BAR – This is required for the AMD Driver SW to access the configuration registers. Since the reminder of the BAR available is only 1 DWORD (32bit), this is placed < 4GB. This is fixed at 256KB.

5 : Expansion ROM – This is required for the AMD Driver SW to access the GPU’s video-bios. This is currently fixed at 128KB.

Excepts form Overview of Changes to PCI Express 3.0

By Mike Jackson, Senior Staff Architect, MindShare, Inc.

Atomic Operations – Goal:

Support SMP-type operations across a PCIe network to allow for things like offloading tasks between CPU cores and accelerators like a GPU. The spec says this enables advanced synchronization mechanisms that are particularly useful with multiple producers or consumers that need to be synchronized in a non-blocking fashion. Three new atomic non-posted requests were added, plus the corresponding completion (the address must be naturally aligned with the operand size or the TLP is malformed):

	Fetch and Add – uses one operand as the “add” value. Reads the target location, adds the operand, and then writes the result back to the original location.

	Unconditional Swap – uses one operand as the “swap” value. Reads the target location and then writes the swap value to it.

	Compare and Swap – uses 2 operands: first data is compare value, second is swap value. Reads the target location, checks it against the compare value and, if equal, writes the swap value to the target location.

	AtomicOpCompletion – new completion to give the result so far atomic request and indicate that the atomicity of the transaction has been maintained.

Since AtomicOps are not locked they don’t have the performance downsides of the PCI locked protocol. Compared to locked cycles, they provide “lower latency, higher scalability, advanced synchronization algorithms, and dramatically lower impact on other PCIe traffic.” The lock mechanism can still be used across a bridge to PCI or PCI-X to achieve the desired operation.

AtomicOps can go from device to device, device to host, or host to device. Each completer indicates whether it supports this capability and guarantees atomic access if it does. The ability to route AtomicOps is also indicated in the registers for a given port.

ID-based Ordering – Goal:

Improve performance by avoiding stalls caused by ordering rules. For example, posted writes are never normally allowed to pass each other in a queue, but if they are requested by different functions, we can have some confidence that the requests are not dependent on each other. The previously reserved Attribute bit [2] is now combined with the RO bit to indicate ID ordering with or without relaxed ordering.

This only has meaning for memory requests, and is reserved for Configuration or IO requests. Completers are not required to copy this bit into a completion, and only use the bit if their enable bit is set for this operation.

To read more on PCIe Gen 3 new options http://www.mindshare.com/files/resources/PCIe%203-0.pdf

hipCaffe: the HIP Port of Caffe

Introduction

This repository hosts the HIP port of Caffe (or hipCaffe, for short). For details on HIP, please refer here. This HIP-ported framework is able to target both AMD ROCm and Nvidia CUDA devices from the same source code. Hardware-specific optimized library calls are also supported within this codebase.

Prerequisites

Hardware Requirements

	For ROCm hardware requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#system-requirement] .

Software and Driver Requirements

	For ROCm software requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu]

Installation

AMD ROCm Installation

For further background information on ROCm, refer here <http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu>`_.

Installing ROCm Debian packages:

PKG_REPO="http://repo.radeon.com/rocm/apt/debian/"

wget -qO - $PKG_REPO/rocm.gpg.key | sudo apt-key add -

sudo sh -c "echo deb [arch=amd64] $PKG_REPO xenial main > /etc/apt/sources.list.d/rocm.list"

sudo apt-get update

sudo apt-get install rocm rocm-utils rocm-opencl rocm-opencl-dev rocm-profiler cxlactivitylogger

echo 'export PATH=/opt/rocm/bin:$PATH' >> $HOME/.bashrc

echo 'export LD_LIBRARY_PATH=/opt/rocm/lib:$LD_LIBRARY_PATH' >> $HOME/.bashrc

source $HOME/.bashrc

sudo reboot

Then, verify the installation. Double-check your kernel (at a minimum, you should see “kfd” in the name):

uname -r

In addition, check that you can run the simple HSA vector_copy sample application:

cd /opt/rocm/hsa/sample
make
./vector_copy

Pre-requisites Installation

Install Caffe dependencies:

sudo apt-get install \
 pkg-config \
 protobuf-compiler \
 libprotobuf-dev \
 libleveldb-dev \
 libsnappy-dev \
 libhdf5-serial-dev \
 libatlas-base-dev \
 libboost-all-dev \
 libgflags-dev \
 libgoogle-glog-dev \
 liblmdb-dev \
 python-numpy python-scipy python3-dev python-yaml python-pip \
 libopencv-dev \
 libfftw3-dev \
 libelf-dev

Install the necessary ROCm compute libraries:

sudo apt-get install rocm-libs miopen-hip miopengemm

hipCaffe Build Steps

Clone hipCaffe:

git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git

cd hipCaffe

You may need to modify the Makefile.config file for your own installation. Then, build it:

cp ./Makefile.config.example ./Makefile.config
make

To improve build time, consider invoking parallel make with the “-j$(nproc)” flag.

Unit Testing

Run the following commands to perform unit testing of different components of Caffe.

make test
./build/test/test_all.testbin

Example Workloads

MNIST training

Steps:

./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

CIFAR-10 training

Steps:

./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt

CaffeNet inference

Steps:

./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \data/ilsvrc12/imagenet_mean.binaryproto \data/ilsvrc12/synset_words.txt \examples/images/cat.jpg

Known Issues

Temp workaround for multi-GPU data transfer error

Sometimes when training with multiple GPUs, we hit this type of error signature:

*** SIGSEGV (@0x0) received by PID 57122 (TID 0x7fd841500b80) from PID 0; stack trace: ***
 @ 0x7fd8409a1390 (unknown)
 @ 0x7fd8400a71f7 (unknown)
 @ 0x7fd840515263 (unknown)
 @ 0x7fd81f5ef907 UnpinnedCopyEngine::CopyHostToDevice()
 @ 0x7fd81f5d3bb9 HSACopy::syncCopyExt()
 @ 0x7fd81f5d28bc Kalmar::HSAQueue::copy_ext()
 @ 0x7fd8410dba5b ihipStream_t::locked_copySync()
 @ 0x7fd8411030bf hipMemcpy
 @ 0x6cfd43 caffe::caffe_gpu_rng_uniform()
 @ 0x5a32ba caffe::DropoutLayer<>::Forward_gpu()
 @ 0x430bbf caffe::Layer<>::Forward()
 @ 0x6fefe7 caffe::Net<>::ForwardFromTo()
 @ 0x6feeff caffe::Net<>::Forward()
 @ 0x801e8c caffe::Solver<>::Step()
 @ 0x8015c3 caffe::Solver<>::Solve()
 @ 0x71a277 caffe::P2PSync<>::Run()
 @ 0x42dcbc train()

See this comment [https://github.com/ROCmSoftwarePlatform/hipCaffe/issues/11#issuecomment-318518802].

In short, here’s the temporary workaround:

export HCC_UNPINNED_COPY_MODE=2

Tutorials

hipCaffe Quickstart Guide

“Vega” Instruction Set Architecture

Preface

About This Document

This document describes the environment, organization and program state of AMD GCN “VEGA” Generation devices. It details the instruction set and the microcode formats native to this family of processors that are accessible to programmers and compilers.

The document specifies the instructions (include the format of each type of instruction) and the relevant program state (including how the program state interacts with the instructions). Some instruction fields are mutually dependent; not all possible settings for all fields are legal. This document specifies the valid combinations.

The main purposes of this document are to:

	Specify the language constructs and behavior, including the organization of each type of instruction in both text syntax and binary format.

	Provide a reference of instruction operation that compiler writers can use to maximize performance of the processor.

Audience

This document is intended for programmers writing application and system software, including operating systems, compilers, loaders, linkers,device drivers, and system utilities. It assumes that programmers are writing compute-intensive parallel applications (streaming applications) and assumes an understanding of requisite programming practices.

Organization

This document begins with an overview of the AMD GCN processor’s hardware and programming environment (Chapter 1).

Chapter 2 describes the organization of GCN programs.

Chapter 3 describes the program state that is maintained.

Chapter 4 describes the program flow.

Chapter 5 describes the scalar ALU operations.

Chapter 6 describes the vector ALU operations.

Chapter 7 describes the scalar memory operations.

Chapter 8 describes the vector memory operations.

Chapter 9 provides information about the flat memory instructions.

Chapter 10 describes the data share operations.

Chapter 11 describes exporting the parameters of pixel color and vertex shaders.

Chapter 12 describes instruction details, first by the microcode format to which they belong, then in alphabetic order.

Finally, Chapter 13 provides a detailed specification of each microcode format.

Conventions

The following conventions are used in this document:

	mono-spaced font

	A filename, file path or code.

	*

	Any number of alphanumeric characters in the name
of a code format, parameter, or instruction.

	< >

	Angle brackets denote streams.

	[1,2)

	A range that includes the left-most value (in this
case, 1), but excludes the right-most value (in
this case, 2).

	[1,2]

	A range that includes both the left-most and
right-most values.

	{x | y}

	One of the multiple options listed. In this case,
X or Y.

	0.0

	A single-precision (32-bit) floating-point value.

	1011b

	A binary value, in this example a 4-bit value.

	7:4

	A bit range, from bit 7 to bit 4, inclusive. The
high-order bit is shown first.

	italicized word or
phrase

	The first use of a term or concept basic to the
understanding of stream computing.

Related Documents

	Intermediate Language (IL) Reference Manual. Published by AMD.

	AMD Accelerated Parallel Processing OpenCL Programming Guide.
Published by AMD.

	The OpenCL Specification. Published by Khronos Group. Aaftab Munshi,
editor.

	OpenGL Programming Guide, at http://www.glprogramming.com/red/

	Microsoft DirectX Reference Website, here at DirectX [https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85)]

	GPGPU: http://www.gpgpu.org

Differences Between VEGA and Previous Devices

Summary of kernel instruction changes in Vega GPUs:

	New packed 16-bit math instructions.

V_PK_MAD_I16 V_PK_MUL_LO_U16 V_PK_ADD_I16 V_PK_SUB_I16
V_PK_LSHLREV_B16 V_PK_LSHRREV_B16 V_PK_ASHRREV_I16 V_PK_MAX_I16
V_PK_MIN_I16 V_PK_MAD_U16 V_PK_ADD_U16 V_PK_SUB_U16
V_PK_MAX_U16 V_PK_MIN_U16 V_PK_FMA_F16 V_PK_ADD_F16
V_PK_MUL_F16 V_PK_MIN_F16 V_PK_MAX_F16 V_MAD_MIX_F32
V_MAD_MIXLO_F16 V_MAD_MIXHI_F16 S_PACK_{LL,LH,HH}_B16_B32

	TMA and TBA registers are stored one per VM-ID, not per draw or
dispatch.

	Added Image operations support 16-bit address and data.

	Added Global and Scratch memory read/write operations.

	Also added Scratch load/store to scalar memory.

	Added Scalar memory atomic instructions.

	MIMG Microcode format: removed the R128 bit.

	FLAT Microcode format: added an offset field.

	Removed V_MOVEREL instructions.

	Added control over arithmetic overflow for FP16 VALU operations.

	Modified bit packing of surface descriptors and samplers:

	T#: removed heap, elem_size, last_array, interlaced,
uservm_mode bits.

	V#: removed mtype.

	S#: removed astc_hdr field.

Contact Information

For information concerning AMD Accelerated Parallel Processing developing, please see: http://developer.amd.com/ .

For information about developing with AMD Accelerated Parallel Processing, please see: http://developer.amd.com/amd-accelerated-parallel-processing-app-sdk/ .

We also have a growing community of AMD Accelerated Parallel Processing users. Come visit us at the AMD Accelerated Parallel Processing Developer Forum (http://developer.amd.com/openclforum) to find out what applications other users are trying on their AMD Accelerated Parallel Processing products.

Introduction

AMD GCN processors implement a parallel micro-architecture that provides an excellent platform not only for computer graphics applications but also for general-purpose data parallel applications. Any data-intensive application that requires high bandwidth or is computationally intensive is a candidate for running on an AMD GCN processor.

The figure below shows a block diagram of the AMD GCN Vega Generation series processors

[image: ../_images/fig_1_1_vega.png]

AMD GCN VEGA Generation Series Block Diagram

The GCN device includes a data-parallel processor (DPP) array, a command processor, a memory controller, and other logic (not shown). The GCN command processor reads commands that the host has written to memory-mapped GCN registers in the system-memory address space. The command processor sends hardware-generated interrupts to the host when the command is completed. The GCN memory controller has direct access to all GCN device memory and the host-specified areas of system memory. To satisfy read and write requests, the memory controller performs the functions of a direct-memory access (DMA) controller, including computing memory-address offsets based on the format of the requested data in memory. In the GCN environment, a complete application includes two parts:
- a program running on the host processor, and

	programs, called kernels, running on the GCN processor.

The GCN programs are controlled by host commands that

	set GCN internal base-address and other configuration registers,

	specify the data domain on which the GCN GPU is to operate,

	invalidate and flush caches on the GCN GPU, and

	cause the GCN GPU to begin execution of a program.

The GCN driver program runs on the host.

The DPP array is the heart of the GCN processor. The array is organized as a set of compute unit pipelines, each independent from the others, that operate in parallel on streams of floating-point or integer data.The compute unit pipelines can process data or, through the memory controller, transfer data to, or from, memory. Computation in a compute unit pipeline can be made conditional. Outputs written to memory can also be made conditional.

When it receives a request, the compute unit pipeline loads instructions and data from memory, begins execution, and continues until the end of the kernel. As kernels are running, the GCN hardware automatically fetches instructions from memory into on-chip caches; GCN software plays no role in this. GCN kernels can load data from off-chip memory into on-chip general-purpose registers (GPRs) and caches.

The AMD GCN devices can detect floating point exceptions and can generate interrupts. In particular, they detect IEEE floating-point
exceptions in hardware; these can be recorded for post-execution analysis. The software interrupts shown in the previous figure from the command processor to the host represent hardware-generated interrupts for signaling command-completion and related management functions.

The GCN processor hides memory latency by keeping track of potentially hundreds of work-items in different stages of execution, and by
overlapping compute operations with memory-access operations.

The figure below shows the dataflow for a GCN application. For general-purpose applications, only one processing block performs all
computation.

[image: GCN VEGA Generation Dataflow]
GCN VEGA Generation Dataflow

Terminology

	Term

	Description

	GCN Processor

	The Graphics Core Next shader processor is a
scalar and vector ALU capable of running complex
programs on behalf of a wavefront.

	Dispatch

	A dispatch launches a 1D, 2D, or 3D grid of work
to the GCN processor array.

	Workgroup

	A workgroup is a collection of wavefronts that
have the ability to synchronize with each other
quickly; they also can share data through the
Local Data Share.

	Wavefront

	A collection of 64 work-items that execute in
parallel on a single GCN processor.

	Work-item

	A single element of work: one element from the
dispatch grid, or in graphics a pixel or vertex.

	Literal Constant

	A 32-bit integer or float constant that is placed
in the instruction stream.

	Scalar ALU (SALU)

	The scalar ALU operates on one value per wavefront
and manages all control flow.

	Vector ALU (VALU)

	The vector ALU maintains Vector GPRs that are
unique for each work item and execute arithmetic
operations uniquely on each work-item.

	Microcode format

	The microcode format describes the bit patterns
used to encode instructions. Each instruction is
either 32 or 64 bits.

	Instruction

	An instruction is the basic unit of the kernel.
Instructions include: vector ALU, scalar ALU,
memory transfer, and control flow operations.

	Quad

	A quad is a 2x2 group of screen-aligned pixels.
This is relevant for sampling texture maps.

	Texture Sampler

	A texture sampler is a 128-bit entity that
describes how the vector memory system reads and
samples (filters) a texture map.

	Texture Resource

	A texture resource describes a block of memory:
address, data format, stride, etc.

Table : Basic Terms Uses

Program Organization

GCN kernels are programs executed by the GCN processor. Conceptually, the kernel is executed independently on every work-item, but in reality the GCN processor groups 64 work-items into a wavefront, which executes the kernel on all 64 work-items in one pass.

The GCN processor consists of:

	A scalar ALU, which operates on one value per wavefront (common to all work items).

	A vector ALU, which operates on unique values per work-item.

	Local data storage, which allows work-items within a workgroup to communicate and share data.

	Scalar memory, which can transfer data between SGPRs and memory through a cache.

	Vector memory, which can transfer data between VGPRs and memory,including sampling texture maps.

All kernel control flow is handled using scalar ALU instructions. This includes if/else, branches and looping. Scalar ALU (SALU) and memory instructions work on an entire wavefront and operate on up to two SGPRs,as well as literal constants.

Vector memory and ALU instructions operate on all work-items in the wavefront at one time. In order to support branching and conditional execute, every wavefront has an EXECute mask that determines which work-items are active at that moment, and which are dormant. Active work-items execute the vector instruction, and dormant ones treat the instruction as a NOP. The EXEC mask can be changed at any time by Scalar ALU instructions.

Vector ALU instructions can take up to three arguments, which can come from VGPRs, SGPRs, or literal constants that are part of the instruction stream. They operate on all work-items enabled by the EXEC mask. Vector compare and add with- carryout return a bit-per-work-item mask back to the SGPRs to indicate, per work-item, which had a “true” result from the compare or generated a carry-out.

Vector memory instructions transfer data between VGPRs and memory. Each work-item supplies its own memory address and supplies or receives unique data. These instructions are also subject to the EXEC mask.

Compute Shaders

Compute kernels (shaders) are generic programs that can run on the GCN processor, taking data from memory, processing it, and writing results back to memory. Compute kernels are created by a dispatch, which causes the GCN processors to run the kernel over all of the work-items in a 1D, 2D, or 3D grid of data. The GCN processor walks through this grid and generates wavefronts, which then run the compute kernel. Each work-item is initialized with its unique address (index) within the grid. Based on this index, the work-item computes the address of the data it is required to work on and what to do with the results.

Data Sharing

The AMD GCN stream processors can share data between different work-items. Data sharing can significantly boost performance. The figure below shows the memory hierarchy that is available to each work-item.

[image: Shared Memory Hierarchy]
Shared Memory Hierarchy

Local Data Share (LDS)

Each compute unit has a 64 kB memory space that enables low-latency communication between work-items within a work-group, or the work-items within a wavefront; this is the local data share (LDS). This memory is configured with 32 banks, each with 512 entries of 4 bytes. The AMD GCN processors use a 64 kB local data share (LDS) memory for each compute unit; this enables 64 kB of low-latency bandwidth to the processing elements. The shared memory contains 32 integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache for predictable re-use of data, a data exchange machine for the work-items of a work-group, or as a cooperative way to enable efficient access to off-chip memory.

Global Data Share (GDS)

The AMD GCN devices use a 64 kB global data share (GDS) memory that can be used by wavefronts of a kernel on all compute units. This memory provides 128 bytes per cycle of memory access to all the processing elements. The GDS is configured with 32 banks, each with 512 entries of 4 bytes each. It provides full access to any location for any processor. The shared memory contains 32 integer atomic units to enable fast, unordered atomic operations. This memory can be used as a software cache to store important control data for compute kernels, reduction operations, or a small global shared surface. Data can be preloaded from memory prior to kernel launch and written to memory after kernel completion. The GDS block contains support logic for unordered append/consume and domain launch ordered append/consume operations to buffers in memory. These dedicated circuits enable fast compaction of data or the creation of complex data structures in memory.

Device Memory

The AMD GCN devices offer several methods for access to off-chip memory from the processing elements (PE) within each compute unit. On the primary read path, the device consists of multiple channels of L2 read-only cache that provides data to an L1 cache for each compute unit. Special cache-less load instructions can force data to be retrieved from device memory during an execution of a load clause. Load requests that overlap within the clause are cached with respect to each other. The output cache is formed by two levels of cache: the first for write-combining cache (collect scatter and store operations and combine them to provide good access patterns to memory); the second is a read/write cache with atomic units that lets each processing element complete unordered atomic accesses that return the initial value. Each processing element provides the destination address on which the atomic operation acts, the data to be used in the atomic operation, and a return address for the read/write atomic unit to store the pre-op value in memory. Each store or atomic operation can be set up to return an acknowledgment to the requesting PE upon write confirmation of the return value (pre-atomic op value at destination) being stored to device memory.

This acknowledgment has two purposes:

	enabling a PE to recover the pre-op value from an atomic operation by performing a cache-less load from its return address after receipt of the write confirmation acknowledgment, and

	enabling the system to maintain a relaxed consistency model.

Each scatter write from a given PE to a given memory channel always maintains order. The acknowledgment enables one processing element to implement a fence to maintain serial consistency by ensuring all writes have been posted to memory prior to completing a subsequent write. In this manner, the system can maintain a relaxed consistency model between all parallel work-items operating on the system.

Kernel State

This chapter describes the kernel states visible to the shader program.

State Overview

The table below shows all of the hardware states readable or writable by
a shader program.

	Abbrev.

	Name

	Size
(bits)

	Description

	PC

	Program Counter

	48

	Points to the memory address of
the next shader instruction to
execute.

	V0-V255

	VGPR

	32

	Vector general-purpose register.

	S0-S103

	SGPR

	32

	Vector general-purpose register.

	LDS

	Local Data Share

	64kB

	Local data share is a scratch RAM
with built-in arithmetic
capabilities that allow data to
be shared between threads in a
workgroup.

	EXEC

	Execute Mask

	64

	A bit mask with one bit per
thread, which is applied to
vector instructions and controls
that threads execute and that
ignore the instruction.

	EXECZ

	EXEC is zero

	1

	A single bit flag indicating that
the EXEC mask is all zeros.

	VCC

	Vector Condition
Code

	64

	A bit mask with one bit per
thread; it holds the result of a
vector compare operation.

	VCCZ

	VCC is zero

	1

	A single bit-flag indicating that
the VCC mask is all zeros.

	SCC

	Scalar Condition
Code

	1

	Result from a scalar ALU
comparison instruction.

	FLAT_SCRATC
H

	Flat scratch address

	64

	The base address of scratch
memory.

	XNACK_MASK

	Address translation
failure.

	64

	Bit mask of threads that have
failed their address translation.

	STATUS

	Status

	32

	Read-only shader status bits.

	MODE

	Mode

	32

	Writable shader mode bits.

	M0

	Memory Reg

	32

	A temporary register that has
various uses, including GPR
indexing and bounds checking.

	TRAPSTS

	Trap Status

	32

	Holds information about
exceptions and pending traps.

	TBA

	Trap Base Address

	64

	Holds the pointer to the current
trap handler program.

	TMA

	Trap Memory Address

	64

	Temporary register for shader
operations. For example, can hold
a pointer to memory used by the
trap handler.

	TTMP0-TTMP15

	Trap Temporary SGPRs

	32

	16 SGPRs available only to the
Trap Handler for temporary
storage.

	VMCNT

	Vector memory
instruction count

	6

	Counts the number of VMEM
instructions issued but not yet
completed.

	EXPCNT

	Export Count

	3

	Counts the number of Export and
GDS instructions issued but not
yet completed. Also counts VMEM
writes that have not yet sent
their write-data to the TC.

	LGKMCNT

	LDS, GDS, Constant
and Message count

	4

	Counts the number of LDS, GDS,
constant-fetch (scalar memory
read), and message instructions
issued but not yet completed.

Table : Readable and Writable Hardware States

Program Counter (PC)

The program counter (PC) is a byte address pointing to the next instruction to execute. When a wavefront is created, the PC is
initialized to the first instruction in the program.

The PC interacts with three instructions: S_GET_PC, S_SET_PC,S_SWAP_PC. These transfer the PC to, and from, an even-aligned SGPR
pair.

Branches jump to (PC_of_the_instruction_after_the_branch +offset). The shader program cannot directly read from, or write to, the PC. Branches, GET_PC and SWAP_PC, are PC-relative to the next instruction, not the current one. S_TRAP saves the PC of the S_TRAP instruction itself.

EXECute Mask

The Execute mask (64-bit) determines which threads in the vector are
executed:

1 = execute, 0 = do not execute.

EXEC can be read from, and written to, through scalar instructions; it also can be written as a result of a vector-ALU compare. This mask affects vector-ALU, vector-memory, LDS, and export instructions. It does not affect scalar execution or branches.

A helper bit (EXECZ) can be used as a condition for branches to skip code when EXEC is zero.

Note

This GPU does no optimization when EXEC = 0. The shader hardware executes every instruction, wasting instruction issue bandwidth. Use CBRANCH or VSKIP to rapidly skip over code when it is likely that the EXEC mask is zero.

Status registers

Status register fields can be read, but not written to, by the shader.These bits are initialized at wavefront-creation time. The table below lists and briefly describes the status register fields.

	Field

	Bit
Positio
n

	Description

	SCC

	1

	Scalar condition code. Used as a carry-out bit.
For a comparison instruction, this bit
indicates failure or success. For logical
operations, this is 1 if the result was
non-zero.

	SPI_PRIO

	2:1

	Wavefront priority set by the shader processor
interpolator (SPI) when the wavefront is
created. See the S_SETPRIO instruction (page
12-49) for details. 0 is lowest, 3 is highest
priority.

	WAVE_PRIO

	4:3

	Wavefront priority set by the shader program.
See the S_SETPRIO instruction (page 12-49) for
details.

	PRIV

	5

	Privileged mode. Can only be active when in the
trap handler. Gives write access to the TTMP,
TMA, and TBA registers.

	TRAP_EN

	6

	Indicates that a trap handler is present. When
set to zero, traps are not taken.

	TTRACE_EN

	7

	Indicates whether thread trace is enabled for
this wavefront. If zero, also ignore any
shader-generated (instruction) thread-trace
data.

	EXPORT_RDY

	8

	This status bit indicates if export buffer
space has been allocated. The shader stalls any
export instruction until this bit becomes 1. It
is set to 1 when export buffer space has been
allocated. Before a Pixel or Vertex shader can
export, the hardware checks the state of this
bit. If the bit is 1, export can be issued. If
the bit is zero, the wavefront sleeps until
space becomes available in the export buffer.
Then, this bit is set to 1, and the wavefront
resumes.

	EXECZ

	9

	Exec mask is zero.

	VCCZ

	10

	Vector condition code is zero.

	IN_TG

	11

	Wavefront is a member of a work-group of more
than one wavefront.

	IN_BARRIER

	12

	Wavefront is waiting at a barrier.

	HALT

	13

	Wavefront is halted or scheduled to halt. HALT
can be set by the host through
wavefront-control messages, or by the shader.
This bit is ignored while in the trap handler
(PRIV = 1); it also is ignored if a
host-initiated trap is received (request to
enter the trap handler).

	TRAP

	14

	Wavefront is flagged to enter the trap handler
as soon as possible.

	TTRACE_CU_EN

	15

	Enables/disables thread trace for this compute
unit (CU). This bit allows more than one CU to
be outputting USERDATA (shader initiated writes
to the thread-trace buffer). Note that
wavefront data is only traced from one CU per
shader array. Wavefront user data (instruction
based) can be output if this bit is zero.

	VALID

	16

	Wavefront is active (has been created and not
yet ended).

	ECC_ERR

	17

	An ECC error has occurred.

	SKIP_EXPORT

	18

	For Vertex Shaders only. 1 = this shader is not
allocated export buffer space; all export
instructions are ignored (treated as NOPs).
Formerly called VS_NO_ALLOC. Used for
stream-out of multiple streams (multiple passes
over the same VS), and for DS running in the VS
stage for wavefronts that produced no
primitives.

	PERF_EN

	19

	Performance counters are enabled for this
wavefront.

	COND_DBG_USER

	20

	Conditional debug indicator for user mode

	COND_DBG_SYS

	21

	Conditional debug indicator for system mode.

	ALLOW_REPLAY

	22

	Indicates that ATC replay is enabled.

	MUST_EXPORT

	27

	This wavefront is required to perform an export
with Done=1 before terminating.

Table : Status Register Fields

Mode register

Mode register fields can be read from, and written to, by the shader
through scalar instructions. The table below lists and briefly describes
the mode register fields.

	Field

	Bit
Positio
n

	Description

	FP_ROUND

	3:0

	
[1:0] Single precision round mode. [3:2]
Double precision round mode.

Round Modes: 0=nearest even, 1= +infinity, 2=
-infinity, 3= toward zero.

	FP_DENORM

	7:4

	
[1:0] Single denormal mode. [3:2] Double
denormal mode. Denorm modes:

0 = flush input and output denorms.

1 = allow input denorms, flush output denorms.

2 = flush input denorms, allow output denorms.

3 = allow input and output denorms.

	DX10_CLAMP

	8

	Used by the vector ALU to force DX10-style
treatment of NaNs: when set, clamp NaN to zero;
otherwise, pass NaN through.

	IEEE

	9

	Floating point opcodes that support exception
flag gathering quiet and propagate signaling NaN
inputs per IEEE 754-2008. Min_dx10 and
max_dx10 become IEEE 754-2008 compliant due to
signaling NaN propagation and quieting.

	LOD_CLAMPED

	10

	Sticky bit indicating that one or more texture
accesses had their LOD clamped.

	DEBUG

	11

	Forces the wavefront to jump to the exception
handler after each instruction is executed (but
not after ENDPGM). Only works if TRAP_EN = 1.

	EXCP_EN

	18:12

	
Enable mask for exceptions. Enabled means if
the exception occurs and TRAP_EN==1, a trap
is taken.

[12] : invalid.

[13] : inputDenormal.

[14] : float_div0.

[15] : overflow.

[16] : underflow.

[17] : inexact.

[18] : int_div0.

[19] : address watch

[20] : memory violation

	FP16_OVFL

	23

	If set, an overflowed FP16 result is clamped to
+/- MAX_FP16, regardless of round mode, while
still preserving true INF values.

	POPS_PACKER0

	24

	1 = this wave is associated with packer 0. User
shader must set this to !PackerID from the POPS
initialized SGPR (load_collision_waveID), or
zero if not using POPS.

	POPS_PACKER1

	25

	1 = this wave is associated with packer 1. User
shader must set this to PackerID from the POPS
initialized SGPR (load_collision_waveID), or
zero if not using POPS.

	DISABLE_PERF

	26

	1 = disable performance counting for this wave

	GPR_IDX_EN

	27

	GPR index enable.

	VSKIP

	28

	0 = normal operation. 1 = skip (do not execute)
any vector instructions: valu, vmem, export,
lds, gds. “Skipping” instructions occurs at
high-speed (10 wavefronts per clock cycle can
skip one instruction). This is much faster than
issuing and discarding instructions.

	CSP

	31:29

	Conditional branch stack pointer.

Table : Mode Register Fields

GPRs and LDS

This section describes how GPR and LDS space is allocated to a wavefront, as well as how out-of-range and misaligned accesses are
handled.

Out-of-Range behavior

This section defines the behavior when a source or destination GPR or memory address is outside the legal range for a wavefront.

Out-of-range can occur through GPR-indexing or bad programming. It is illegal to index from one register type into another (for example: SGPRs into trap registers or inline constants). It is also illegal to index within inline constants.

The following describe the out-of-range behavior for various storage types.

	SGPRs

	Source or destination out-of-range = (sgpr < 0 || (sgpr >=
sgpr_size)).

	Source out-of-range: returns the value of SGPR0 (not the value 0).

	Destination out-of-range: instruction writes no SGPR result.

	VGPRs

	Similar to SGPRs. It is illegal to index from SGPRs into VGPRs, or
vice versa.

	Out-of-range = (vgpr < 0 || (vgpr >= vgpr_size))

	If a source VGPR is out of range, VGPR0 is used.

	If a destination VGPR is out-of-range, the instruction is ignored
(treated as an NOP).

	LDS

	If the LDS-ADDRESS is out-of-range (addr < 0 or > (MIN(lds_size,
m0)):

	Writes out-of-range are discarded; it is undefined if SIZE is
not a multiple of write-data-size.

	Reads return the value zero.

	If any source-VGPR is out-of-range, use the VGPR0 value is used.

	If the dest-VGPR is out of range, nullify the instruction (issue
with exec=0)

	Memory, LDS, and GDS: Reads and atomics with returns.

	If any source VGPR or SGPR is out-of-range, the data value is
undefined.

	If any destination VGPR is out-of-range, the operation is
nullified by issuing the instruction as if the EXEC mask were
cleared to 0.

	This out-of-range check must check all VGPRs that can be
returned (for example: VDST to VDST+3 for a
BUFFER_LOAD_DWORDx4).

	This check must also include the extra PRT (partially resident
texture) VGPR and nullify the fetch if this VGPR is
out-of-range, no matter whether the texture system actually
returns this value or not.

	Atomic operations with out-of-range destination VGPRs are
nullified: issued, but with exec mask of zero.

Instructions with multiple destinations (for example: V_ADDC): if any destination is out-of-range, no results are written.

SGPR Allocation and storage

A wavefront can be allocated 16 to 102 SGPRs, in units of 16 GPRs (Dwords). These are logically viewed as SGPRs 0-101. The VCC is
physically stored as part of the wavefront’s SGPRs in the highest numbered two SGPRs (SGPR 106 and 107; the source/destination VCC is an alias for those two SGPRs). When a trap handler is present, 16 additional SGPRs are reserved after VCC to hold the trap addresses, as well as saved-PC and trap-handler temps. These all are privileged (cannot be written to unless privilege is set). Note that if a wavefront allocates 16 SGPRs, 2 SGPRs are normally used as VCC, the remaining 14 are available to the shader. Shader hardware does not prevent use of all 16 SGPRs.

SGPR Alignment

Even-aligned SGPRs are required in the following cases.

	When 64-bit data is used. This is required for moves to/from 64-bit
registers, including the PC.

	When scalar memory reads that the address-base comes from an
SGPR-pair (either in SGPR).

Quad-alignment is required for the data-GPR when a scalar memory read returns four or more Dwords. When a 64-bit quantity is stored in SGPRs, the LSBs are in SGPR[n], and the MSBs are in SGPR[n+1].

VGPR Allocation and Alignment

VGPRs are allocated in groups of four Dwords. Operations using pairs of VGPRs (for example: double-floats) have no alignment restrictions. Physically, allocations of VGPRs can wrap around the VGPR memory pool.

LDS Allocation and Clamping

LDS is allocated per work-group or per-wavefront when work-groups are not in use. LDS space is allocated to a work-group or wavefront in contiguous blocks of 128 Dwords on 128-Dword alignment. LDS allocations do not wrap around the LDS storage. All accesses to LDS are restricted to the space allocated to that wavefront/work-group.

Clamping of LDS reads and writes is controlled by two size registers, which contain values for the size of the LDS space allocated by SPI to this wavefront or work-group, and a possibly smaller value specified in the LDS instruction (size is held in M0). The LDS operations use the smaller of these two sizes to determine how to clamp the read/write addresses.

M# Memory Descriptor

There is one 32-bit M# (M0) register per wavefront, which can be used
for:

	Local Data Share (LDS)

	Interpolation: holds { 1’b0, new_prim_mask[15:1],
parameter_offset[15:0] } // in bytes

	LDS direct-read offset and data type: { 13’b0, DataType[2:0],
LDS_address[15:0] } // addr in bytes

	LDS addressing for Memory/Vfetch → LDS: {16’h0, lds_offset[15:0]}
// in bytes

	Global Data Share (GDS)

	{ base[15:0] , size[15:0] } // base and size are in bytes

	Indirect GPR addressing for both vector and scalar instructions. M0
is an unsigned index.

	Send-message value. EMIT/CUT use M0 and EXEC as the send-message
data.

SCC: Scalar Condition code

Most scalar ALU instructions set the Scalar Condition Code (SCC) bit,indicating the result of the operation.

Compare operations: 1 = true

Arithmetic operations: 1 = carry out

Bit/logical operations: 1 = result was not zero

Move: does not alter SCC

The SCC can be used as the carry-in for extended-precision integer arithmetic, as well as the selector for conditional moves and branches.

Vector Compares: VCC and VCCZ

Vector ALU comparisons always set the Vector Condition Code (VCC) register (1=pass, 0=fail). Also, vector compares have the option of
setting EXEC to the VCC value.

There is also a VCC summary bit (vccz) that is set to 1 when the VCC result is zero. This is useful for early-exit branch tests. VCC is also set for selected integer ALU operations (carry-out).

Vector compares have the option of writing the result to VCC (32-bit instruction encoding) or to any SGPR (64-bit instruction encoding). VCCZ is updated every time VCC is updated: vector compares and scalar writes to VCC.

The EXEC mask determines which threads execute an instruction. The VCC indicates which executing threads passed the conditional test, or which threads generated a carry-out from an integer add or subtract.

V_CMP_* ⇒ VCC[n] = EXEC[n] & (test passed for thread[n])

VCC is always fully written; there are no partial mask updates.

Note

VCC physically resides in the SGPR register file, so when an instruction sources VCC, that counts against the limit on the total number of SGPRs that can be sourced for a given instruction. VCC physically resides in the highest two user SGPRs.

Shader Hazard with VCC The user/compiler must prevent a scalar-ALU
write to the SGPR holding VCC, immediately followed by a conditional
branch using VCCZ. The hardware cannot detect this, and inserts the one
required wait state (hardware does detect it when the SALU writes to
VCC, it only fails to do this when the SALU instruction references the
SGPRs that happen to hold VCC).

Trap and Exception registers

Each type of exception can be enabled or disabled independently by setting, or clearing, bits in the TRAPSTS register’s EXCP_EN field.This section describes the registers which control and report kernel exceptions.

All Trap temporary SGPRs (TTMP*) are privileged for writes - they can be written only when in the trap handler (status.priv = 1). When not privileged, writes to these are ignored. TMA and TBA are read-only; they can be accessed through S_GETREG_B32.

When a trap is taken (either user initiated, exception or host initiated), the shader hardware generates an S_TRAP instruction. This
loads trap information into a pair of SGPRS:

{TTMP1, TTMP0} = {3'h0, pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}.

HT is set to one for host initiated traps, and zero for user traps
(s_trap) or exceptions. TRAP_ID is zero for exceptions, or the
user/host trapID for those traps. When the trap handler is entered, the
PC of the faulting instruction will be: (PC - PC_rewind*4).

STATUS . TRAP_EN - This bit indicates to the shader whether or not
a trap handler is present. When one is not present, traps are not taken,
no matter whether they’re floating point, user-, or host-initiated
traps. When the trap handler is present, the wavefront uses an extra 16
SGPRs for trap processing. If trap_en == 0, all traps and exceptions
are ignored, and s_trap is converted by hardware to NOP.

MODE . EXCP_EN[8:0] - Floating point exception enables. Defines
which exceptions and events cause a trap.

	Bit

	Exception

	0

	Invalid

	1

	Input Denormal

	2

	Divide by zero

	3

	Overflow

	4

	Underflow

	5

	Inexact

	6

	Integer divide by zero

	7

	Address Watch - TC (L1) has witnessed a thread access to
an ‘address of interest’

Trap Status register

The trap status register records previously seen traps or exceptions. It
can be read and written by the kernel.

	Field

	Bits

	Description

	EXCP

	8:0

	
Status bits of which exceptions have occurred.
These bits are sticky and accumulate results
until the shader program clears them. These bits
are accumulated regardless of the setting of
EXCP_EN. These can be read or written without
shader privilege. Bit Exception 0 invalid

1 Input Denormal

2 Divide by zero

3 overflow

4 underflow

5 inexact

6 integer divide by zero

7 address watch

8 memory violation

	SAVECTX

	10

	A bit set by the host command indicating that this
wave must jump to its trap handler and save its
context. This bit must be cleared by the trap
handler using S_SETREG. Note - a shader can set
this bit to 1 to cause a save-context trap, and
due to hardware latency the shader may execute up
to 2 additional instructions before taking the
trap.

	ILLEGAL_INST

	11

	An illegal instruction has been detected.

	ADDR_WATCH1-3

	14:12

	Indicates that address watch 1, 2, or 3 has been
hit. Bit 12 is address watch 1; bit 13 is 2; bit
14 is 3.

	EXCP_CYCLE

	21:16

	
When a float exception occurs, this tells the
trap handler on which cycle the exception
occurred on. 0-3 for normal float operations,
0-7 for double float add, and 0-15 for double
float muladd or transcendentals. This register
records the cycle number of the first occurrence
of an enabled (unmasked) exception.
EXCP_CYCLE[1:0] Phase: threads 0-15 are in
phase 0, 48-63 in phase 3.

EXCP_CYCLE[3:2] Multi-slot pass.

EXCP_CYCLE[5:4] Hybrid pass: used for machines
running at lower rates.

	DP_RATE

	31:29

	Determines how the shader interprets the
TRAP_STS.cycle. Different Vector Shader
Processors (VSP) process instructions at different
rates.

Table : Exception Field Bits

Memory Violations

A Memory Violation is reported from:

	LDS alignment error.

	Memory read/write/atomic alignment error.

	Flat access where the address is invalid (does not fall in any
aperture).

	Write to a read-only surface.

	GDS alignment or address range error.

	GWS operation aborted (semaphore or barrier not executed).

Memory violations are not reported for instruction or scalar-data accesses.

Memory Buffer to LDS does NOT return a memory violation if the LDS address is out of range, but masks off EXEC bits of threads that would go out of range.

When a memory access is in violation, the appropriate memory (LDS or TC) returns MEM_VIOL to the wave. This is stored in the wave’s
TRAPSTS.mem_viol bit. This bit is sticky, so once set to 1, it remains at 1 until the user clears it.

There is a corresponding exception enable bit (EXCP_EN.mem_viol). If this bit is set when the memory returns with a violation, the wave jumps to the trap handler.

Memory violations are not precise. The violation is reported when the LDS or TC processes the address; during this time, the wave may have processed many more instructions. When a mem_viol is reported, the Program Counter saved is that of the next instruction to execute; it has no relationship the faulting instruction.

Program Flow Control

All program flow control is programmed using scalar ALU instructions. This includes loops, branches, subroutine calls, and traps. The program uses SGPRs to store branch conditions and loop counters. Constants can be fetched from the scalar constant cache directly into SGPRs.

Program Control

The instructions in the table below control the priority and termination of a shader program, as well as provide support for trap handlers.

	Instructions

	Description

	S_ENDPGM

	Terminates the wavefront. It can
appear anywhere in the kernel and
can appear multiple times.

	S_ENDPGM_SAVED

	Terminates the wavefront due to
context save. It can appear anywhere
in the kernel and can appear
multiple times.

	S_NOP

	Does nothing; it can be repeated in
hardware up to eight times.

	S_TRAP

	Jumps to the trap handler.

	S_RFE

	Returns from the trap handler

	S_SETPRIO

	Modifies the priority of this
wavefront: 0=lowest, 3 = highest.

	S_SLEEP

	Causes the wavefront to sleep for 64
- 960 clock cycles.

	S_SENDMSG

	Sends a message (typically an
interrupt) to the host CPU.

Table : Control Instructions

Branching

Branching is done using one of the following scalar ALU instructions.

	Instructions

	Description

	S_BRANCH

	Unconditional branch.

	S_CBRANCH_<test>

	Conditional branch. Branch only if
<test> is true. Tests are VCCZ,
VCCNZ, EXECZ, EXECNZ, SCCZ, and
SCCNZ.

	S_CBRANCH_CDBGSYS

	Conditional branch, taken if the
COND_DBG_SYS status bit is set.

	S_CBRANCH_CDBGUSER

	Conditional branch, taken if the
COND_DBG_USER status bit is set.

	S_CBRANCH_CDBGSYS_AND_USER

	Conditional branch, taken only if
both COND_DBG_SYS and
COND_DBG_USER are set.

	S_SETPC

	Directly set the PC from an SGPR
pair.

	S_SWAPPC

	Swap the current PC with an address
in an SGPR pair.

	S_GETPC

	Retrieve the current PC value (does
not cause a branch).

	S_CBRANCH_FORK and
S_CBRANCH_JOIN

	Conditional branch for complex
branching.

	S_SETVSKIP

	Set a bit that causes all vector
instructions to be ignored. Useful
alternative to branching.

	S_CALL_B64

	Jump to a subroutine, and save
return address. SGPR_pair = PC+4;
PC = PC+4+SIMM16*4.

Table : Branch Instructions

For conditional branches, the branch condition can be determined by either scalar or vector operations. A scalar compare operation sets the Scalar Condition Code (SCC), which then can be used as a conditional branch condition. Vector compare operations set the VCC mask, and VCCZ or VCCNZ then can be used to determine branching.

Workgroups

Work-groups are collections of wavefronts running on the same compute unit which can synchronize and share data. Up to 16 wavefronts (1024 work-items) can be combined into a work-group. When multiple wavefronts are in a workgroup, the S_BARRIER instruction can be used to force each wavefront to wait until all other wavefronts reach the same instruction; then, all wavefronts continue. Any wavefront can terminate early using S_ENDPGM, and the barrier is considered satisfied when the remaining
live waves reach their barrier instruction.

Data Dependency Resolution

Shader hardware resolves most data dependencies, but a few cases must be explicitly handled by the shader program. In these cases, the program must insert S_WAITCNT instructions to ensure that previous operations have completed before continuing.

The shader has three counters that track the progress of issued instructions. S_WAITCNT waits for the values of these counters to be
at, or below, specified values before continuing.

These allow the shader writer to schedule long-latency instructions,execute unrelated work, and specify when results of long-latency
operations are needed.

Instructions of a given type return in order, but instructions of different types can complete out-of-order. For example, both GDS and LDS instructions use LGKM_cnt, but they can return out-of-order.

	
VM_CNT: Vector memory count.

Determines when memory reads have returned data to VGPRs, or memory
writes have completed.

	Incremented every time a vector-memory read or write (MIMG, MUBUF,
or MTBUF format) instruction is issued.

	Decremented for reads when the data has been written back to the
VGPRs, and for writes when the data has been written to the L2
cache. Ordering: Memory reads and writes return in the order they
were issued, including mixing reads and writes.

	LGKM_CNT: (LDS, GDS, (K)constant, (M)essage) Determines when one of
these low-latency instructions have completed.

	Incremented by 1 for every LDS or GDS instruction issued, as well
as by Dword-count for scalar-memory reads. For example, s_memtime
counts the same as an s_load_dwordx2.

	Decremented by 1 for LDS/GDS reads or atomic-with-return when the
data has been returned to VGPRs.

	Incremented by 1 for each S_SENDMSG issued. Decremented by 1 when
message is sent out.

	Decremented by 1 for LDS/GDS writes when the data has been written
to LDS/GDS.

	
Decremented by 1 for each Dword returned from the data-cache
(SMEM).

Ordering:

	Instructions of different types are returned out-of-order.

	Instructions of the same type are returned in the order they
were issued, except scalar-memory-reads, which can return
out-of-order (in which case only S_WAITCNT 0 is the only
legitimate value).

	
EXP_CNT: VGPR-export count.

Determines when data has been read out of the VGPR and sent to GDS,
at which time it is safe to overwrite the contents of that VGPR.

	Incremented when an Export/GDS instruction is issued from the
wavefront buffer.

	Decremented for exports/GDS when the last cycle of the export
instruction is granted and executed (VGPRs read out). Ordering

	Exports are kept in order only within each export type
(color/null, position, parameter cache).

Manually Inserted Wait States (NOPs)

The hardware does not check for the following dependencies; they must be resolved by inserting NOPs or independent instructions.

	First Instruction

	Second Instruction

	Wait

	Notes

	S_SETREG <*>

	S_GETREG <same reg>

	2

	

	S_SETREG <*>

	S_SETREG <same reg>

	2

	

	SET_VSKIP

	S_GETREG MODE

	2

	Reads VSKIP from
MODE.

	S_SETREG MODE.vskip

	any vector op

	2

	Requires two nops or
non-vector
instructions.

	VALU that sets VCC or
EXEC

	VALU that uses EXECZ
or VCCZ as a data
source

	5

	

	VALU writes SGPR/VCC
(readlane, cmp, add/sub,
div_scale)

	V_{READ,WRITE}LANE
using that SGPR/VCC
as the lane select

	4

	

	VALU writes VCC
(including v_div_scale)

	V_DIV_FMAS

	4

	

	
FLAT_STORE_X3
FLAT_STORE_X4
FLAT_ATOMIC_{F}CMPSWA

	P_X2
	BUFFER_STORE_DWORD_X

3

BUFFER_STORE_DWORD_X

	4
	BUFFER_STORE_FORMAT_

	XYZ
	BUFFER_STORE_FORMAT_

	XYZW
	BUFFER_ATOMIC_{F}CMPS

	WAP_X2
	IMAGE_STORE_* > 64
bits
IMAGE_ATOMIC_{F}CMPSW

	AP
	> + 64bits

	Write VGPRs holding
writedata from those
instructions.

	1

	BUFFER_STORE_*
operations that use
an SGPR for “offset”
do not require any
wait states.

IMAGE_STORE_* and
IMAGE_{F}CMPSWAP*
ops with more than
two DMASK bits set
require this one
wait state. Ops that
use a 256-bit T# do
not need a wait
state.

	VALU writes SGPR

	VMEM reads that SGPR

	5

	Hardware assumes
that there is no
dependency here. If
the VALU writes the
SGPR that is used by
a VMEM, the user
must add five wait
states.

	SALU writes M0

	GDS, S_SENDMSG or
S_TTRACE_DATA

	1

	

	VALU writes VGPR

	VALU DPP reads that
VGPR

	2

	

	VALU writes EXEC

	VALU DPP op

	5

	ALU does not forward
EXEC to DPP.

	Mixed use of VCC: alias
vs
SGPR#
v_readlane,
v_readfirstlane
v_cmp
v_add*i/u
v_sub*_i/u
v_div_scale*
(writes vcc)

	VALU which reads VCC
as a constant (not
as a carry-in which
is 0 wait states).

	1

	VCC can be accessed
by name or by the
logical SGPR which
holds VCC. The data
dependency check
logic does not
understand that
these are the same
register and do not
prevent races.

	S_SETREG TRAPSTS

	RFE, RFE_restore

	1

	

	SALU writes M0

	LDS “add-TID”
instruction,
buffer_store_LDS_
dword,
scratch or global
with LDS = 1,
VINTERP or
LDS_direct

	1

	

	SALU writes M0

	S_MOVEREL

	1

	

Table : Required Software-inserted Wait States

Arbitrary Divergent Control Flow

In the GCN architecture, conditional branches are handled in one of the
following ways.

	S_CBRANCH This case is used for simple control flow, where the decision to take a branch is based on a previous compare operation.
This is the most common method for conditional branching.

	S_CBRANCH_I/G_FORK and S_CBRANCH_JOIN This method, intended for complex, irreducible control flow graphs, is described in the rest of this section. The performance of this method is lower than that for S_CBRANCH on simple flow control; use it only when necessary.

Conditional Branch (CBR) graphs are grouped into self-contained code blocks, denoted by FORK at the entrance point, and JOIN and the exit point. The shader compiler must add these instructions into the code.This method uses a six-deep stack and requires three SGPRs for each fork/join block. Fork/Join blocks can be hierarchically nested to any depth (subject to SGPR requirements); they also can coexist with other conditional flow control or computed jumps.

[image: Example of Complex Control Flow Graph]
Example of Complex Control Flow Graph

The register requirements per wavefront are:

	CSP [2:0] - control stack pointer.

	Six stack entries of 128-bits each, stored in SGPRS: { exec[63:0],
PC[47:2] }

This method compares how many of the 64 threads go down the PASS path instead of the FAIL path; then, it selects the path with the fewer number of threads first. This means at most 50% of the threads are active, and this limits the necessary stack depth to Log264 = 6.

The following pseudo-code shows the details of CBRANCH Fork and Join operations.

S_CBRANCH_G_FORK arg0, arg1
 // arg1 is an sgpr-pair which holds 64bit (48bit) target address

S_CBRANCH_I_FORK arg0, #target_addr_offset[17:2]
 // target_addr_offset: 16b signed immediate offset

// PC: in this pseudo-code is pointing to the cbranch_*_fork instruction
mask_pass = SGPR[arg0] & exec
mask_fail = ~SGPR[arg0] & exec

if (mask_pass == exec)
 I_FORK : PC += 4 + target_addr_offset
 G_FORK: PC = SGPR[arg1]
else if (mask_fail == exec)
 PC += 4
else if (bitcount(mask_fail) < bitcount(mask_pass))
 exec = mask_fail
 I_FORK : SGPR[CSP*4] = { (pc + 4 + target_addr_offset), mask_pass }
 G_FORK: SGPR[CSP*4] = { SGPR[arg1], mask_pass }
 CSP++
 PC += 4
else
 exec = mask_pass
 SGPR[CSP*4] = { (pc+4), mask_fail }
 CSP++
 I_FORK : PC += 4 + target_addr_offset
 G_FORK: PC = SGPR[arg1]

S_CBRANCH_JOIN arg0
if (CSP == SGPR[arg0]) // SGPR[arg0] holds the CSP value when the FORK started
 PC += 4 // this is the 2nd time to JOIN: continue with pgm
else
 CSP -- // this is the 1st time to JOIN: jump to other FORK path
 {PC, EXEC} = SGPR[CSP*4] // read 128-bits from 4 consecutive SGPRs

Scalar ALU Operations

Scalar ALU (SALU) instructions operate on a single value per wavefront.These operations consist of 32-bit integer arithmetic and 32- or 64-bit bit-wise operations. The SALU also can perform operations directly on the Program Counter, allowing the program to create a call stack in SGPRs. Many operations also set the Scalar Condition Code bit (SCC) to indicate the result of a comparison, a carry-out, or whether the instruction result was zero.

SALU Instruction Formats

SALU instructions are encoded in one of five microcode formats, shown
below:

[image: microcode sop1]

[image: microcode sop2]

[image: microcode sopk]

[image: microcode sopc]

[image: microcode sopp]

Each of these instruction formats uses some of these fields:

	Field

	Description

	OP

	Opcode: instruction to be executed.

	SDST

	Destination SGPR.

	SSRC0

	First source operand.

	SSRC1

	Second source operand.

	SIMM16

	Signed immediate 16-bit integer constant.

The lists of similar instructions sometimes use a condensed form using curly braces { } to express a list of possible names. For example, S_AND_{B32, B64} defines two legal instructions: S_AND_B32 and S_AND_B64.

Scalar ALU Operands

Valid operands of SALU instructions are:

	SGPRs, including trap temporary SGPRs.

	Mode register.

	Status register (read-only).

	M0 register.

	TrapSts register.

	EXEC mask.

	VCC mask.

	SCC.

	PC.

	Inline constants: integers from -16 to 64, and a some floating point
values.

	VCCZ, EXECZ, and SCC.

	Hardware registers.

	32-bit literal constant.

In the table below, 0-127 can be used as scalar sources or destinations;
128-255 can only be used as sources.

	Code scalar Dest (0-7 bits)

	Meaning

	Description

	0-101

	SGPR 0 to 101

	Scalar GPRs

	102

	FLAT_SCR

	Holds the low_LO Dword of the flatscratch memory descriptor

	103

	FLAT_SCR

	Holds the high_HI Dword of the flatscratch memory descriptor

	104

	XNACK_MA

	Holds the lowSK_LO Dword of the XNACK mask

	105

	XNACK_MA

	Holds the high SK_HI Dword of the XNACK mask

	106

	VCC_LO

	Holds the low Dword of the vector condition code

	107

	VCC_HI

	Holds the high Dword of the vector condition code

	108-123

	TTMP0 to Trap temps

	TTMP15 (privileged)

	124

	M0

	Holds the low Dword of the flatscratch memory descriptor

	125

	reserved

	reserved

	126

	EXEC_LO

	Execute mask, low Dword

	127

	EXEC_HI

	Execute mask, high Dword

	128

	0

	zero

	129-192

	int 1 to 64

	Positive integer values.

	193-208

	int 1 to 16

	Negative integer values.

	209-234

	reserved

	Unused.

	235

	SHARED_BASE

	Memory Aperture definition.

	236

	SHARED_LIMIT

	

	237

	PRIVATE_BASE

	

	238

	PRIVATE_LIMIT

	

	239

	POPS_EXITING_WAV

	Primitive Ordered Pixel Shading E_IDwave ID.

	240

	0.5

	single or double floats

	241

	0.5

	

	242

	1.0

	

	243

	1.0

	

	244

	2.0

	

	245

	2.0

	

	246

	4.0

	

	247

	4.0

	

	248

	1.0 / (2 * PI)

	

	249-250

	reserved

	unused

	251

	VCCZ

	{ zeros, VCCZ }

	252

	EXECZ

	{ zeros, EXECZ}

	253

	SCC

	{ zeros, SCC }

	254

	reserved

	unused

	255

	Literal

	constant 32bit constant from instruction stream.

Table : Scalar Operands

The SALU cannot use VGPRs or LDS. SALU instructions can use a 32-bit literal constant. This constant is part of the instruction stream and is available to all SALU microcode formats except SOPP and SOPK. Literal constants are used by setting the source instruction field to “literal” (255), and then the following instruction dword is used as the source value.

If any source SGPR is out-of-range, the value of SGPR0 is used instead.

If the destination SGPR is out-of-range, no SGPR is written with the result. However, SCC and possibly EXEC (if saveexec) will still be written.

If an instruction uses 64-bit data in SGPRs, the SGPR pair must be aligned to an even boundary. For example, it is legal to use SGPRs 2 and 3 or 8 and 9 (but not 11 and 12) to represent 64-bit data.

Scalar Condition Code (SCC)

The scalar condition code (SCC) is written as a result of executing most SALU instructions.

The SCC is set by many instructions:

	Compare operations: 1 = true.

	Arithmetic operations: 1 = carry out.

	SCC = overflow for signed add and subtract operations. For add, overflow = both operands are of the same sign, and the MSB (sign
bit) of the result is different than the sign of the operands. For subtract (AB), overflow = A and B have opposite signs and the
resulting sign is not the same as the sign of A.

	Bit/logical operations: 1 = result was not zero.

Integer Arithmetic Instructions

This section describes the arithmetic operations supplied by the SALU.
The table below shows the scalar integer arithmetic instructions:

	Instruction

	Encoding

	Sets SCC?

	Operation

	S_ADD_I32

	SOP2

	y

	D = S0 + S1, SCC = overflow.

	S_ADD_U32

	SOP2

	y

	D = S0 + S1, SCC = carry out.

	S_ADDC_U32

	SOP2

	y

	D = S0 + S1 + SCC = overflow.

	S_SUB_I32

	SOP2

	y

	D = S0 - S1, SCC = overflow.

	S_SUB_U32

	SOP2

	y

	D = S0 - S1, SCC = carry out.

	S_SUBB_U32

	SOP2

	y

	D = S0 - S1 - SCC = carry out.

	S_ABSDIFF_I32

	SOP2

	y

	D = abs (s1 - s2), SCC = result
not zero.

	
S_MIN_I32

S_MIN_U32

	SOP2

	y

	D = (S0 < S1) ? S0 : S1. SCC = 1
if S0 was min.

	
S_MAX_I32

S_MAX_U32

	SOP2

	y

	D = (S0 > S1) ? S0 : S1. SCC = 1
if S0 was max.

	S_MUL_I32

	SOP2

	n

	D = S0 * S1. Low 32 bits of
result.

	S_ADDK_I32

	SOPK

	y

	D = D + simm16, SCC = overflow.
Sign extended version of simm16.

	S_MULK_I32

	SOPK

	n

	D = D * simm16. Return low
32bits. Sign extended version of
simm16.

	S_ABS_I32

	SOP1

	y

	D.i = abs (S0.i). SCC=result not
zero.

	S_SEXT_I32_I8

	SOP1

	n

	D = { 24{S0[7]}, S0[7:0] }.

	S_SEXT_I32_I16

	SOP1

	n

	D = { 16{S0[15]}, S0[15:0] }.

Table: Integer Arithmetic Instructions

Conditional Instructions

Conditional instructions use the SCC flag to determine whether to
perform the operation, or (for CSELECT) which source operand to use.

	Instruction

	Encoding

	Sets SCC?

	Operation

	S_CSELECT_{B32,
B64}

	SOP2

	n

	D = SCC ? S0 : S1.

	S_CMOVK_I
32

	SOPK

	n

	if (SCC) D =
signext(simm16).

	S_CMOV_{B
32,B64}

	SOP1

	n

	if (SCC) D = S0, else
NOP.

Table : Conditional Instructions

Comparison Instructions

These instructions compare two values and set the SCC to 1 if the
comparison yielded a TRUE result.

	Instruction

	Encoding

	Sets
SCC?

	Operation

	S_CMP_EQ_U64,
S_CMP_NE_U64

	SOPC

	y

	Compare two 64-bit source values.
SCC = S0 <cond> S1.

	S_CMP_{EQ,NE,GT,GE
,LE,LT}_{I32,U32}

	SOPC

	y

	Compare two source values. SCC =
S0 <cond> S1.

	S_CMPK_{EQ,NE,GT,G
E,LE,LT}_{I32,U32}

	SOPK

	y

	Compare Dest SGPR to a constant.
SCC = DST <cond> simm16. simm16 is
zero-extended (U32) or
sign-extended (I32).

	S_BITCMP0_{B32,B64
}

	SOPC

	y

	Test for “is a bit zero”. SCC =
!S0[S1].

	S_BITCMP1_{B32,B64
}

	SOPC

	y

	Test for “is a bit one”. SCC =
S0[S1].

Table : Conditional Instructions

Bit-Wise Instructions

Bit-wise instructions operate on 32- or 64-bit data without interpreting
it has having a type. For bit-wise operations if noted in the table
below, SCC is set if the result is nonzero.

	Instruction

	Encodin
g

	Sets
SCC?

	Operation

	S_MOV_{B32,B64}

	SOP1

	n

	D = S0

	S_MOVK_I32

	SOPK

	n

	D = signext(simm16)

	{S_AND,S_OR,S_XOR}_{B
32,B64}

	SOP2

	y

	D = S0 & S1, S0 OR S1, S0 XOR S1

	{S_ANDN2,S_ORN2}_{B32,
B64}

	SOP2

	y

	D = S0 & ~S1, S0 OR ~S1, S0 XOR
~S1,

	{S_NAND,S_NOR,S_XNOR}_{B32,B64}

	SOP2

	y

	D = ~(S0 & S1), ~(S0 OR S1),
~(S0 XOR S1)

	S_LSHL_{B32,B64}

	SOP2

	y

	D = S0 << S1[4:0], [5:0] for
B64.

	S_LSHR_{B32,B64}

	SOP2

	y

	D = S0 >> S1[4:0], [5:0] for
B64.

	S_ASHR_{I32,I64}

	SOP2

	y

	D = sext(S0 >> S1[4:0]) ([5:0]
for I64).

	S_BFM_{B32,B64}

	SOP2

	n

	Bit field mask. D = ((1 <<
S0[4:0]) - 1) << S1[4:0].

	
S_BFE_U32,
S_BFE_U64

S_BFE_I32,
S_BFE_I64

(signed/unsigned)

	SOP2

	n

	
Bit Field Extract, then
sign-extend result for I32/64
instructions.

S0 = data,

S1[5:0] = offset, S1[22:16]=
width.

	S_NOT_{B32,B64}

	SOP1

	y

	D = ~S0.

	S_WQM_{B32,B64}

	SOP1

	y

	D = wholeQuadMode(S0). If any
bit in a group of four is set to
1, set the resulting group of
four bits all to 1.

	S_QUADMASK_{B32,B64}

	SOP1

	y

	D[0] = OR(S0[3:0]),
D[1]=OR(S0[7:4]), etc.

	S_BREV_{B32,B64}

	SOP1

	n

	D = S0[0:31] are reverse bits.

	S_BCNT0_I32_{B32,B64}

	SOP1

	y

	D = CountZeroBits(S0).

	S_BCNT1_I32_{B32,B64}

	SOP1

	y

	D = CountOneBits(S0).

	S_FF0_I32_{B32,B64}

	SOP1

	n

	D = Bit position of first zero
in S0 starting from LSB. -1 if
not found.

	S_FF1_I32_{B32,B64}

	SOP1

	n

	D = Bit position of first one in
S0 starting from LSB. -1 if not
found.

	S_FLBIT_I32_{B32,B64}

	SOP1

	n

	Find last bit. D = the number of
zeros before the first one
starting from the MSB. Returns
-1 if none.

	
S_FLBIT_I32

S_FLBIT_I32_I64

	SOP1

	n

	
Count how many bits in a row
(from MSB to LSB) are the same
as the sign bit. Return -1 if
the input is zero or all 1’s
(-1). 32-bit pseudo-code:

if (S0 == 0 || S0 == -1) D =
-1

else

D = 0

for (I = 31 .. 0)

if (S0[I] == S0[31])

D++

else break

This opcode behaves the same
as V_FFBH_I32.

	S_BITSET0_{B32,B64}

	SOP1

	n

	D[S0[4:0], [5:0] for B64] = 0

	S_BITSET1_{B32,B64}

	SOP1

	n

	D[S0[4:0], [5:0] for B64] = 1

	S_{and,or,xor,andn2,orn2
,nand,
nor,xnor}_SAVEEXEC_B64

	SOP1

	y

	
Save the EXEC mask, then apply
a bit-wise operation to it.

D = EXEC

EXEC = S0 <op> EXEC

SCC = (exec != 0)

	S_{ANDN{1,2}_WREXEC_B6
4

	SOP1

	y

	
N1: EXEC, D = ~S0 & EXEC

N2: EXEC, D = S0 & ~EXEC

Both D and EXEC get the same
result. SCC = (result != 0).

	
S_MOVRELS_{B32,B64}

S_MOVRELD_{B32,B64}

	SOP1

	n

	
Move a value into an SGPR
relative to the value in M0.

MOVERELS: D = SGPR[S0+M0]

MOVERELD: SGPR[D+M0] = S0

Index must be even for 64. M0
is an unsigned index.

Table : Bit-Wise Instructions

Special Instructions

These instructions access hardware internal registers.

	Instruction

	Encodin
g

	Sets
SCC?

	Operation

	S_GETREG_B32

	SOPK*

	n

	Read a hardware register into the LSBs
of D.

	S_SETREG_B32

	SOPK*

	n

	Write the LSBs of D into a hardware
register. (Note that D is a source
SGPR.) Must add an S_NOP between two
consecutive S_SETREG to the same
register.

	S_SETREG_IMM32_B32

	SOPK*

	n

	S_SETREG where 32-bit data comes from a
literal constant (so this is a 64-bit
instruction format).

Table : Hardware Internal Registers

The hardware register is specified in the DEST field of the instruction,using the values in the table above. Some bits of the DEST specify which register to read/write, but additional bits specify which bits in the
special register to read/write:

SIMM16 = {size[4:0], offset[4:0], hwRegId[5:0]}; offset is 0..31, size is 1..32.

	Code

	Register

	Description

	0

	reserved

	

	1

	MODE

	R/W.

	2

	STATUS

	Read only.

	3

	TRAPSTS

	R/W.

	4

	HW_ID

	Read only. Debug only.

	5

	GPR_ALLOC

	Read only. {sgpr_size,
sgpr_base, vgpr_size,
vgpr_base }.

	6

	LDS_ALLOC

	Read only. {lds_size,
lds_base}.

	7

	IB_STS

	Read only. {valu_cnt,
lgkm_cnt, exp_cnt,
vm_cnt}.

	8 - 15

	
	reserved.

	16

	TBA_LO

	Trap base address register
[31:0].

	17

	TBA_HI

	Trap base address register
[47:32].

	18

	TMA_LO

	Trap memory address register
[31:0].

	19

	TMA_HI

	Trap memory address register
[47:32].

Table : Hardware Register Values

	Code

	Register

	Description

	VM_CNT

	
23:22,

3:0

	Number of VMEM instructions
issued but not yet returned.

	EXP_CNT

	6:4

	Number of Exports issued but
have not yet read their data
from VGPRs.

	LGKM_CNT

	11:8

	LDS, GDS, Constant-memory
and Message instructions
issued-but-not-completed
count.

	VALU_CNT

	14:12

	Number of VALU instructions
outstanding for this
wavefront.

Table : IB_STS

	Code

	Register

	Description

	VGPR_BASE

	5:0

	Physical address of first
VGPR assigned to this
wavefront, as [7:2]

	VGPR_SIZE

	13:8

	Number of VGPRs assigned to
this wavefront, as [7:2].
0=4 VGPRs, 1=8 VGPRs, etc.

	SGPR_BASE

	21:16

	Physical address of first
SGPR assigned to this
wavefront, as [7:3].

	SGPR_SIZE

	27:24

	Number of SGPRs assigned to
this wave, as [7:3]. 0=8
SGPRs, 1=16 SGPRs, etc.

Table : GPR_ALLOC

	Code

	Register

	Description

	LDS_BASE

	7:0

	Physical address of first
LDS location assigned to
this wavefront, in units of
64 Dwords.

	LDS_SIZE

	20:12

	Amount of LDS space assigned
to this wavefront, in units
of 64 Dwords.

Table : LDS_ALLOC

Vector ALU Operations

Vector ALU instructions (VALU) perform an arithmetic or logical operation on data for each of 64 threads and write results back to
VGPRs, SGPRs or the EXEC mask.

Parameter interpolation is a mixed VALU and LDS instruction, and is described in the Data Share chapter.

Microcode Encodings

Most VALU instructions are available in two encodings: VOP3 which uses 64-bits of instruction and has the full range of capabilities, and one of three 32-bit encodings that offer a restricted set of capabilities. A few instructions are only available in the VOP3 encoding. The only instructions that cannot use the VOP3 format are the parameter interpolation instructions.

When an instruction is available in two microcode formats, it is up to the user to decide which to use. It is recommended to use the 32-bit encoding whenever possible.

The microcode encodings are shown below.

VOP2 is for instructions with two inputs and a single vector destination. Instructions that have a carry-out implicitly write the
carry-out to the VCC register.

[image: microcode vop2]

VOP1 is for instructions with no inputs or a single input and one destination.

[image: microcode vop1]

VOPC is for comparison instructions.

[image: microcode vopc]

VINTRP is for parameter interpolation instructions.

[image: microcode vintrp]

VOP3 is for instructions with up to three inputs, input modifiers
(negate and absolute value), and output modifiers. There are two forms
of VOP3: one which uses a scalar destination field (used only for
div_scale, integer add and subtract); this is designated VOP3b. All
other instructions use the common form, designated VOP3a.

[image: microcode vop3a]

[image: microcode vop3b]

Any of the 32-bit microcode formats may use a 32-bit literal constant,
but not VOP3.

VOP3P is for instructions that use “packed math”: They perform the operation on a pair of input values that are packed into the high and low 16-bits of each operand; the two 16-bit results are written to a single VGPR as two packed values.

[image: microcode vop3p]

Operands

All VALU instructions take at least one input operand (except V_NOP and V_CLREXCP). The data-size of the operands is explicitly defined in the name of the instruction. For example, V_MAD_F32 operates on 32-bit floating point data.

Instruction Inputs

VALU instructions can use any of the following sources for input,
subject to restrictions listed below:

	VGPRs.

	SGPRs.

	Inline constants - constant selected by a specific VSRC value.

	Literal constant - 32-bit value in the instruction stream. When a
literal constant is used with a 64bit instruction, the literal is
expanded to 64 bits by: padding the LSBs with zeros for floats,
padding the MSBs with zeros for unsigned ints, and by sign-extending
signed ints.

	LDS direct data read.

	M0.

	EXEC mask.

Limitations

	At most one SGPR can be read per instruction, but the value can be
used for more than one operand.

	At most one literal constant can be used, and only when an SGPR or M0
is not used as a source.

	Only SRC0 can use LDS_DIRECT (see Chapter 10, “Data Share
Operations”).

	Special Cases for Constants
	
VALU “ADDC”, “SUBB” and CNDMASK all implicitly use an

SGPR value (VCC), so these instructions cannot use an
additional SGPR or literal constant.

Instructions using the VOP3 form and also using floating-point inputs
have the option of applying absolute value (ABS field) or negate (NEG
field) to any of the input operands.

Literal Expansion to 64 bits

Literal constants are 32-bits, but they can be used as sources which
normally require 64-bit data:

	64 bit float: the lower 32-bit are padded with zero.

	64-bit unsigned integer: zero extended to 64 bits

	64-bit signed integer: sign extended to 64 bits

Instruction Outputs

VALU instructions typically write their results to VGPRs specified in
the VDST field of the microcode word. A thread only writes a result if
the associated bit in the EXEC mask is set to 1.

All V_CMPX instructions write the result of their comparison (one bit
per thread) to both an SGPR (or VCC) and the EXEC mask.

Instructions producing a carry-out (integer add and subtract) write
their result to VCC when used in the VOP2 form, and to an arbitrary
SGPR-pair when used in the VOP3 form.

When the VOP3 form is used, instructions with a floating-point result
can apply an output modifier (OMOD field) that multiplies the result by:
0.5, 1.0, 2.0 or 4.0. Optionally, the result can be clamped (CLAMP
field) to the range [0.0, +1.0].

In the table below, all codes can be used when the vector source is nine
bits; codes 0 to 255 can be the scalar source if it is eight bits; codes
0 to 127 can be the scalar source if it is seven bits; and codes 256 to
511 can be the vector source or destination.

	Field

	Bit Position

	Description

	0-101

	SGPR

	0 .. 101

	102

	FLATSCR_LO

	Flat Scratch[31:0].

	103

	FLATSCR_HI

	Flat Scratch[63:32].

	104

	XNACK_MASK_LO

	

	105

	XNACK_MASK_HI

	

	106

	VCC_LO

	vcc[31:0].

	107

	VCC_HI

	vcc[63:32].

	108-123

	TTMP0 to TTMP 15

	Trap handler temps (privileged).

	124

	M0

	

	125

	reserved

	

	126

	EXEC_LO

	exec[31:0].

	127

	EXEC_HI

	exec[63:32].

	128

	0

	

	129-192

	int 1.. 64

	Integer inline constants.

	193-208

	int -1 .. -16

	

	209-234

	reserved

	Unused.

	235

	SHARED_BASE

	Memory Aperture definition.

	236

	SHARED_LIMIT

	

	237

	PRIVATE_BASE

	

	238

	PRIVATE_LIMIT

	

	239

	POPS_EXITING_WAV
E_ID

	Primitive Ordered Pixel Shading wave ID.

	240

	0.5

	
Single, double, or half-precision inline
floats.

1/(2*PI) is 0.15915494.

The exact value used is:

half: 0x3118

single: 0x3e22f983

double: 0x3fc45f306dc9c882

	241

	-0.5

	

	242

	1.0

	

	243

	-1.0

	

	244

	2.0

	

	245

	-2.0

	

	246

	4.0

	

	247

	-4.0

	

	248

	1/(2*PI)

	

	249

	SDWA

	250

	DPP

	251

	VCCZ

	{ zeros,
VCCZ }

	252

	EXECZ

	{ zeros,
EXECZ }

	253

	SCC

	{ zeros,
SCC }

	254

	LDS direct

	Use LDS
direct
read to
supply
32-bit
value
Vector-al
u
instructi
ons
only.

	255

	Literal

	constant
32-bit
constant
from
instructi
on
stream.

	256-511

	VGPR

Table: Instruction Operands

Out-of-Range GPRs

When a source VGPR is out-of-range, the instruction uses as input the
value from VGPR0.

When the destination GPR is out-of-range, the instruction executes but
does not write the results.

Instructions

The table below lists the complete VALU instruction set by microcode
encoding.

	VOP3

	VOP3 - 1-2
operand
opcodes

	VOP2

	VOP1

	V_MAD_LEGACY
_F32

	V_ADD_F64

	V_ADD_{
F16,F32,
U16,U32}

	V_NOP

	V_MAD_{
F16,I16,U16,F3
2}

	V_MUL_F64

	V_SUB_{
F16,F32,U16,
U32}

	V_MOV_B32

	V_MAD_LEGACY
_{F16,U16,I16
}

	V_MIN_F64

	V_SUBREV_{
F16,F32,
U16,U32}

	

	V_MAD_I32_I
24

	V_MAX_F64

	V_ADD_CO_U3
2

	V_READFIRSTLANE_B32

	V_MAD_U32_U
24

	V_LDEXP_F64

	V_SUB_CO_U3
2

	V_CVT_F32_{I32,U32,F16,F6
4
}

	V_CUBEID_F32

	V_MUL_LO_U3
2

	V_SUBREV_CO_U32

	V_CVT_{I32,U32,F16,
F64}_F32

	V_CUBESC_F32

	V_MUL_HI_{I
32,U32}

	V_ADDC_U32

	V_CVT_{I32,U32}_F64

	V_CUBETC_F32

	V_LSHLREV_B6
4

	V_SUBB_U32

	V_CVT_F64_{I32,U32}

	V_CUBEMA_F32

	V_LSHRREV_B6
4

	V_SUBBREV_U3
2

	V_CVT_F32_UBYTE{0,1,2,3}

	V_BFE_{U32 ,
I32 }

	V_ASHRREV_I6
4

	V_MUL_LEGACY
_F32

	V_CVT_F16_{U16, I16}

	V_FMA_{ F16,
F32 , F64}

	V_LDEXP_F32

	V_MUL_{F16,
F32}

	V_CVT_RPI_I32_F32

	V_FMA_LEGACY
_F16

	V_READLANE_B
32

	V_MUL_I32_I
24

	V_CVT_FLR_I32_F32

	V_BFI_B32

	V_WRITELANE_
B32

	V_MUL_HI_I3
2_I24

	V_CVT_OFF_F32_I4

	V_LERP_U8

	V_BCNT_U32_
B32

	V_MUL_U32_U
24

	V_FRACT_{ F16,F32,F64}

	V_ALIGNBIT_B
32

	V_MBCNT_LO_
U32_B32

	V_MUL_HI_U3
2_U24

	V_TRUNC_{ F16,F32, F64}

	V_ALIGNBYTE_
B32

	V_MBCNT_HI_
U32_B32

	V_MIN_{
F16,U16,
I16,F32,I32,U3
2}

	V_CEIL_{ F16,F32, F64}

	V_MIN3_{F32,
I32,U32}

	V_CVT_PKACCU
M_U8_F32

	V_MAX_{
F16,U16,
I16,F32,I32,U3
2}

	V_RNDNE_{ F16,F32, F64}

	V_MAX3_{F32,
I32,U32}

	V_CVT_PKNORM
_I16_F32

	V_LSHRREV_{
B16,B32}

	V_FLOOR_{ F16,F32, F64}

	V_MED3_{F32,
I32,U32}

	V_CVT_PKNORM
_U16_F32

	V_ASHRREV_{I
16,I32}

	V_EXP_{ F16,F32}

	V_SAD_{U8,
HI_U8, U16,
U32}

	V_CVT_PKRTZ_F16_F32

	V_LSHLREV_{
B16,B32}

	V_LOG_ {F16,F32}

	V_CVT_PK_U8
_F32

	V_CVT_PK_U1
6_U32

	V_AND_B32

	V_RCP_{ F16,F32,F64}

	V_DIV_FIXUP_{
F16,F32,F64}

	V_CVT_PK_I1
6_I32

	V_OR_B32

	V_RCP_IFLAG_F32

	V_DIV_FIXUP_LEGACY_F16

	V_MAC_LEGACY
_F32

	V_XOR_B32

	V_RSQ_{ F16,F32, F64}

	V_DIV_SCALE_{F32,F64}

	V_BFM_B32

	V_MAC_{
F16,F32}

	V_SQRT_{ F16,F32,F64}

	V_DIV_FMAS_
{F32,F64}

	V_INTERP_P1_F32

	V_MADMK_{
F16,F32}

	V_SIN_ {F16,F32}

	V_MSAD_U8

	V_INTERP_P2_F32

	V_MADAK_{
F16,F32}

	V_COS_ {F16,F32}

	V_QSAD_PK_U
16_U8

	V_INTERP_MOV
_F32

	V_CNDMASK_B3
2

	V_NOT_B32

	V_MQSAD_PK_
U16_U8

	V_INTERP_P1L
L_F16

	V_LDEXP_F16

	V_BFREV_B32

	V_MQSAD_PK_
U32_U8

	V_INTERP_P1L
V_F16

	MUL_LO_U16

	V_FFBH_{U32, I32}

	V_TRIG_PREOP
_F64

	V_INTERP_P2_F16

	
	V_FFBL_B32

	V_MAD_{U64_
U32,
I64_I32}

	V_INTERP_P2_LEGACY_F16

	
	V_FREXP_EXP_I32_F64

	
	V_CVT_PKNORM
_I16_F16

	
	V_FREXP_MANT_{
F16,F32,64}

	
	V_CVT_PKNORM
_U16_F16

	
	V_FREXP_EXP_I32_F32

	
	V_MAD_U32_U
16

	
	V_FREXP_EXP_I16_F16

	
	V_MAD_I32_I
16

	
	V_CLREXCP

	
	V_XAD_U32

	
	V_MOV_FED_B32

	
	V_MIN3_{F16,
I16,U16}

	
	V_CVT_NORM_I16_F16

	
	V_MAX3_{F16,
I16,U16}

	
	V_CVT_NORM_U16_F16

	
	V_MED3_{F16,
I16,U16}

	
	V_SAT_PK_U8_I16

	
	V_CVT_PKNORM
_{I16_F16,
U16_F16}

	
	V_WRITELANE_REGWR

	
	V_READLANE_R
EGRD_B32

	
	V_SWAP_B32

	
	V_PACK_B32_
F16

	
	V_SCREEN_PARTITION_4SE_B
32

Table: VALU Instruction Set

The next table lists the compare instructions.

	Op

	Formats

	Functions

	Result

	V_CMP

	I16, I32, I64,
U16, U32, U64

	F, LT, EQ, LE, GT, LG, GE, T

	Write VCC..

	V_CMPX

	Write VCC and
exec.

	
	

	V_CMP

	F16, F32, F64

	
F, LT, EQ,LE, GT, LG, GE,
T, GE, T,

O, U, NGE,
NLG, NGT,
NLE, NEQ,
NLT

(o = total order, u =
unordered,

N = NaN or
normal
compare)

	Write VCC.

	V_CMPX

	Write VCC and
exec.

	
	

	V_CMP_CLASS

	F16, F32, F64

	
Test for one of: signaling
-NaN quiet-NaN,

	|positive or negative :
	infinity,normal,subnormal,
zero

	Write VCC.

	V_CMPX_CLASS

	Write VCC and
exec.

	
	

Table: VALU Instruction Set

Denormalized and Rounding Modes

The shader program has explicit control over the rounding mode applied
and the handling of denormalized inputs and results. The MODE register
is set using the S_SETREG instruction; it has separate bits for
controlling the behavior of single and double-precision floating-point
numbers.

	Field

	Bit
Position

	Description

	FP_ROUND

	3:0

	
[1:0] Single-precision round mode.

[3:2] Double-precision round mode.

Round Modes: 0=nearest even; 1= +infinity; 2=
-infinity, 3= toward zero.

	FP_DENORM

	7:4

	
[5:4] Single-precision denormal mode.

[7:6] Double-precision denormal mode.

Denormal modes:

0 = Flush input and output denorms.

1 = Allow input denorms, flush output denorms.

2 = Flush input denorms, allow output denorms.

3 = Allow input and output denorms.

Table: Round and Denormal Modes

ALU Clamp Bit Usage

In GCN Vega Generation, the meaning of the “Clamp” bit in the VALU
instructions has changed. For V_CMP instructions, setting the clamp bit
to 1 indicates that the compare signals if a floating point exception
occurs. For integer operations, it clamps the result to the largest and
smallest representable value. For floating point operations, it clamps
the result to the range: [0.0, 1.0].

VGPR Indexing

VGPR Indexing allows a value stored in the M0 register to act as an
index into the VGPRs either for the source or destination registers in
VALU instructions.

Indexing Instructions

The table below describes the instructions which enable, disable and
control VGPR indexing.

	Instruction

	Encoding

	Sets
SCC?

	Operation

	S_SET_GPR_IDX_
OFF

	SOPP

	N

	Disable VGPR indexing mode. Sets:
mode.gpr_idx_en = 0.

	S_SET_GPR_IDX_
ON

	SOPC

	N

	
Enable VGPR indexing, and set the
index value and mode from an SGPR.
mode.gpr_idx_en = 1

M0[7:0] = S0.u[7:0]

M0[15:12] = SIMM4

	S_SET_GPR_IDX_
IDX

	SOP1

	N

	
Set the VGPR index value:

M0[7:0] = S0.u[7:0]

	S_SET_GPR_IDX_
MODE

	SOPP

	N

	
Change the VGPR indexing mode,
which is stored in

M0[15:12].

M0[15:12] = SIMM4

Table: VGPR Indexing Instructions

Indexing is enabled and disabled by a bit in the MODE register:
gpr_idx_en. When enabled, two fields from M0 are used to determine the
index value and what it applies to:

	M0[7:0] holds the unsigned index value, added to selected source or
destination VGPR addresses.

	M0[15:12] holds a four-bit mask indicating to which source or
destination the index is applied.

	M0[15] = dest_enable.

	M0[14] = src2_enable.

	M0[13] = src1_enable.

	M0[12] = src0_enable.

Indexing only works on VGPR source and destinations, not on inline
constants or SGPRs. It is illegal for the index attempt to address VGPRs
that are out of range.

Special Cases

This section describes how VGPR indexing is applied to instructions that
use source and destination registers in unusual ways. The table below
shows which M0 bits control indexing of the sources and destination
registers for these special instructions.

	Instruction

	Microcode
Encodes

	VALU Receives

	M0[15]
(dst)

	M0[15]
(s2)

	M0[15]
(s1)

	M0[12]
(s0)

	v_readlane

	sdst = src0,
SS1

	
	x

	x

	x

	src0

	v_readfirstlan
e

	sdst =
func(src0)

	
	x

	x

	x

	src0

	v_writelane

	dst = func(ss0,
ss1)

	
	dst

	x

	x

	x

	v_mac_*

	dst = src0 *
src1 + dst

	mad: dst, src0,
src1, src2

	dst,
s2

	x

	src1

	src0

	v_madak

	dst = src0 *
src1 + imm

	mad: dst, src0,
src1, src2

	dst

	x

	src1

	src0

	v_madmk

	dst = S0 * imm
+ src1

	mad: dst, src0,
src1, src2

	dst

	src2

	x

	src0

	v_*sh*_rev

	dst = S1 << S0

	<shift> (src1,
src0)

	dst

	x

	src1

	src0

	v_cvt_pkaccum

	uses dst as
src2

	
	dst,
s2

	x

	src1

	src0

	SDWA (dest
preserve,
sub-Dword mask)

	uses dst as
src2 for
read-mod-write

	
	
	dst,
s2

	
	

where:

src= vector source

SS = scalar source

dst = vector destination

sdst = scalar destination

Packed Math

Vega adds support for packed math, which performs operations on two
16-bit values within a Dword as if they were separate threads. For
example, a packed add of V0=V1+V2 is really two separate adds: adding
the low 16 bits of each Dword and storing the result in the low 16 bit s
of V0, and adding the high halves.

Packed math uses the instructions below and the microcode format
“VOP3P”. This format adds op_sel and neg fields for both the low and
high operands, and removes ABS and OMOD.

Packed Math Opcodes:

	V_PK_MAD_I16

	V_PK_MUL_LO_U1
6

	V_PK_ADD_I16

	V_PK_SUB_I16

	V_PK_LSHLREV_B1
6

	V_PK_LSHRREV_B1
6

	V_PK_ASHRREV_I1
6

	V_PK_MAX_I16

	V_PK_MIN_I16

	V_PK_MAD_U16

	V_PK_ADD_U16

	V_PK_SUB_U16

	V_PK_MAX_U16

	V_PK_MIN_U16

	V_PK_FMA_F16

	V_PK_ADD_F16

	V_PK_MUL_F16

	V_PK_MIN_F16

	V_PK_MAX_F16

	V_MAD_MIX_F32

Note

V_MAD_MIX_* are not packed math, but perform a single MAD operation on a mixture of 16- and 32-bit inputs. They are listed here because they use the VOP3P encoding.

Scalar Memory Operations

Scalar Memory Read (SMEM) instructions allow a shader program to load
data from memory into SGPRs through the Scalar Data Cache, or write data
from SGPRs to memory through the Scalar Data Cache. Instructions can
read from 1 to 16 Dwords, or write 1 to 4 Dwords at a time. Data is read
directly into SGPRs without any format conversion.

The scalar unit reads and writes consecutive Dwords between memory and
the SGPRs. This is intended primarily for loading ALU constants and for
indirect T#/S# lookup. No data formatting is supported, nor is byte or
short data.

Microcode Encoding

Scalar memory read, write and atomic instructions are encoded using the
SMEM microcode format.

[image: microcode smem]

The fields are described in the table below:

	Field

	Size

	Description

	OP

	8

	Opcode.

	IMM

	1

	
Determines how the
OFFSET field is
interpreted.

IMM=1 : Offset is a
20-bit unsigned byte
offset to the address.

IMM=0 : Offset[6:0]
specifies an SGPR or
M0 which provides an
unsigned byte offset.
STORE and ATOMIC
instructions cannot
use an SGPR: only imm
or M0.

	GLC

	1

	
Globally Coherent.

For loads, controls L1
cache policy:
0=hit_lru,
1=miss_evict.

For stores, controls
L1 cache bypass:
0=write-combine,
1=write-thru.

For atomics, “1”
indicates that the
atomic returns the
pre-op value.

	SDATA

	7

	
SGPRs to return read
data to, or to source
write-data from.

Reads of two Dwords
must have an even
SDST-sgpr.

Reads of four or more
Dwords must have their
DST-gpr aligned to a
multiple of 4.

SDATA must be: SGPR or
VCC. Not: exec or m0.

	SBASE

	6

	SGPR-pair (SBASE has an
implied LSB of zero)
which provides a base
address, or for BUFFER
instructions, a set of 4
SGPRs (4-sgpr aligned)
which hold the resource
constant. For BUFFER
instructions, the only
resource fields used
are: base, stride,
num_records.

	OFFSET

	20

	An unsigned byte offset,
or the address of an
SGPR holding the offset.
Writes and atomics: M0
or immediate only, not
SGPR.

	NV

	1

	Non-volatile.

	SOE

	1

	Scalar Offset Enable.

Table: SMEM Encoding Field Descriptions

Operations

S_LOAD_DWORD, S_STORE_DWORD

These instructions load 1-16 Dwords or store 1-4 Dwords between SGPRs
and memory. The data in SGPRs is specified in SDATA, and the address is
composed of the SBASE, OFFSET, and SOFFSET fields.

Scalar Memory Addressing

S_LOAD / S_STORE / S_DACHE_DISCARD:

ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero }

S_SCRATCH_LOAD / S_SCRATCH_STORE:

ADDR = SGPR[base] + inst_offset + { M0 or SGPR[offset] or zero } * 64

Use of offset fields:

	IMM

	SOFFSET_EN (SOE)

	Address

	0

	0

	SGPR[base] +
(SGPR[offset] or M0)

	0

	1

	SGPR[base] +
(SGPR[soffset] or M0)

	1

	0

	SGPR[base] +
inst_offset

	1

	1

	SGPR[base] +
inst_offset +
(SGPR[soffset] or M0)

All components of the address (base, offset, inst_offset, M0) are in
bytes, but the two LSBs are ignored and treated as if they were zero.
S_DCACHE_DISCARD ignores the six LSBs to make the address
64-byte-aligned.

It is illegal and undefined if the inst_offset is negative and the
resulting

(inst_offset + (M0 or SGPR[offset])) is negative.

Scalar access to private space must either use a buffer constant or
manually convert the address:

Addr = Addr - private_base + private_base_addr +
scratch_baseOffset_for_this_wave

“Hidden private base” is not available to the shader through hardware:
It must be preloaded into an SGPR or made available through a constant
buffer. This is equivalent to what the driver must do to calculate the
base address from scratch for buffer constants.

A scalar instruction must not overwrite its own source registers because
the possibility of the instruction being replayed due to an ATC XNACK.
Similarly, instructions in scalar memory clauses must not overwrite the
sources of any of the instructions in the clause. A clause is defined as
a string of memory instructions of the same type. A clause is broken by
any non-memory instruction.

Atomics are a special case because they are always naturally aligned and
they must be in a single-instruction clause. By definition, an atomic
that returns the pre-op value overwrites its data source, which is
acceptable.

Reads/Writes/Atomics using Buffer Constant

Buffer constant fields used: base_address, stride, num_records, NV.
Other fields are ignored.

Scalar memory read/write does not support “swizzled” buffers. Stride
is used only for memory address bounds checking, not for computing the
address to access.

The SMEM supplies only a SBASE address (byte) and an offset (byte or
Dword). Any “index * stride” must be calculated manually in shader code
and added to the offset prior to the SMEM.

The two LSBs of V#.base and of the final address are ignored to force
Dword alignment.

"m_*" components come from the buffer constant (V#):
 offset = IMM ? OFFSET : SGPR[OFFSET]
 m_base = { SGPR[SBASE * 2 +1][15:0], SGPR[SBASE] }
 m_stride = SGPR[SBASE * 2 +1][31:16]
 m_num_records = SGPR[SBASE * 2 + 2]
 m_size = (m_stride == 0) ? 1 : m_num_records
 m_addr = (SGPR[SBASE * 2] + offset) & ~0x3
 SGPR[SDST] = read_Dword_from_dcache(m_base, offset, m_size)

 If more than 1 dword is being read, it is returned to SDST+1, SDST+2, etc,
 and the offset is incremented by 4 bytes per DWORD.

Scalar Atomic Operations

The scalar memory unit supports the same set of memory atomics as the
vector memory unit. Addressing is the same as for scalar memory loads
and stores. Like the vector memory atomics, scalar atomic operations can
return the “pre-operation value” to the SDATA SGPRs. This is enabled by
setting the microcode GLC bit to 1.

S_DCACHE_INV, S_DCACHE_WB

This instruction invalidates, or does a “write back” of dirty data, for
the entire data cache. It does not return anything to SDST.

S_MEMTIME

This instruction reads a 64-bit clock counter into a pair of SGPRs: SDST
and SDST+1.

S_MEMREALTIME

This instruction reads a 64-bit “real time-counter” and returns the
value into a pair of SGPRS: SDST and SDST+1. The time value is from a
clock for which the frequency is constant (not affected by power modes
or core clock frequency changes).

Dependency Checking

Scalar memory reads and writes can return data out-of-order from how
they were issued; they can return partial results at different times
when the read crosses two cache lines. The shader program uses the
LGKM_CNT counter to determine when the data has been returned to the
SDST SGPRs. This is done as follows.

	LGKM_CNT is incremented by 1 for every fetch of a single Dword.

	LGKM_CNT is incremented by 2 for every fetch of two or more Dwords.

	LGKM_CNT is decremented by an equal amount when each instruction
completes.

Because the instructions can return out-of-order, the only sensible way
to use this counter is to implement S_WAITCNT 0; this imposes a wait
for all data to return from previous SMEMs before continuing.

Alignment and Bounds Checking

	SDST
	The value of SDST must be even for fetches of two Dwords (including
S_MEMTIME), or a multiple of four for larger fetches. If this rule
is not followed, invalid data can result. If SDST is out-of-range,
the instruction is not executed.

	SBASE
	The value of SBASE must be even for S_BUFFER_LOAD (specifying the
address of an SGPR which is a multiple of four). If SBASE is
out-of-range, the value from SGPR0 is used.

	OFFSET
	The value of OFFSET has no alignment restrictions.

Memory Address : If the memory address is out-of-range (clamped),
the operation is not performed for any Dwords that are out-of-range.

Vector Memory Operations

Vector Memory (VMEM) instructions read or write one piece of data
separately for each work-item in a wavefront into, or out of, VGPRs.
This is in contrast to Scalar Memory instructions, which move a single
piece of data that is shared by all threads in the wavefront. All Vector
Memory (VM) operations are processed by the texture cache system (level
1 and level 2 caches).

Software initiates a load, store or atomic operation through the texture
cache through one of three types of VMEM instructions:

	MTBUF: Memory typed-buffer operations.

	MUBUF: Memory untyped-buffer operations.

	MIMG: Memory image operations.

The instruction defines which VGPR(s) supply the addresses for the
operation, which VGPRs supply or receive data from the operation, and a
series of SGPRs that contain the memory buffer descriptor (V# or T#).
Also, MIMG operations supply a texture sampler from a series of four
SGPRs; this sampler defines texel filtering operations to be performed
on data read from the image.

Vector Memory Buffer Instructions

Vector-memory (VM) operations transfer data between the VGPRs and buffer
objects in memory through the texture cache (TC). Vector means that
one or more piece of data is transferred uniquely for every thread in
the wavefront, in contrast to scalar memory reads, which transfer only
one value that is shared by all threads in the wavefront.

Buffer reads have the option of returning data to VGPRs or directly into
LDS.

Examples of buffer objects are vertex buffers, raw buffers, stream-out
buffers, and structured buffers.

Buffer objects support both homogeneous and heterogeneous data, but no
filtering of read-data (no samplers). Buffer instructions are divided
into two groups:

	MUBUF: Untyped buffer objects.

	Data format is specified in the resource constant.

	Load, store, atomic operations, with or without data format
conversion.

	MTBUF: Typed buffer objects.

	Data format is specified in the instruction.

	The only operations are Load and Store, both with data format
conversion.

Atomic operations take data from VGPRs and combine them arithmetically
with data already in memory. Optionally, the value that was in memory
before the operation took place can be returned to the shader.

All VM operations use a buffer resource constant (V#) which is a 128-bit
value in SGPRs. This constant is sent to the texture cache when the
instruction is executed. This constant defines the address and
characteristics of the buffer in memory. Typically, these constants are
fetched from memory using scalar memory reads prior to executing VM
instructions, but these constants also can be generated within the
shader.

Simplified Buffer Addressing

The equation below shows how the hardware calculates the memory address
for a buffer access.

[image: fig 8 1]

Buffer Instructions

Buffer instructions (MTBUF and MUBUF) allow the shader program to read
from, and write to, linear buffers in memory. These operations can
operate on data as small as one byte, and up to four Dwords per
work-item. Atomic arithmetic operations are provided that can operate on
the data values in memory and, optionally, return the value that was in
memory before the arithmetic operation was performed.

The D16 instruction variants convert the results to packed 16-bit
values. For example, BUFFER_LOAD_FORMAT_D16_XYZW will write two
VGPRs.

	Instruction

	Description

	MTBUF Instructions

	

	
TBUFFER_LOAD_FORMAT_{x,x
y,xyz,xyzw}

TBUFFER_STORE_FORMAT_{x,
xy,xyz,xyzw}

	Read from, or write to, a typed buffer
object. Also used for a vertex fetch.

	MUBUF Instructions

	

	
BUFFER_LOAD_FORMAT_{x,xy
,xyz,xyzw}

BUFFER_STORE_FORMAT_{x,x
y,xyz,xyzw}

BUFFER_LOAD_<size>

BUFFER_STORE_<size>

	
Read to, or write from, an untyped
buffer object.

<size> = byte, ubyte, short, ushort,
Dword, Dwordx2, Dwordx3, Dwordx4
BUFFER_ATOMIC_<op>

BUFFER_ATOMIC_<op>_ x2

Table: Buffer Instructions

	Field

	Bit Size

	Description

	OP

	
4

7

	
MTBUF: Opcode for
Typed buffer
instructions.

MUBUF: Opcode for
Untyped buffer
instructions.

	VADDR

	8

	Address of VGPR to
supply first component
of address (offset or
index). When both index
and offset are used,
index is in the first
VGPR, offset in the
second.

	VDATA

	8

	Address of VGPR to
supply first component
of write data or receive
first component of
read-data.

	SOFFSET

	8

	SGPR to supply unsigned
byte offset. Must be an
SGPR, M0, or inline
constant.

	SRSRC

	5

	Specifies which SGPR
supplies T# (resource
constant) in four or
eight consecutive SGPRs.
This field is missing
the two LSBs of the SGPR
address, since this
address must be aligned
to a multiple of four
SGPRs.

	DFMT

	4

	
Data Format of data in
memory buffer:

0 invalid

1 8

2 16

3 8_8

4 32

5 16_16

6 10_11_11

7 11_11_10

8 10_10_10_2

9 2_10_10_10

10 8_8_8_8

11 32_32

12 16_16_16_16

13 32_32_32

14 32_32_32_32

15 reserved

	NFMT

	3

	
Numeric format of data
in memory:

0 unorm

1 snorm

2 uscaled

3 sscaled

4 uint

5 sint

6 reserved

7 float

	OFFSET

	12

	Unsigned byte offset.

	OFFEN

	1

	1 = Supply an offset
from VGPR (VADDR). 0 =
Do not (offset = 0).

	IDXEN

	1

	1 = Supply an index from
VGPR (VADDR). 0 = Do not
(index = 0).

	GLC

	1

	
Globally Coherent.
Controls how reads and
writes are handled by
the L1 texture cache.

READ

GLC = 0 Reads can hit
on the L1 and persist
across wavefronts

GLC = 1 Reads always
miss the L1 and force
fetch to L2. No L1
persistence across
waves.

WRITE

GLC = 0 Writes miss
the L1, write through
to L2, and persist in
L1 across wavefronts.

GLC = 1 Writes miss
the L1, write through
to L2. No persistence
across wavefronts.

ATOMIC

GLC = 0 Previous data
value is not returned.
No L1 persistence
across wavefronts.

GLC = 1 Previous data
value is returned. No
L1 persistence across
wavefronts.

Note: GLC means
“return pre-op value”
for atomics.

	SLC

	1

	System Level Coherent.
When set, accesses are
forced to miss in level
2 texture cache and are
coherent with system
memory.

	TFE

	1

	Texel Fail Enable for
PRT (partially resident
textures). When set to
1, fetch can return a
NACK that causes a VGPR
write into DST+1 (first
GPR after all fetch-dest
GPRs).

	LDS

	1

	MUBUF-ONLY: 0 = Return
read-data to VGPRs. 1 =
Return read-data to LDS
instead of VGPRs.

Table: Microcode Formats

VGPR Usage

VGPRs supply address and write-data; also, they can be the destination
for return data (the other option is LDS).

	Address
	Zero, one or two VGPRs are used, depending of the offset-enable
(OFFEN) and index-enable (IDXEN) in the instruction word, as shown
in the table below:

	IDXEN

	OFFEN

	VGPRn

	VGPRn+1

	0

	0

	nothing

	

	0

	1

	uint offset

	

	1

	0

	uint index

	

	1

	1

	uint index

	uint offset

Table: Address VGPRs

Write Data : N consecutive VGPRs, starting at VDATA. The data format
specified in the instruction word (NFMT, DFMT for MTBUF, or encoded in
the opcode field for MUBUF) determines how many Dwords to write.

Read Data : Same as writes. Data is returned to consecutive GPRs.

Read Data Format : Read data is always 32 bits, based on the data
format in the instruction or resource. Float or normalized data is
returned as floats; integer formats are returned as integers (signed or
unsigned, same type as the memory storage format). Memory reads of data
in memory that is 32 or 64 bits do not undergo any format conversion.

Atomics with Return : Data is read out of the VGPR(s) starting at
VDATA to supply to the atomic operation. If the atomic returns a value
to VGPRs, that data is returned to those same VGPRs starting at VDATA.

Buffer Data

The amount and type of data that is read or written is controlled by the
following: data-format (dfmt), numeric-format (nfmt),
destination-component-selects (dst_sel), and the opcode. Dfmt and nfmt
can come from the resource, instruction fields, or the opcode itself.
Dst_sel comes from the resource, but is ignored for many operations.

	Instruction

	Data Format

	Num Format

	DST SEL

	TBUFFER_LOAD_FOR
MAT_*

	instruction

	instruction

	identity

	TBUFFER_STORE_FO
RMAT_*

	instruction

	instruction

	identity

	BUFFER_LOAD_<typ
e>

	derived

	derived

	identity

	BUFFER_STORE_<ty
pe>

	derived

	derived

	identity

	BUFFER_LOAD_FORM
AT_*

	resource

	resource

	resource

	BUFFER_STORE_FOR
MAT_*

	resource

	resource

	resource

	BUFFER_ATOMIC_*

	derived

	derived

	identity

Table: Buffer Instructions

Instruction : The instruction’s dfmt and nfmt fields are used
instead of the resource’s fields.

Data format derived : The data format is derived from the opcode and
ignores the resource definition. For example, buffer_load_ubyte sets
the data-format to 8 and number-format to uint.

Note

The resource’s data format must not be INVALID; that format has special meaning (unbound resource), and for that case the data format is not replaced by the instruction’s implied data format.

DST_SEL identity : Depending on the number of components in the
data-format, this is: X000, XY00, XYZ0, or XYZW.

The MTBUF derives the data format from the instruction. The MUBUF
BUFFER_LOAD_FORMAT and BUFFER_STORE_FORMAT instructions use dst_sel
from the resource; other MUBUF instructions derive data-format from the
instruction itself.

D16 Instructions : Load-format and store-format instructions also
come in a “d16” variant. For stores, each 32-bit VGPR holds two 16-bit
data elements that are passed to the texture unit. This texture unit
converts them to the texture format before writing to memory. For loads,
data returned from the texture unit is converted to 16 bits, and a pair
of data are stored in each 32-bit VGPR (LSBs first, then MSBs). Control
over int vs. float is controlled by NFMT.

Buffer Addressing

A buffer is a data structure in memory that is addressed with an
index and an offset. The index points to a particular record of
size stride bytes, and the offset is the byte-offset within the
record. The stride comes from the resource, the index from a VGPR
(or zero), and the offset from an SGPR or VGPR and also from the
instruction itself.

	Field

	Size

	Description

	inst_offset

	12

	Literal byte offset from
the instruction.

	inst_idxen

	1

	Boolean: get index from
VGPR when true, or no
index when false.

	inst_offen

	1

	Boolean: get offset from
VGPR when true, or no
offset when false. Note
that inst_offset is
always present,
regardless of this bit.

Table: BUFFER Instruction Fields for Addressing

The “element size” for a buffer instruction is the amount of data the
instruction transfers. It is determined by the DFMT field for MTBUF
instructions, or from the opcode for MUBUF instructions. It can be 1, 2,
4, 8, or 16 bytes.

	Field

	Size

	Description

	const_base

	48

	Base address, in bytes,
of the buffer resource.

	const_stride

	
14

or

18

	
Stride of the record
in bytes (0 to 16,383
bytes, or 0 to 262,143
bytes). Normally 14
bits, but is extended
to 18-bits when:

const_add_tid_enabl
e
= true used with MUBUF
instructions which are
not format types
(or cache
invalidate/WB).

This is extension
intended for use with
scratch (private)
buffers.

If (const_add_tid_en
able && MUBUF-non-
format instr.)
 const_stride [17:0
] = { V#.DFMT[3:0],

 V#.const_stride[13
:0] }
 else
 const_stride is 14
bits: {4'b0, V#.const_s
tride[13:0]}

	const_num_records

	32

	
Number of records in
the buffer.

In units of Bytes for
raw buffers, units of
Stride for structured
buffers, and ignored
for private (scratch)
buffers.

In units of:
(inst_idxen == 1) ?
Bytes : Stride

	const_add_tid_enable

	1

	Boolean. Add thread_ID
within the wavefront to
the index when true.

	const_swizzle_enable

	1

	Boolean. Indicates that
the surface is swizzled
when true.

	const_element_size

	2

	
Used only when
const_swizzle_en =
true. Number of
contiguous bytes of a
record for a given
index (2, 4, 8, or 16
bytes).

Must be >= the maximum
element size in the
structure.
const_stride must be
an integer multiple of
const_element_size.

	const_index_stride

	2

	Used only when
const_swizzle_en =
true. Number of
contiguous indices for a
single element (of
const_element_size)
before switching to the
next element. There are
8, 16, 32, or 64
indices.

Table: V# Buffer Resource Constant Fields for Addressing

	Field

	Size

	Description

	SGPR_offset

	32

	An unsigned byte-offset
to the address. Comes
from an SGPR or M0.

	VGPR_offset

	32

	An optional unsigned
byte-offset. It is
per-thread, and comes
from a VGPR.

	VGPR_index

	32

	An optional index value.
It is per-thread and
comes from a VGPR.

Table: Address Components from GPRs

The final buffer memory address is composed of three parts:

	the base address from the buffer resource (V#),

	the offset from the SGPR, and

	a buffer-offset that is calculated differently, depending on whether
the buffer is linearly addressed (a simple Array-of-Structures
calculation) or is swizzled.

[image: Address Calculation for a Linear Buffer]
Address Calculation for a Linear Buffer

Range Checking

Addresses can be checked to see if they are in or out of range. When an
address is out of range, reads will return zero, and writes and atomics
will be dropped. The address range check algorithm depends on the buffer
type.

	Private (Scratch) Buffer
	
Used when: AddTID==1 && IdxEn==0

For this buffer, there is no range checking.

	Raw Buffer
	
Used when: AddTID==0 && SWizzleEn==0 && IdxEn==0

Out of Range if: (InstOffset + (OffEN ? vgpr_offset : 0)) >=
NumRecords

	Structured Buffer
	
Used when: AddTID==0 && Stride!=0 && IdxEn==1

Out of Range if: Index(vgpr) >= NumRecords

Notes:

	Reads that go out-of-range return zero (except for components with
V#.dst_sel = SEL_1 that return 1).

	Writes that are out-of-range do not write anything.

	Load/store-format-* instruction and atomics are range-checked “all
or nothing” - either entirely in or out.

	Load/store-Dword-x{2,3,4} and range-check per component.

Swizzled Buffer Addressing

Swizzled addressing rearranges the data in the buffer to help provide
improved cache locality for arrays of structures. Swizzled addressing
also requires Dword-aligned accesses. A single fetch instruction cannot
attempt to fetch a unit larger than const-element-size. The buffer’s
STRIDE must be a multiple of element_size.

Index = (inst_idxen ? vgpr_index : 0) +
 (const_add_tid_enable ? thread_id[5:0] : 0)

Offset = (inst_offen ? vgpr_offset : 0) + inst_offset

index_msb = index / const_index_stride
index_lsb = index % const_index_stride
offset_msb = offset / const_element_size
offset_lsb = offset % const_element_size

buffer_offset = (index_msb * const_stride + offset_msb *
 const_element_size) * const_index_stride + index_lsb *
 const_element_size + offset_lsb

Final Address = const_base + sgpr_offset + buffer_offset

Remember that the “sgpr_offset” is not a part of the “offset” term in
the above equations.

[image: Example of Buffer Swizzling]
Example of Buffer Swizzling

Proposed Use Cases for Swizzled Addressing

Here are few proposed uses of swizzled addressing in common graphics
buffers.

	
	DX11 Raw
Uav OpenCL
Buffer
Object

	Dx11
Structured
(literal
offset)

	Dx11
Structured
(gpr
offset)

	Scratch

	Ring /
stream-
out

	Const
Buffer

	inst_vgpr_offset_en

	T

	F

	T

	T

	T

	T

	inst_vgpr_index_en

	F

	T

	T

	F

	F

	F

	const_stri
de

	na

	<api>

	<api>

	scratch
Size

	na

	na

	const_add_tid_enabl
e

	F

	F

	F

	T

	T

	F

	const_buff
er_swizzle

	F

	T

	T

	T

	F

	F

	const_elem
_size

	na

	4

	4

	4 or 16

	na

	4

	const_inde
x_stride

	na

	16

	16

	64

	
	

Table: Swizzled Buffer Use Cases

16-bit Memory Operations

The D16 buffer instructions allow a kernel to load or store just 16 bits
per work item between VGPRs and memory. There are two variants of these
instructions:

	D16 loads data into or stores data from the lower 16 bits of a VGPR.

	D16_HI loads data into or stores data from the upper 16 bits of a
VGPR.

For example, BUFFER_LOAD_UBYTE_D16 reads a byte per work-item from
memory, converts it to a 16-bit integer, then loads it into the lower 16
bits of the data VGPR.

Alignment

For Dword or larger reads or writes, the two LSBs of the byte-address
are ignored, thus forcing Dword alignment.

Buffer Resource

The buffer resource describes the location of a buffer in memory and the
format of the data in the buffer. It is specified in four consecutive
SGPRs (four aligned SGPRs) and sent to the texture cache with each
buffer instruction.

The table below details the fields that make up the buffer resource
descriptor.

	Bits

	Size

	Name

	Description

	47:0

	48

	Base address

	Byte address.

	61:48

	14

	Stride

	Bytes 0 to 16383

	62

	1

	Cache swizzle

	Buffer access. Optionally, swizzle texture cache TC L1 cache banks.

	63

	1

	Swizzle enable

	Swizzle AOS according to stride,
index_stride, and element_size, else linear (stride * index offset).

	95:64

	32

	Num_records

	In units of stride or bytes.

	98:96

	3

	Dst_sel_x

	
Destination channel select:

0=0, 1=1, 4=R, 5=G, 6=B, 7=A

	101:99

	3

	Dst_sel_y

	

	104:102

	3

	Dst_sel_z

	

	107:105

	3

	Dst_sel_w

	

	110:108

	3

	Num format

	Numeric data type (float, int, ….). See instruction encoding for values.

	114:111

	4

	Data format

	Number of fields and size of each field.
See instruction encoding for values.
For MUBUF instructions with ADD_TID_EN = 1
This field holds Stride [17:14].

	115

	1

	User VM Enable

	Resource is mapped via tiled pool / heap.

	116

	1

	User VM mode

	Unmapped behavior: 0: null (return 0/drop,write);
1:invalid (results in error)

	118:117

	2

	Index stride

	8, 16, 32, or 64. Used for swizzled buffer addressing.

	119

	1

	Add tid enable

	Add thread ID to the index for to calculate the address.

	122:120

	3

	RSVD

	Reserved. Must be set to zero.

	123

	1

	NV

	Nonvolatile (0=volatile)

	125:124

	2

	RSVD

	Reserved. Must be set to zero.

	127:126

	2

	Type

	Value 0 for buffer. Overlaps upper two bits of
fourbit TYPE field in 128bit T# resource.

Table: Buffer Resource Descriptor

A resource set to all zeros acts as an unbound texture or buffer (return
0,0,0,0).

Memory Buffer Load to LDS

The MUBUF instruction format allows reading data from a memory buffer
directly into LDS without passing through VGPRs. This is supported for
the following subset of MUBUF instructions.

	BUFFER_LOAD_{ubyte, sbyte, ushort, sshort, dword, format_x}.

	It is illegal to set the instruction’s TFE bit for loads to LDS.

LDS_offset = 16-bit unsigned byte offset from M0[15:0].

Mem_offset = 32-bit unsigned byte offset from an SGPR (the SOFFSET
SGPR).

idx_vgpr = index value from a VGPR (located at VADDR). (Zero if
idxen=0.)

off_vgpr = offset value from a VGPR (located at VADDR or VADDR+1).
(Zero if offen=0.)

The figure below shows the components of the LDS and memory address
calculation:

[image: fig 8 5]

TIDinWave is only added if the resource (T#) has the ADD_TID_ENABLE
field set to 1, whereas LDS always adds it. The MEM_ADDR M# is in the
VDATA field; it specifies M0.

Clamping Rules

Memory address clamping follows the same rules as any other buffer
fetch. LDS address clamping: the return data must not be written outside
the LDS space allocated to this wave.

	Set the active-mask to limit buffer reads to those threads that
return data to a legal LDS location.

	The LDSbase (alloc) is in units of 32 Dwords, as is LDSsize.

	M0[15:0] is in bytes.

GLC Bit Explained

The GLC bit means different things for loads, stores, and atomic ops.

GLC Meaning for Loads

	For GLC==0

	The load can read data from the GPU L1.

	Typically, all loads (except load-acquire) use GLC==0.

	For GLC==1

	The load intentionally misses the GPU L1 and reads from L2. If
there was a line in the GPU L1 that matched, it is invalidated; L2
is reread.

	NOTE: L2 is not re-read for every work-item in the same wave-front
for a single load instruction. For example: b=uav[N+tid] // assume
this is a byte read w/ glc==1 and N is aligned to 64B In the above
op, the first Tid of the wavefront brings in the line from L2 or
beyond, and all 63 of the other Tids read from same 64 B cache
line in the L1.

GLC Meaning for Stores

	For GLC==0 This causes a write-combine across work-items of the
wavefront store op; dirtied lines are written to the L2
automatically.

	If the store operation dirtied all bytes of the 64 B line, it is
left clean and valid in the L1; subsequent accesses to the cache
are allowed to hit on this cache line.

	Else do not leave write-combined lines in L1.

	For GLC==1 Same as GLC==0, except the write-combined lines are not
left in the line, even if all bytes are dirtied.

Atomics

	For GLC == 0 No return data (this is “write-only” atomic op).

	For GLC == 1 Returns previous value in memory (before the atomic
operation).

Vector Memory (VM) Image Instructions

Vector Memory (VM) operations transfer data between the VGPRs and memory
through the texture cache (TC). Vector means the transfer of one or more
pieces of data uniquely for every work-item in the wavefront. This is in
contrast to scalar memory reads, which transfer only one value that is
shared by all work-items in the wavefront.

Examples of image objects are texture maps and typed surfaces.

Image objects are accessed using from one to four dimensional addresses;
they are composed of homogeneous data of one to four elements. These
image objects are read from, or written to, using IMAGE_* or
SAMPLE_* instructions, all of which use the MIMG instruction format.
IMAGE_LOAD instructions read an element from the image buffer directly
into VGPRS, and SAMPLE instructions use sampler constants (S#) and apply
filtering to the data after it is read. IMAGE_ATOMIC instructions
combine data from VGPRs with data already in memory, and optionally
return the value that was in memory before the operation.

All VM operations use an image resource constant (T#) that is a 256-bit
value in SGPRs. This constant is sent to the texture cache when the
instruction is executed. This constant defines the address, data format,
and characteristics of the surface in memory. Some image instructions
also use a sampler constant that is a 128-bit constant in SGPRs.
Typically, these constants are fetched from memory using scalar memory
reads prior to executing VM instructions, but these constants can also
be generated within the shader.

Texture fetch instructions have a data mask (DMASK) field. DMASK
specifies how many data components it receives. If DMASK is less than
the number of components in the texture, the texture unit only sends
DMASK components, starting with R, then G, B, and A. if DMASK specifies
more than the texture format specifies, the shader receives zero for the
missing components.

Image Instructions

This section describes the image instruction set, and the microcode
fields available to those instructions.

	MIMG

	Description

	SAMPLE_*

	Read and filter data from a image
object.

	IMAGE_LOAD_<op>

	Read data from an image object using
one of the following: image_load,
image_load_mip, image_load_{pck,
pck_sgn, mip_pck, mip_pck_sgn}.

	
IMAGE_STORE

IMAGE_STORE_MIP

	Store data to an image object. Store
data to a specific mipmap level.

	IMAGE_ATOMIC_<op>

	Image atomic operation, which is one
of the following: swap, cmpswap,
add, sub, rsub, {u,s}{min,max}, and,
or, xor, inc, dec, fcmpswap, fmin,
fmax.

Table: Image Instructions

	Field

	Bit Size

	Description

	OP

	7

	Opcode.

	VADDR

	8

	Address of VGPR to
supply first component
of address.

	VDATA

	8

	Address of VGPR to
supply first component
of write data or receive
first component of
read-data.

	SSAMP

	5

	SGPR to supply S#
(sampler constant) in
four consecutive SGPRs.
Missing two LSBs of
SGPR-address since must
be aligned to a multiple
of four SGPRs.

	SRSRC

	5

	SGPR to supply T#
(resource constant) in
four or eight
consecutive SGPRs.
Missing two LSBs of
SGPR-address since must
be aligned to a multiple
of four SGPRs.

	UNRM

	1

	Force address to be
un-normalized regardless
of T#. Must be set to 1
for image stores and
atomics.

	DA

	1

	
Shader declared an
array resource to be
used with this fetch.

When 1, the shader
provides an
array-index with the
instruction.

When 0, no array index
is provided.

	DMASK

	4

	
Data VGPR enable mask:
one to four
consecutive VGPRs.
Reads: defines which
components are
returned.

0 = red, 1 = green, 2
= blue, 3 = alpha

Writes: defines which
components are written
with data from VGPRs
(missing components
get 0). Enabled
components come from
consecutive VGPRs.

For example:
DMASK=1001: Red is in
VGPRn and alpha in
VGPRn+1. For D16
writes, DMASK is used
only as a word count:
each bit represents 16
bits of data to be
written, starting at
the LSBs of VADDR, the
MSBs, VADDR+1, etc.
Bit position is
ignored.

	GLC

	1

	
Globally Coherent.
Controls how reads and
writes are handled by
the L1 texture cache.

READ:

GLC = 0 Reads can hit
on the L1 and persist
across waves.

GLC = 1 Reads always
miss the L1 and force
fetch to L2. No L1
persistence across
waves.

WRITE:

GLC = 0 Writes miss
the L1, write through
to L2, and persist in
L1 across wavefronts.

GLC = 1 Writes miss
the L1, write through
to L2. No persistence
across wavefronts.

ATOMIC:

GLC = 0 Previous data
value is not returned.
No L1 persistence
across wavefronts.

GLC = 1 Previous data
value is returned. No
L1 persistence across
wavefronts.

	SLC

	1

	System Level Coherent.
When set, accesses are
forced to miss in level
2 texture cache and are
coherent with system
memory.

	TFE

	1

	Texel Fail Enable for
PRT (partially resident
textures). When set, a
fetch can return a NACK,
which causes a VGPR
write into DST+1 (first
GPR after all fetch-dest
GPRs).

	LWE

	1

	Force data to be
un-normalized,
regardless of T#.

	A16

	1

	
Address components are
16-bits (instead of
the usual 32 bits).
When set, all address
components are 16 bits
(packed into two per
Dword), except:

Texel offsets (three
6-bit uint packed into
one Dword).

PCF reference (for _C
instructions).

Address components are
16-bit uint for image
ops without sampler;
16-bit float with
sampler.

	D16

	1

	
VGPR-Data-16bit. On
loads, convert data in
memory to 16-bit
format before storing
it in VGPRs. For
stores, convert 16-bit
data in VGPRs to 32
bits before going to
memory. Whether the
data is treated as
float or int is
decided by NFMT.
Allowed only with
these opcodes:

IMAGE_SAMPLE*

IMAGE_GATHER4*, but
not GATHER4H_PCK

IMAGE_LOAD

IMAGE_LOAD_MIP

IMAGE_STORE

IMAGE_STORE_MIP

Table: Instruction Fields

Image Opcodes with No Sampler

For image opcodes with no sampler, all VGPR address values are taken as
uint. For cubemaps, face_id = slice * 6 + face.

The table below shows the contents of address VGPRs for the various
image opcodes.

	Image Opcode
(Resource w/o
Sampler)

	Acnt

	dim

	VGPRn

	VGPRn+1

	VGPRn+2

	VGPRn+3

	get_resinfo

	0

	Any

	mipid

	
	
	

	load / store /
atomics

	0

	1D

	x

	
	
	

	1

	1D
Array

	x

	slice

	
	
	

	1

	2D

	x

	y

	
	
	

	2

	2D
MSAA

	x

	y

	fragid

	
	

	2

	2D
Array

	x

	y

	slice

	
	

	3

	2D
Array
MSAA

	x

	y

	slice

	fragid

	

	2

	3D

	x

	y

	z

	
	

	2

	Cube

	x

	y

	face_id

	
	

	load_mip /
store_mip

	1

	1D

	x

	mipid

	
	

	2

	1D
Array

	x

	slice

	mipid

	
	

	2

	2D

	x

	y

	mipid

	
	

	3

	2D
Array

	x

	y

	slice

	mipid

	

	3

	3D

	x

	y

	z

	mipid

	

	3

	Cube

	x

	y

	face_id

	mipid

	

Table: Image Opcodes with No Sampler

Image Opcodes with a Sampler

For image opcodes with a sampler, all VGPR address values are taken as
float. For cubemaps, face_id = slice * 8 + face.

Certain sample and gather opcodes require additional values from VGPRs
beyond what is shown. These values are: offset, bias, z-compare, and
gradients.

	Image Opcode
(w/ Sampler)

	Acnt

	dim

	VGPRn

	VGPRn+1

	VGPRn+2

	VGPRn+3

	sample

	0

	1D

	x

	
	
	

	1

	1D
Array

	x

	slice

	
	
	

	1

	2D

	x

	y

	
	
	

	2

	2D
interl
aced

	x

	y

	field

	
	

	2

	2D
Array

	x

	y

	slice

	
	

	2

	3D

	x

	y

	z

	
	

	2

	Cube

	x

	y

	face_id

	
	

	sample_l

	1

	1D

	x

	lod

	
	

	2

	1D
Array

	x

	slice

	lod

	
	

	2

	2D

	x

	y

	lod

	
	

	3

	2D
interl
aced

	x

	y

	field

	lod

	

	3

	2D
Array

	x

	y

	slice

	lod

	

	3

	3D

	x

	y

	z

	lod

	

	3

	Cube

	x

	y

	face_id

	lod

	

	sample_cl

	1

	1D

	x

	clamp

	
	

	2

2

	1D
Array
2D

	x

x

	slice

y

	clamp

clamp

	
	

	3

	2D
interl
aced

	x

	y

	field

	clamp

	

	3

	2D
Array

	x

	y

	slice

	clamp

	

	3

	3D

	x

	y

	z

	clamp

	

	3

	Cube

	x

	y

	face_id

	clamp

	

	gather4

	1

	2D

	x

	y

	
	

	2

	2D
interl
aced

	x

	y

	field

	
	

	2

	2D
Array

	x

	y

	slice

	
	

	2

	Cube

	x

	y

	face_id

	
	

	gather4_l

	2

	2D

	x

	y

	lod

	

	3

	2D
interl
aced

	x

	y

	field

	lod

	

	3

	2D
Array

	x

	y

	slice

	lod

	

	3

	Cube

	x

	y

	face_id

	lod

	

	gather4_cl

	2

	2D

	x

	y

	clamp

	

	3

	2D
interl
aced

	x

	y

	field

	clamp

	

	3

	2D
Array

	x

	y

	slice

	clamp

	

	3

	Cube

	x

	y

	face_id

	clamp

	

Table: Image Opcodes with Sampler

	Sample includes sample, sample_d, sample_b, sample_lz, sample_c,
sample_c_d, sample_c_b, sample_c_lz, and getlod.

	Sample_l includes sample_l and sample_c_l.

	Sample_cl includes sample_cl, sample_d_cl, sample_b_cl,
sample_c_cl, sample_c_d_cl, and sample_c_b_cl.

	Gather4 includes gather4, gather4_lz, gather4_c, and
gather4_c_lz.

The table below lists and briefly describes the legal suffixes for image
instructions:

	Suffix

	Meaning

	Extra Addresses

	Description

	_L

	LOD

	
	

	LOD is used
instead of TA
computed LOD.

	_B

	LOD BIAS

	1: lod bias

	Add this BIAS to
the LOD TA
computes.

	_CL

	LOD CLAMP

	
	

	Clamp the LOD to
be no larger than
this value.

	_D

	Derivative

	2,4 or 6: slopes

	Send dx/dv, dx/dy,
etc. slopes to TA
for it to used in
LOD computation.

	_CD

	Coarse Derivative

	Send dx/dv, dx/dy,
etc. slopes to TA
for it to used in
LOD computation.

	

	_LZ

	Level 0

	
	

	Force use of MIP
level 0.

	_C

	PCF

	1: z-comp

	Percentage closer
filtering.

	_O

	Offset

	1: offsets

	Send X, Y, Z
integer offsets
(packed into 1
Dword) to offset
XYZ address.

Table: Sample Instruction Suffix Key

VGPR Usage

Address: The address consists of up to four parts:

{ offset } { bias } { z-compare } { derivative } { body }

These are all packed into consecutive VGPRs.

	
Offset: SAMPLE*O*, GATHER*O*

One Dword of offset_xyz. The offsets are six-bit signed integers:
X=[5:0], Y=[13:8], and Z=[21:16].

	Bias: SAMPLE*B*, GATHER*B*. One Dword float.

	Z-compare: SAMPLE*C*, GATHER*C*. One Dword.

	Derivatives (sample_d, sample_cd): 2, 4, or 6 Dwords, packed one
Dword per derivative as:

	Image Dim

	Vgpr N

	N+1

	N+2

	N+3

	N+4

	N+5

	1D

	DX/DH

	DX/DV

	
	

	
	

	
	

	
	

	2D

	DX/DH

	DY/DH

	DX/DV

	DY/DV

	
	

	
	

	3D

	DX/DH

	DY/DH

	DZ/DH

	DX/DV

	DY/DV

	DZ/DV

	Body: One to four Dwords, as defined by the table:
Address components are X,Y,Z,W
with X in VGPR_M, Y in VGPR_M+1, etc. The number of components in
“body” is the value of the ACNT field in the table, plus one.

	Data: Written from, or returned to, one to four consecutive VGPRs.
The amount of data read or written is determined by the DMASK field
of the instruction.

	Reads: DMASK specifies which elements of the resource are returned to
consecutive VGPRs. The texture system reads data from memory and
based on the data format expands it to a canonical RGBA form, filling
in zero or one for missing components. Then, DMASK is applied, and
only those components selected are returned to the shader.

	Writes: When writing an image object, it is only possible to write an
entire element (all components), not just individual components. The
components come from consecutive VGPRs, and the texture system fills
in the value zero for any missing components of the image’s data
format; it ignores any values that are not part of the stored data
format. For example, if the DMASK=1001, the shader sends Red from
VGPR_N, and Alpha from VGPR_N+1, to the texture unit. If the image
object is RGB, the texel is overwritten with Red from the VGPR_N,
Green and Blue set to zero, and Alpha from the shader ignored.

	
Atomics: Image atomic operations are supported only on 32- and
64-bit-per pixel surfaces. The surface data format is specified in
the resource constant. Atomic operations treat the element as a
single component of 32- or 64-bits. For atomic operations, DMASK is
set to the number of VGPRs (Dwords) to send to the texture unit.
DMASK legal values for atomic image operations: no other values of
DMASK are legal.

0x1 = 32-bit atomics except cmpswap.

0x3 = 32-bit atomic cmpswap.

0x3 = 64-bit atomics except cmpswap.

0xf = 64-bit atomic cmpswap.

	Atomics with Return: Data is read out of the VGPR(s), starting at
VDATA, to supply to the atomic operation. If the atomic returns a
value to VGPRs, that data is returned to those same VGPRs starting at
VDATA.

	D16 Instructions: Load-format and store-format instructions also come
in a “d16” variant. For stores, each 32-bit VGPR holds two 16-bit
data elements that are passed to the texture unit. The texture unit
converts them to the texture format before writing to memory. For
loads, data returned from the texture unit is converted to 16 bits,
and a pair of data are stored in each 32- bit VGPR (LSBs first, then
MSBs). The DMASK bit represents individual 16- bit elements; so, when
DMASK=0011 for an image-load, two 16-bit components are loaded into a
single 32-bit VGPR.

Image Resource

The image resource (also referred to as T#) defines the location of the
image buffer in memory, its dimensions, tiling, and data format. These
resources are stored in four or eight consecutive SGPRs and are read by
MIMG instructions.

	Bits

	Size

	Name

	Comments

	128-bi
t
Resource
:
1D-tex,
2d-tex,
2d-msaa
(multi-s
ample
auto-ali
asing)

	
	
	

	39:0

	40

	base address

	256-byte aligned. Also used for fmask-ptr.

	51:40

	12

	min lod

	4.8 (four uint bits, eight fraction bits)
format.

	57:52

	6

	data format

	Number of comps, number of bits/comp.

	61:58

	4

	num format

	Numeric format.

	62

	1

	NV

	Non-volatile (0=volatile)

	77:64

	14

	width

	width-1 of mip0 in texels

	91:78

	14

	height

	height-1 of mip0 in texels

	94:92

	3

	perf
modulation

	Scales sampler’s perf_z, perf_mip,
aniso_bias, lod_bias_sec.

	98:96

	3

	dst_sel_x

	0 = 0, 1 = 1, 4 = R, 5 = G, 6 = B, 7 = A.

	101:99

	3

	dst_sel_y

	

	104:102

	3

	dst_sel_z

	

	107:105

	3

	dst_sel_w

	

	111:108

	4

	base level

	largest mip level in the resource view. For
msaa, set to zero.

	115:112

	4

	last level

	For msaa, holds number of samples

	120:116

	5

	Tiling index

	
Lookuptable: 32 x 16

bank_width[2], bank_height[2],
num_banks[2], tile_split[2],
macro_tile_aspect[2],
micro_tile_mode[2], array_mode[4].

	127:124

	4

	type

	0 = buf, 8 = 1d, 9 = 2d, 10 = 3d, 11 =
cube, 12 = 1d-array, 13 = 2d-array, 14 =
2d-msaa, 15 = 2d-msaa-array. 1-7 are
reserved.

	256-bi
t
Resource
:
1d-array
,
2d-array
,
3d,
cubemap,
MSAA

	
	
	

	140:128

	13

	depth

	depth-1 of mip0 for 3d map

	156:141

	16

	pitch

	In texel units.

	159:157

	3

	border color
swizzle

	Specifies the channel ordering for border
color independent of the T# dst_sel
fields. 0=xyzw, 1=xwyz, 2=wqyx, 3=wxyz,
4=zyxw, 5=yxwz

	176:173

	4

	Array Pitch

	array pitch for quilts, encoded as:
trunc(log2(array_pitch))+1

	184:177

	8

	meta data
address

	bits[47:40]

	185

	1

	meta_linear

	forces metadata surface to be linear

	186

	1

	meta_pipe_a
ligned

	maintain pipe alignment in metadata
addressing

	187

	1

	meta_rb_ali
gned

	maintain RB alignment in metadata
addressing

	191:188

	4

	Max Mip

	Resource mipLevel-1. Describes the
resource, as opposed to base_level and
last_level, which describes the resouce
view. For MSAA, holds log2(number of
samples).

	203:192

	12

	min LOD warn

	Feedback trigger for LOD, in U4.8 format.

	211:204

	8

	counter bank
ID

	PRT counter ID

	212

	1

	LOD hardware
count enable

	PRT hardware counter enable

	213

	1

	Compression
Enable

	enable delta color compression

	214

	1

	Alpha is on
MSB

	Set to 1 if the surface’s component swap is
not reversed (DCC)

	215

	1

	Color
Transform

	Auto=0, none=1 (DCC)

	255:216

	40

	Meta Data
Address

	Upper bits of meta-data address (DCC)
[47:8]

Table: Image Resource Definition

All image resource view descriptors (T#’s) are written by the driver as
256 bits.

The MIMG-format instructions have a DeclareArray (DA) bit that reflects
whether the shader was expecting an array-texture or simple texture to
be bound. When DA is zero, the hardware does not send an array index to
the texture cache. If the texture map was indexed, the hardware supplies
an index value of zero. Indices sent for non-indexed texture maps are
ignored.

Image Sampler

The sampler resource (also referred to as S#) defines what operations to
perform on texture map data read by sample instructions. These are
primarily address clamping and filter options. Sampler resources are
defined in four consecutive SGPRs and are supplied to the texture cache
with every sample instruction.

	Bits

	Size

	Name

	Description

	2:0

	3

	clamp x

	Clamp/wrap mode.

	5:3

	3

	clamp y

	

	8:6

	3

	clamp z

	

	11:9

	3

	max aniso ratio

	

	14:12

	3

	depth compare func

	

	15

	1

	force unnormalized

	Force address
cords to be unorm.

	18:16

	3

	aniso threshold

	

	19

	1

	mc coord trunc

	

	20

	1

	force degamma

	

	26:21

	6

	aniso bias

	u1.5.

	27

	1

	trunc coord

	

	28

	1

	disable cube wrap

	

	30:29

	2

	filter_mode

	Normal lerp, min,
or max filter.

	31

	1

	compat_mode

	1 = new mode; 0 =
legacy

	43:32

	12

	min lod

	u4.8.

	55:44

	12

	max lod

	u4.8.

	59:56

	4

	perf_mip

	

	63:60

	4

	perf z

	

	77:64

	14

	lod bias

	s5.8.

	83:78

	6

	lod bias sec

	s1.4.

	85:84

	2

	xy mag filter

	Magnification
filter.

	87:86

	2

	xy min filter

	Minification
filter.

	89:88

	2

	z filter

	

	91:90

	2

	mip filter

	

	92

	1

	mip_point_precla
mp

	When mipfilter =
point, add 0.5
before clamping.

	93

	1

	disable_lsb_ceil

	Disable ceiling
logic in filter
(rounds up).

	94

	1

	Filter_Prec_Fix

	

	95

	1

	Aniso_override

	Disable Aniso
filtering if
base_level =
last_level

	107:96

	12

	border color ptr

	

	125:108

	18

	unused

	

	127:126

	2

	border color type

	Opaque-black,
transparent-black,
white, use border
color ptr.

Table: Image Sampler Definition

Data Formats

Data formats 0-15 are available to buffer resources, and all formats are
available to image formats. The table below details all the data formats
that can be used by image and buffer resources.

[image: gfx9 valid texture formats]

Vector Memory Instruction Data Dependencies

When a VM instruction is issued, the address is immediately read out of
VGPRs and sent to the texture cache. Any texture or buffer resources and
samplers are also sent immediately. However, write-data is not
immediately sent to the texture cache.

The shader developer’s responsibility to avoid data hazards associated
with VMEM instructions include waiting for VMEM read instruction
completion before reading data fetched from the TC (VMCNT).

This is explained in the section:

Vector Memory Operations

Flat Memory Instructions

Flat Memory instructions read, or write, one piece of data into, or out
of, VGPRs; they do this separately for each work-item in a wavefront.
Unlike buffer or image instructions, Flat instructions do not use a
resource constant to define the base address of a surface. Instead, Flat
instructions use a single flat address from the VGPR; this addresses
memory as a single flat memory space. This memory space includes video
memory, system memory, LDS memory, and scratch (private) memory. It does
not include GDS memory. Parts of the flat memory space may not map to
any real memory, and accessing these regions generates a
memory-violation error. The determination of the memory space to which
an address maps is controlled by a set of “memory aperture” base and
size registers.

Flat Memory Instruction

Flat memory instructions let the kernel read or write data in memory, or
perform atomic operations on data already in memory. These operations
occur through the texture L2 cache. The instruction declares which VGPR
holds the address (either 32- or 64-bit, depending on the memory
configuration), the VGPR which sends and the VGPR which receives data.
Flat instructions also use M0 as described in the table below:

	Field

	Bit Size

	Description

	OP

	7

	Opcode. Can be Flat,
Scratch or Global
instruction. See next
table.

	ADDR

	8

	VGPR which holds the
address. For 64-bit
addresses, ADDR has the
LSBs, and ADDR+1 has the
MSBs.

	DATA

	8

	VGPR which holds the
first Dword of data.
Instructions can use 0-4
Dwords.

	VDST

	8

	VGPR destination for
data returned to the
kernel, either from
LOADs or Atomics with
GLC=1 (return pre-op
value).

	SLC

	1

	System Level Coherent.
Used in conjunction with
GLC to determine cache
policies.

	GLC

	1

	Global Level Coherent.
For Atomics, GLC: 1
means return pre-op
value, 0 means do not
return pre-op value.

	SEG

	2

	Memory Segment: 0=FLAT,
1=SCRATCH, 2=GLOBAL,
3=reserved.

	LDS

	1

	When set, data is moved
between LDS and memory
instead of VGPRs and
memory. For Global and
Scratch only; must be
zero for Flat.

	NV

	1

	Non-volatile. When set,
the read/write is
operating on
non-volatile memory.

	OFFSET

	13

	
Address offset.

Scratch, Global:
13-bit signed byte
offset.

Flat: 12-bit unsigned
offset (MSB is
ignored).

	SADDR

	7

	
Scalar SGPR that
provides an offset
address. To disable,
set this field to
0x7F. Meaning of this
field is different for
Scratch and Global:

Flat: Unused.

Scratch: Use an SGPR
(instead of VGPR) for
the address.

Global: Use the SGPR
to provide a base
address; the VGPR
provides a 32-bit
offset.

	M0

	16

	Implied use of M0 for
SCRATCH and GLOBAL only
when LDS=1. Provides the
LDS address-offset.

Table: Flat, Global and Scratch Microcode Formats

	Flat Opcodes

	Global Opcodes

	Scratch Opcodes

	FLAT

	GLOBAL

	SCRATCH

	FLAT_LOAD_UBYTE

	GLOBAL_LOAD_UBYTE

	SCRATCH_LOAD_UBYTE

	FLAT_LOAD_UBYTE_D16

	GLOBAL_LOAD_UBYTE_D1
6

	SCRATCH_LOAD_UBYTE_D1
6

	FLAT_LOAD_UBYTE_D16_HI

	GLOBAL_LOAD_UBYTE_D1
6_HI

	SCRATCH_LOAD_UBYTE_D1
6_HI

	FLAT_LOAD_SBYTE

	GLOBAL_LOAD_SBYTE

	SCRATCH_LOAD_SBYTE

	FLAT_LOAD_SBYTE_D16

	GLOBAL_LOAD_SBYTE_D1
6

	SCRATCH_LOAD_SBYTE_D1
6

	FLAT_LOAD_SBYTE_D16_HI

	GLOBAL_LOAD_SBYTE_D1
6_HI

	SCRATCH_LOAD_SBYTE_D1
6_HI

	FLAT_LOAD_USHORT

	GLOBAL_LOAD_USHORT

	SCRATCH_LOAD_USHORT

	FLAT_LOAD_SSHORT

	GLOBAL_LOAD_SSHORT

	SCRATCH_LOAD_SSHORT

	FLAT_LOAD_SHORT_D16

	GLOBAL_LOAD_SHORT_D1
6

	SCRATCH_LOAD_SHORT_D1
6

	FLAT_LOAD_SHORT_D16_HI

	GLOBAL_LOAD_SHORT_D1
6_HI

	SCRATCH_LOAD_SHORT_D1
6_HI

	FLAT_LOAD_DWORD

	GLOBAL_LOAD_DWORD

	SCRATCH_LOAD_DWORD

	FLAT_LOAD_DWORDX2

	GLOBAL_LOAD_DWORDX2

	SCRATCH_LOAD_DWORDX2

	FLAT_LOAD_DWORDX3

	GLOBAL_LOAD_DWORDX3

	SCRATCH_LOAD_DWORDX3

	FLAT_LOAD_DWORDX4

	GLOBAL_LOAD_DWORDX4

	SCRATCH_LOAD_DWORDX4

	FLAT_STORE_BYTE

	GLOBAL_STORE_BYTE

	SCRATCH_STORE_BYTE

	FLAT_STORE_BYTE_D16_HI

	GLOBAL_STORE_BYTE_D1
6_HI

	SCRATCH_STORE_BYTE_D1
6_HI

	FLAT_STORE_SHORT

	GLOBAL_STORE_SHORT

	SCRATCH_STORE_SHORT

	FLAT_STORE_SHORT_D16
_HI

	GLOBAL_STORE_SHORT_D
16_HI

	SCRATCH_STORE_SHORT_D
16_HI

	FLAT_STORE_DWORD

	GLOBAL_STORE_DWORD

	SCRATCH_STORE_DWORD

	FLAT_STORE_DWORDX2

	GLOBAL_STORE_DWORDX2

	SCRATCH_STORE_DWORDX2

	FLAT_STORE_DWORDX3

	GLOBAL_STORE_DWORDX3

	SCRATCH_STORE_DWORDX3

	FLAT_STORE_DWORDX4

	GLOBAL_STORE_DWORDX4

	SCRATCH_STORE_DWORDX4

	FLAT_ATOMIC_SWAP

	GLOBAL_ATOMIC_SWAP

	none

	FLAT_ATOMIC_CMPSWAP

	GLOBAL_ATOMIC_CMPSWAP

	none

	FLAT_ATOMIC_ADD

	GLOBAL_ATOMIC_ADD

	none

	FLAT_ATOMIC_SUB

	GLOBAL_ATOMIC_SUB

	none

	FLAT_ATOMIC_SMIN

	GLOBAL_ATOMIC_SMIN

	none

	FLAT_ATOMIC_UMIN

	GLOBAL_ATOMIC_UMIN

	none

	FLAT_ATOMIC_SMAX

	GLOBAL_ATOMIC_SMAX

	none

	FLAT_ATOMIC_UMAX

	GLOBAL_ATOMIC_UMAX

	none

	FLAT_ATOMIC_AND

	GLOBAL_ATOMIC_AND

	none

	FLAT_ATOMIC_OR

	GLOBAL_ATOMIC_OR

	none

	FLAT_ATOMIC_XOR

	GLOBAL_ATOMIC_XOR

	none

	FLAT_ATOMIC_INC

	GLOBAL_ATOMIC_INC

	none

	FLAT_ATOMIC_DEC

	GLOBAL_ATOMIC_DEC

	none

	The atomic instructions
above are also
available in “_X2”
versions (64-bit).

	
	

Table: Flat, Global and Scratch Opcodes

Instructions

The FLAT instruction set is nearly identical to the Buffer instruction
set, but without the FORMAT reads and writes. Unlike Buffer
instructions, FLAT instructions cannot return data directly to LDS, but
only to VGPRs.

FLAT instructions do not use a resource constant (V#) or sampler (S#);
however, they do require a special SGPR-pair to hold scratch-space
information in case any threads’ address resolves to scratch space. See
the Scratch section for details.

Internally, FLAT instruction are executed as both an LDS and a Buffer
instruction; so, they increment both VM_CNT and LGKM_CNT and are not
considered done until both have been decremented. There is no way
beforehand to determine whether a FLAT instruction uses only LDS or TA
memory space.

Ordering

Flat instructions can complete out of order with each other. If one flat
instruction finds all of its data in Texture cache, and the next finds
all of its data in LDS, the second instruction might complete first. If
the two fetches return data to the same VGPR, the result are unknown.

Importing Timing Consideration

Since the data for a FLAT load can come from either LDS or the texture
cache, and because these units have different latencies, there is a
potential race condition with respect to the VM_CNT and LGKM_CNT
counters. Because of this, the only sensible S_WAITCNT value to use
after FLAT instructions is zero.

Addressing

FLAT instructions support both 64- and 32-bit addressing. The address
size is set using a mode register (PTR32), and a local copy of the value
is stored per wave.

The addresses for the aperture check differ in 32- and 64-bit mode;
however, this is not covered here.

64-bit addresses are stored with the LSBs in the VGPR at ADDR, and the
MSBs in the VGPR at ADDR+1.

For scratch space, the texture unit takes the address from the VGPR and
does the following.

Address = VGPR[addr] + TID_in_wave * Size
 - private aperture base (in SH_MEM_BASES)
 + offset (from flat_scratch)

Global

Global instructions are similar to Flat instructions, but the programmer
must ensure that no threads access LDS space; thus, no LDS bandwidth is
used by global instructions.

Global instructions offer two types of addressing:

	Memory_addr = VGPR-address + instruction offset.

	Memory_addr = SGPR-address + VGPR-offset + instruction offset.

The size of the address component is dependent on ADDRESS_MODE: 32-bits
or 64-bit pointers. The VGPR-offset is always 32 bits.

These instructions also allow direct data movement between LDS and
memory without going through VGPRs.

Since these instructions do not access LDS, only VM_CNT is used, not
LGKM_CNT. If a global instruction does attempt to access LDS, the
instruction returns MEM_VIOL.

Scratch

Scratch instructions are similar to Flat, but the programmer must ensure
that no threads access LDS space, and the memory space is swizzled.
Thus, no LDS bandwidth is used by scratch instructions.

Scratch instructions also support multi-Dword access and mis-aligned
access (although mis-aligned is slower).

Scratch instructions use the following addressing:

	Memory_addr = flat_scratch.addr + swizzle(V/SGPR_offset +
inst_offset, threadID)

	The offset can come from either an SGPR or a VGPR, and is always a
32- bit unsigned byte.

The size of the address component is dependent on the ADDRESS_MODE:
32-bits or 64-bit pointers. The VGPR-offset is always 32 bits.

These instructions also allow direct data movement between LDS and
memory without going through VGPRs.

Since these instructions do not access LDS, only VM_CNT is used, not
LGKM_CNT. It is not possible for a Scratch instruction to access LDS;
thus, no error or aperture checking is done.

Memory Error Checking

Both TA and LDS can report that an error occurred due to a bad address.
This can occur for the following reasons:

	invalid address (outside any aperture)

	write to read-only surface

	misaligned data

	out-of-range address:

	LDS access with an address outside the range: [0, MIN(M0,
LDS_SIZE)-1]

	Scratch access with an address outside the range: [0, scratch-size
-1]

The policy for threads with bad addresses is: writes outside this range
do not write a value, and reads return zero.

Addressing errors from either LDS or TA are returned on their respective
“instruction done” busses as MEM_VIOL. This sets the wave’s MEM_VIOL
TrapStatus bit and causes an exception (trap) if the corresponding
EXCPEN bit is set.

Data

FLAT instructions can use zero to four consecutive Dwords of data in
VGPRs and/or memory. The DATA field determines which VGPR(s) supply
source data (if any), and the VDST VGPRs hold return data (if any). No
data-format conversion is done.

Scratch Space (Private)

Scratch (thread-private memory) is an area of memory defined by the
aperture registers. When an address falls in scratch space, additional
address computation is automatically performed by the hardware. The
kernel must provide additional information for this computation to occur
in the form of the FLAT_SCRATCH register.

The FLAT_SCRATCH address is automatically sent with every FLAT request.

FLAT_SCRATCH is a 64-bit, byte address. The shader composes the value
by adding together two separate values: the base address, which can be
passed in via an initialized SGPR, or perhaps through a constant buffer,
and the per-wave allocation offset (also initialized in an SGPR).

Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for
temporary data with at least one order of magnitude higher effective
bandwidth than direct, uncached global memory. It permits sharing of
data between work-items in a work-group, as well as holding parameters
for pixel shader parameter interpolation. Unlike read-only caches, the
LDS permits high-speed write-to-read re-use of the memory space (full
gather/read/load and scatter/write/store operations).

Overview

The figure below shows the conceptual framework of the LDS is
integration into the memory of AMD GPUs using OpenCL.

[image: ../_images/fig_10_1.png]

	alt

	High-Level Memory Configuration

High-Level Memory Configuration

Physically located on-chip, directly next to the ALUs, the LDS is
approximately one order of magnitude faster than global memory (assuming
no bank conflicts).

There are 64 kB memory per compute unit, segmented into 32 of 512
Dwords. Each bank is a 256x32 two-port RAM (1R/1W per clock cycle).
Dwords are placed in the banks serially, but all banks can execute a
store or load simultaneously. One work-group can request up to 64 kB
memory. Reads across wavefront are dispatched over four cycles in
waterfall.

The high bandwidth of the LDS memory is achieved not only through its
proximity to the ALUs, but also through simultaneous access to its
memory banks. Thus, it is possible to concurrently execute 32 write or
read instructions, each nominally 32-bits; extended instructions,
read2/write2, can be 64-bits each. If, however, more than one access
attempt is made to the same bank at the same time, a bank conflict
occurs. In this case, for indexed and atomic operations, hardware
prevents the attempted concurrent accesses to the same bank by turning
them into serial accesses. This decreases the effective bandwidth of the
LDS. For maximum throughput (optimal efficiency), therefore, it is
important to avoid bank conflicts. A knowledge of request scheduling and
address mapping is key to achieving this.

Dataflow in Memory Hierarchy

The figure below is a conceptual diagram of the dataflow withing the
memory structure.

[image: fig 10 2]

To load data into LDS from global memory, it is read from global memory
and placed into the work-item’s registers; then, a store is performed to
LDS. Similarly, to store data into global memory, data is read from LDS
and placed into the workitem’s registers, then placed into global
memory. To make effective use of the LDS, an algorithm must perform many
operations on what is transferred between global memory and LDS. It also
is possible to load data from a memory buffer directly into LDS,
bypassing VGPRs.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are
not directly used for these operations, latency is incurred by the LDS
executing this function.)

LDS Access

The LDS is accessed in one of three ways:

	Direct Read

	Parameter Read

	Indexed or Atomic

The following subsections describe these methods.

LDS Direct Reads

Direct reads are only available in LDS, not in GDS.

LDS Direct reads occur in vector ALU (VALU) instructions and allow the
LDS to supply a single DWORD value which is broadcast to all threads in
the wavefront and is used as the SRC0 input to the ALU operations. A
VALU instruction indicates that input is to be supplied by LDS by using
the LDS_DIRECT for the SRC0 field.

The LDS address and data-type of the data to be read from LDS comes from
the M0 register:

LDS_addr = M0[15:0] (byte address and must be Dword aligned)
DataType = M0[18:16]
 0 unsigned byte
 1 unsigned short
 2 Dword
 3 unused
 4 signed byte
 5 signed short

LDS Parameter Reads

Parameter reads are only available in LDS, not in GDS.

Pixel shaders use LDS to read vertex parameter values; the pixel shader
then interpolates them to find the per-pixel parameter values. LDS
parameter reads occur when the following opcodes are used.

	V_INTERP_P1_F32 D = P10 * S + P0 Parameter interpolation, first
step.

	V_INTERP_P2_F32D = P20 * S + DParameter interpolation, second
step.

	V_INTERP_MOV_F32D = {P10,P20,P0}[S]Parameter load.

The typical parameter interpolation operations involves reading three
parameters: P0, P10, and P20, and using the two barycentric coordinates,
I and J, to determine the final per-pixel value:

Final value = P0 + P10 * I + P20 * J

Parameter interpolation instructions indicate the parameter attribute
number (0 to 32) and the component number (0=x, 1=y, 2=z and 3=w).

	Field

	Size

	Description

	VDST

	8

	Destination VGPR. Also acts as source for
v_interp_p2_f32.

	OP

	2

	
Opcode:

0: v_interp_p1_f32 VDST = P10 * VSRC + P0

1: v_interp_p2_f32 VDST = P20 * VSRC +
VDST

2: v_interp_mov_f32 VDST = (P0, P10 or P20
selected by VSRC[1:0])

P0, P10 and P20 are parameter values read from
LDS

	ATTR

	6

	Attribute number: 0 to 32.

	ATTRCHAN

	2

	0=X, 1=Y, 2=Z, 3=W

	VSRC

	8

	Source VGPR supplies interpolation “I” or “J”
value. For OP==v_interp_mov_f32: 0=P10,
1=P20, 2=P0. VSRC must not be the same register
as VDST because 16-bank LDS chips implement
v_interp_p1 as a macro of two instructions.

	(M0)

	32

	Use of the M0 register is automatic. M0 must
contain: { 1’b0, new_prim_mask[15:1],
lds_param_offset[15:0] }

Table: Parameter Instruction Fields

Parameter interpolation and parameter move instructions must initialize
the M0 register before using it. The lds_param_offset[15:0] is an
address offset from the beginning of LDS storage allocated to this
wavefront to where parameters begin in LDS memory for this wavefront.
The new_prim_mask is a 15-bit mask with one bit per quad; a one in
this mask indicates that this quad begins a new primitive, a zero
indicates it uses the same primitive as the previous quad. The mask is
15 bits, not 16, since the first quad in a wavefront always begins a new
primitive and so it is not included in the mask.

Data Share Indexed and Atomic Access

Both LDS and GDS can perform indexed and atomic data share operations.
For brevity, “LDS” is used in the text below and, except where noted,
also applies to GDS.

Indexed and atomic operations supply a unique address per work-item from
the VGPRs to the LDS, and supply or return unique data per work-item
back to VGPRs. Due to the internal banked structure of LDS, operations
can complete in as little as two cycles, or take as many 64 cycles,
depending upon the number of bank conflicts (addresses that map to the
same memory bank).

Indexed operations are simple LDS load and store operations that read
data from, and return data to, VGPRs.

Atomic operations are arithmetic operations that combine data from VGPRs
and data in LDS, and write the result back to LDS. Atomic operations
have the option of returning the LDS “pre-op” value to VGPRs.

The table below lists and briefly describes the LDS instruction fields.

	Field

	Size

	Description

	OP

	7

	LDS opcode.

	GDS

	1

	0 = LDS, 1 = GDS.

	OFFSET0

	8

	Immediate offset, in bytes. Instructions with
one address combine the offset fields into a
single 16-bit unsigned offset: {offset1,
offset0}. Instructions with two addresses (for
example: READ2) use the offsets separately as
two 8- bit unsigned offsets. DS_*_SRC2_*
ops treat the offset as a 16-bit signed Dword
offset.

	OFFSET1

	8

	

	VDST

	8

	VGPR to which result is written: either from
LDS-load or atomic return value.

	ADDR

	8

	VGPR that supplies the byte address offset.

	DATA0

	8

	VGPR that supplies first data source.

	DATA1

	8

	VGPR that supplies second data source.

Table: LDS Instruction Fields

All LDS operations require that M0 be initialized prior to use. M0
contains a size value that can be used to restrict access to a subset of
the allocated LDS range. If no clamping is wanted, set M0 to 0xFFFFFFFF.

	Load / Store

	Description

	DS_READ_{B32
,B64,B96,B128,
U8,I8,U16,I16}

	Read one value per thread; sign extend to Dword, if
signed.

	DS_READ2_{B3
2,B64}

	Read two values at unique addresses.

	DS_READ2ST64_{B32,B64}

	Read 2 values at unique addresses; offset *= 64.

	DS_WRITE_{B3
2,B64,B96,B128
,B8,B16}

	Write one value.

	DS_WRITE2_{B
32,B64}

	Write two values.

	DS_WRITE2ST64
_{B32,B64}

	Write two values, offset *= 64.

	DS_WRXCHG2_R
TN_{B32,B64}

	Exchange GPR with LDS-memory.

	DS_WRXCHG2ST6
4_RTN_{B32,B
64}

	Exchange GPR with LDS-memory; offset *= 64.

	DS_PERMUTE_B
32

	
Forward permute. Does not write any LDS memory.

LDS[dst] = src0

returnVal = LDS[thread_id]

where thread_id is 0..63.

	DS_BPERMUTE_
B32

	
Backward permute. Does not actually write any LDS
memory.

LDS[thread_id] = src0

where thread_id is 0..63, and returnVal = LDS[dst].

Table: LDS Indexed Load/Store

Single Address Instructions

LDS_Addr = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}

Double Address Instructions

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + InstrOffset0*ADJ +
LDS_Addr1 = LDS_BASE + VGPR[ADDR] + InstrOffset1*ADJ
 Where ADJ = 4 for 8, 16 and 32-bit data types; and ADJ = 8 for 64-bit.

Note that LDS_ADDR1 is used only for READ2*, WRITE2*, and WREXCHG2*.

M0[15:0] provides the size in bytes for this access. The size sent to
LDS is MIN(M0, LDS_SIZE), where LDS_SIZE is the amount of LDS space
allocated by the shader processor interpolator, SPI, at the time the
wavefront was created.

The address comes from VGPR, and both ADDR and InstrOffset are byte
addresses.

At the time of wavefront creation, LDS_BASE is assigned to the physical
LDS region owned by this wavefront or work-group.

Specify only one address by setting both offsets to the same value. This
causes only one read or write to occur and uses only the first DATA0.

SRC2 Ops The ds_<op>_src2_<type> opcodes are different. These
operands perform an atomic operation on 2 operands from the LDS memory:
one is viewed as the data and the other is the second source operand and
the final destination. The addressing for these can operate in two
different modes depending on the MSB of offset1[7]: If it is 0, the
offset for the data term is derived by the offset fields as a SIGNED
dword offset:

LDS_Addr0 = LDS_BASE + VGPR(ADDR) + SIGNEXTEND(InstrOffset1[6:0],InstrOffset0))<<2 // data term
LDS_Addr1 = LDS_BASE + VGPR(ADDR) // second source and final destination address

If the bit is 1, the offset for the data term becomes per thread and is
a SIGNED dword offset derived from the msbs read from the VGPR for the
index. The addressing becomes:

LDS_Addr0 = LDS_BASE + VGPR(ADDR)[16:0] + SIGNEXTEND(VGPR(ADDR)[31:17])<<2 // data term
LDS_Addr1 = LDS_BASE + VGPR(ADDR)[16:0] // second source and final destination address

LDS Atomic Ops DS_<atomicOp> OP, GDS=0, OFFSET0, OFFSET1, VDST,
ADDR, Data0, Data1

Data size is encoded in atomicOp: byte, word, Dword, or double.

LDS_Addr0 = LDS_BASE + VGPR[ADDR] + {InstrOffset1,InstrOffset0}

ADDR is a Dword address. VGPRs 0,1 and dst are double-GPRs for doubles
data.

VGPR data sources can only be VGPRs or constant values, not SGPRs.

Exporting Pixel and Vertex Data

The export instruction copies pixel or vertex shader data from VGPRs
into a dedicated output buffer. The export instruction outputs the
following types of data.

	Vertex Position

	Vertex Parameter

	Pixel color

	Pixel depth (Z)

Microcode Encoding

The export instruction uses the EXP microcode format.

[image: microcode exp]

	Field

	Size

	Description

	VM

	1

	Valid Mask. When set to
1, this indicates that
the EXEC mask represents
the valid-mask for this
wavefront. It can be
sent multiple times per
shader (the final value
is used), but must be
sent at least once per
pixel shader.

	DONE

	1

	This is the final pixel
shader or
vertex-position export
of the program. Used
only for pixel and
position exports. Set to
zero for parameters.

	COMPR

	1

	Compressed data. When
set, indicates that the
data being exported is
16-bits per component
rather than the usual
32-bit.

	TARGET

	6

	
Indicates type of data
exported.

0..7 MRT 0..7

8 Z

9 Null (no data)

12-15 Position 0..3

32-63 Param 0..31

	EN

	4

	
COMPR==1: export
half-Dword enable.
Valid values are:
0x0,3,C,F.

[0] enables VSRC0 :
R,G from one VGPGR

[2] enables VSRC1 :
B,A from one VGPR

COMPR==0: [0-3] =
enables for VSRC0..3.

EN can be zero (used
when exporting only
valid mask to NULL
target).

	VSRC3

	8

	
VGPR from which to
read data.

Pos & Param: vsrc0=X,
1=Y, 2=Z, 3=W

MRT: vsrc0=R, 1=G,
2=B, 3=A

	VSRC2

	8

	

	VSRC1

	8

	

	VSRC0

	8

	

Table: EXP Encoding Field Descriptions

Operations

Pixel Shader Exports

Export instructions copy color data to the MRTs. Data always has four
components (R, G, B, A). Optionally, export instructions also output
depth (Z) data.

Every pixel shader must have at least one export instruction. The last
export instruction executed must have the DONE bit set to one.

The EXEC mask is applied to all exports. Only pixels with the
corresponding EXEC bit set to 1 export data to the output buffer.
Results from multiple exports are accumulated in the output buffer.

At least one export must have the VM bit set to 1. This export, in
addition to copying data to the color or depth output buffer, also
informs the color buffer which pixels are valid and which have been
discarded. The value of the EXEC mask communicates the pixel valid mask.
If multiple exports are sent with VM set to 1, the mask from the final
export is used. If the shader program wants to only update the valid
mask but not send any new data, the program can do an export to the NULL
target.

Vertex Shader Exports

The vertex shader uses export instructions to output vertex position
data and vertex parameter data to the output buffer. This data is passed
on to subsequent pixel shaders.

Every vertex shader must output at least one position vector (x, y, z; w
is optional) to the POS0 target. The last position export must have the
DONE bit set to 1. A vertex shader can export zero or more parameters.
For best performance, it is best to output all position data as early as
possible in the vertex shader.

Dependency Checking

Export instructions are executed by the hardware in two phases. First,
the instruction is selected to be executed, and EXPCNT is incremented by
1. At this time, the hardware requests the use of internal busses needed
to complete the instruction.

When access to the bus is granted, the EXEC mask is read and the VGPR
data sent out. After the last of the VGPR data is sent, the EXPCNT
counter is decremented by 1.

Use S_WAITCNT on EXPCNT to prevent the shader program from overwriting
EXEC or the VGPRs holding the data to be exported before the export
operation has completed.

Multiple export instructions can be outstanding at one time. Exports of
the same type (for example: position) are completed in order, but
exports of different types can be completed out of order.

If the STATUS register’s SKIP_EXPORT bit is set to one, the hardware
treats all EXPORT instructions as if they were NOPs.

Instructions

This chapter lists, and provides descriptions for, all instructions in
the GCN Vega Generation environment. Instructions are grouped according
to their format.

Instruction suffixes have the following definitions:

	
B32 Bitfield (untyped data) 32-bit

	
B64 Bitfield (untyped data) 64-bit

	
F32 floating-point 32-bit (IEEE 754 single-precision float)

	
F64 floating-point 64-bit (IEEE 754 double-precision float)

	
I32 signed 32-bit integer

	
I64 signed 64-bit integer

	
U32 unsigned 32-bit integer

	U64 unsigned 64-bit integer

If an instruction has two suffixes (for example, _I32_F32), the first
suffix indicates the destination type, the second the source type.

The following abbreviations are used in instruction definitions:

	
D = destination

	
U = unsigned integer

	
S = source

	
SCC = scalar condition code

	
I = signed integer

	B = bitfield

Note: .u or .i specifies to interpret the argument as an unsigned or
signed float.

Note: Rounding and Denormal modes apply to all floating-point operations
unless otherwise specified in the instruction description.

SOP2 Instructions

[image: microcode sop2]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	S_ADD_U32

	D.u = S0.u + S1.u; SCC = (S0.u + S1.u >=
0x100000000ULL ? 1 : 0). // unsigned
overflow/carry-out, S_ADDC_U32

	1

	S_SUB_U32

	D.u = S0.u - S1.u; SCC = (S1.u > S0.u ? 1 : 0). //
unsigned overflow or carry-out for S_SUBB_U32.

	2

	S_ADD_I32

	D.i = S0.i + S1.i; SCC = (S0.u[31] == S1.u[31] &&
S0.u[31] != D.u[31]). // signed overflow. This
opcode is not suitable for use with S_ADDC_U32
for implementing 64-bit operations.

	3

	S_SUB_I32

	D.i = S0.i - S1.i; SCC = (S0.u[31] != S1.u[31] &&
S0.u[31] != D.u[31]). // signed overflow. This
opcode is not suitable for use with S_SUBB_U32
for implementing 64-bit operations.

	4

	S_ADDC_U32

	D.u = S0.u + S1.u + SCC; SCC = (S0.u + S1.u + SCC
>= 0x100000000ULL ? 1 : 0). // unsigned overflow.

	5

	S_SUBB_U32

	D.u = S0.u - S1.u - SCC; SCC = (S1.u + SCC > S0.u
? 1 : 0). // unsigned overflow.

	6

	S_MIN_I32

	D.i = (S0.i < S1.i) ? S0.i : S1.i; SCC = (S0.i <
S1.i).

	7

	S_MIN_U32

	D.u = (S0.u < S1.u) ? S0.u : S1.u; SCC = (S0.u <
S1.u).

	8

	S_MAX_I32

	D.i = (S0.i > S1.i) ? S0.i : S1.i; SCC = (S0.i >
S1.i).

	9

	S_MAX_U32

	D.u = (S0.u > S1.u) ? S0.u : S1.u; SCC = (S0.u >
S1.u).

	10

	S_CSELECT_B3
2

	D.u = SCC ? S0.u : S1.u. Conditional select.

	11

	S_CSELECT_B6
4

	D.u64 = SCC ? S0.u64 : S1.u64. Conditional select.

	12

	S_AND_B32

	D = S0 & S1; SCC = (D != 0).

	13

	S_AND_B64

	D = S0 & S1; SCC = (D != 0).

	14

	S_OR_B32

	D = S0 | S1; SCC = (D != 0).

	15

	S_OR_B64

	D = S0 | S1; SCC = (D != 0).

	16

	S_XOR_B32

	D = S0 ^ S1; SCC = (D != 0).

	17

	S_XOR_B64

	D = S0 ^ S1; SCC = (D != 0).

	18

	S_ANDN2_B32

	D = S0 & ~S1; SCC = (D != 0).

	19

	S_ANDN2_B64

	D = S0 & ~S1; SCC = (D != 0).

	20

	S_ORN2_B32

	D = S0 | ~S1; SCC = (D != 0).

	21

	S_ORN2_B64

	D = S0 | ~S1; SCC = (D != 0).

	22

	S_NAND_B32

	D = ~(S0 & S1); SCC = (D != 0).

	23

	S_NAND_B64

	D = ~(S0 & S1); SCC = (D != 0).

	24

	S_NOR_B32

	D = ~(S0 | S1); SCC = (D != 0).

	25

	S_NOR_B64

	D = ~(S0 | S1); SCC = (D != 0).

	26

	S_XNOR_B32

	D = ~(S0 ^ S1); SCC = (D != 0).

	27

	S_XNOR_B64

	D = ~(S0 ^ S1); SCC = (D != 0).

	28

	S_LSHL_B32

	D.u = S0.u << S1.u[4:0]; SCC = (D.u != 0).

	29

	S_LSHL_B64

	D.u64 = S0.u64 << S1.u[5:0]; SCC = (D.u64 != 0).

	30

	S_LSHR_B32

	D.u = S0.u >> S1.u[4:0]; SCC = (D.u != 0).

	31

	S_LSHR_B64

	D.u64 = S0.u64 >> S1.u[5:0]; SCC = (D.u64 != 0).

	32

	S_ASHR_I32

	D.i = signext(S0.i) >> S1.u[4:0]; SCC = (D.i !=
0).

	33

	S_ASHR_I64

	D.i64 = signext(S0.i64) >> S1.u[5:0]; SCC = (D.i64
!= 0).

	34

	S_BFM_B32

	D.u = ((1 << S0.u[4:0]) - 1) << S1.u[4:0].
Bitfield mask.

	35

	S_BFM_B64

	D.u64 = ((1ULL << S0.u[5:0]) - 1) << S1.u[5:0].
Bitfield mask.

	36

	S_MUL_I32

	D.i = S0.i * S1.i.

	37

	S_BFE_U32

	D.u = (S0.u >> S1.u[4:0]) & ((1 << S1.u[22:16]) -
1); SCC = (D.u != 0). Bit field extract. S0 is
Data, S1[4:0] is field offset, S1[22:16] is field
width.

	38

	S_BFE_I32

	D.i = signext((S0.i >> S1.u[4:0]) & ((1 <<
S1.u[22:16]) - 1)); SCC = (D.i != 0). Bit field
extract. S0 is Data, S1[4:0] is field offset,
S1[22:16] is field width.

	39

	S_BFE_U64

	D.u64 = (S0.u64 >> S1.u[5:0]) & ((1 <<
S1.u[22:16]) - 1); SCC = (D.u64 != 0). Bit field
extract. S0 is Data, S1[5:0] is field offset,
S1[22:16] is field width.

	40

	S_BFE_I64

	D.i64 = signext((S0.i64 >> S1.u[5:0]) & ((1 <<
S1.u[22:16]) - 1)); SCC = (D.i64 != 0). Bit field
extract. S0 is Data, S1[5:0] is field offset,
S1[22:16] is field width.

	41

	S_CBRANCH_G_FORK

	mask_pass = S0.u64 & EXEC; mask_fail = ~S0.u64 &
EXEC; if(mask_pass == EXEC) then PC = S1.u64;
elsif(mask_fail == EXEC) then PC += 4;
elsif(bitcount(mask_fail) < bitcount(mask_pass))
EXEC = mask_fail; SGPR[CSP*4] = { S1.u64,
mask_pass }; CSP += 1; PC += 4; else EXEC =
mask_pass; SGPR[CSP*4] = { PC + 4, mask_fail };
CSP += 1; PC = S1.u64; endif. Conditional branch
using branch-stack. S0 = compare mask(vcc or any
sgpr) and S1 = 64-bit byte address of target
instruction. See also S_CBRANCH_JOIN.

	42

	S_ABSDIFF_I3
2

	D.i = S0.i - S1.i; if(D.i < 0) then D.i = -D.i;
endif; SCC = (D.i != 0). Compute the absolute
value of difference between two values. Examples:
S_ABSDIFF_I32(0x00000002, 0x00000005) =>
0x00000003 S_ABSDIFF_I32(0xffffffff, 0x00000000)
=> 0x00000001 S_ABSDIFF_I32(0x80000000,
0x00000000) => 0x80000000 // Note: result is
negative! S_ABSDIFF_I32(0x80000000, 0x00000001)
=> 0x7fffffff S_ABSDIFF_I32(0x80000000,
0xffffffff) => 0x7fffffff
S_ABSDIFF_I32(0x80000000, 0xfffffffe) =>
0x7ffffffe

	43

	S_RFE_RESTOR
E_B64

	PRIV = 0; PC = S0.u64. Return from exception
handler and continue. This instruction may only be
used within a trap handler. This instruction is
provided for compatibility with older ASICs. New
shader code must use S_RFE_B64. The second
argument is ignored.

	44

	S_MUL_HI_U3
2

	D.u = (S0.u * S1.u) >> 32.

	45

	S_MUL_HI_I3
2

	D.i = (S0.i * S1.i) >> 32.

	46

	S_LSHL1_ADD_U32

	D.u = (S0.u << 1) + S1.u; SCC = (((S0.u << 1) +
S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned
overflow.

	47

	S_LSHL2_ADD_U32

	D.u = (S0.u << 2) + S1.u; SCC = (((S0.u << 2) +
S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned
overflow.

	48

	S_LSHL3_ADD_U32

	D.u = (S0.u << 3) + S1.u; SCC = (((S0.u << 3) +
S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned
overflow.

	49

	S_LSHL4_ADD_U32

	D.u = (S0.u << 4) + S1.u; SCC = (((S0.u << 4) +
S1.u) >= 0x100000000ULL ? 1 : 0). // unsigned
overflow.

	50

	S_PACK_LL_B
32_B16

	D.u[31:0] = { S1.u[15:0], S0.u[15:0] }.

	51

	S_PACK_LH_B
32_B16

	D.u[31:0] = { S1.u[31:16], S0.u[15:0] }.

	52

	S_PACK_HH_B
32_B16

	D.u[31:0] = { S1.u[31:16], S0.u[31:16] }.

SOPK Instructions

[image: microcode sopk]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	S_MOVK_I32

	D.i = signext(SIMM16). Sign extension from a
16-bit constant.

	1

	S_CMOVK_I32

	if(SCC) then D.i = signext(SIMM16); endif.
Conditional move with sign extension.

	2

	S_CMPK_EQ_I
32

	SCC = (S0.i == signext(SIMM16)).

	3

	S_CMPK_LG_I
32

	SCC = (S0.i != signext(SIMM16)).

	4

	S_CMPK_GT_I
32

	SCC = (S0.i > signext(SIMM16)).

	5

	S_CMPK_GE_I
32

	SCC = (S0.i >= signext(SIMM16)).

	6

	S_CMPK_LT_I
32

	SCC = (S0.i < signext(SIMM16)).

	7

	S_CMPK_LE_I
32

	SCC = (S0.i <= signext(SIMM16)).

	8

	S_CMPK_EQ_U
32

	SCC = (S0.u == SIMM16).

	9

	S_CMPK_LG_U
32

	SCC = (S0.u != SIMM16).

	10

	S_CMPK_GT_U
32

	SCC = (S0.u > SIMM16).

	11

	S_CMPK_GE_U
32

	SCC = (S0.u >= SIMM16).

	12

	S_CMPK_LT_U
32

	SCC = (S0.u < SIMM16).

	13

	S_CMPK_LE_U
32

	SCC = (S0.u <= SIMM16).

	14

	S_ADDK_I32

	tmp = D.i; // save value so we can check sign bits
for overflow later. D.i = D.i + signext(SIMM16);
SCC = (tmp[31] == SIMM16[15] && tmp[31] !=
D.i[31]). // signed overflow.

	15

	S_MULK_I32

	D.i = D.i * signext(SIMM16).

	16

	S_CBRANCH_I_FORK

	mask_pass = S0.u64 & EXEC; mask_fail = ~S0.u64 &
EXEC; target_addr = PC + signext(SIMM16 * 4) +
4; if(mask_pass == EXEC) PC = target_addr;
elsif(mask_fail == EXEC) PC += 4;
elsif(bitcount(mask_fail) < bitcount(mask_pass))
EXEC = mask_fail; SGPR[CSP*4] = { target_addr,
mask_pass }; CSP += 1; PC += 4; else EXEC =
mask_pass; SGPR[CSP*4] = { PC + 4, mask_fail };
CSP += 1; PC = target_addr; endif. Conditional
branch using branch-stack. S0 = compare mask(vcc
or any sgpr), and SIMM16 = signed DWORD branch
offset relative to next instruction. See also
S_CBRANCH_JOIN.

	17

	S_GETREG_B32

	D.u = hardware-reg. Read some or all of a hardware
register into the LSBs of D. SIMM16 = {size[4:0],
offset[4:0], hwRegId[5:0]}; offset is 0..31, size
is 1..32.

	18

	S_SETREG_B32

	hardware-reg = S0.u. Write some or all of the LSBs
of D into a hardware register. SIMM16 =
{size[4:0], offset[4:0], hwRegId[5:0]}; offset is
0..31, size is 1..32.

	20

	S_SETREG_IMM
32_B32

	Write some or all of the LSBs of IMM32 into a
hardware register; this instruction requires a
32-bit literal constant. SIMM16 = {size[4:0],
offset[4:0], hwRegId[5:0]}; offset is 0..31, size
is 1..32.

	21

	S_CALL_B64

	D.u64 = PC + 4; PC = PC + signext(SIMM16 * 4) +
4. Implements a short call, where the return
address (the next instruction after the
S_CALL_B64) is saved to D. Long calls should
consider S_SWAPPC_B64 instead. Note that this
instruction is always 4 bytes.

SOP1 Instructions

[image: microcode sop1]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	S_MOV_B32

	D.u = S0.u.

	1

	S_MOV_B64

	D.u64 = S0.u64.

	2

	S_CMOV_B32

	if(SCC) then D.u = S0.u; endif. Conditional move.

	3

	S_CMOV_B64

	if(SCC) then D.u64 = S0.u64; endif. Conditional
move.

	4

	S_NOT_B32

	D = ~S0; SCC = (D != 0). Bitwise negation.

	5

	S_NOT_B64

	D = ~S0; SCC = (D != 0). Bitwise negation.

	6

	S_WQM_B32

	for i in 0 … opcode_size_in_bits - 1 do D[i]
= (S0[(i & ~3):(i | 3)] != 0); endfor; SCC = (D
!= 0). Computes whole quad mode for an
active/valid mask. If any pixel in a quad is
active, all pixels of the quad are marked active.

	7

	S_WQM_B64

	for i in 0 … opcode_size_in_bits - 1 do D[i]
= (S0[(i & ~3):(i | 3)] != 0); endfor; SCC = (D
!= 0). Computes whole quad mode for an
active/valid mask. If any pixel in a quad is
active, all pixels of the quad are marked active.

	8

	S_BREV_B32

	D.u[31:0] = S0.u[0:31]. Reverse bits.

	9

	S_BREV_B64

	D.u64[63:0] = S0.u64[0:63]. Reverse bits.

	10

	S_BCNT0_I32_B32

	D = 0; for i in 0 … opcode_size_in_bits - 1
do D += (S0[i] == 0 ? 1 : 0) endfor; SCC = (D !=
0). Examples: S_BCNT0_I32_B32(0x00000000) => 32
S_BCNT0_I32_B32(0xcccccccc) => 16
S_BCNT0_I32_B32(0xffffffff) => 0

	11

	S_BCNT0_I32_B64

	D = 0; for i in 0 … opcode_size_in_bits - 1
do D += (S0[i] == 0 ? 1 : 0) endfor; SCC = (D !=
0). Examples: S_BCNT0_I32_B32(0x00000000) => 32
S_BCNT0_I32_B32(0xcccccccc) => 16
S_BCNT0_I32_B32(0xffffffff) => 0

	12

	S_BCNT1_I32_B32

	D = 0; for i in 0 … opcode_size_in_bits - 1
do D += (S0[i] == 1 ? 1 : 0) endfor; SCC = (D !=
0). Examples: S_BCNT1_I32_B32(0x00000000) => 0
S_BCNT1_I32_B32(0xcccccccc) => 16
S_BCNT1_I32_B32(0xffffffff) => 32

	13

	S_BCNT1_I32_B64

	D = 0; for i in 0 … opcode_size_in_bits - 1
do D += (S0[i] == 1 ? 1 : 0) endfor; SCC = (D !=
0). Examples: S_BCNT1_I32_B32(0x00000000) => 0
S_BCNT1_I32_B32(0xcccccccc) => 16
S_BCNT1_I32_B32(0xffffffff) => 32

	14

	S_FF0_I32_B
32

	D.i = -1; // Set if no zeros are found for i in 0
… opcode_size_in_bits - 1 do // Search from
LSB if S0[i] == 0 then D.i = i; break for; endif;
endfor. Returns the bit position of the first zero
from the LSB, or -1 if there are no zeros.
Examples: S_FF0_I32_B32(0xaaaaaaaa) => 0
S_FF0_I32_B32(0x55555555) => 1
S_FF0_I32_B32(0x00000000) => 0
S_FF0_I32_B32(0xffffffff) => 0xffffffff
S_FF0_I32_B32(0xfffeffff) => 16

	15

	S_FF0_I32_B
64

	D.i = -1; // Set if no zeros are found for i in 0
… opcode_size_in_bits - 1 do // Search from
LSB if S0[i] == 0 then D.i = i; break for; endif;
endfor. Returns the bit position of the first zero
from the LSB, or -1 if there are no zeros.
Examples: S_FF0_I32_B32(0xaaaaaaaa) => 0
S_FF0_I32_B32(0x55555555) => 1
S_FF0_I32_B32(0x00000000) => 0
S_FF0_I32_B32(0xffffffff) => 0xffffffff
S_FF0_I32_B32(0xfffeffff) => 16

	16

	S_FF1_I32_B
32

	D.i = -1; // Set if no ones are found for i in 0
… opcode_size_in_bits - 1 do // Search from
LSB if S0[i] == 1 then D.i = i; break for; endif;
endfor. Returns the bit position of the first one
from the LSB, or -1 if there are no ones.
Examples: S_FF1_I32_B32(0xaaaaaaaa) => 1
S_FF1_I32_B32(0x55555555) => 0
S_FF1_I32_B32(0x00000000) => 0xffffffff
S_FF1_I32_B32(0xffffffff) => 0
S_FF1_I32_B32(0x00010000) => 16

	17

	S_FF1_I32_B
64

	D.i = -1; // Set if no ones are found for i in 0
… opcode_size_in_bits - 1 do // Search from
LSB if S0[i] == 1 then D.i = i; break for; endif;
endfor. Returns the bit position of the first one
from the LSB, or -1 if there are no ones.
Examples: S_FF1_I32_B32(0xaaaaaaaa) => 1
S_FF1_I32_B32(0x55555555) => 0
S_FF1_I32_B32(0x00000000) => 0xffffffff
S_FF1_I32_B32(0xffffffff) => 0
S_FF1_I32_B32(0x00010000) => 16

	18

	S_FLBIT_I32_B32

	D.i = -1; // Set if no ones are found for i in 0
… opcode_size_in_bits - 1 do // Note: search
is from the MSB if S0[opcode_size_in_bits - 1 -
i] == 1 then D.i = i; break for; endif; endfor.
Counts how many zeros before the first one
starting from the MSB. Returns -1 if there are no
ones. Examples: S_FLBIT_I32_B32(0x00000000) =>
0xffffffff S_FLBIT_I32_B32(0x0000cccc) => 16
S_FLBIT_I32_B32(0xffff3333) => 0
S_FLBIT_I32_B32(0x7fffffff) => 1
S_FLBIT_I32_B32(0x80000000) => 0
S_FLBIT_I32_B32(0xffffffff) => 0

	19

	S_FLBIT_I32_B64

	D.i = -1; // Set if no ones are found for i in 0
… opcode_size_in_bits - 1 do // Note: search
is from the MSB if S0[opcode_size_in_bits - 1 -
i] == 1 then D.i = i; break for; endif; endfor.
Counts how many zeros before the first one
starting from the MSB. Returns -1 if there are no
ones. Examples: S_FLBIT_I32_B32(0x00000000) =>
0xffffffff S_FLBIT_I32_B32(0x0000cccc) => 16
S_FLBIT_I32_B32(0xffff3333) => 0
S_FLBIT_I32_B32(0x7fffffff) => 1
S_FLBIT_I32_B32(0x80000000) => 0
S_FLBIT_I32_B32(0xffffffff) => 0

	20

	S_FLBIT_I32

	D.i = -1; // Set if all bits are the same for i in
1 … opcode_size_in_bits - 1 do // Note:
search is from the MSB if
S0[opcode_size_in_bits - 1 - i] !=
S0[opcode_size_in_bits - 1] then D.i = i; break
for; endif; endfor. Counts how many bits in a row
(from MSB to LSB) are the same as the sign bit.
Returns -1 if all bits are the same. Examples:
S_FLBIT_I32(0x00000000) => 0xffffffff
S_FLBIT_I32(0x0000cccc) => 16
S_FLBIT_I32(0xffff3333) => 16
S_FLBIT_I32(0x7fffffff) => 1
S_FLBIT_I32(0x80000000) => 1
S_FLBIT_I32(0xffffffff) => 0xffffffff

	21

	S_FLBIT_I32_I64

	D.i = -1; // Set if all bits are the same for i in
1 … opcode_size_in_bits - 1 do // Note:
search is from the MSB if
S0[opcode_size_in_bits - 1 - i] !=
S0[opcode_size_in_bits - 1] then D.i = i; break
for; endif; endfor. Counts how many bits in a row
(from MSB to LSB) are the same as the sign bit.
Returns -1 if all bits are the same. Examples:
S_FLBIT_I32(0x00000000) => 0xffffffff
S_FLBIT_I32(0x0000cccc) => 16
S_FLBIT_I32(0xffff3333) => 16
S_FLBIT_I32(0x7fffffff) => 1
S_FLBIT_I32(0x80000000) => 1
S_FLBIT_I32(0xffffffff) => 0xffffffff

	22

	S_SEXT_I32_
I8

	D.i = signext(S0.i[7:0]). Sign extension.

	23

	S_SEXT_I32_
I16

	D.i = signext(S0.i[15:0]). Sign extension.

	24

	S_BITSET0_B3
2

	D.u[S0.u[4:0]] = 0.

	25

	S_BITSET0_B6
4

	D.u64[S0.u[5:0]] = 0.

	26

	S_BITSET1_B3
2

	D.u[S0.u[4:0]] = 1.

	27

	S_BITSET1_B6
4

	D.u64[S0.u[5:0]] = 1.

	28

	S_GETPC_B64

	D.u64 = PC + 4. Destination receives the byte
address of the next instruction. Note that this
instruction is always 4 bytes.

	29

	S_SETPC_B64

	PC = S0.u64. S0.u64 is a byte address of the
instruction to jump to.

	30

	S_SWAPPC_B64

	D.u64 = PC + 4; PC = S0.u64. S0.u64 is a byte
address of the instruction to jump to. Destination
receives the byte address of the instruction
immediately following the SWAPPC instruction. Note
that this instruction is always 4 bytes.

	31

	S_RFE_B64

	PRIV = 0; PC = S0.u64. Return from exception
handler and continue. This instruction may only be
used within a trap handler.

	32

	S_AND_SAVEEX
EC_B64

	D.u64 = EXEC; EXEC = S0.u64 & EXEC; SCC = (EXEC !=
0).

	33

	S_OR_SAVEEXE
C_B64

	D.u64 = EXEC; EXEC = S0.u64 | EXEC; SCC = (EXEC
!= 0).

	34

	S_XOR_SAVEEX
EC_B64

	D.u64 = EXEC; EXEC = S0.u64 ^ EXEC; SCC = (EXEC !=
0).

	35

	S_ANDN2_SAVE
EXEC_B64

	D.u64 = EXEC; EXEC = S0.u64 & ~EXEC; SCC = (EXEC
!= 0).

	36

	S_ORN2_SAVEE
XEC_B64

	D.u64 = EXEC; EXEC = S0.u64 | ~EXEC; SCC = (EXEC
!= 0).

	37

	S_NAND_SAVEE
XEC_B64

	D.u64 = EXEC; EXEC = ~(S0.u64 & EXEC); SCC = (EXEC
!= 0).

	38

	S_NOR_SAVEEX
EC_B64

	D.u64 = EXEC; EXEC = ~(S0.u64 | EXEC); SCC =
(EXEC != 0).

	39

	S_XNOR_SAVEE
XEC_B64

	D.u64 = EXEC; EXEC = ~(S0.u64 ^ EXEC); SCC = (EXEC
!= 0).

	40

	S_QUADMASK_B
32

	D = 0; for i in 0 … (opcode_size_in_bits / 4)
- 1 do D[i] = (S0[i * 4 + 3:i * 4] != 0);
endfor; SCC = (D != 0). Reduce a pixel mask to a
quad mask. To perform the inverse operation see
S_BITREPLICATE_B64_B32.

	41

	S_QUADMASK_B
64

	D = 0; for i in 0 … (opcode_size_in_bits / 4)
- 1 do D[i] = (S0[i * 4 + 3:i * 4] != 0);
endfor; SCC = (D != 0). Reduce a pixel mask to a
quad mask. To perform the inverse operation see
S_BITREPLICATE_B64_B32.

	42

	S_MOVRELS_B3
2

	addr = SGPR address appearing in instruction SRC0
field; addr += M0.u; D.u = SGPR[addr].u. Move from
a relative source address. For example, the
following instruction sequence will perform a move
s5 <== s17: s_mov_b32 m0, 10 s_movrels_b32 s5,
s7

	43

	S_MOVRELS_B6
4

	addr = SGPR address appearing in instruction SRC0
field; addr += M0.u; D.u64 = SGPR[addr].u64. Move
from a relative source address. The index in M0.u
must be even for this operation.

	44

	S_MOVRELD_B3
2

	addr = SGPR address appearing in instruction DST
field; addr += M0.u; SGPR[addr].u = S0.u. Move to
a relative destination address. For example, the
following instruction sequence will perform a move
s15 <== s7: s_mov_b32 m0, 10 s_movreld_b32 s5,
s7

	45

	S_MOVRELD_B6
4

	addr = SGPR address appearing in instruction DST
field; addr += M0.u; SGPR[addr].u64 = S0.u64. Move
to a relative destination address. The index in
M0.u must be even for this operation.

	46

	S_CBRANCH_JO
IN

	saved_csp = S0.u; if(CSP == saved_csp) then PC
+= 4; // Second time to JOIN: continue with
program. else CSP -= 1; // First time to JOIN;
jump to other FORK path. {PC, EXEC} = SGPR[CSP *
4]; // Read 128 bits from 4 consecutive SGPRs.
endif. Conditional branch join point (end of
conditional branch block). S0 is saved CSP value.
See S_CBRANCH_G_FORK and S_CBRANCH_I_FORK
for related instructions.

	48

	S_ABS_I32

	D.i = (S.i < 0 ? -S.i : S.i); SCC = (D.i != 0).
Integer absolute value. Examples:
S_ABS_I32(0x00000001) => 0x00000001
S_ABS_I32(0x7fffffff) => 0x7fffffff
S_ABS_I32(0x80000000) => 0x80000000 // Note this
is negative! S_ABS_I32(0x80000001) => 0x7fffffff
S_ABS_I32(0x80000002) => 0x7ffffffe
S_ABS_I32(0xffffffff) => 0x00000001

	50

	S_SET_GPR_I
DX_IDX

	M0[7:0] = S0.u[7:0]. Modify the index used in
vector GPR indexing. S_SET_GPR_IDX_ON,
S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and
S_SET_GPR_IDX_IDX are related instructions.

	51

	S_ANDN1_SAVE
EXEC_B64

	D.u64 = EXEC; EXEC = ~S0.u64 & EXEC; SCC = (EXEC
!= 0).

	52

	S_ORN1_SAVEE
XEC_B64

	D.u64 = EXEC; EXEC = ~S0.u64 | EXEC; SCC = (EXEC
!= 0).

	53

	S_ANDN1_WREX
EC_B64

	EXEC = ~S0.u64 & EXEC; D.u64 = EXEC; SCC = (EXEC
!= 0).

	54

	S_ANDN2_WREX
EC_B64

	EXEC = S0.u64 & ~EXEC; D.u64 = EXEC; SCC = (EXEC
!= 0).

	55

	S_BITREPLICAT
E_B64_B32

	for i in 0 … 31 do D.u64[i * 2 + 0] = S0.u32[i]
D.u64[i * 2 + 1] = S0.u32[i] endfor. Replicate
the low 32 bits of S0 by ‘doubling’ each bit. This
opcode can be used to convert a quad mask into a
pixel mask; given quad mask in s0, the following
sequence will produce a pixel mask in s1:
s_bitreplicate_b64 s1, s0 s_bitreplicate_b64
s1, s1 To perform the inverse operation see
S_QUADMASK_B64.

SOPC Instructions

[image: microcode sopc]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	S_CMP_EQ_I3
2

	SCC = (S0 == S1). Note that S_CMP_EQ_I32 and
S_CMP_EQ_U32 are identical opcodes, but both
are provided for symmetry.

	1

	S_CMP_LG_I3
2

	SCC = (S0 != S1). Note that S_CMP_LG_I32 and
S_CMP_LG_U32 are identical opcodes, but both
are provided for symmetry.

	2

	S_CMP_GT_I3
2

	SCC = (S0.i > S1.i).

	3

	S_CMP_GE_I3
2

	SCC = (S0.i >= S1.i).

	4

	S_CMP_LT_I3
2

	SCC = (S0.i < S1.i).

	5

	S_CMP_LE_I3
2

	SCC = (S0.i <= S1.i).

	6

	S_CMP_EQ_U3
2

	SCC = (S0 == S1). Note that S_CMP_EQ_I32 and
S_CMP_EQ_U32 are identical opcodes, but both
are provided for symmetry.

	7

	S_CMP_LG_U3
2

	SCC = (S0 != S1). Note that S_CMP_LG_I32 and
S_CMP_LG_U32 are identical opcodes, but both
are provided for symmetry.

	8

	S_CMP_GT_U3
2

	SCC = (S0.u > S1.u).

	9

	S_CMP_GE_U3
2

	SCC = (S0.u >= S1.u).

	10

	S_CMP_LT_U3
2

	SCC = (S0.u < S1.u).

	11

	S_CMP_LE_U3
2

	SCC = (S0.u <= S1.u).

	12

	S_BITCMP0_B3
2

	SCC = (S0.u[S1.u[4:0]] == 0).

	13

	S_BITCMP1_B3
2

	SCC = (S0.u[S1.u[4:0]] == 1).

	14

	S_BITCMP0_B6
4

	SCC = (S0.u64[S1.u[5:0]] == 0).

	15

	S_BITCMP1_B6
4

	SCC = (S0.u64[S1.u[5:0]] == 1).

	16

	S_SETVSKIP

	VSKIP = S0.u[S1.u[4:0]]. Enables and disables
VSKIP mode. When VSKIP is enabled, no
VOP*/M*BUF/MIMG/DS/FLAT/EXP instuctions are
issued. Note that VSKIPped memory instructions do
not manipulate the waitcnt counters; as a result,
if you have outstanding memory requests you may
want to issue S_WAITCNT 0 prior to enabling
VSKIP, otherwise you’ll need to be careful not to
count VSKIPped instructions in your waitcnt
calculations. Examples: s_setvskip 1, 0 // Enable
vskip mode. s_setvskip 0, 0 // Disable vskip
mode.

	17

	S_SET_GPR_I
DX_ON

	MODE.gpr_idx_en = 1; M0[7:0] = S0.u[7:0];
M0[15:12] = SIMM4; // this is the direct content
of S1 field // Remaining bits of M0 are
unmodified. Enable GPR indexing mode. Vector
operations after this will perform relative GPR
addressing based on the contents of M0. The
structure SQ_M0_GPR_IDX_WORD may be used to
decode M0. The raw contents of the S1 field are
read and used to set the enable bits. S1[0] =
VSRC0_REL, S1[1] = VSRC1_REL, S1[2] = VSRC2_REL
and S1[3] = VDST_REL. S_SET_GPR_IDX_ON,
S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE and
S_SET_GPR_IDX_IDX are related instructions.

	18

	S_CMP_EQ_U6
4

	SCC = (S0.i64 == S1.i64).

	19

	S_CMP_LG_U6
4

	SCC = (S0.i64 != S1.i64).

SOPP Instructions

[image: microcode sopp]

	Opcode

	Name

	Description

	0

	S_NOP

	Do nothing. Repeat NOP 1..16 times based on
SIMM16[3:0] – 0x0 = 1 time, 0xf = 16 times.
This instruction may be used to introduce wait
states to resolve hazards. Compare with
S_SLEEP.

	1

	S_ENDPGM

	End of program; terminate wavefront. The
hardware implicitly executes S_WAITCNT 0 before
executing this instruction. See S_ENDPGM_SAVED
for the context-switch version of this
instruction and S_ENDPGM_ORDERED_PS_DONE for
the POPS critical region version of this
instruction.

	2

	S_BRANCH

	PC = PC + signext(SIMM16 * 4) + 4. // short
jump. For a long jump, use S_SETPC_B64.

	3

	S_WAKEUP

	Allow a wave to ‘ping’ all the other waves in
its threadgroup to force them to wake up
immediately from an S_SLEEP instruction. The
ping is ignored if the waves are not sleeping.
This allows for efficient polling on a memory
location. The waves which are polling can sit in
a long S_SLEEP between memory reads, but the
wave which writes the value can tell them all to
wake up early now that the data is available.
This is useful for fBarrier implementations
(speedup). This method is also safe from races
because if any wave misses the ping, everything
still works fine (waves which missed it just
completes their normal S_SLEEP). If the wave
executing S_WAKEUP is in a threadgroup (in_tg
set), then it will wake up all waves associated
with the same threadgroup ID. Otherwise,
S_WAKEUP is treated as an S_NOP.

	4

	S_CBRANCH_SCC0

	if(SCC == 0) then PC = PC + signext(SIMM16 * 4)
+ 4; endif.

	5

	S_CBRANCH_SCC1

	if(SCC == 1) then PC = PC + signext(SIMM16 * 4)
+ 4; endif.

	6

	S_CBRANCH_VCCZ

	if(VCC == 0) then PC = PC + signext(SIMM16 * 4)
+ 4; endif.

	7

	S_CBRANCH_VCCN
Z

	if(VCC != 0) then PC = PC + signext(SIMM16 * 4)
+ 4; endif.

	8

	S_CBRANCH_EXEC
Z

	if(EXEC == 0) then PC = PC + signext(SIMM16 *
4) + 4; endif.

	9

	S_CBRANCH_EXEC
NZ

	if(EXEC != 0) then PC = PC + signext(SIMM16 *
4) + 4; endif.

	10

	S_BARRIER

	Synchronize waves within a threadgroup. If not
all waves of the threadgroup have been created
yet, waits for entire group before proceeding.
If some waves in the threadgroup have already
terminated, this waits on only the surviving
waves. Barriers are legal inside trap handlers.

	11

	S_SETKILL

	Set KILL bit to value of SIMM16[0]. Used
primarily for debugging kill wave host command
behavior.

	12

	S_WAITCNT

	Wait for the counts of outstanding lds,
vector-memory and export/vmem-write-data to be
at or below the specified levels. SIMM16[3:0] =
vmcount (vector memory operations) lower bits
[3:0], SIMM16[6:4] = export/mem-write-data
count, SIMM16[11:8] = LGKM_cnt
(scalar-mem/GDS/LDS count), SIMM16[15:14] =
vmcount (vector memory operations) upper bits
[5:4],

	13

	S_SETHALT

	Set HALT bit to value of SIMM16[0]; 1 = halt, 0
= resume. The halt flag is ignored while PRIV ==
1 (inside trap handlers) but the shader will
halt immediately after the handler returns if
HALT is still set at that time.

	14

	S_SLEEP

	Cause a wave to sleep for (64 * SIMM16[6:0] +
1..64) clocks. The exact amount of delay is
approximate. Compare with S_NOP.

	15

	S_SETPRIO

	User settable wave priority is set to
SIMM16[1:0]. 0 = lowest, 3 = highest. The
overall wave priority is {SPIPrio[1:0] +
UserPrio[1:0], WaveAge[3:0]}.

	16

	S_SENDMSG

	Send a message upstream to VGT or the interrupt
handler. SIMM16[9:0] contains the message type.

	17

	S_SENDMSGHALT

	Send a message and then HALT the wavefront; see
S_SENDMSG for details.

	18

	S_TRAP

	TrapID = SIMM16[7:0]; Wait for all instructions
to complete; {TTMP1, TTMP0} = {3’h0,
PCRewind[3:0], HT[0], TrapID[7:0], PC[47:0]}; PC
= TBA; // trap base address PRIV = 1. Enter the
trap handler. This instruction may be generated
internally as well in response to a host trap
(HT = 1) or an exception. TrapID 0 is reserved
for hardware use and should not be used in a
shader-generated trap.

	19

	S_ICACHE_INV

	Invalidate entire L1 instruction cache. You must
have 16 separate S_NOP instructions or a
jump/branch instruction after this instruction
to ensure the SQ instruction buffer is purged.
NOTE: The number of S_NOPs required depends on
the size of the shader instruction buffer, which
in current generations is 16 DWORDs long. Older
architectures had a 12 DWORD instruction buffer
and in those architectures, 12 S_NOP
instructions were sufficient.

	20

	S_INCPERFLEVEL

	Increment performance counter specified in
SIMM16[3:0] by 1.

	21

	S_DECPERFLEVEL

	Decrement performance counter specified in
SIMM16[3:0] by 1.

	22

	S_TTRACEDATA

	Send M0 as user data to the thread trace stream.

	23

	S_CBRANCH_CDBG
SYS

	if(conditional_debug_system != 0) then PC = PC
+ signext(SIMM16 * 4) + 4; endif.

	24

	S_CBRANCH_CDBG
USER

	if(conditional_debug_user != 0) then PC = PC +
signext(SIMM16 * 4) + 4; endif.

	25

	S_CBRANCH_CDBG
SYS_OR_USER

	if(conditional_debug_system ||
conditional_debug_user) then PC = PC +
signext(SIMM16 * 4) + 4; endif.

	26

	S_CBRANCH_CDBG
SYS_AND_USER

	if(conditional_debug_system &&
conditional_debug_user) then PC = PC +
signext(SIMM16 * 4) + 4; endif.

	27

	S_ENDPGM_SAVED

	End of program; signal that a wave has been
saved by the context-switch trap handler and
terminate wavefront. The hardware implicitly
executes S_WAITCNT 0 before executing this
instruction. See S_ENDPGM for additional
variants.

	28

	S_SET_GPR_IDX
_OFF

	MODE.gpr_idx_en = 0. Clear GPR indexing mode.
Vector operations after this will not perform
relative GPR addressing regardless of the
contents of M0. This instruction does not modify
M0. S_SET_GPR_IDX_ON, S_SET_GPR_IDX_OFF,
S_SET_GPR_IDX_MODE and S_SET_GPR_IDX_IDX
are related instructions.

	29

	S_SET_GPR_IDX
_MODE

	M0[15:12] = SIMM16[3:0]. Modify the mode used
for vector GPR indexing. The raw contents of the
source field are read and used to set the enable
bits. SIMM16[0] = VSRC0_REL, SIMM16[1] =
VSRC1_REL, SIMM16[2] = VSRC2_REL and SIMM16[3]
= VDST_REL. S_SET_GPR_IDX_ON,
S_SET_GPR_IDX_OFF, S_SET_GPR_IDX_MODE
and S_SET_GPR_IDX_IDX are related
instructions.

	30

	S_ENDPGM_ORDER
ED_PS_DONE

	End of program; signal that a wave has exited
its POPS critical section and terminate
wavefront. The hardware implicitly executes
S_WAITCNT 0 before executing this instruction.
This instruction is an optimization that
combines S_SENDMSG(MSG_ORDERED_PS_DONE) and
S_ENDPGM; there may be cases where you still
need to send the message separately, in which
case you can end the shader with a normal
S_ENDPGM instruction. See S_ENDPGM for
additional variants.

Send Message

The S_SENDMSG instruction encodes the message type in M0, and can also
send data from the SIMM16 field and in some cases from EXEC.

	Message

	SIMM16[3:0
]

	SIMM16[6:4
]

	Payload

	none

	0

	
	

	illegal

	GS

	2

	0=nop,
1=cut,
2=emit,
3=emit-cut

	GS output. M0[4:0]=gs-waveID, SIMM[9:8] =
stream-id

	GS-done

	3

	
	

	save wave

	4

	
	

	used in context switching

	Stall Wave
Gen

	5

	
	

	stop new wave generation

	Halt Waves

	6

	
	

	halt all running waves of this vmid

	Ordered PS
Done

	7

	
	

	POPS ordered section done

	Early Prim
Dealloc

	8

	
	

	Deallocate primitives. This message is
optional. EXEC[N*12+10:N*12] = number
of verts to deallocate from buffer N
(N=0..3). Exec[58:48] = number of
vertices to deallocate.

	GS alloc
req

	9

	
	

	Request GS space in parameter cache.
M0[9:0] = number of vertices

SMEM Instructions

[image: microcode smem]

	Opcode

	Name

	Description

	0

	S_LOAD_DWORD

	Read 1 dword from scalar data cache. If the
offset is specified as an SGPR, the SGPR
contains an UNSIGNED BYTE offset (the 2 LSBs
are ignored). If the offset is specified as
an immediate 21-bit constant, the constant is
a SIGNED BYTE offset.

	1

	S_LOAD_DWORDX2

	Read 2 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	2

	S_LOAD_DWORDX4

	Read 4 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	3

	S_LOAD_DWORDX8

	Read 8 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	4

	S_LOAD_DWORDX16

	Read 16 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	5

	S_SCRATCH_LOAD_DW
ORD

	Read 1 dword from scalar data cache. If the
offset is specified as an SGPR, the SGPR
contains an UNSIGNED 64-byte offset,
consistent with other scratch operations. If
the offset is specified as an immediate
21-bit constant, the constant is a SIGNED
BYTE offset.

	6

	S_SCRATCH_LOAD_DW
ORDX2

	Read 2 dwords from scalar data cache. See
S_SCRATCH_LOAD_DWORD for details on the
offset input.

	7

	S_SCRATCH_LOAD_DW
ORDX4

	Read 4 dwords from scalar data cache. See
S_SCRATCH_LOAD_DWORD for details on the
offset input.

	8

	S_BUFFER_LOAD_DWO
RD

	Read 1 dword from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	9

	S_BUFFER_LOAD_DWO
RDX2

	Read 2 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	10

	S_BUFFER_LOAD_DWO
RDX4

	Read 4 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	11

	S_BUFFER_LOAD_DWO
RDX8

	Read 8 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	12

	S_BUFFER_LOAD_DWO
RDX16

	Read 16 dwords from scalar data cache. See
S_LOAD_DWORD for details on the offset
input.

	16

	S_STORE_DWORD

	Write 1 dword to scalar data cache. If the
offset is specified as an SGPR, the SGPR
contains an UNSIGNED BYTE offset (the 2 LSBs
are ignored). If the offset is specified as
an immediate 21-bit constant, the constant is
an SIGNED BYTE offset.

	17

	S_STORE_DWORDX2

	Write 2 dwords to scalar data cache. See
S_STORE_DWORD for details on the offset
input.

	18

	S_STORE_DWORDX4

	Write 4 dwords to scalar data cache. See
S_STORE_DWORD for details on the offset
input.

	21

	S_SCRATCH_STORE_D
WORD

	Write 1 dword from scalar data cache. If the
offset is specified as an SGPR, the SGPR
contains an UNSIGNED 64-byte offset,
consistent with other scratch operations. If
the offset is specified as an immediate
21-bit constant, the constant is a SIGNED
BYTE offset.

	22

	S_SCRATCH_STORE_D
WORDX2

	Write 2 dwords from scalar data cache. See
S_SCRATCH_STORE_DWORD for details on the
offset input.

	23

	S_SCRATCH_STORE_D
WORDX4

	Write 4 dwords from scalar data cache. See
S_SCRATCH_STORE_DWORD for details on the
offset input.

	24

	S_BUFFER_STORE_DW
ORD

	Write 1 dword to scalar data cache. See
S_STORE_DWORD for details on the offset
input.

	25

	S_BUFFER_STORE_DW
ORDX2

	Write 2 dwords to scalar data cache. See
S_STORE_DWORD for details on the offset
input.

	26

	S_BUFFER_STORE_DW
ORDX4

	Write 4 dwords to scalar data cache. See
S_STORE_DWORD for details on the offset
input.

	32

	S_DCACHE_INV

	Invalidate the scalar data cache.

	33

	S_DCACHE_WB

	Write back dirty data in the scalar data
cache.

	34

	S_DCACHE_INV_VOL

	Invalidate the scalar data cache volatile
lines.

	35

	S_DCACHE_WB_VOL

	Write back dirty data in the scalar data
cache volatile lines.

	36

	S_MEMTIME

	Return current 64-bit timestamp.

	37

	S_MEMREALTIME

	Return current 64-bit RTC.

	38

	S_ATC_PROBE

	Probe or prefetch an address into the SQC
data cache.

	39

	S_ATC_PROBE_BUFFE
R

	Probe or prefetch an address into the SQC
data cache.

	40

	S_DCACHE_DISCARD

	Discard one dirty scalar data cache line. A
cache line is 64 bytes. Normally, dirty
cachelines (one which have been written by
the shader) are written back to memory, but
this instruction allows the shader to
invalidate and not write back cachelines
which it has previously written. This is a
performance optimization to be used when the
shader knows it no longer needs that data.
Address is calculated the same as
S_STORE_DWORD, except the 6 LSBs are
ignored to get the 64 byte aligned address.
LGKM count is incremented by 1 for this
opcode.

	41

	S_DCACHE_DISCARD_
X2

	Discard two consecutive dirty scalar data
cache lines. A cache line is 64 bytes.
Normally, dirty cachelines (one which have
been written by the shader) are written back
to memory, but this instruction allows the
shader to invalidate and not write back
cachelines which it has previously written.
This is a performance optimization to be used
when the shader knows it no longer needs that
data. Address is calculated the same as
S_STORE_DWORD, except the 6 LSBs are
ignored to get the 64 byte aligned address.
LGKM count is incremented by 2 for this
opcode.

	64

	S_BUFFER_ATOMIC_S
WAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA;
RETURN_DATA = tmp.

	65

	S_BUFFER_ATOMIC_C
MPSWAP

	// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp
= DATA[1]; MEM[ADDR] = (tmp == cmp) ? src :
tmp; RETURN_DATA[0] = tmp.

	66

	S_BUFFER_ATOMIC_A
DD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp.

	67

	S_BUFFER_ATOMIC_S
UB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

	68

	S_BUFFER_ATOMIC_S
MIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	69

	S_BUFFER_ATOMIC_U
MIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	70

	S_BUFFER_ATOMIC_S
MAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	71

	S_BUFFER_ATOMIC_U
MAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	72

	S_BUFFER_ATOMIC_A
ND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

	73

	S_BUFFER_ATOMIC_O
R

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

	74

	S_BUFFER_ATOMIC_X
OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA;
RETURN_DATA = tmp.

	75

	S_BUFFER_ATOMIC_I
NC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	76

	S_BUFFER_ATOMIC_D
EC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp ==
0 || tmp > DATA) ? DATA : tmp - 1; //
unsigned compare RETURN_DATA = tmp.

	96

	S_BUFFER_ATOMIC_S
WAP_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	97

	S_BUFFER_ATOMIC_C
MPSWAP_X2

	// 64bit tmp = MEM[ADDR]; src = DATA[0:1];
cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0:1] = tmp.

	98

	S_BUFFER_ATOMIC_A
DD_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	99

	S_BUFFER_ATOMIC_S
UB_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	100

	S_BUFFER_ATOMIC_S
MIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	101

	S_BUFFER_ATOMIC_U
MIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	102

	S_BUFFER_ATOMIC_S
MAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	103

	S_BUFFER_ATOMIC_U
MAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	104

	S_BUFFER_ATOMIC_A
ND_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	105

	S_BUFFER_ATOMIC_O
R_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	106

	S_BUFFER_ATOMIC_X
OR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	107

	S_BUFFER_ATOMIC_I
NC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA[0:1]) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

	108

	S_BUFFER_ATOMIC_D
EC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp ==
0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp -
1; // unsigned compare RETURN_DATA[0:1] =
tmp.

	128

	S_ATOMIC_SWAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA;
RETURN_DATA = tmp.

	129

	S_ATOMIC_CMPSWAP

	// 32bit tmp = MEM[ADDR]; src = DATA[0]; cmp
= DATA[1]; MEM[ADDR] = (tmp == cmp) ? src :
tmp; RETURN_DATA[0] = tmp.

	130

	S_ATOMIC_ADD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp.

	131

	S_ATOMIC_SUB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

	132

	S_ATOMIC_SMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	133

	S_ATOMIC_UMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	134

	S_ATOMIC_SMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	135

	S_ATOMIC_UMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	136

	S_ATOMIC_AND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

	137

	S_ATOMIC_OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

	138

	S_ATOMIC_XOR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA;
RETURN_DATA = tmp.

	139

	S_ATOMIC_INC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	140

	S_ATOMIC_DEC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp ==
0 || tmp > DATA) ? DATA : tmp - 1; //
unsigned compare RETURN_DATA = tmp.

	160

	S_ATOMIC_SWAP_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	161

	S_ATOMIC_CMPSWAP_
X2

	// 64bit tmp = MEM[ADDR]; src = DATA[0:1];
cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0:1] = tmp.

	162

	S_ATOMIC_ADD_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	163

	S_ATOMIC_SUB_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	164

	S_ATOMIC_SMIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	165

	S_ATOMIC_UMIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	166

	S_ATOMIC_SMAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	167

	S_ATOMIC_UMAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	168

	S_ATOMIC_AND_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	169

	S_ATOMIC_OR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	170

	S_ATOMIC_XOR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	171

	S_ATOMIC_INC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA[0:1]) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

	172

	S_ATOMIC_DEC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp ==
0 || tmp > DATA[0:1]) ? DATA[0:1] : tmp -
1; // unsigned compare RETURN_DATA[0:1] =
tmp.

VOP2 Instructions

[image: microcode vop2]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	V_CNDMASK_B32

	D.u = (VCC[threadId] ? S1.u : S0.u). Conditional
mask on each thread. In VOP3 the VCC source may
be a scalar GPR specified in S2.u.

	1

	V_ADD_F32

	D.f = S0.f + S1.f. 0.5ULP precision, denormals
are supported.

	2

	V_SUB_F32

	D.f = S0.f - S1.f.

	3

	V_SUBREV_F32

	D.f = S1.f - S0.f.

	4

	V_MUL_LEGACY_F32

	D.f = S0.f * S1.f. // DX9 rules, 0.0*x = 0.0

	5

	V_MUL_F32

	D.f = S0.f * S1.f. 0.5ULP precision, denormals
are supported.

	6

	V_MUL_I32_I2
4

	D.i = S0.i[23:0] * S1.i[23:0].

	7

	V_MUL_HI_I32
_I24

	D.i = (S0.i[23:0] * S1.i[23:0])>>32.

	8

	V_MUL_U32_U2
4

	D.u = S0.u[23:0] * S1.u[23:0].

	9

	V_MUL_HI_U32
_U24

	D.i = (S0.u[23:0] * S1.u[23:0])>>32.

	10

	V_MIN_F32

	if (IEEE_MODE && S0.f == sNaN) D.f =
Quiet(S0.f); else if (IEEE_MODE && S1.f == sNaN)
D.f = Quiet(S1.f); else if (S0.f == NaN) D.f =
S1.f; else if (S1.f == NaN) D.f = S0.f; else if
(S0.f == +0.0 && S1.f == -0.0) D.f = S1.f; else
if (S0.f == -0.0 && S1.f == +0.0) D.f = S0.f;
else // Note: there’s no IEEE special case here
like there is for V_MAX_F32. D.f = (S0.f < S1.f
? S0.f : S1.f); endif.

	11

	V_MAX_F32

	if (IEEE_MODE && S0.f == sNaN) D.f =
Quiet(S0.f); else if (IEEE_MODE && S1.f == sNaN)
D.f = Quiet(S1.f); else if (S0.f == NaN) D.f =
S1.f; else if (S1.f == NaN) D.f = S0.f; else if
(S0.f == +0.0 && S1.f == -0.0) D.f = S0.f; else
if (S0.f == -0.0 && S1.f == +0.0) D.f = S1.f;
else if (IEEE_MODE) D.f = (S0.f >= S1.f ? S0.f :
S1.f); else D.f = (S0.f > S1.f ? S0.f : S1.f);
endif.

	12

	V_MIN_I32

	D.i = (S0.i < S1.i ? S0.i : S1.i).

	13

	V_MAX_I32

	D.i = (S0.i >= S1.i ? S0.i : S1.i).

	14

	V_MIN_U32

	D.u = (S0.u < S1.u ? S0.u : S1.u).

	15

	V_MAX_U32

	D.u = (S0.u >= S1.u ? S0.u : S1.u).

	16

	V_LSHRREV_B32

	D.u = S1.u >> S0.u[4:0].

	17

	V_ASHRREV_I32

	D.i = signext(S1.i) >> S0.i[4:0].

	18

	V_LSHLREV_B32

	D.u = S1.u << S0.u[4:0].

	19

	V_AND_B32

	D.u = S0.u & S1.u. Input and output modifiers not
supported.

	20

	V_OR_B32

	D.u = S0.u | S1.u. Input and output modifiers
not supported.

	21

	V_XOR_B32

	D.u = S0.u ^ S1.u. Input and output modifiers not
supported.

	22

	V_MAC_F32

	D.f = S0.f * S1.f + D.f.

	23

	V_MADMK_F32

	D.f = S0.f * K + S1.f. // K is a 32-bit literal
constant. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.

	24

	V_MADAK_F32

	D.f = S0.f * S1.f + K. // K is a 32-bit literal
constant. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.

	25

	V_ADD_CO_U32

	D.u = S0.u + S1.u; VCC[threadId] = (S0.u + S1.u
>= 0x100000000ULL ? 1 : 0). // VCC is an UNSIGNED
overflow/carry-out for V_ADDC_CO_U32. In VOP3
the VCC destination may be an arbitrary
SGPR-pair.

	26

	V_SUB_CO_U32

	D.u = S0.u - S1.u; VCC[threadId] = (S1.u > S0.u ?
1 : 0). // VCC is an UNSIGNED overflow/carry-out
for V_SUBB_CO_U32. In VOP3 the VCC destination
may be an arbitrary SGPR-pair.

	27

	V_SUBREV_CO_
U32

	D.u = S1.u - S0.u; VCC[threadId] = (S0.u > S1.u ?
1 : 0). // VCC is an UNSIGNED overflow/carry-out
for V_SUBB_CO_U32. In VOP3 the VCC destination
may be an arbitrary SGPR-pair.

	28

	V_ADDC_CO_U3
2

	D.u = S0.u + S1.u + VCC[threadId]; VCC[threadId]
= (S0.u + S1.u + VCC[threadId] >= 0x100000000ULL
? 1 : 0). // VCC is an UNSIGNED overflow. In VOP3
the VCC destination may be an arbitrary
SGPR-pair, and the VCC source comes from the
SGPR-pair at S2.u.

	29

	V_SUBB_CO_U3
2

	D.u = S0.u - S1.u - VCC[threadId]; VCC[threadId]
= (S1.u + VCC[threadId] > S0.u ? 1 : 0). // VCC
is an UNSIGNED overflow. In VOP3 the VCC
destination may be an arbitrary SGPR-pair, and
the VCC source comes from the SGPR-pair at S2.u.

	30

	V_SUBBREV_CO_U32

	D.u = S1.u - S0.u - VCC[threadId]; VCC[threadId]
= (S1.u + VCC[threadId] > S0.u ? 1 : 0). // VCC
is an UNSIGNED overflow. In VOP3 the VCC
destination may be an arbitrary SGPR-pair, and
the VCC source comes from the SGPR-pair at S2.u.

	31

	V_ADD_F16

	D.f16 = S0.f16 + S1.f16. Supports denormals,
round mode, exception flags, saturation. 0.5ULP
precision, denormals are supported.

	32

	V_SUB_F16

	D.f16 = S0.f16 - S1.f16. Supports denormals,
round mode, exception flags, saturation.

	33

	V_SUBREV_F16

	D.f16 = S1.f16 - S0.f16. Supports denormals,
round mode, exception flags, saturation.

	34

	V_MUL_F16

	D.f16 = S0.f16 * S1.f16. Supports denormals,
round mode, exception flags, saturation. 0.5ULP
precision, denormals are supported.

	35

	V_MAC_F16

	D.f16 = S0.f16 * S1.f16 + D.f16. Supports round
mode, exception flags, saturation.

	36

	V_MADMK_F16

	D.f16 = S0.f16 * K.f16 + S1.f16. // K is a
16-bit literal constant stored in the following
literal DWORD. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.
Supports round mode, exception flags, saturation.

	37

	V_MADAK_F16

	D.f16 = S0.f16 * S1.f16 + K.f16. // K is a
16-bit literal constant stored in the following
literal DWORD. This opcode cannot use the VOP3
encoding and cannot use input/output modifiers.
Supports round mode, exception flags, saturation.

	38

	V_ADD_U16

	D.u16 = S0.u16 + S1.u16. Supports saturation
(unsigned 16-bit integer domain).

	39

	V_SUB_U16

	D.u16 = S0.u16 - S1.u16. Supports saturation
(unsigned 16-bit integer domain).

	40

	V_SUBREV_U16

	D.u16 = S1.u16 - S0.u16. Supports saturation
(unsigned 16-bit integer domain).

	41

	V_MUL_LO_U16

	D.u16 = S0.u16 * S1.u16. Supports saturation
(unsigned 16-bit integer domain).

	42

	V_LSHLREV_B16

	D.u[15:0] = S1.u[15:0] << S0.u[3:0].

	43

	V_LSHRREV_B16

	D.u[15:0] = S1.u[15:0] >> S0.u[3:0].

	44

	V_ASHRREV_I16

	D.i[15:0] = signext(S1.i[15:0]) >> S0.i[3:0].

	45

	V_MAX_F16

	if (IEEE_MODE && S0.f16 == sNaN) D.f16 =
Quiet(S0.f16); else if (IEEE_MODE && S1.f16 ==
sNaN) D.f16 = Quiet(S1.f16); else if (S0.f16 ==
NaN) D.f16 = S1.f16; else if (S1.f16 == NaN)
D.f16 = S0.f16; else if (S0.f16 == +0.0 && S1.f16
== -0.0) D.f16 = S0.f16; else if (S0.f16 == -0.0
&& S1.f16 == +0.0) D.f16 = S1.f16; else if
(IEEE_MODE) D.f16 = (S0.f16 >= S1.f16 ? S0.f16 :
S1.f16); else D.f16 = (S0.f16 > S1.f16 ? S0.f16 :
S1.f16); endif. IEEE compliant. Supports
denormals, round mode, exception flags,
saturation.

	46

	V_MIN_F16

	if (IEEE_MODE && S0.f16 == sNaN) D.f16 =
Quiet(S0.f16); else if (IEEE_MODE && S1.f16 ==
sNaN) D.f16 = Quiet(S1.f16); else if (S0.f16 ==
NaN) D.f16 = S1.f16; else if (S1.f16 == NaN)
D.f16 = S0.f16; else if (S0.f16 == +0.0 && S1.f16
== -0.0) D.f16 = S1.f16; else if (S0.f16 == -0.0
&& S1.f16 == +0.0) D.f16 = S0.f16; else // Note:
there’s no IEEE special case here like there is
for V_MAX_F16. D.f16 = (S0.f16 < S1.f16 ?
S0.f16 : S1.f16); endif. IEEE compliant. Supports
denormals, round mode, exception flags,
saturation.

	47

	V_MAX_U16

	D.u16 = (S0.u16 >= S1.u16 ? S0.u16 : S1.u16).

	48

	V_MAX_I16

	D.i16 = (S0.i16 >= S1.i16 ? S0.i16 : S1.i16).

	49

	V_MIN_U16

	D.u16 = (S0.u16 < S1.u16 ? S0.u16 : S1.u16).

	50

	V_MIN_I16

	D.i16 = (S0.i16 < S1.i16 ? S0.i16 : S1.i16).

	51

	V_LDEXP_F16

	D.f16 = S0.f16 * (2 ** S1.i16). Note that the
S1 has a format of f16 since floating point
literal constants are interpreted as 16 bit value
for this opcode

	52

	V_ADD_U32

	D.u = S0.u + S1.u.

	53

	V_SUB_U32

	D.u = S0.u - S1.u.

	54

	V_SUBREV_U32

	D.u = S1.u - S0.u.

VOP2 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. This allows
access to the extra control bits (e.g. ABS, OMOD) in exchange for not
being able to use a literal constant. The VOP3 opcode is: VOP2 opcode +
0x100.

[image: microcode vop3a]

[image: microcode vop3b]

VOP1 Instructions

[image: microcode vop1]

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

	Opcode

	Name

	Description

	0

	V_NOP

	Do nothing.

	1

	V_MOV_B32

	D.u = S0.u. Input and output modifiers not
supported; this is an untyped operation.

	2

	V_READFIRSTLAN
E_B32

	Copy one VGPR value to one SGPR. D = SGPR
destination, S0 = source data (VGPR# or M0 for
lds direct access), Lane# =
FindFirst1fromLSB(exec) (Lane# = 0 if exec is
zero). Ignores exec mask for the access. Input
and output modifiers not supported; this is an
untyped operation.

	3

	V_CVT_I32_F6
4

	D.i = (int)S0.d. 0.5ULP accuracy, out-of-range
floating point values (including infinity)
saturate. NaN is converted to 0. Generation of
the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

	4

	V_CVT_F64_I3
2

	D.d = (double)S0.i. 0ULP accuracy.

	5

	V_CVT_F32_I3
2

	D.f = (float)S0.i. 0.5ULP accuracy.

	6

	V_CVT_F32_U3
2

	D.f = (float)S0.u. 0.5ULP accuracy.

	7

	V_CVT_U32_F3
2

	D.u = (unsigned)S0.f. 1ULP accuracy, out-of-range
floating point values (including infinity)
saturate. NaN is converted to 0. Generation of
the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

	8

	V_CVT_I32_F3
2

	D.i = (int)S0.f. 1ULP accuracy, out-of-range
floating point values (including infinity)
saturate. NaN is converted to 0. Generation of
the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

	10

	V_CVT_F16_F3
2

	D.f16 = flt32_to_flt16(S0.f). 0.5ULP accuracy,
supports input modifiers and creates FP16
denormals when appropriate.

	11

	V_CVT_F32_F1
6

	D.f = flt16_to_flt32(S0.f16). 0ULP accuracy,
FP16 denormal inputs are accepted.

	12

	V_CVT_RPI_I3
2_F32

	D.i = (int)floor(S0.f + 0.5). 0.5ULP accuracy,
denormals are supported.

	13

	V_CVT_FLR_I3
2_F32

	D.i = (int)floor(S0.f). 1ULP accuracy, denormals
are supported.

	14

	V_CVT_OFF_F3
2_I4

	4-bit signed int to 32-bit float. Used for
interpolation in shader. S0 Result 1000 -0.5f
1001 -0.4375f 1010 -0.375f 1011 -0.3125f 1100
-0.25f 1101 -0.1875f 1110 -0.125f 1111 -0.0625f
0000 0.0f 0001 0.0625f 0010 0.125f 0011 0.1875f
0100 0.25f 0101 0.3125f 0110 0.375f 0111 0.4375f

	15

	V_CVT_F32_F6
4

	D.f = (float)S0.d. 0.5ULP accuracy, denormals are
supported.

	16

	V_CVT_F64_F3
2

	D.d = (double)S0.f. 0ULP accuracy, denormals are
supported.

	17

	V_CVT_F32_UB
YTE0

	D.f = (float)(S0.u[7:0]).

	18

	V_CVT_F32_UB
YTE1

	D.f = (float)(S0.u[15:8]).

	19

	V_CVT_F32_UB
YTE2

	D.f = (float)(S0.u[23:16]).

	20

	V_CVT_F32_UB
YTE3

	D.f = (float)(S0.u[31:24]).

	21

	V_CVT_U32_F6
4

	D.u = (unsigned)S0.d. 0.5ULP accuracy,
out-of-range floating point values (including
infinity) saturate. NaN is converted to 0.
Generation of the INEXACT exception is controlled
by the CLAMP bit. INEXACT exceptions are enabled
for this conversion iff CLAMP == 1.

	22

	V_CVT_F64_U3
2

	D.d = (double)S0.u. 0ULP accuracy.

	23

	V_TRUNC_F64

	D.d = trunc(S0.d). Return integer part of S0.d,
round-to-zero semantics.

	24

	V_CEIL_F64

	D.d = trunc(S0.d); if(S0.d > 0.0 && S0.d != D.d)
then D.d += 1.0; endif. Round up to next whole
integer.

	25

	V_RNDNE_F64

	D.d = floor(S0.d + 0.5); if(floor(S0.d) is even
&& fract(S0.d) == 0.5) then D.d -= 1.0; endif.
Round-to-nearest-even semantics.

	26

	V_FLOOR_F64

	D.d = trunc(S0.d); if(S0.d < 0.0 && S0.d != D.d)
then D.d += -1.0; endif. Round down to previous
whole integer.

	27

	V_FRACT_F32

	D.f = S0.f + -floor(S0.f). Return fractional
portion of a number. 0.5ULP accuracy, denormals
are accepted.

	28

	V_TRUNC_F32

	D.f = trunc(S0.f). Return integer part of S0.f,
round-to-zero semantics.

	29

	V_CEIL_F32

	D.f = trunc(S0.f); if(S0.f > 0.0 && S0.f != D.f)
then D.f += 1.0; endif. Round up to next whole
integer.

	30

	V_RNDNE_F32

	D.f = floor(S0.f + 0.5); if(floor(S0.f) is even
&& fract(S0.f) == 0.5) then D.f -= 1.0; endif.
Round-to-nearest-even semantics.

	31

	V_FLOOR_F32

	D.f = trunc(S0.f); if(S0.f < 0.0 && S0.f != D.f)
then D.f += -1.0; endif. Round down to previous
whole integer.

	32

	V_EXP_F32

	D.f = pow(2.0, S0.f). Base 2 exponentiation. 1ULP
accuracy, denormals are flushed. Examples:
V_EXP_F32(0xff800000) => 0x00000000 //
exp(-INF) = 0 V_EXP_F32(0x80000000) =>
0x3f800000 // exp(-0.0) = 1
V_EXP_F32(0x7f800000) => 0x7f800000 //
exp(+INF) = +INF

	33

	V_LOG_F32

	D.f = log2(S0.f). Base 2 logarithm. 1ULP
accuracy, denormals are flushed. Examples:
V_LOG_F32(0xff800000) => 0xffc00000 //
log(-INF) = NAN V_LOG_F32(0xbf800000) =>
0xffc00000 // log(-1.0) = NAN
V_LOG_F32(0x80000000) => 0xff800000 //
log(-0.0) = -INF V_LOG_F32(0x00000000) =>
0xff800000 // log(+0.0) = -INF
V_LOG_F32(0x3f800000) => 0x00000000 //
log(+1.0) = 0 V_LOG_F32(0x7f800000) =>
0x7f800000 // log(+INF) = +INF

	34

	V_RCP_F32

	D.f = 1.0 / S0.f. Reciprocal with IEEE rules and
1ULP accuracy. Accuracy converges to < 0.5ULP
when using the Newton-Raphson method and 2 FMA
operations. Denormals are flushed. Examples:
V_RCP_F32(0xff800000) => 0x80000000 //
rcp(-INF) = -0 V_RCP_F32(0xc0000000) =>
0xbf000000 // rcp(-2.0) = -0.5
V_RCP_F32(0x80000000) => 0xff800000 //
rcp(-0.0) = -INF V_RCP_F32(0x00000000) =>
0x7f800000 // rcp(+0.0) = +INF
V_RCP_F32(0x7f800000) => 0x00000000 //
rcp(+INF) = +0

	35

	V_RCP_IFLAG_
F32

	D.f = 1.0 / S0.f. Reciprocal intended for integer
division, can raise integer DIV_BY_ZERO
exception but cannot raise floating-point
exceptions. To be used in an integer reciprocal
macro by the compiler with one of the following
sequences: Unsigned: CVT_F32_U32
RCP_IFLAG_F32 MUL_F32 (2**32 - 1)
CVT_U32_F32 Signed: CVT_F32_I32
RCP_IFLAG_F32 MUL_F32 (2**31 - 1)
CVT_I32_F32

	36

	V_RSQ_F32

	D.f = 1.0 / sqrt(S0.f). Reciprocal square root
with IEEE rules. 1ULP accuracy, denormals are
flushed. Examples: V_RSQ_F32(0xff800000) =>
0xffc00000 // rsq(-INF) = NAN
V_RSQ_F32(0x80000000) => 0xff800000 //
rsq(-0.0) = -INF V_RSQ_F32(0x00000000) =>
0x7f800000 // rsq(+0.0) = +INF
V_RSQ_F32(0x40800000) => 0x3f000000 //
rsq(+4.0) = +0.5 V_RSQ_F32(0x7f800000) =>
0x00000000 // rsq(+INF) = +0

	37

	V_RCP_F64

	D.d = 1.0 / S0.d. Reciprocal with IEEE rules and
perhaps not the accuracy you were hoping for –
(2**29)ULP accuracy. On the upside, denormals
are supported.

	38

	V_RSQ_F64

	D.f16 = 1.0 / sqrt(S0.f16). Reciprocal square
root with IEEE rules and perhaps not the accuracy
you were hoping for – (2**29)ULP accuracy. On
the upside, denormals are supported.

	39

	V_SQRT_F32

	D.f = sqrt(S0.f). Square root. 1ULP accuracy,
denormals are flushed. Examples:
V_SQRT_F32(0xff800000) => 0xffc00000 //
sqrt(-INF) = NAN V_SQRT_F32(0x80000000) =>
0x80000000 // sqrt(-0.0) = -0
V_SQRT_F32(0x00000000) => 0x00000000 //
sqrt(+0.0) = +0 V_SQRT_F32(0x40800000) =>
0x40000000 // sqrt(+4.0) = +2.0
V_SQRT_F32(0x7f800000) => 0x7f800000 //
sqrt(+INF) = +INF

	40

	V_SQRT_F64

	D.d = sqrt(S0.d). Square root with perhaps not
the accuracy you were hoping for – (2**29)ULP
accuracy. On the upside, denormals are supported.

	41

	V_SIN_F32

	D.f = sin(S0.f * 2 * PI). Trigonometric sine.
Denormals are supported. Examples:
V_SIN_F32(0xff800000) => 0xffc00000 //
sin(-INF) = NAN V_SIN_F32(0xff7fffff) =>
0x00000000 // -MaxFloat, finite
V_SIN_F32(0x80000000) => 0x80000000 //
sin(-0.0) = -0 V_SIN_F32(0x3e800000) =>
0x3f800000 // sin(0.25) = 1
V_SIN_F32(0x7f800000) => 0xffc00000 //
sin(+INF) = NAN

	42

	V_COS_F32

	D.f = cos(S0.f * 2 * PI). Trigonometric cosine.
Denormals are supported. Examples:
V_COS_F32(0xff800000) => 0xffc00000 //
cos(-INF) = NAN V_COS_F32(0xff7fffff) =>
0x3f800000 // -MaxFloat, finite
V_COS_F32(0x80000000) => 0x3f800000 //
cos(-0.0) = 1 V_COS_F32(0x3e800000) =>
0x00000000 // cos(0.25) = 0
V_COS_F32(0x7f800000) => 0xffc00000 //
cos(+INF) = NAN

	43

	V_NOT_B32

	D.u = ~S0.u. Bitwise negation. Input and output
modifiers not supported.

	44

	V_BFREV_B32

	D.u[31:0] = S0.u[0:31]. Bitfield reverse. Input
and output modifiers not supported.

	45

	V_FFBH_U32

	D.i = -1; // Set if no ones are found for i in 0
… 31 do // Note: search is from the MSB if
S0.u[31 - i] == 1 then D.i = i; break for; endif;
endfor. Counts how many zeros before the first
one starting from the MSB. Returns -1 if there
are no ones. Examples: V_FFBH_U32(0x00000000)
=> 0xffffffff V_FFBH_U32(0x800000ff) => 0
V_FFBH_U32(0x100000ff) => 3
V_FFBH_U32(0x0000ffff) => 16
V_FFBH_U32(0x00000001) => 31

	46

	V_FFBL_B32

	D.i = -1; // Set if no ones are found for i in 0
… 31 do // Search from LSB if S0.u[i] == 1 then
D.i = i; break for; endif; endfor. Returns the
bit position of the first one from the LSB, or -1
if there are no ones. Examples:
V_FFBL_B32(0x00000000) => 0xffffffff
V_FFBL_B32(0xff000001) => 0
V_FFBL_B32(0xff000008) => 3
V_FFBL_B32(0xffff0000) => 16
V_FFBL_B32(0x80000000) => 31

	47

	V_FFBH_I32

	D.i = -1; // Set if all bits are the same for i
in 1 … 31 do // Note: search is from the MSB if
S0.i[31 - i] != S0.i[31] then D.i = i; break for;
endif; endfor. Counts how many bits in a row
(from MSB to LSB) are the same as the sign bit.
Returns -1 if all bits are the same. Examples:
V_FFBH_I32(0x00000000) => 0xffffffff
V_FFBH_I32(0x40000000) => 1
V_FFBH_I32(0x80000000) => 1
V_FFBH_I32(0x0fffffff) => 4
V_FFBH_I32(0xffff0000) => 16
V_FFBH_I32(0xfffffffe) => 31
V_FFBH_I32(0xffffffff) => 0xffffffff

	48

	V_FREXP_EXP_
I32_F64

	if(S0.d == +-INF || S0.d == NAN) then D.i = 0;
else D.i = TwosComplement(Exponent(S0.d) - 1023 +
1); endif. Returns exponent of single precision
float input, such that S0.d = significand * (2
** exponent). See also V_FREXP_MANT_F64,
which returns the significand. See the C library
function frexp() for more information.

	49

	V_FREXP_MANT_F64

	if(S0.d == +-INF || S0.d == NAN) then D.d =
S0.d; else D.d = Mantissa(S0.d); endif. Result
range is in (-1.0,-0.5][0.5,1.0) in typical
cases. Returns binary significand of double
precision float input, such that S0.d =
significand * (2 ** exponent). See also
V_FREXP_EXP_I32_F64, which returns integer
exponent. See the C library function frexp() for
more information.

	50

	V_FRACT_F64

	D.d = S0.d + -floor(S0.d). Return fractional
portion of a number. 0.5ULP accuracy, denormals
are accepted.

	51

	V_FREXP_EXP_
I32_F32

	if(S0.f == +-INF || S0.f == NAN) then D.i = 0;
else D.i = TwosComplement(Exponent(S0.f) - 127 +
1); endif. Returns exponent of single precision
float input, such that S0.f = significand * (2
** exponent). See also V_FREXP_MANT_F32,
which returns the significand. See the C library
function frexp() for more information.

	52

	V_FREXP_MANT_F32

	if(S0.f == +-INF || S0.f == NAN) then D.f =
S0.f; else D.f = Mantissa(S0.f); endif. Result
range is in (-1.0,-0.5][0.5,1.0) in typical
cases. Returns binary significand of single
precision float input, such that S0.f =
significand * (2 ** exponent). See also
V_FREXP_EXP_I32_F32, which returns integer
exponent. See the C library function frexp() for
more information.

	53

	V_CLREXCP

	Clear wave’s exception state in SIMD (SP).

	55

	V_SCREEN_PART
ITION_4SE_B32

	D.u = TABLE[S0.u[7:0]]. TABLE: 0x1, 0x3, 0x7,
0xf, 0x5, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf,
0xf, 0xf, 0xf, 0xf, 0x2, 0x6, 0xe, 0xf, 0xa, 0xf,
0xf, 0xf, 0xb, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xd,
0xf, 0x4, 0xc, 0xf, 0xf, 0x5, 0xf, 0xf, 0xf, 0xd,
0xf, 0xf, 0xf, 0xf, 0xf, 0x9, 0xb, 0xf, 0x8, 0xf,
0xf, 0xf, 0xa, 0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf,
0xf, 0xf, 0xf, 0xf, 0xf, 0x4, 0xc, 0xd, 0xf, 0x6,
0xf, 0xf, 0xf, 0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0xf, 0xf, 0x8, 0x9, 0xb, 0xf, 0x9, 0x9, 0xf, 0xf,
0xd, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x7, 0xf, 0x1,
0x3, 0xf, 0xf, 0x9, 0xf, 0xf, 0xf, 0xb, 0xf, 0xf,
0xf, 0xf, 0xf, 0x6, 0xe, 0xf, 0x2, 0x6, 0xf, 0xf,
0x6, 0xf, 0xf, 0xf, 0x7, 0xb, 0xf, 0xf, 0xf, 0xf,
0xf, 0xf, 0xf, 0x2, 0x3, 0xb, 0xf, 0xa, 0xf, 0xf,
0xf, 0xf, 0x7, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0x1, 0x9, 0xd, 0xf, 0x5, 0xf, 0xf, 0xf, 0xf, 0xe,
0xf, 0xf, 0xf, 0xf, 0xf, 0xe, 0xf, 0x8, 0xc, 0xf,
0xf, 0xa, 0xf, 0xf, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf,
0xf, 0x6, 0x7, 0xf, 0x4, 0xf, 0xf, 0xf, 0x5, 0x9,
0xf, 0xf, 0xf, 0xd, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
0xf, 0x8, 0xc, 0xe, 0xf, 0xf, 0x6, 0x6, 0xf, 0xf,
0xe, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0x4, 0x6,
0x7, 0xf, 0xf, 0x6, 0xf, 0xf, 0xf, 0x7, 0xf, 0xf,
0xf, 0xf, 0xf, 0xb, 0xf, 0x2, 0x3, 0x9, 0xf, 0xf,
0x9, 0xf, 0xf, 0xf, 0xb, 0xf, 0xf, 0xf, 0xf, 0x9,
0xd, 0xf, 0x1 4SE version of LUT instruction for
screen partitioning/filtering. This opcode is
intended to accelerate screen partitioning in the
4SE case only. 2SE and 1SE cases use normal ALU
instructions. This opcode returns a 4-bit bitmask
indicating which SE backends are covered by a
rectangle from (x_min, y_min) to (x_max,
y_max). With 32-pixel tiles the SE for (x, y) is
given by { x[5] ^ y[6], y[5] ^ x[6] } . Using
this formula we can determine which SEs are
covered by a larger rectangle. The primitive
shader must perform the following operation
before the opcode is called. 1. Compute the
bounding box of the primitive (x_min, y_min)
(upper left) and (x_max, y_max) (lower right),
in pixels. 2. Check for any extents that do not
need to use the opcode — if ((x_max/32 -
x_min/32 >= 3) OR ((y_max/32 - y_min/32 >= 3)
(tile size of 32) then all backends are covered.
3. Call the opcode with this 8 bit select: {
x_min[6:5], y_min[6:5], x_max[6:5],
y_max[6:5] } . 4. The opcode will return a 4 bit
mask indicating which backends are covered, where
bit 0 indicates SE0 is covered and bit 3
indicates SE3 is covered. Example: 1. The
calculated bounding box is (0, 0) to (25, 35). 2.
Observe the bounding box is not large enough to
trivially cover all backends. 3. Divide by tile
size 32 and concatenate bits to produce a
selector of binary 00000001. 4. Opcode will
return 0x3 which means backend 0 and 1 are
covered.

	57

	V_CVT_F16_U1
6

	D.f16 = uint16_to_flt16(S.u16). 0.5ULP
accuracy, supports denormals, rounding, exception
flags and saturation.

	58

	V_CVT_F16_I1
6

	D.f16 = int16_to_flt16(S.i16). 0.5ULP accuracy,
supports denormals, rounding, exception flags and
saturation.

	59

	V_CVT_U16_F1
6

	D.u16 = flt16_to_uint16(S.f16). 1ULP accuracy,
supports rounding, exception flags and
saturation. FP16 denormals are accepted.
Conversion is done with truncation. Generation of
the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

	60

	V_CVT_I16_F1
6

	D.i16 = flt16_to_int16(S.f16). 1ULP accuracy,
supports rounding, exception flags and
saturation. FP16 denormals are accepted.
Conversion is done with truncation. Generation of
the INEXACT exception is controlled by the CLAMP
bit. INEXACT exceptions are enabled for this
conversion iff CLAMP == 1.

	61

	V_RCP_F16

	D.f16 = 1.0 / S0.f16. Reciprocal with IEEE rules
and 0.51ULP accuracy. Examples:
V_RCP_F16(0xfc00) => 0x8000 // rcp(-INF) = -0
V_RCP_F16(0xc000) => 0xb800 // rcp(-2.0) = -0.5
V_RCP_F16(0x8000) => 0xfc00 // rcp(-0.0) = -INF
V_RCP_F16(0x0000) => 0x7c00 // rcp(+0.0) = +INF
V_RCP_F16(0x7c00) => 0x0000 // rcp(+INF) = +0

	62

	V_SQRT_F16

	D.f16 = sqrt(S0.f16). Square root. 0.51ULP
accuracy, denormals are supported. Examples:
V_SQRT_F16(0xfc00) => 0xfe00 // sqrt(-INF) =
NAN V_SQRT_F16(0x8000) => 0x8000 // sqrt(-0.0)
= -0 V_SQRT_F16(0x0000) => 0x0000 // sqrt(+0.0)
= +0 V_SQRT_F16(0x4400) => 0x4000 // sqrt(+4.0)
= +2.0 V_SQRT_F16(0x7c00) => 0x7c00 //
sqrt(+INF) = +INF

	63

	V_RSQ_F16

	D.f16 = 1.0 / sqrt(S0.f16). Reciprocal square
root with IEEE rules. 0.51ULP accuracy, denormals
are supported. Examples: V_RSQ_F16(0xfc00) =>
0xfe00 // rsq(-INF) = NAN V_RSQ_F16(0x8000) =>
0xfc00 // rsq(-0.0) = -INF V_RSQ_F16(0x0000) =>
0x7c00 // rsq(+0.0) = +INF V_RSQ_F16(0x4400) =>
0x3800 // rsq(+4.0) = +0.5 V_RSQ_F16(0x7c00) =>
0x0000 // rsq(+INF) = +0

	64

	V_LOG_F16

	D.f16 = log2(S0.f). Base 2 logarithm. 0.51ULP
accuracy, denormals are supported. Examples:
V_LOG_F16(0xfc00) => 0xfe00 // log(-INF) = NAN
V_LOG_F16(0xbc00) => 0xfe00 // log(-1.0) = NAN
V_LOG_F16(0x8000) => 0xfc00 // log(-0.0) = -INF
V_LOG_F16(0x0000) => 0xfc00 // log(+0.0) = -INF
V_LOG_F16(0x3c00) => 0x0000 // log(+1.0) = 0
V_LOG_F16(0x7c00) => 0x7c00 // log(+INF) = +INF

	65

	V_EXP_F16

	D.f16 = pow(2.0, S0.f16). Base 2 exponentiation.
0.51ULP accuracy, denormals are supported.
Examples: V_EXP_F16(0xfc00) => 0x0000 //
exp(-INF) = 0 V_EXP_F16(0x8000) => 0x3c00 //
exp(-0.0) = 1 V_EXP_F16(0x7c00) => 0x7c00 //
exp(+INF) = +INF

	66

	V_FREXP_MANT_F16

	if(S0.f16 == +-INF || S0.f16 == NAN) then D.f16
= S0.f16; else D.f16 = Mantissa(S0.f16); endif.
Result range is in (-1.0,-0.5][0.5,1.0) in
typical cases. Returns binary significand of half
precision float input, such that S0.f16 =
significand * (2 ** exponent). See also
V_FREXP_EXP_I16_F16, which returns integer
exponent. See the C library function frexp() for
more information.

	67

	V_FREXP_EXP_
I16_F16

	if(S0.f16 == +-INF || S0.f16 == NAN) then D.i =
0; else D.i = TwosComplement(Exponent(S0.f16) -
15 + 1); endif. Returns exponent of half
precision float input, such that S0.f16 =
significand * (2 ** exponent). See also
V_FREXP_MANT_F16, which returns the
significand. See the C library function frexp()
for more information.

	68

	V_FLOOR_F16

	D.f16 = trunc(S0.f16); if(S0.f16 < 0.0f && S0.f16
!= D.f16) then D.f16 -= 1.0; endif. Round down to
previous whole integer.

	69

	V_CEIL_F16

	D.f16 = trunc(S0.f16); if(S0.f16 > 0.0f && S0.f16
!= D.f16) then D.f16 += 1.0; endif. Round up to
next whole integer.

	70

	V_TRUNC_F16

	D.f16 = trunc(S0.f16). Return integer part of
S0.f16, round-to-zero semantics.

	71

	V_RNDNE_F16

	D.f16 = floor(S0.f16 + 0.5); if(floor(S0.f16) is
even && fract(S0.f16) == 0.5) then D.f16 -= 1.0;
endif. Round-to-nearest-even semantics.

	72

	V_FRACT_F16

	D.f16 = S0.f16 + -floor(S0.f16). Return
fractional portion of a number. 0.5ULP accuracy,
denormals are accepted.

	73

	V_SIN_F16

	D.f16 = sin(S0.f16 * 2 * PI). Trigonometric
sine. Denormals are supported. Examples:
V_SIN_F16(0xfc00) => 0xfe00 // sin(-INF) = NAN
V_SIN_F16(0xfbff) => 0x0000 // Most negative
finite FP16 V_SIN_F16(0x8000) => 0x8000 //
sin(-0.0) = -0 V_SIN_F16(0x3400) => 0x3c00 //
sin(0.25) = 1 V_SIN_F16(0x7bff) => 0x0000 //
Most positive finite FP16 V_SIN_F16(0x7c00) =>
0xfe00 // sin(+INF) = NAN

	74

	V_COS_F16

	D.f16 = cos(S0.f16 * 2 * PI). Trigonometric
cosine. Denormals are supported. Examples:
V_COS_F16(0xfc00) => 0xfe00 // cos(-INF) = NAN
V_COS_F16(0xfbff) => 0x3c00 // Most negative
finite FP16 V_COS_F16(0x8000) => 0x3c00 //
cos(-0.0) = 1 V_COS_F16(0x3400) => 0x0000 //
cos(0.25) = 0 V_COS_F16(0x7bff) => 0x3c00 //
Most positive finite FP16 V_COS_F16(0x7c00) =>
0xfe00 // cos(+INF) = NAN

	75

	V_EXP_LEGACY_F32

	D.f = pow(2.0, S0.f). Power with legacy
semantics.

	76

	V_LOG_LEGACY_F32

	D.f = log2(S0.f). Base 2 logarithm with legacy
semantics.

	77

	V_CVT_NORM_I
16_F16

	D.i16 = flt16_to_snorm16(S.f16). 0.5ULP
accuracy, supports rounding, exception flags and
saturation, denormals are supported.

	78

	V_CVT_NORM_U
16_F16

	D.u16 = flt16_to_unorm16(S.f16). 0.5ULP
accuracy, supports rounding, exception flags and
saturation, denormals are supported.

	79

	V_SAT_PK_U8_I16

	D.u32 = {16’b0, sat8(S.u[31:16]),
sat8(S.u[15:0])}.

	81

	V_SWAP_B32

	tmp = D.u; D.u = S0.u; S0.u = tmp. Swap operands.
Input and output modifiers not supported; this is
an untyped operation.

VOP1 using VOP3 encoding

Instructions in this format may also be encoded as VOP3. This allows
access to the extra control bits (e.g. ABS, OMOD) in exchange for not
being able to use a literal constant. The VOP3 opcode is: VOP2 opcode +
0x140.

[image: microcode vop3a]

[image: microcode vop3b]

VOPC Instructions

The bitfield map for VOPC is:

[image: microcode vopc]

where:

SRC0 = First operand for instruction.
VSRC1 = Second operand for instruction.
OP = Instructions.
All VOPC instructions are also part of VOP3a microcode format,
for which the bitfield is:

Compare instructions perform the same compare operation on each lane
(workItem or thread) using that lane’s private data, and producing a 1
bit result per lane into VCC or EXEC.

Instructions in this format may use a 32-bit literal constant which
occurs immediately after the instruction.

Most compare instructions fall into one of two categories:

	Those which can use one of 16 compare operations (floating point
types). “{COMPF}”

	Those which can use one of 8 compare operations (integer types).
“{COMPI}”

The opcode number is such that for these the opcode number can be
calculated from a base opcode number for the data type, plus an offset
for the specific compare operation.

	Compare Operation

	Opcode Offset

	Description

	F

	0

	D.u = 0

	LT

	1

	D.u = (S0 < S1)

	EQ

	2

	D.u = (S0 == S1)

	LE

	3

	D.u = (S0 <= S1)

	GT

	4

	D.u = (S0 > S1)

	LG

	5

	D.u = (S0 <> S1)

	GE

	6

	D.u = (S0 >= S1)

	O

	7

	D.u = (!isNaN(S0) &&
!isNaN(S1))

	U

	8

	D.u = (!isNaN(S0) ||
!isNaN(S1))

	NGE

	9

	D.u = !(S0 >= S1)

	NLG

	10

	D.u = !(S0 <> S1)

	NGT

	11

	D.u = !(S0 > S1)

	NLE

	12

	D.u = !(S0 <= S1)

	NEQ

	13

	D.u = !(S0 == S1)

	NLT

	14

	D.u = !(S0 < S1)

	TRU

	15

	D.u = 1

Table: Instructions with Sixteen Compare Operations

	Instruction

	Description

	Hex Range

	V_CMP_{COMPF}_F16

	16-bit float compare.

	0x20 to 0x2F

	V_CMPX_{COMPF}_F16

	16-bit float compare.
Also writes EXEC.

	0x30 to 0x3F

	V_CMP_{COMPF}_F32

	32-bit float compare.

	0x40 to 0x4F

	V_CMPX_{COMPF}_F32

	32-bit float compare.
Also writes EXEC.

	0x50 to 0x5F

	V_CMPS_{COMPF}_F64

	64-bit float compare.

	0x60 to 0x6F

	V_CMPSX_{COMPF}_F64

	64-bit float compare.
Also writes EXEC.

	0x70 to 0x7F

Table: Instructions with Sixteen Compare Operations

	Compare Operation

	Opcode Offset

	Description

	F

	0

	D.u = 0

	LT

	1

	D.u = (S0 < S1)

	EQ

	2

	D.u = (S0 == S1)

	LE

	3

	D.u = (S0 <= S1)

	GT

	4

	D.u = (S0 > S1)

	LG

	5

	D.u = (S0 <> S1)

	GE

	6

	D.u = (S0 >= S1)

	TRU

	7

	D.u = 1

Table: Instructions with Sixteen Compare Operations

	Instruction

	Description

	Hex Range

	V_CMP_{COMPI}_I16

	16-bit signed integer
compare.

	0xA0 - 0xA7

	V_CMP_{COMPI}_U16

	16-bit signed integer
compare. Also writes
EXEC.

	0xA8 - 0xAF

	V_CMPX_{COMPI}_I16

	16-bit unsigned integer
compare.

	0xB0 - 0xB7

	V_CMPX_{COMPI}_U16

	16-bit unsigned integer
compare. Also writes
EXEC.

	0xB8 - 0xBF

	V_CMP_{COMPI}_I32

	32-bit signed integer
compare.

	0xC0 - 0xC7

	V_CMP_{COMPI}_U32

	32-bit signed integer
compare. Also writes
EXEC.

	0xC8 - 0xCF

	V_CMPX_{COMPI}_I32

	32-bit unsigned integer
compare.

	0xD0 - 0xD7

	V_CMPX_{COMPI}_U32

	32-bit unsigned integer
compare. Also writes
EXEC.

	0xD8 - 0xDF

	V_CMP_{COMPI}_I64

	64-bit signed integer
compare.

	0xE0 - 0xE7

	V_CMP_{COMPI}_U64

	64-bit signed integer
compare. Also writes
EXEC.

	0xE8 - 0xEF

	V_CMPX_{COMPI}_I64

	64-bit unsigned integer
compare.

	0xF0 - 0xF7

	V_CMPX_{COMPI}_U64

	64-bit unsigned integer
compare. Also writes
EXEC.

	0xF8 - 0xFF

Table: Instructions with Eight Compare Operations

	Opcode

	Name

	Description

	16

	V_CMP_CLASS_F32

	VCC = IEEE numeric class function specified in
S1.u, performed on S0.f The function reports true
if the floating point value is *any* of the
numeric types selected in S1.u according to the
following list: S1.u[0] – value is a signaling
NaN. S1.u[1] – value is a quiet NaN. S1.u[2] –
value is negative infinity. S1.u[3] – value is a
negative normal value. S1.u[4] – value is a
negative denormal value. S1.u[5] – value is
negative zero. S1.u[6] – value is positive zero.
S1.u[7] – value is a positive denormal value.
S1.u[8] – value is a positive normal value.
S1.u[9] – value is positive infinity.

	17

	V_CMPX_CLASS
_F32

	EXEC = VCC = IEEE numeric class function specified
in S1.u, performed on S0.f The function reports
true if the floating point value is *any* of the
numeric types selected in S1.u according to the
following list: S1.u[0] – value is a signaling
NaN. S1.u[1] – value is a quiet NaN. S1.u[2] –
value is negative infinity. S1.u[3] – value is a
negative normal value. S1.u[4] – value is a
negative denormal value. S1.u[5] – value is
negative zero. S1.u[6] – value is positive zero.
S1.u[7] – value is a positive denormal value.
S1.u[8] – value is a positive normal value.
S1.u[9] – value is positive infinity.

	18

	V_CMP_CLASS_F64

	VCC = IEEE numeric class function specified in
S1.u, performed on S0.d The function reports true
if the floating point value is *any* of the
numeric types selected in S1.u according to the
following list: S1.u[0] – value is a signaling
NaN. S1.u[1] – value is a quiet NaN. S1.u[2] –
value is negative infinity. S1.u[3] – value is a
negative normal value. S1.u[4] – value is a
negative denormal value. S1.u[5] – value is
negative zero. S1.u[6] – value is positive zero.
S1.u[7] – value is a positive denormal value.
S1.u[8] – value is a positive normal value.
S1.u[9] – value is positive infinity.

	19

	V_CMPX_CLASS
_F64

	EXEC = VCC = IEEE numeric class function specified
in S1.u, performed on S0.d The function reports
true if the floating point value is *any* of the
numeric types selected in S1.u according to the
following list: S1.u[0] – value is a signaling
NaN. S1.u[1] – value is a quiet NaN. S1.u[2] –
value is negative infinity. S1.u[3] – value is a
negative normal value. S1.u[4] – value is a
negative denormal value. S1.u[5] – value is
negative zero. S1.u[6] – value is positive zero.
S1.u[7] – value is a positive denormal value.
S1.u[8] – value is a positive normal value.
S1.u[9] – value is positive infinity.

	20

	V_CMP_CLASS_F16

	VCC = IEEE numeric class function specified in
S1.u, performed on S0.f16. Note that the S1 has a
format of f16 since floating point literal
constants are interpreted as 16 bit value for this
opcode The function reports true if the floating
point value is *any* of the numeric types
selected in S1.u according to the following list:
S1.u[0] – value is a signaling NaN. S1.u[1] –
value is a quiet NaN. S1.u[2] – value is negative
infinity. S1.u[3] – value is a negative normal
value. S1.u[4] – value is a negative denormal
value. S1.u[5] – value is negative zero. S1.u[6]
– value is positive zero. S1.u[7] – value is a
positive denormal value. S1.u[8] – value is a
positive normal value. S1.u[9] – value is
positive infinity.

	21

	V_CMPX_CLASS
_F16

	EXEC = VCC = IEEE numeric class function specified
in S1.u, performed on S0.f16 Note that the S1 has
a format of f16 since floating point literal
constants are interpreted as 16 bit value for this
opcode The function reports true if the floating
point value is *any* of the numeric types
selected in S1.u according to the following list:
S1.u[0] – value is a signaling NaN. S1.u[1] –
value is a quiet NaN. S1.u[2] – value is negative
infinity. S1.u[3] – value is a negative normal
value. S1.u[4] – value is a negative denormal
value. S1.u[5] – value is negative zero. S1.u[6]
– value is positive zero. S1.u[7] – value is a
positive denormal value. S1.u[8] – value is a
positive normal value. S1.u[9] – value is
positive infinity.

	32

	V_CMP_F_F16

	D.u64[threadId] = 0.

	33

	V_CMP_LT_F1
6

	D.u64[threadId] = (S0 < S1).

	34

	V_CMP_EQ_F1
6

	D.u64[threadId] = (S0 == S1).

	35

	V_CMP_LE_F1
6

	D.u64[threadId] = (S0 <= S1).

	36

	V_CMP_GT_F1
6

	D.u64[threadId] = (S0 > S1).

	37

	V_CMP_LG_F1
6

	D.u64[threadId] = (S0 <> S1).

	38

	V_CMP_GE_F1
6

	D.u64[threadId] = (S0 >= S1).

	39

	V_CMP_O_F16

	D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

	40

	V_CMP_U_F16

	D.u64[threadId] = (isNan(S0) || isNan(S1)).

	41

	V_CMP_NGE_F
16

	D.u64[threadId] = !(S0 >= S1) // With NAN inputs
this is not the same operation as <.

	42

	V_CMP_NLG_F
16

	D.u64[threadId] = !(S0 <> S1) // With NAN inputs
this is not the same operation as ==.

	43

	V_CMP_NGT_F
16

	D.u64[threadId] = !(S0 > S1) // With NAN inputs
this is not the same operation as <=.

	44

	V_CMP_NLE_F
16

	D.u64[threadId] = !(S0 <= S1) // With NAN inputs
this is not the same operation as >.

	45

	V_CMP_NEQ_F
16

	D.u64[threadId] = !(S0 == S1) // With NAN inputs
this is not the same operation as !=.

	46

	V_CMP_NLT_F
16

	D.u64[threadId] = !(S0 < S1) // With NAN inputs
this is not the same operation as >=.

	47

	V_CMP_TRU_F
16

	D.u64[threadId] = 1.

	48

	V_CMPX_F_F1
6

	EXEC[threadId] = D.u64[threadId] = 0.

	49

	V_CMPX_LT_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	50

	V_CMPX_EQ_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	51

	V_CMPX_LE_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	52

	V_CMPX_GT_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	53

	V_CMPX_LG_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	54

	V_CMPX_GE_F
16

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	55

	V_CMPX_O_F1
6

	EXEC[threadId] = D.u64[threadId] = (!isNan(S0) &&
!isNan(S1)).

	56

	V_CMPX_U_F1
6

	EXEC[threadId] = D.u64[threadId] = (isNan(S0) ||
isNan(S1)).

	57

	V_CMPX_NGE_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) //
With NAN inputs this is not the same operation as
<.

	58

	V_CMPX_NLG_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) //
With NAN inputs this is not the same operation as
==.

	59

	V_CMPX_NGT_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 > S1) //
With NAN inputs this is not the same operation as
<=.

	60

	V_CMPX_NLE_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) //
With NAN inputs this is not the same operation as
>.

	61

	V_CMPX_NEQ_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 == S1) //
With NAN inputs this is not the same operation as
!=.

	62

	V_CMPX_NLT_
F16

	EXEC[threadId] = D.u64[threadId] = !(S0 < S1) //
With NAN inputs this is not the same operation as
>=.

	63

	V_CMPX_TRU_
F16

	EXEC[threadId] = D.u64[threadId] = 1.

	64

	V_CMP_F_F32

	D.u64[threadId] = 0.

	65

	V_CMP_LT_F3
2

	D.u64[threadId] = (S0 < S1).

	66

	V_CMP_EQ_F3
2

	D.u64[threadId] = (S0 == S1).

	67

	V_CMP_LE_F3
2

	D.u64[threadId] = (S0 <= S1).

	68

	V_CMP_GT_F3
2

	D.u64[threadId] = (S0 > S1).

	69

	V_CMP_LG_F3
2

	D.u64[threadId] = (S0 <> S1).

	70

	V_CMP_GE_F3
2

	D.u64[threadId] = (S0 >= S1).

	71

	V_CMP_O_F32

	D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

	72

	V_CMP_U_F32

	D.u64[threadId] = (isNan(S0) || isNan(S1)).

	73

	V_CMP_NGE_F
32

	D.u64[threadId] = !(S0 >= S1) // With NAN inputs
this is not the same operation as <.

	74

	V_CMP_NLG_F
32

	D.u64[threadId] = !(S0 <> S1) // With NAN inputs
this is not the same operation as ==.

	75

	V_CMP_NGT_F
32

	D.u64[threadId] = !(S0 > S1) // With NAN inputs
this is not the same operation as <=.

	76

	V_CMP_NLE_F
32

	D.u64[threadId] = !(S0 <= S1) // With NAN inputs
this is not the same operation as >.

	77

	V_CMP_NEQ_F
32

	D.u64[threadId] = !(S0 == S1) // With NAN inputs
this is not the same operation as !=.

	78

	V_CMP_NLT_F
32

	D.u64[threadId] = !(S0 < S1) // With NAN inputs
this is not the same operation as >=.

	79

	V_CMP_TRU_F
32

	D.u64[threadId] = 1.

	80

	V_CMPX_F_F3
2

	EXEC[threadId] = D.u64[threadId] = 0.

	81

	V_CMPX_LT_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	82

	V_CMPX_EQ_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	83

	V_CMPX_LE_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	84

	V_CMPX_GT_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	85

	V_CMPX_LG_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	86

	V_CMPX_GE_F
32

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	87

	V_CMPX_O_F3
2

	EXEC[threadId] = D.u64[threadId] = (!isNan(S0) &&
!isNan(S1)).

	88

	V_CMPX_U_F3
2

	EXEC[threadId] = D.u64[threadId] = (isNan(S0) ||
isNan(S1)).

	89

	V_CMPX_NGE_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) //
With NAN inputs this is not the same operation as
<.

	90

	V_CMPX_NLG_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) //
With NAN inputs this is not the same operation as
==.

	91

	V_CMPX_NGT_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 > S1) //
With NAN inputs this is not the same operation as
<=.

	92

	V_CMPX_NLE_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) //
With NAN inputs this is not the same operation as
>.

	93

	V_CMPX_NEQ_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 == S1) //
With NAN inputs this is not the same operation as
!=.

	94

	V_CMPX_NLT_
F32

	EXEC[threadId] = D.u64[threadId] = !(S0 < S1) //
With NAN inputs this is not the same operation as
>=.

	95

	V_CMPX_TRU_
F32

	EXEC[threadId] = D.u64[threadId] = 1.

	96

	V_CMP_F_F64

	D.u64[threadId] = 0.

	97

	V_CMP_LT_F6
4

	D.u64[threadId] = (S0 < S1).

	98

	V_CMP_EQ_F6
4

	D.u64[threadId] = (S0 == S1).

	99

	V_CMP_LE_F6
4

	D.u64[threadId] = (S0 <= S1).

	100

	V_CMP_GT_F6
4

	D.u64[threadId] = (S0 > S1).

	101

	V_CMP_LG_F6
4

	D.u64[threadId] = (S0 <> S1).

	102

	V_CMP_GE_F6
4

	D.u64[threadId] = (S0 >= S1).

	103

	V_CMP_O_F64

	D.u64[threadId] = (!isNan(S0) && !isNan(S1)).

	104

	V_CMP_U_F64

	D.u64[threadId] = (isNan(S0) || isNan(S1)).

	105

	V_CMP_NGE_F
64

	D.u64[threadId] = !(S0 >= S1) // With NAN inputs
this is not the same operation as <.

	106

	V_CMP_NLG_F
64

	D.u64[threadId] = !(S0 <> S1) // With NAN inputs
this is not the same operation as ==.

	107

	V_CMP_NGT_F
64

	D.u64[threadId] = !(S0 > S1) // With NAN inputs
this is not the same operation as <=.

	108

	V_CMP_NLE_F
64

	D.u64[threadId] = !(S0 <= S1) // With NAN inputs
this is not the same operation as >.

	109

	V_CMP_NEQ_F
64

	D.u64[threadId] = !(S0 == S1) // With NAN inputs
this is not the same operation as !=.

	110

	V_CMP_NLT_F
64

	D.u64[threadId] = !(S0 < S1) // With NAN inputs
this is not the same operation as >=.

	111

	V_CMP_TRU_F
64

	D.u64[threadId] = 1.

	112

	V_CMPX_F_F6
4

	EXEC[threadId] = D.u64[threadId] = 0.

	113

	V_CMPX_LT_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	114

	V_CMPX_EQ_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	115

	V_CMPX_LE_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	116

	V_CMPX_GT_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	117

	V_CMPX_LG_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	118

	V_CMPX_GE_F
64

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	119

	V_CMPX_O_F6
4

	EXEC[threadId] = D.u64[threadId] = (!isNan(S0) &&
!isNan(S1)).

	120

	V_CMPX_U_F6
4

	EXEC[threadId] = D.u64[threadId] = (isNan(S0) ||
isNan(S1)).

	121

	V_CMPX_NGE_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 >= S1) //
With NAN inputs this is not the same operation as
<.

	122

	V_CMPX_NLG_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 <> S1) //
With NAN inputs this is not the same operation as
==.

	123

	V_CMPX_NGT_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 > S1) //
With NAN inputs this is not the same operation as
<=.

	124

	V_CMPX_NLE_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 <= S1) //
With NAN inputs this is not the same operation as
>.

	125

	V_CMPX_NEQ_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 == S1) //
With NAN inputs this is not the same operation as
!=.

	126

	V_CMPX_NLT_
F64

	EXEC[threadId] = D.u64[threadId] = !(S0 < S1) //
With NAN inputs this is not the same operation as
>=.

	127

	V_CMPX_TRU_
F64

	EXEC[threadId] = D.u64[threadId] = 1.

	160

	V_CMP_F_I16

	D.u64[threadId] = 0.

	161

	V_CMP_LT_I1
6

	D.u64[threadId] = (S0 < S1).

	162

	V_CMP_EQ_I1
6

	D.u64[threadId] = (S0 == S1).

	163

	V_CMP_LE_I1
6

	D.u64[threadId] = (S0 <= S1).

	164

	V_CMP_GT_I1
6

	D.u64[threadId] = (S0 > S1).

	165

	V_CMP_NE_I1
6

	D.u64[threadId] = (S0 <> S1).

	166

	V_CMP_GE_I1
6

	D.u64[threadId] = (S0 >= S1).

	167

	V_CMP_T_I16

	D.u64[threadId] = 1.

	168

	V_CMP_F_U16

	D.u64[threadId] = 0.

	169

	V_CMP_LT_U1
6

	D.u64[threadId] = (S0 < S1).

	170

	V_CMP_EQ_U1
6

	D.u64[threadId] = (S0 == S1).

	171

	V_CMP_LE_U1
6

	D.u64[threadId] = (S0 <= S1).

	172

	V_CMP_GT_U1
6

	D.u64[threadId] = (S0 > S1).

	173

	V_CMP_NE_U1
6

	D.u64[threadId] = (S0 <> S1).

	174

	V_CMP_GE_U1
6

	D.u64[threadId] = (S0 >= S1).

	175

	V_CMP_T_U16

	D.u64[threadId] = 1.

	176

	V_CMPX_F_I1
6

	EXEC[threadId] = D.u64[threadId] = 0.

	177

	V_CMPX_LT_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	178

	V_CMPX_EQ_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	179

	V_CMPX_LE_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	180

	V_CMPX_GT_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	181

	V_CMPX_NE_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	182

	V_CMPX_GE_I
16

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	183

	V_CMPX_T_I1
6

	EXEC[threadId] = D.u64[threadId] = 1.

	184

	V_CMPX_F_U1
6

	EXEC[threadId] = D.u64[threadId] = 0.

	185

	V_CMPX_LT_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	186

	V_CMPX_EQ_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	187

	V_CMPX_LE_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	188

	V_CMPX_GT_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	189

	V_CMPX_NE_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	190

	V_CMPX_GE_U
16

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	191

	V_CMPX_T_U1
6

	EXEC[threadId] = D.u64[threadId] = 1.

	192

	V_CMP_F_I32

	D.u64[threadId] = 0.

	193

	V_CMP_LT_I3
2

	D.u64[threadId] = (S0 < S1).

	194

	V_CMP_EQ_I3
2

	D.u64[threadId] = (S0 == S1).

	195

	V_CMP_LE_I3
2

	D.u64[threadId] = (S0 <= S1).

	196

	V_CMP_GT_I3
2

	D.u64[threadId] = (S0 > S1).

	197

	V_CMP_NE_I3
2

	D.u64[threadId] = (S0 <> S1).

	198

	V_CMP_GE_I3
2

	D.u64[threadId] = (S0 >= S1).

	199

	V_CMP_T_I32

	D.u64[threadId] = 1.

	200

	V_CMP_F_U32

	D.u64[threadId] = 0.

	201

	V_CMP_LT_U3
2

	D.u64[threadId] = (S0 < S1).

	202

	V_CMP_EQ_U3
2

	D.u64[threadId] = (S0 == S1).

	203

	V_CMP_LE_U3
2

	D.u64[threadId] = (S0 <= S1).

	204

	V_CMP_GT_U3
2

	D.u64[threadId] = (S0 > S1).

	205

	V_CMP_NE_U3
2

	D.u64[threadId] = (S0 <> S1).

	206

	V_CMP_GE_U3
2

	D.u64[threadId] = (S0 >= S1).

	207

	V_CMP_T_U32

	D.u64[threadId] = 1.

	208

	V_CMPX_F_I3
2

	EXEC[threadId] = D.u64[threadId] = 0.

	209

	V_CMPX_LT_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	210

	V_CMPX_EQ_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	211

	V_CMPX_LE_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	212

	V_CMPX_GT_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	213

	V_CMPX_NE_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	214

	V_CMPX_GE_I
32

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	215

	V_CMPX_T_I3
2

	EXEC[threadId] = D.u64[threadId] = 1.

	216

	V_CMPX_F_U3
2

	EXEC[threadId] = D.u64[threadId] = 0.

	217

	V_CMPX_LT_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	218

	V_CMPX_EQ_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	219

	V_CMPX_LE_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	220

	V_CMPX_GT_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	221

	V_CMPX_NE_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	222

	V_CMPX_GE_U
32

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	223

	V_CMPX_T_U3
2

	EXEC[threadId] = D.u64[threadId] = 1.

	224

	V_CMP_F_I64

	D.u64[threadId] = 0.

	225

	V_CMP_LT_I6
4

	D.u64[threadId] = (S0 < S1).

	226

	V_CMP_EQ_I6
4

	D.u64[threadId] = (S0 == S1).

	227

	V_CMP_LE_I6
4

	D.u64[threadId] = (S0 <= S1).

	228

	V_CMP_GT_I6
4

	D.u64[threadId] = (S0 > S1).

	229

	V_CMP_NE_I6
4

	D.u64[threadId] = (S0 <> S1).

	230

	V_CMP_GE_I6
4

	D.u64[threadId] = (S0 >= S1).

	231

	V_CMP_T_I64

	D.u64[threadId] = 1.

	232

	V_CMP_F_U64

	D.u64[threadId] = 0.

	233

	V_CMP_LT_U6
4

	D.u64[threadId] = (S0 < S1).

	234

	V_CMP_EQ_U6
4

	D.u64[threadId] = (S0 == S1).

	235

	V_CMP_LE_U6
4

	D.u64[threadId] = (S0 <= S1).

	236

	V_CMP_GT_U6
4

	D.u64[threadId] = (S0 > S1).

	237

	V_CMP_NE_U6
4

	D.u64[threadId] = (S0 <> S1).

	238

	V_CMP_GE_U6
4

	D.u64[threadId] = (S0 >= S1).

	239

	V_CMP_T_U64

	D.u64[threadId] = 1.

	240

	V_CMPX_F_I6
4

	EXEC[threadId] = D.u64[threadId] = 0.

	241

	V_CMPX_LT_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	242

	V_CMPX_EQ_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	243

	V_CMPX_LE_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	244

	V_CMPX_GT_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	245

	V_CMPX_NE_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	246

	V_CMPX_GE_I
64

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	247

	V_CMPX_T_I6
4

	EXEC[threadId] = D.u64[threadId] = 1.

	248

	V_CMPX_F_U6
4

	EXEC[threadId] = D.u64[threadId] = 0.

	249

	V_CMPX_LT_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 < S1).

	250

	V_CMPX_EQ_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 == S1).

	251

	V_CMPX_LE_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 <= S1).

	252

	V_CMPX_GT_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 > S1).

	253

	V_CMPX_NE_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 <> S1).

	254

	V_CMPX_GE_U
64

	EXEC[threadId] = D.u64[threadId] = (S0 >= S1).

	255

	V_CMPX_T_U6
4

	EXEC[threadId] = D.u64[threadId] = 1.

Table: VOPC Compare Opcodes

VOPC using VOP3A encoding

Instructions in this format may also be encoded as VOP3A. This allows
access to the extra control bits (e.g. ABS, OMOD) in exchange for not
being able to use a literal constant. The VOP3 opcode is: VOP2 opcode +
0x000.

When the CLAMP microcode bit is set to 1, these compare instructions
signal an exception when either of the inputs is NaN. When CLAMP is set
to zero, NaN does not signal an exception. The second eight VOPC
instructions have {OP8} embedded in them. This refers to each of the
compare operations listed below.

[image: microcode vop3a]

where:

 VDST = Destination for instruction in the VGPR.
 ABS = Floating-point absolute value.
 CLMP = Clamp output.
 OP = Instructions.
 SRC0 = First operand for instruction.
 SRC1 = Second operand for instruction.
 SRC2 = Third operand for instruction. Unused in VOPC instructions.
 OMOD = Output modifier for instruction. Unused in VOPC instructions.
 NEG = Floating-point negation.

VOP3P Instructions

[image: microcode vop3p]

	Opcode

	Name

	Description

	0

	V_PK_MAD_I16

	D.i[31:16] = S0.i[31:16] * S1.i[31:16] +
S2.i[31:16] . D.i[15:0] = S0.i[15:0] *
S1.i[15:0] + S2.i[15:0] .

	1

	V_PK_MUL_LO_U16

	D.u[31:16] = S0.u[31:16] * S1.u[31:16] .
D.u[15:0] = S0.u[15:0] * S1.u[15:0] .

	2

	V_PK_ADD_I16

	D.i[31:16] = S0.i[31:16] + S1.i[31:16] .
D.i[15:0] = S0.i[15:0] + S1.i[15:0] .

	3

	V_PK_SUB_I16

	D.i[31:16] = S0.i[31:16] - S1.i[31:16] .
D.i[15:0] = S0.i[15:0] - S1.i[15:0] .

	4

	V_PK_LSHLREV_B16

	D.u[31:16] = S1.u[31:16] << S0.u[19:16] .
D.u[15:0] = S1.u[15:0] << S0.u[3:0] .

	5

	V_PK_LSHRREV_B16

	D.u[31:16] = S1.u[31:16] >> S0.u[19:16] .
D.u[15:0] = S1.u[15:0] >> S0.u[3:0] .

	6

	V_PK_ASHRREV_I16

	D.i[31:16] = S1.i[31:16] >> S0.i[19:16] .
D.i[15:0] = S1.i[15:0] >> S0.i[3:0] .

	7

	V_PK_MAX_I16

	D.i[31:16] = (S0.i[31:16] >= S1.i[31:16]) ?
S0.i[31:16] : S1.i[31:16] . D.i[15:0] =
(S0.i[15:0] >= S1.i[15:0]) ? S0.i[15:0] :
S1.i[15:0] .

	8

	V_PK_MIN_I16

	D.i[31:16] = (S0.i[31:16] < S1.i[31:16]) ?
S0.i[31:16] : S1.i[31:16] . D.i[15:0] =
(S0.i[15:0] < S1.i[15:0]) ? S0.i[15:0] :
S1.i[15:0]

	9

	V_PK_MAD_U16

	D.u[31:16] = S0.u[31:16] * S1.u[31:16] +
S2.u[31:16] . D.u[15:0] = S0.u[15:0] *
S1.u[15:0] + S2.u[15:0] .

	10

	V_PK_ADD_U16

	D.u[31:16] = S0.u[31:16] + S1.u[31:16] .
D.u[15:0] = S0.u[15:0] + S1.u[15:0] .

	11

	V_PK_SUB_U16

	D.u[31:16] = S0.u[31:16] - S1.u[31:16] .
D.u[15:0] = S0.u[15:0] - S1.u[15:0] .

	12

	V_PK_MAX_U16

	D.u[31:16] = (S0.u[31:16] >= S1.u[31:16]) ?
S0.u[31:16] : S1.u[31:16] . D.u[15:0] =
(S0.u[15:0] >= S1.u[15:0]) ? S0.u[15:0] :
S1.u[15:0] .

	13

	V_PK_MIN_U16

	D.u[31:16] = (S0.u[31:16] < S1.u[31:16]) ?
S0.u[31:16] : S1.u[31:16] . D.u[15:0] =
(S0.u[15:0] < S1.u[15:0]) ? S0.u[15:0] :
S1.u[15:0] .

	14

	V_PK_FMA_F16

	D.f[31:16] = S0.f[31:16] * S1.f[31:16] +
S2.f[31:16] . D.f[15:0] = S0.f[15:0] *
S1.f[15:0] + S2.f[15:0] . Fused half-precision
multiply add.

	15

	V_PK_ADD_F16

	D.f[31:16] = S0.f[31:16] + S1.f[31:16] .
D.f[15:0] = S0.f[15:0] + S1.f[15:0] .

	16

	V_PK_MUL_F16

	D.f[31:16] = S0.f[31:16] * S1.f[31:16] .
D.f[15:0] = S0.f[15:0] * S1.f[15:0] .

	17

	V_PK_MIN_F16

	D.f[31:16] = min(S0.f[31:16], S1.f[31:16]) .
D.f[15:0] = min(S0.f[15:0], S1.u[15:0]) .

	18

	V_PK_MAX_F16

	D.f[31:16] = max(S0.f[31:16], S1.f[31:16]) .
D.f[15:0] = max(S0.f[15:0], S1.f[15:0]) .

	32

	V_MAD_MIX_F3
2

	D.f[31:0] = S0.f * S1.f + S2.f. Size and
location of S0, S1 and S2 controlled by OPSEL:
0=src[31:0], 1=src[31:0], 2=src[15:0],
3=src[31:16]. Also, for MAD_MIX, the NEG_HI
field acts instead as an absolute-value modifier.

	33

	V_MAD_MIXLO_
F16

	D.f[15:0] = S0.f * S1.f + S2.f. Size and
location of S0, S1 and S2 controlled by OPSEL:
0=src[31:0], 1=src[31:0], 2=src[15:0],
3=src[31:16]. Also, for MAD_MIX, the NEG_HI
field acts instead as an absolute-value modifier.

	34

	V_MAD_MIXHI_
F16

	D.f[31:16] = S0.f * S1.f + S2.f. Size and
location of S0, S1 and S2 controlled by OPSEL:
0=src[31:0], 1=src[31:0], 2=src[15:0],
3=src[31:16]. Also, for MAD_MIX, the NEG_HI
field acts instead as an absolute-value modifier.

VINTERP Instructions

[image: microcode vintrp]

	Opcode

	Name

	Description

	0

	V_INTERP_P1_F32

	D.f = P10 * S.f + P0. Parameter interpolation.
CAUTION: when in HALF_LDS mode, D must not be the
same GPR as S; if D == S then data corruption will
occur. NOTE: In textual representations the I/J
VGPR is the first source and the attribute is the
second source; however in the VOP3 encoding the
attribute is stored in the src0 field and the VGPR
is stored in the src1 field.

	1

	V_INTERP_P2_F32

	D.f = P20 * S.f + D.f. Parameter interpolation.
NOTE: In textual representations the I/J VGPR is
the first source and the attribute is the second
source; however in the VOP3 encoding the attribute
is stored in the src0 field and the VGPR is stored
in the src1 field.

	2

	V_INTERP_MOV
_F32

	D.f = {P10,P20,P0}[S.u]. Parameter load. Used for
custom interpolation in the shader.

VINTERP using VOP3 encoding

Instructions in this format may also be encoded as VOP3A. This allows
access to the extra control bits (e.g. ABS, OMOD) in exchange for not
being able to use a literal constant. The VOP3 opcode is: VOP2 opcode +
0x270.

[image: microcode vop3a]

VOP3A & VOP3B Instructions

VOP3 instructions use one of two encodings:

[image: microcode vop3a]

[image: microcode vop3b]

	VOP3B

	
this encoding allows specifying a unique scalar
destination, and is used only for:

V_ADD_CO_U32

V_SUB_CO_U32

V_SUBREV_CO_U32

V_ADDC_CO_U32

V_SUBB_CO_U32

V_SUBBREV_CO_U32

V_DIV_SCALE_F32

V_DIV_SCALE_F64

V_MAD_U64_U32

V_MAD_I64_I32

	VOP3A

	all other VALU instructions use this encoding

	Opcode

	Name

	Description

	448

	V_MAD_LEGACY
_F32

	D.f = S0.f * S1.f + S2.f. // DX9 rules, 0.0 * x
= 0.0

	449

	V_MAD_F32

	D.f = S0.f * S1.f + S2.f. 1ULP accuracy,
denormals are flushed.

	450

	V_MAD_I32_I
24

	D.i = S0.i[23:0] * S1.i[23:0] + S2.i.

	451

	V_MAD_U32_U
24

	D.u = S0.u[23:0] * S1.u[23:0] + S2.u.

	452

	V_CUBEID_F32

	D.f = cubemap face ID ({0.0, 1.0, …, 5.0}). XYZ
coordinate is given in (S0.f, S1.f, S2.f). Cubemap
Face ID determination. Result is a floating point
face ID. S0.f = x S1.f = y S2.f = z If (Abs(S2.f)
>= Abs(S0.f) && Abs(S2.f) >= Abs(S1.f)) If (S2.f <
0) D.f = 5.0 Else D.f = 4.0 Else if (Abs(S1.f) >=
Abs(S0.f)) If (S1.f < 0) D.f = 3.0 Else D.f = 2.0
Else If (S0.f < 0) D.f = 1.0 Else D.f = 0.0

	453

	V_CUBESC_F32

	D.f = cubemap S coordinate. XYZ coordinate is
given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y
S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f)
>= Abs(S1.f)) If (S2.f < 0) D.f = -S0.f Else D.f =
S0.f Else if (Abs(S1.f) >= Abs(S0.f)) D.f = S0.f
Else If (S0.f < 0) D.f = S2.f Else D.f = -S2.f

	454

	V_CUBETC_F32

	D.f = cubemap T coordinate. XYZ coordinate is
given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y
S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f)
>= Abs(S1.f)) D.f = -S1.f Else if (Abs(S1.f) >=
Abs(S0.f)) If (S1.f < 0) D.f = -S2.f Else D.f =
S2.f Else D.f = -S1.f

	455

	V_CUBEMA_F32

	D.f = 2.0 * cubemap major axis. XYZ coordinate is
given in (S0.f, S1.f, S2.f). S0.f = x S1.f = y
S2.f = z If (Abs(S2.f) >= Abs(S0.f) && Abs(S2.f)
>= Abs(S1.f)) D.f = 2.0*S2.f Else if (Abs(S1.f)
>= Abs(S0.f)) D.f = 2.0 * S1.f Else D.f = 2.0 *
S0.f

	456

	V_BFE_U32

	D.u = (S0.u >> S1.u[4:0]) & ((1 << S2.u[4:0]) -
1). Bitfield extract with S0 = data, S1 =
field_offset, S2 = field_width.

	457

	V_BFE_I32

	D.i = (S0.i >> S1.u[4:0]) & ((1 << S2.u[4:0]) -
1). Bitfield extract with S0 = data, S1 =
field_offset, S2 = field_width.

	458

	V_BFI_B32

	D.u = (S0.u & S1.u) | (~S0.u & S2.u). Bitfield
insert.

	459

	V_FMA_F32

	D.f = S0.f * S1.f + S2.f. Fused single precision
multiply add. 0.5ULP accuracy, denormals are
supported.

	460

	V_FMA_F64

	D.d = S0.d * S1.d + S2.d. Fused double precision
multiply add. 0.5ULP precision, denormals are
supported.

	461

	V_LERP_U8

	D.u = ((S0.u[31:24] + S1.u[31:24] + S2.u[24]) >>
1) << 24 D.u += ((S0.u[23:16] + S1.u[23:16] +
S2.u[16]) >> 1) << 16; D.u += ((S0.u[15:8] +
S1.u[15:8] + S2.u[8]) >> 1) << 8; D.u +=
((S0.u[7:0] + S1.u[7:0] + S2.u[0]) >> 1). Unsigned
8-bit pixel average on packed unsigned bytes
(linear interpolation). S2 acts as a round mode;
if set, 0.5 rounds up, otherwise 0.5 truncates.

	462

	V_ALIGNBIT_B
32

	D.u = ({S0,S1} >> S2.u[4:0]) & 0xffffffff.

	463

	V_ALIGNBYTE_
B32

	D.u = ({S0,S1} >> (8*S2.u[4:0])) & 0xffffffff.

	464

	V_MIN3_F32

	D.f = V_MIN_F32(V_MIN_F32(S0.f, S1.f), S2.f).

	465

	V_MIN3_I32

	D.i = V_MIN_I32(V_MIN_I32(S0.i, S1.i), S2.i).

	466

	V_MIN3_U32

	D.u = V_MIN_U32(V_MIN_U32(S0.u, S1.u), S2.u).

	467

	V_MAX3_F32

	D.f = V_MAX_F32(V_MAX_F32(S0.f, S1.f), S2.f).

	468

	V_MAX3_I32

	D.i = V_MAX_I32(V_MAX_I32(S0.i, S1.i), S2.i).

	469

	V_MAX3_U32

	D.u = V_MAX_U32(V_MAX_U32(S0.u, S1.u), S2.u).

	470

	V_MED3_F32

	if (isNan(S0.f) || isNan(S1.f) || isNan(S2.f))
D.f = V_MIN3_F32(S0.f, S1.f, S2.f); else if
(V_MAX3_F32(S0.f, S1.f, S2.f) == S0.f) D.f =
V_MAX_F32(S1.f, S2.f); else if
(V_MAX3_F32(S0.f, S1.f, S2.f) == S1.f) D.f =
V_MAX_F32(S0.f, S2.f); else D.f =
V_MAX_F32(S0.f, S1.f); endif.

	471

	V_MED3_I32

	if (V_MAX3_I32(S0.i, S1.i, S2.i) == S0.i) D.i =
V_MAX_I32(S1.i, S2.i); else if
(V_MAX3_I32(S0.i, S1.i, S2.i) == S1.i) D.i =
V_MAX_I32(S0.i, S2.i); else D.i =
V_MAX_I32(S0.i, S1.i); endif.

	472

	V_MED3_U32

	if (V_MAX3_U32(S0.u, S1.u, S2.u) == S0.u) D.u =
V_MAX_U32(S1.u, S2.u); else if
(V_MAX3_U32(S0.u, S1.u, S2.u) == S1.u) D.u =
V_MAX_U32(S0.u, S2.u); else D.u =
V_MAX_U32(S0.u, S1.u); endif.

	473

	V_SAD_U8

	D.u = abs(S0.i[31:24] - S1.i[31:24]); D.u +=
abs(S0.i[23:16] - S1.i[23:16]); D.u +=
abs(S0.i[15:8] - S1.i[15:8]); D.u += abs(S0.i[7:0]
- S1.i[7:0]) + S2.u. Sum of absolute differences
with accumulation, overflow into upper bits is
allowed.

	474

	V_SAD_HI_U8

	D.u = (SAD_U8(S0, S1, 0) << 16) + S2.u. Sum of
absolute differences with accumulation, overflow
is lost.

	475

	V_SAD_U16

	D.u = abs(S0.i[31:16] - S1.i[31:16]) +
abs(S0.i[15:0] - S1.i[15:0]) + S2.u. Word SAD with
accumulation.

	476

	V_SAD_U32

	D.u = abs(S0.i - S1.i) + S2.u. Dword SAD with
accumulation.

	477

	V_CVT_PK_U8
_F32

	D.u = (S2.u & ~(0xff << (8 * S1.u[1:0]))); D.u =
D.u | ((flt32_to_uint8(S0.f) & 0xff) << (8 *
S1.u[1:0])). Convert floating point value S0 to
8-bit unsigned integer and pack the result into
byte S1 of dword S2.

	478

	V_DIV_FIXUP_F32

	sign_out = sign(S1.f)^sign(S2.f); if (S2.f ==
NAN) D.f = Quiet(S2.f); else if (S1.f == NAN) D.f
= Quiet(S1.f); else if (S1.f == S2.f == 0) // 0/0
D.f = 0xffc0_0000; else if (abs(S1.f) ==
abs(S2.f) == +-INF) // inf/inf D.f = 0xffc0_0000;
else if (S1.f == 0 || abs(S2.f) == +-INF) //
x/0, or inf/y D.f = sign_out ? -INF : +INF; else
if (abs(S1.f) == +-INF || S2.f == 0) // x/inf,
0/y D.f = sign_out ? -0 : 0; else if
((exponent(S2.f) - exponent(S1.f)) < -150) D.f =
sign_out ? -underflow : underflow; else if
(exponent(S1.f) == 255) D.f = sign_out ?
-overflow : overflow; else D.f = sign_out ?
-abs(S0.f) : abs(S0.f); endif. Single precision
division fixup. S0 = Quotient, S1 = Denominator,
S2 = Numerator. Given a numerator, denominator,
and quotient from a divide, this opcode will
detect and apply special case numerics, touching
up the quotient if necessary. This opcode also
generates invalid, denorm and divide by zero
exceptions caused by the division.

	479

	V_DIV_FIXUP_F64

	sign_out = sign(S1.d)^sign(S2.d); if (S2.d ==
NAN) D.d = Quiet(S2.d); else if (S1.d == NAN) D.d
= Quiet(S1.d); else if (S1.d == S2.d == 0) // 0/0
D.d = 0xfff8_0000_0000_0000; else if (abs(S1.d)
== abs(S2.d) == +-INF) // inf/inf D.d =
0xfff8_0000_0000_0000; else if (S1.d == 0 ||
abs(S2.d) == +-INF) // x/0, or inf/y D.d =
sign_out ? -INF : +INF; else if (abs(S1.d) ==
+-INF || S2.d == 0) // x/inf, 0/y D.d =
sign_out ? -0 : 0; else if ((exponent(S2.d) -
exponent(S1.d)) < -1075) D.d = sign_out ?
-underflow : underflow; else if (exponent(S1.d) ==
2047) D.d = sign_out ? -overflow : overflow; else
D.d = sign_out ? -abs(S0.d) : abs(S0.d); endif.
Double precision division fixup. S0 = Quotient, S1
= Denominator, S2 = Numerator. Given a numerator,
denominator, and quotient from a divide, this
opcode will detect and apply special case
numerics, touching up the quotient if necessary.
This opcode also generates invalid, denorm and
divide by zero exceptions caused by the division.

	480

	V_DIV_SCALE_F32

	VCC = 0; if (S2.f == 0 || S1.f == 0) D.f = NAN
else if (exponent(S2.f) - exponent(S1.f) >= 96) //
N/D near MAX_FLOAT VCC = 1; if (S0.f == S1.f) //
Only scale the denominator D.f = ldexp(S0.f, 64);
end if else if (S1.f == DENORM) D.f = ldexp(S0.f,
64); else if (1 / S1.f == DENORM && S2.f / S1.f ==
DENORM) VCC = 1; if (S0.f == S1.f) // Only scale
the denominator D.f = ldexp(S0.f, 64); end if else
if (1 / S1.f == DENORM) D.f = ldexp(S0.f, -64);
else if (S2.f / S1.f==DENORM) VCC = 1; if (S0.f ==
S2.f) // Only scale the numerator D.f =
ldexp(S0.f, 64); end if else if (exponent(S2.f) <=
23) // Numerator is tiny D.f = ldexp(S0.f, 64);
end if. Single precision division pre-scale. S0 =
Input to scale (either denominator or numerator),
S1 = Denominator, S2 = Numerator. Given a
numerator and denominator, this opcode will
appropriately scale inputs for division to avoid
subnormal terms during Newton-Raphson correction
algorithm. S0 must be the same value as either S1
or S2. This opcode producses a VCC flag for
post-scaling of the quotient (using
V_DIV_FMAS_F32).

	481

	V_DIV_SCALE_F64

	VCC = 0; if (S2.d == 0 || S1.d == 0) D.d = NAN
else if (exponent(S2.d) - exponent(S1.d) >= 768)
// N/D near MAX_FLOAT VCC = 1; if (S0.d == S1.d)
// Only scale the denominator D.d = ldexp(S0.d,
128); end if else if (S1.d == DENORM) D.d =
ldexp(S0.d, 128); else if (1 / S1.d == DENORM &&
S2.d / S1.d == DENORM) VCC = 1; if (S0.d == S1.d)
// Only scale the denominator D.d = ldexp(S0.d,
128); end if else if (1 / S1.d == DENORM) D.d =
ldexp(S0.d, -128); else if (S2.d / S1.d==DENORM)
VCC = 1; if (S0.d == S2.d) // Only scale the
numerator D.d = ldexp(S0.d, 128); end if else if
(exponent(S2.d) <= 53) // Numerator is tiny D.d =
ldexp(S0.d, 128); end if. Double precision
division pre-scale. S0 = Input to scale (either
denominator or numerator), S1 = Denominator, S2 =
Numerator. Given a numerator and denominator, this
opcode will appropriately scale inputs for
division to avoid subnormal terms during
Newton-Raphson correction algorithm. S0 must be
the same value as either S1 or S2. This opcode
producses a VCC flag for post-scaling of the
quotient (using V_DIV_FMAS_F64).

	482

	V_DIV_FMAS_
F32

	if (VCC[threadId]) D.f = 2**32 * (S0.f * S1.f
+ S2.f); else D.f = S0.f * S1.f + S2.f; end if.
Single precision FMA with fused scale. This opcode
performs a standard Fused Multiply-Add operation
and will conditionally scale the resulting
exponent if VCC is set. Input denormals are not
flushed, but output flushing is allowed.

	483

	V_DIV_FMAS_
F64

	if (VCC[threadId]) D.d = 2**64 * (S0.d * S1.d
+ S2.d); else D.d = S0.d * S1.d + S2.d; end if.
Double precision FMA with fused scale. This opcode
performs a standard Fused Multiply-Add operation
and will conditionally scale the resulting
exponent if VCC is set. Input denormals are not
flushed, but output flushing is allowed.

	484

	V_MSAD_U8

	D.u = Masked Byte SAD with accum_lo(S0.u, S1.u,
S2.u).

	485

	V_QSAD_PK_U
16_U8

	D.u = Quad-Byte SAD with 16-bit packed
accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[63:0])

	486

	V_MQSAD_PK_
U16_U8

	D.u = Masked Quad-Byte SAD with 16-bit packed
accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[63:0])

	487

	V_MQSAD_U32_U8

	D.u128 = Masked Quad-Byte SAD with 32-bit
accum_lo/hi(S0.u[63:0], S1.u[31:0], S2.u[127:0])

	488

	V_MAD_U64_U
32

	{vcc_out,D.u64} = S0.u32 * S1.u32 + S2.u64.

	489

	V_MAD_I64_I
32

	{vcc_out,D.i64} = S0.i32 * S1.i32 + S2.i64.

	490

	V_MAD_LEGACY
_F16

	D.f16 = S0.f16 * S1.f16 + S2.f16. Supports round
mode, exception flags, saturation. If op_sel[3]
is 0 Result is written to 16 LSBs of destination
VGPR and hi 16 bits are written as 0 (this is
different from V_MAD_F16). If op_sel[3] is 1
Result is written to 16 MSBs of destination VGPR
and lo 16 bits are preserved.

	491

	V_MAD_LEGACY
_U16

	D.u16 = S0.u16 * S1.u16 + S2.u16. Supports
saturation (unsigned 16-bit integer domain). If
op_sel[3] is 0 Result is written to 16 LSBs of
destination VGPR and hi 16 bits are written as 0
(this is different from V_MAD_U16). If
op_sel[3] is 1 Result is written to 16 MSBs of
destination VGPR and lo 16 bits are preserved.

	492

	V_MAD_LEGACY
_I16

	D.i16 = S0.i16 * S1.i16 + S2.i16. Supports
saturation (signed 16-bit integer domain). If
op_sel[3] is 0 Result is written to 16 LSBs of
destination VGPR and hi 16 bits are written as 0
(this is different from V_MAD_I16). If
op_sel[3] is 1 Result is written to 16 MSBs of
destination VGPR and lo 16 bits are preserved.

	493

	V_PERM_B32

	D.u[31:24] = byte_permute({S0.u, S1.u},
S2.u[31:24]); D.u[23:16] = byte_permute({S0.u,
S1.u}, S2.u[23:16]); D.u[15:8] =
byte_permute({S0.u, S1.u}, S2.u[15:8]); D.u[7:0]
= byte_permute({S0.u, S1.u}, S2.u[7:0]); byte
permute(byte in[8], byte sel) { if(sel>=13) then
return 0xff; elsif(sel==12) then return 0x00;
elsif(sel==11) then return in[7][7] * 0xff;
elsif(sel==10) then return in[5][7] * 0xff;
elsif(sel==9) then return in[3][7] * 0xff;
elsif(sel==8) then return in[1][7] * 0xff; else
return in[sel]; } Byte permute.

	494

	V_FMA_LEGACY
_F16

	D.f16 = S0.f16 * S1.f16 + S2.f16. Fused half
precision multiply add.

	495

	V_DIV_FIXUP_LEGACY_F16

	sign_out = sign(S1.f16)^sign(S2.f16); if (S2.f16
== NAN) D.f16 = Quiet(S2.f16); else if (S1.f16 ==
NAN) D.f16 = Quiet(S1.f16); else if (S1.f16 ==
S2.f16 == 0) // 0/0 D.f16 = 0xfe00; else if
(abs(S1.f16) == abs(S2.f16) == +-INF) // inf/inf
D.f16 = 0xfe00; else if (S1.f16 ==0 ||
abs(S2.f16) == +-INF) // x/0, or inf/y D.f16 =
sign_out ? -INF : +INF; else if (abs(S1.f16) ==
+-INF || S2.f16 == 0) // x/inf, 0/y D.f16 =
sign_out ? -0 : 0; else D.f16 = sign_out ?
-abs(S0.f16) : abs(S0.f16); end if. Half precision
division fixup. S0 = Quotient, S1 = Denominator,
S2 = Numerator. Given a numerator, denominator,
and quotient from a divide, this opcode will
detect and apply special case numerics, touching
up the quotient if necessary. This opcode also
generates invalid, denorm and divide by zero
exceptions caused by the division.

	496

	V_CVT_PKACCU
M_U8_F32

	byte = S1.u[1:0]; bit = byte * 8; D.u[bit+7:bit]
= flt32_to_uint8(S0.f). Pack converted value of
S0.f into byte S1 of the destination. Note: this
opcode uses src_c to pass destination in as a
source.

	497

	V_MAD_U32_U
16

	D.u32 = S0.u16 * S1.u16 + S2.u32.

	498

	V_MAD_I32_I
16

	D.i32 = S0.i16 * S1.i16 + S2.i32.

	499

	V_XAD_U32

	D.u32 = (S0.u32 ^ S1.u32) + S2.u32. No
carryin/carryout and no saturation. This opcode
exists to accelerate the SHA256 hash algorithm.

	500

	V_MIN3_F16

	D.f16 = V_MIN_F16(V_MIN_F16(S0.f16, S1.f16),
S2.f16).

	501

	V_MIN3_I16

	D.i16 = V_MIN_I16(V_MIN_I16(S0.i16, S1.i16),
S2.i16).

	502

	V_MIN3_U16

	D.u16 = V_MIN_U16(V_MIN_U16(S0.u16, S1.u16),
S2.u16).

	503

	V_MAX3_F16

	D.f16 = V_MAX_F16(V_MAX_F16(S0.f16, S1.f16),
S2.f16).

	504

	V_MAX3_I16

	D.i16 = V_MAX_I16(V_MAX_I16(S0.i16, S1.i16),
S2.i16).

	505

	V_MAX3_U16

	D.u16 = V_MAX_U16(V_MAX_U16(S0.u16, S1.u16),
S2.u16).

	506

	V_MED3_F16

	if (isNan(S0.f16) || isNan(S1.f16) ||
isNan(S2.f16)) D.f16 = V_MIN3_F16(S0.f16,
S1.f16, S2.f16); else if (V_MAX3_F16(S0.f16,
S1.f16, S2.f16) == S0.f16) D.f16 =
V_MAX_F16(S1.f16, S2.f16); else if
(V_MAX3_F16(S0.f16, S1.f16, S2.f16) == S1.f16)
D.f16 = V_MAX_F16(S0.f16, S2.f16); else D.f16 =
V_MAX_F16(S0.f16, S1.f16); endif.

	507

	V_MED3_I16

	if (V_MAX3_I16(S0.i16, S1.i16, S2.i16) ==
S0.i16) D.i16 = V_MAX_I16(S1.i16, S2.i16); else
if (V_MAX3_I16(S0.i16, S1.i16, S2.i16) ==
S1.i16) D.i16 = V_MAX_I16(S0.i16, S2.i16); else
D.i16 = V_MAX_I16(S0.i16, S1.i16); endif.

	508

	V_MED3_U16

	if (V_MAX3_U16(S0.u16, S1.u16, S2.u16) ==
S0.u16) D.u16 = V_MAX_U16(S1.u16, S2.u16); else
if (V_MAX3_U16(S0.u16, S1.u16, S2.u16) ==
S1.u16) D.u16 = V_MAX_U16(S0.u16, S2.u16); else
D.u16 = V_MAX_U16(S0.u16, S1.u16); endif.

	509

	V_LSHL_ADD_
U32

	D.u = (S0.u << S1.u[4:0]) + S2.u.

	510

	V_ADD_LSHL_
U32

	D.u = (S0.u + S1.u) << S2.u[4:0].

	511

	V_ADD3_U32

	D.u = S0.u + S1.u + S2.u.

	512

	V_LSHL_OR_B
32

	D.u = (S0.u << S1.u[4:0]) | S2.u.

	513

	V_AND_OR_B3
2

	D.u = (S0.u & S1.u) | S2.u.

	514

	V_OR3_B32

	D.u = S0.u | S1.u | S2.u.

	515

	V_MAD_F16

	D.f16 = S0.f16 * S1.f16 + S2.f16. Supports round
mode, exception flags, saturation. 1ULP accuracy,
denormals are flushed. If op_sel[3] is 0 Result
is written to 16 LSBs of destination VGPR and hi
16 bits are preserved. If op_sel[3] is 1 Result
is written to 16 MSBs of destination VGPR and lo
16 bits are preserved.

	516

	V_MAD_U16

	D.u16 = S0.u16 * S1.u16 + S2.u16. Supports
saturation (unsigned 16-bit integer domain). If
op_sel[3] is 0 Result is written to 16 LSBs of
destination VGPR and hi 16 bits are preserved. If
op_sel[3] is 1 Result is written to 16 MSBs of
destination VGPR and lo 16 bits are preserved.

	517

	V_MAD_I16

	D.i16 = S0.i16 * S1.i16 + S2.i16. Supports
saturation (signed 16-bit integer domain). If
op_sel[3] is 0 Result is written to 16 LSBs of
destination VGPR and hi 16 bits are preserved. If
op_sel[3] is 1 Result is written to 16 MSBs of
destination VGPR and lo 16 bits are preserved.

	518

	V_FMA_F16

	D.f16 = S0.f16 * S1.f16 + S2.f16. Fused half
precision multiply add. 0.5ULP accuracy, denormals
are supported. If op_sel[3] is 0 Result is
written to 16 LSBs of destination VGPR and hi 16
bits are preserved. If op_sel[3] is 1 Result is
written to 16 MSBs of destination VGPR and lo 16
bits are preserved.

	519

	V_DIV_FIXUP_F16

	sign_out = sign(S1.f16)^sign(S2.f16); if (S2.f16
== NAN) D.f16 = Quiet(S2.f16); else if (S1.f16 ==
NAN) D.f16 = Quiet(S1.f16); else if (S1.f16 ==
S2.f16 == 0) // 0/0 D.f16 = 0xfe00; else if
(abs(S1.f16) == abs(S2.f16) == +-INF) // inf/inf
D.f16 = 0xfe00; else if (S1.f16 ==0 ||
abs(S2.f16) == +-INF) // x/0, or inf/y D.f16 =
sign_out ? -INF : +INF; else if (abs(S1.f16) ==
+-INF || S2.f16 == 0) // x/inf, 0/y D.f16 =
sign_out ? -0 : 0; else D.f16 = sign_out ?
-abs(S0.f16) : abs(S0.f16); end if. Half precision
division fixup. S0 = Quotient, S1 = Denominator,
S2 = Numerator. Given a numerator, denominator,
and quotient from a divide, this opcode will
detect and apply special case numerics, touching
up the quotient if necessary. This opcode also
generates invalid, denorm and divide by zero
exceptions caused by the division. If op_sel[3]
is 0 Result is written to 16 LSBs of destination
VGPR and hi 16 bits are preserved. If op_sel[3]
is 1 Result is written to 16 MSBs of destination
VGPR and lo 16 bits are preserved.

	628

	V_INTERP_P1L
L_F16

	D.f32 = P10.f16 * S0.f32 + P0.f16. `LL’ stands
for `two LDS arguments’. attr_word selects the
high or low half 16 bits of each LDS dword
accessed. This opcode is available for 32-bank LDS
only. NOTE: In textual representations the I/J
VGPR is the first source and the attribute is the
second source; however in the VOP3 encoding the
attribute is stored in the src0 field and the VGPR
is stored in the src1 field.

	629

	V_INTERP_P1L
V_F16

	D.f32 = P10.f16 * S0.f32 + (S2.u32 >> (attr_word
* 16)).f16. `LV’ stands for `One LDS and one
VGPR argument’. S2 holds two parameters,
attr_word selects the high or low word of the
VGPR for this calculation, as well as the high or
low half of the LDS data. Meant for use with
16-bank LDS. NOTE: In textual representations the
I/J VGPR is the first source and the attribute is
the second source; however in the VOP3 encoding
the attribute is stored in the src0 field and the
VGPR is stored in the src1 field.

	630

	V_INTERP_P2_LEGACY_F16

	D.f16 = P20.f16 * S0.f32 + S2.f32. Final
computation. attr_word selects LDS high or low
16bits. Used for both 16- and 32-bank LDS. Result
is written to the 16 LSBs of the destination VGPR.
NOTE: In textual representations the I/J VGPR is
the first source and the attribute is the second
source; however in the VOP3 encoding the attribute
is stored in the src0 field and the VGPR is stored
in the src1 field.

	631

	V_INTERP_P2_F16

	D.f16 = P20.f16 * S0.f32 + S2.f32. Final
computation. attr_word selects LDS high or low
16bits. Used for both 16- and 32-bank LDS. NOTE:
In textual representations the I/J VGPR is the
first source and the attribute is the second
source; however in the VOP3 encoding the attribute
is stored in the src0 field and the VGPR is stored
in the src1 field. If op_sel[3] is 0 Result is
written to 16 LSBs of destination VGPR and hi 16
bits are preserved. If op_sel[3] is 1 Result is
written to 16 MSBs of destination VGPR and lo 16
bits are preserved.

	640

	V_ADD_F64

	D.d = S0.d + S1.d. 0.5ULP precision, denormals are
supported.

	641

	V_MUL_F64

	D.d = S0.d * S1.d. 0.5ULP precision, denormals
are supported.

	642

	V_MIN_F64

	if (IEEE_MODE && S0.d == sNaN) D.d = Quiet(S0.d);
else if (IEEE_MODE && S1.d == sNaN) D.d =
Quiet(S1.d); else if (S0.d == NaN) D.d = S1.d;
else if (S1.d == NaN) D.d = S0.d; else if (S0.d ==
+0.0 && S1.d == -0.0) D.d = S1.d; else if (S0.d ==
-0.0 && S1.d == +0.0) D.d = S0.d; else // Note:
there’s no IEEE special case here like there is
for V_MAX_F64. D.d = (S0.d < S1.d ? S0.d :
S1.d); endif.

	643

	V_MAX_F64

	if (IEEE_MODE && S0.d == sNaN) D.d = Quiet(S0.d);
else if (IEEE_MODE && S1.d == sNaN) D.d =
Quiet(S1.d); else if (S0.d == NaN) D.d = S1.d;
else if (S1.d == NaN) D.d = S0.d; else if (S0.d ==
+0.0 && S1.d == -0.0) D.d = S0.d; else if (S0.d ==
-0.0 && S1.d == +0.0) D.d = S1.d; else if
(IEEE_MODE) D.d = (S0.d >= S1.d ? S0.d : S1.d);
else D.d = (S0.d > S1.d ? S0.d : S1.d); endif.

	644

	V_LDEXP_F64

	D.d = S0.d * (2 ** S1.i).

	645

	V_MUL_LO_U3
2

	D.u = S0.u * S1.u.

	646

	V_MUL_HI_U3
2

	D.u = (S0.u * S1.u) >> 32.

	647

	V_MUL_HI_I3
2

	D.i = (S0.i * S1.i) >> 32.

	648

	V_LDEXP_F32

	D.f = S0.f * (2 ** S1.i).

	649

	V_READLANE_B
32

	Copy one VGPR value to one SGPR. D = SGPR-dest, S0
= Source Data (VGPR# or M0(lds-direct)), S1 = Lane
Select (SGPR or M0). Ignores exec mask. Input and
output modifiers not supported; this is an untyped
operation.

	650

	V_WRITELANE_
B32

	Write value into one VGPR in one lane. D =
VGPR-dest, S0 = Source Data (sgpr, m0, exec or
constants), S1 = Lane Select (SGPR or M0). Ignores
exec mask. Input and output modifiers not
supported; this is an untyped operation.

	651

	V_BCNT_U32_
B32

	D.u = 0; for i in 0 … 31 do D.u += (S0.u[i] == 1
? 1 : 0); endfor. Bit count.

	652

	V_MBCNT_LO_
U32_B32

	ThreadMask = (1LL << ThreadPosition) - 1;
MaskedValue = (S0.u & ThreadMask[31:0]); D.u =
S1.u; for i in 0 … 31 do D.u += (MaskedValue[i]
== 1 ? 1 : 0); endfor. Masked bit count,
ThreadPosition is the position of this thread in
the wavefront (in 0..63). See also
V_MBCNT_HI_U32_B32.

	653

	V_MBCNT_HI_
U32_B32

	ThreadMask = (1LL << ThreadPosition) - 1;
MaskedValue = (S0.u & ThreadMask[63:32]); D.u =
S1.u; for i in 0 … 31 do D.u += (MaskedValue[i]
== 1 ? 1 : 0); endfor. Masked bit count,
ThreadPosition is the position of this thread in
the wavefront (in 0..63). See also
V_MBCNT_LO_U32_B32. Example to compute each
thread’s position in 0..63: v_mbcnt_lo_u32_b32
v0, -1, 0 v_mbcnt_hi_u32_b32 v0, -1, v0 // v0
now contains ThreadPosition

	655

	V_LSHLREV_B6
4

	D.u64 = S1.u64 << S0.u[5:0].

	656

	V_LSHRREV_B6
4

	D.u64 = S1.u64 >> S0.u[5:0].

	657

	V_ASHRREV_I6
4

	D.u64 = signext(S1.u64) >> S0.u[5:0].

	658

	V_TRIG_PREOP
_F64

	shift = S1.u * 53; if exponent(S0.d) > 1077 then
shift += exponent(S0.d) - 1077; endif result =
(double) ((2/PI[1200:0] << shift) &
0x1fffff_ffffffff); scale = (-53 - shift); if
exponent(S0.d) >= 1968 then scale += 128; endif
D.d = ldexp(result, scale). Look Up 2/PI (S0.d)
with segment select S1.u[4:0]. This operation
returns an aligned, double precision segment of
2/PI needed to do range reduction on S0.d
(double-precision value). Multiple segments can be
specified through S1.u[4:0]. Rounding uses
round-to-zero. Large inputs (exp > 1968) are
scaled to avoid loss of precision through
denormalization.

	659

	V_BFM_B32

	D.u = ((1<<S0.u[4:0])-1) << S1.u[4:0]. Bitfield
modify. S0 is the bitfield width and S1 is the
bitfield offset.

	660

	V_CVT_PKNORM
_I16_F32

	D = {(snorm)S1.f, (snorm)S0.f}.

	661

	V_CVT_PKNORM
_U16_F32

	D = {(unorm)S1.f, (unorm)S0.f}.

	662

	V_CVT_PKRTZ_F16_F32

	D =
{flt32_to_flt16(S1.f),flt32_to_flt16(S0.f)}.
// Round-toward-zero regardless of current round
mode setting in hardware. This opcode is intended
for use with 16-bit compressed exports. See
V_CVT_F16_F32 for a version that respects the
current rounding mode.

	663

	V_CVT_PK_U1
6_U32

	D = {uint32_to_uint16(S1.u),
uint32_to_uint16(S0.u)}.

	664

	V_CVT_PK_I1
6_I32

	D = {int32_to_int16(S1.i),
int32_to_int16(S0.i)}.

	665

	V_CVT_PKNORM
_I16_F16

	D = {(snorm)S1.f16, (snorm)S0.f16}.

	666

	V_CVT_PKNORM
_U16_F16

	D = {(unorm)S1.f16, (unorm)S0.f16}.

	668

	V_ADD_I32

	D.i = S0.i + S1.i. Supports saturation (signed
32-bit integer domain).

	669

	V_SUB_I32

	D.i = S0.i - S1.i. Supports saturation (signed
32-bit integer domain).

	670

	V_ADD_I16

	D.i16 = S0.i16 + S1.i16. Supports saturation
(signed 16-bit integer domain).

	671

	V_SUB_I16

	D.i16 = S0.i16 - S1.i16. Supports saturation
(signed 16-bit integer domain).

	672

	V_PACK_B32_
F16

	D[31:16].f16 = S1.f16; D[15:0].f16 = S0.f16.

LDS & GDS Instructions

This suite of instructions operates on data stored within the data
share memory. The instructions transfer data between VGPRs and data
share memory.

The bitfield map for the LDS/GDS is:

[image: microcode ds]

where:
OFFSET0 = Unsigned byte offset added to the address from the ADDR VGPR.
OFFSET1 = Unsigned byte offset added to the address from the ADDR VGPR.
GDS = Set if GDS, cleared if LDS.
OP = DS instructions.
ADDR = Source LDS address VGPR 0 - 255.
DATA0 = Source data0 VGPR 0 - 255.
DATA1 = Source data1 VGPR 0 - 255.
VDST = Destination VGPR 0- 255.

Note

All instructions with RTN in the name return the value that was in
memory before the operation was performed.

	Opcode

	Name

	Description

	0

	DS_ADD_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp.

	1

	DS_SUB_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

	2

	DS_RSUB_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA -
MEM[ADDR]; RETURN_DATA = tmp. Subtraction with
reversed operands.

	3

	DS_INC_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	4

	DS_DEC_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0
|| tmp > DATA) ? DATA : tmp - 1; // unsigned
compare RETURN_DATA = tmp.

	5

	DS_MIN_I32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	6

	DS_MAX_I32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	7

	DS_MIN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	8

	DS_MAX_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	9

	DS_AND_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

	10

	DS_OR_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

	11

	DS_XOR_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA;
RETURN_DATA = tmp.

	12

	DS_MSKOR_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR]
& ~DATA) | DATA2; RETURN_DATA = tmp. Masked
dword OR, D0 contains the mask and D1 contains
the new value.

	13

	DS_WRITE_B32

	// 32bit MEM[ADDR] = DATA. Write dword.

	14

	DS_WRITE2_B32

	// 32bit MEM[ADDR_BASE + OFFSET0 * 4] = DATA;
MEM[ADDR_BASE + OFFSET1 * 4] = DATA2. Write 2
dwords.

	15

	DS_WRITE2ST64_B
32

	// 32bit MEM[ADDR_BASE + OFFSET0 * 4 * 64] =
DATA; MEM[ADDR_BASE + OFFSET1 * 4 * 64] =
DATA2. Write 2 dwords.

	16

	DS_CMPST_B32

	// 32bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Compare and store.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_CMPSWAP
opcode.

	17

	DS_CMPST_F32

	// 32bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Floating point compare
and store that handles NaN/INF/denormal values.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_FCMPSWAP
opcode.

	18

	DS_MIN_F32

	// 32bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp.
Floating point minimum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMIN.

	19

	DS_MAX_F32

	// 32bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp.
Floating point maximum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMAX.

	20

	DS_NOP

	Do nothing.

	21

	DS_ADD_F32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp. Floating point add that
handles NaN/INF/denormal values.

	29

	DS_WRITE_ADDTID
_B32

	// 32bit MEM[ADDR_BASE + OFFSET + M0.OFFSET +
TID*4] = DATA. Write dword.

	30

	DS_WRITE_B8

	MEM[ADDR] = DATA[7:0]. Byte write.

	31

	DS_WRITE_B16

	MEM[ADDR] = DATA[15:0]. Short write.

	32

	DS_ADD_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp.

	33

	DS_SUB_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -= DATA;
RETURN_DATA = tmp.

	34

	DS_RSUB_RTN_U3
2

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA -
MEM[ADDR]; RETURN_DATA = tmp. Subtraction with
reversed operands.

	35

	DS_INC_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	36

	DS_DEC_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0
|| tmp > DATA) ? DATA : tmp - 1; // unsigned
compare RETURN_DATA = tmp.

	37

	DS_MIN_RTN_I32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	38

	DS_MAX_RTN_I32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	39

	DS_MIN_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA <
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	40

	DS_MAX_RTN_U32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA >
tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	41

	DS_AND_RTN_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &= DATA;
RETURN_DATA = tmp.

	42

	DS_OR_RTN_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |= DATA;
RETURN_DATA = tmp.

	43

	DS_XOR_RTN_B32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^= DATA;
RETURN_DATA = tmp.

	44

	DS_MSKOR_RTN_B
32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR]
& ~DATA) | DATA2; RETURN_DATA = tmp. Masked
dword OR, D0 contains the mask and D1 contains
the new value.

	45

	DS_WRXCHG_RTN_
B32

	tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA
= tmp. Write-exchange operation.

	46

	DS_WRXCHG2_RTN_B32

	Write-exchange 2 separate dwords.

	47

	DS_WRXCHG2ST64_
RTN_B32

	Write-exchange 2 separate dwords with a stride
of 64 dwords.

	48

	DS_CMPST_RTN_B
32

	// 32bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Compare and store.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_CMPSWAP
opcode.

	49

	DS_CMPST_RTN_F
32

	// 32bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Floating point compare
and store that handles NaN/INF/denormal values.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_FCMPSWAP
opcode.

	50

	DS_MIN_RTN_F32

	// 32bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp.
Floating point minimum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMIN.

	51

	DS_MAX_RTN_F32

	// 32bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp.
Floating point maximum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMAX.

	52

	DS_WRAP_RTN_B3
2

	tmp = MEM[ADDR]; MEM[ADDR] = (tmp >= DATA) ? tmp
- DATA : tmp + DATA2; RETURN_DATA = tmp.

	53

	DS_ADD_RTN_F32

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] += DATA;
RETURN_DATA = tmp. Floating point add that
handles NaN/INF/denormal values.

	54

	DS_READ_B32

	RETURN_DATA = MEM[ADDR]. Dword read.

	55

	DS_READ2_B32

	RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 *
4]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1
* 4]. Read 2 dwords.

	56

	DS_READ2ST64_B3
2

	RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 4
* 64]; RETURN_DATA[1] = MEM[ADDR_BASE +
OFFSET1 * 4 * 64]. Read 2 dwords.

	57

	DS_READ_I8

	RETURN_DATA = signext(MEM[ADDR][7:0]). Signed
byte read.

	58

	DS_READ_U8

	RETURN_DATA = {24’h0,MEM[ADDR][7:0]}. Unsigned
byte read.

	59

	DS_READ_I16

	RETURN_DATA = signext(MEM[ADDR][15:0]). Signed
short read.

	60

	DS_READ_U16

	RETURN_DATA = {16’h0,MEM[ADDR][15:0]}. Unsigned
short read.

	61

	DS_SWIZZLE_B32

	RETURN_DATA = swizzle(vgpr_data,
offset1:offset0). Dword swizzle, no data is
written to LDS memory.

	62

	DS_PERMUTE_B32

	// VGPR[index][thread_id] is the VGPR RAM //
VDST, ADDR and DATA0 are from the microcode DS
encoding tmp[0..63] = 0 for i in 0..63 do // If
a source thread is disabled, it will not
propagate data. next if !EXEC[i] // ADDR needs
to be divided by 4. // High-order bits are
ignored. dst_lane = floor((VGPR[ADDR][i] +
OFFSET) / 4) mod 64 tmp[dst_lane] =
VGPR[DATA0][i] endfor // Copy data into
destination VGPRs. If multiple sources // select
the same destination thread, the
highest-numbered // source thread wins. for i in
0..63 do next if !EXEC[i] VGPR[VDST][i] = tmp[i]
endfor Forward permute. This does not access LDS
memory and may be called even if no LDS memory
is allocated to the wave. It uses LDS hardware
to implement an arbitrary swizzle across threads
in a wavefront. Note the address passed in is
the thread ID multiplied by 4. This is due to a
limitation in the DS hardware design. If
multiple sources map to the same destination
lane, standard LDS arbitration rules determine
which write wins. See also DS_BPERMUTE_B32.
Examples (simplified 4-thread wavefronts):
VGPR[SRC0] = { A, B, C, D } VGPR[ADDR] = { 0, 0,
12, 4 } EXEC = 0xF, OFFSET = 0 VGPR[VDST] := {
B, D, 0, C } VGPR[SRC0] = { A, B, C, D }
VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xA, OFFSET
= 0 VGPR[VDST] := { -, D, -, 0 }

	63

	DS_BPERMUTE_B32

	// VGPR[index][thread_id] is the VGPR RAM //
VDST, ADDR and DATA0 are from the microcode DS
encoding tmp[0..63] = 0 for i in 0..63 do //
ADDR needs to be divided by 4. // High-order
bits are ignored. src_lane =
floor((VGPR[ADDR][i] + OFFSET) / 4) mod 64 //
EXEC is applied to the source VGPR reads. next
if !EXEC[src_lane] tmp[i] =
VGPR[DATA0][src_lane] endfor // Copy data into
destination VGPRs. Some source // data may be
broadcast to multiple lanes. for i in 0..63 do
next if !EXEC[i] VGPR[VDST][i] = tmp[i] endfor
Backward permute. This does not access LDS
memory and may be called even if no LDS memory
is allocated to the wave. It uses LDS hardware
to implement an arbitrary swizzle across threads
in a wavefront. Note the address passed in is
the thread ID multiplied by 4. This is due to a
limitation in the DS hardware design. Note that
EXEC mask is applied to both VGPR read and
write. If src_lane selects a disabled thread,
zero will be returned. See also
DS_PERMUTE_B32. Examples (simplified 4-thread
wavefronts): VGPR[SRC0] = { A, B, C, D }
VGPR[ADDR] = { 0, 0, 12, 4 } EXEC = 0xF, OFFSET
= 0 VGPR[VDST] := { A, A, D, B } VGPR[SRC0] = {
A, B, C, D } VGPR[ADDR] = { 0, 0, 12, 4 } EXEC =
0xA, OFFSET = 0 VGPR[VDST] := { -, 0, -, B }

	64

	DS_ADD_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	65

	DS_SUB_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	66

	DS_RSUB_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA -
MEM[ADDR]; RETURN_DATA = tmp. Subtraction with
reversed operands.

	67

	DS_INC_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA[0:1]) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

	68

	DS_DEC_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0
|| tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; //
unsigned compare RETURN_DATA[0:1] = tmp.

	69

	DS_MIN_I64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed
compare RETURN_DATA[0:1] = tmp.

	70

	DS_MAX_I64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed
compare RETURN_DATA[0:1] = tmp.

	71

	DS_MIN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned
compare RETURN_DATA[0:1] = tmp.

	72

	DS_MAX_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned
compare RETURN_DATA[0:1] = tmp.

	73

	DS_AND_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	74

	DS_OR_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	75

	DS_XOR_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	76

	DS_MSKOR_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR]
& ~DATA) | DATA2; RETURN_DATA = tmp. Masked
dword OR, D0 contains the mask and D1 contains
the new value.

	77

	DS_WRITE_B64

	// 64bit MEM[ADDR] = DATA. Write qword.

	78

	DS_WRITE2_B64

	// 64bit MEM[ADDR_BASE + OFFSET0 * 8] = DATA;
MEM[ADDR_BASE + OFFSET1 * 8] = DATA2. Write 2
qwords.

	79

	DS_WRITE2ST64_B
64

	// 64bit MEM[ADDR_BASE + OFFSET0 * 8 * 64] =
DATA; MEM[ADDR_BASE + OFFSET1 * 8 * 64] =
DATA2. Write 2 qwords.

	80

	DS_CMPST_B64

	// 64bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Compare and store.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_CMPSWAP_X2
opcode.

	81

	DS_CMPST_F64

	// 64bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Floating point compare
and store that handles NaN/INF/denormal values.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_FCMPSWAP_X2
opcode.

	82

	DS_MIN_F64

	// 64bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp.
Floating point minimum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMIN_X2.

	83

	DS_MAX_F64

	// 64bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp.
Floating point maximum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMAX_X2.

	84

	DS_WRITE_B8_D1
6_HI

	MEM[ADDR] = DATA[23:16]. Byte write in to high
word.

	85

	DS_WRITE_B16_D
16_HI

	MEM[ADDR] = DATA[31:16]. Short write in to high
word.

	86

	DS_READ_U8_D16

	RETURN_DATA[15:0] = {8’h0,MEM[ADDR][7:0]}.
Unsigned byte read with masked return to lower
word.

	87

	DS_READ_U8_D16
_HI

	RETURN_DATA[31:16] = {8’h0,MEM[ADDR][7:0]}.
Unsigned byte read with masked return to upper
word.

	88

	DS_READ_I8_D16

	RETURN_DATA[15:0] = signext(MEM[ADDR][7:0]).
Signed byte read with masked return to lower
word.

	89

	DS_READ_I8_D16
_HI

	RETURN_DATA[31:16] = signext(MEM[ADDR][7:0]).
Signed byte read with masked return to upper
word.

	90

	DS_READ_U16_D1
6

	RETURN_DATA[15:0] = MEM[ADDR][15:0]. Unsigned
short read with masked return to lower word.

	91

	DS_READ_U16_D1
6_HI

	RETURN_DATA[31:0] = MEM[ADDR][15:0]. Unsigned
short read with masked return to upper word.

	96

	DS_ADD_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	97

	DS_SUB_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	98

	DS_RSUB_RTN_U6
4

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = DATA -
MEM[ADDR]; RETURN_DATA = tmp. Subtraction with
reversed operands.

	99

	DS_INC_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp >=
DATA[0:1]) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

	100

	DS_DEC_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp == 0
|| tmp > DATA[0:1]) ? DATA[0:1] : tmp - 1; //
unsigned compare RETURN_DATA[0:1] = tmp.

	101

	DS_MIN_RTN_I64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; // signed
compare RETURN_DATA[0:1] = tmp.

	102

	DS_MAX_RTN_I64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; // signed
compare RETURN_DATA[0:1] = tmp.

	103

	DS_MIN_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; // unsigned
compare RETURN_DATA[0:1] = tmp.

	104

	DS_MAX_RTN_U64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; // unsigned
compare RETURN_DATA[0:1] = tmp.

	105

	DS_AND_RTN_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	106

	DS_OR_RTN_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	107

	DS_XOR_RTN_B64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	108

	DS_MSKOR_RTN_B
64

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (MEM[ADDR]
& ~DATA) | DATA2; RETURN_DATA = tmp. Masked
dword OR, D0 contains the mask and D1 contains
the new value.

	109

	DS_WRXCHG_RTN_
B64

	tmp = MEM[ADDR]; MEM[ADDR] = DATA; RETURN_DATA
= tmp. Write-exchange operation.

	110

	DS_WRXCHG2_RTN_B64

	Write-exchange 2 separate qwords.

	111

	DS_WRXCHG2ST64_
RTN_B64

	Write-exchange 2 qwords with a stride of 64
qwords.

	112

	DS_CMPST_RTN_B
64

	// 64bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Compare and store.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_CMPSWAP_X2
opcode.

	113

	DS_CMPST_RTN_F
64

	// 64bit tmp = MEM[ADDR]; src = DATA2; cmp =
DATA; MEM[ADDR] = (tmp == cmp) ? src : tmp;
RETURN_DATA[0] = tmp. Floating point compare
and store that handles NaN/INF/denormal values.
Caution, the order of src and cmp are the
opposite of the BUFFER_ATOMIC_FCMPSWAP_X2
opcode.

	114

	DS_MIN_RTN_F64

	// 64bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (cmp < tmp) ? src : tmp.
Floating point minimum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMIN_X2.

	115

	DS_MAX_RTN_F64

	// 64bit tmp = MEM[ADDR]; src = DATA; cmp =
DATA2; MEM[ADDR] = (tmp > cmp) ? src : tmp.
Floating point maximum that handles
NaN/INF/denormal values. Note that this opcode
is slightly more general-purpose than
BUFFER_ATOMIC_FMAX_X2.

	118

	DS_READ_B64

	RETURN_DATA = MEM[ADDR]. Read 1 qword.

	119

	DS_READ2_B64

	RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 *
8]; RETURN_DATA[1] = MEM[ADDR_BASE + OFFSET1
* 8]. Read 2 qwords.

	120

	DS_READ2ST64_B6
4

	RETURN_DATA[0] = MEM[ADDR_BASE + OFFSET0 * 8
* 64]; RETURN_DATA[1] = MEM[ADDR_BASE +
OFFSET1 * 8 * 64]. Read 2 qwords.

	126

	DS_CONDXCHG32_R
TN_B64

	Conditional write exchange.

	128

	DS_ADD_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] + MEM[B].

	129

	DS_SUB_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] - MEM[B].

	130

	DS_RSUB_SRC2_U
32

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[B] - MEM[A].

	131

	DS_INC_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[A] >= MEM[B] ? 0 : MEM[A] + 1).

	132

	DS_DEC_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[A] == 0 || MEM[A] > MEM[B] ? MEM[B] :
MEM[A] - 1). Uint decrement.

	133

	DS_MIN_SRC2_I3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
min(MEM[A], MEM[B]).

	134

	DS_MAX_SRC2_I3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
max(MEM[A], MEM[B]).

	135

	DS_MIN_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
min(MEM[A], MEM[B]).

	136

	DS_MAX_SRC2_U3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
max(MEM[A], MEM[B]).

	137

	DS_AND_SRC2_B3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] & MEM[B].

	138

	DS_OR_SRC2_B32

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] | MEM[B].

	139

	DS_XOR_SRC2_B3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] ^ MEM[B].

	141

	DS_WRITE_SRC2_
B32

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[B]. Write dword.

	146

	DS_MIN_SRC2_F3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[B] < MEM[A]) ? MEM[B] : MEM[A]. Float,
handles NaN/INF/denorm.

	147

	DS_MAX_SRC2_F3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[B] > MEM[A]) ? MEM[B] : MEM[A]. Float,
handles NaN/INF/denorm.

	149

	DS_ADD_SRC2_F3
2

	//32bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[B] + MEM[A]. Float, handles NaN/INF/denorm.

	152

	DS_GWS_SEMA_RE
LEASE_ALL

	GDS Only: The GWS resource (rid) indicated will
process this opcode by updating the counter and
labeling the specified resource as a semaphore.
// Determine the GWS resource to work on
rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] +
offset0[5:0]; // Incr the state counter of the
resource state.counter[rid] =
state.wave_in_queue; state.type = SEMAPHORE;
return rd_done; //release calling wave This
action will release ALL queued waves; it Will
have no effect if no waves are present.

	153

	DS_GWS_INIT

	GDS Only: Initialize a barrier or semaphore
resource. // Determine the GWS resource to work
on rid[5:0] = SH_SX_EXPCMD.gds_base[5:0] +
offset0[5:0]; // Get the value to use in init
index = find_first_valid(vector mask) value =
DATA[thread: index] // Set the state of the
resource state.counter[rid] = lsb(value);
//limit #waves state.flag[rid] = 0; return
rd_done; //release calling wave

	154

	DS_GWS_SEMA_V

	GDS Only: The GWS resource indicated will
process this opcode by updating the counter and
labeling the resource as a semaphore.
//Determine the GWS resource to work on rid[5:0]
= SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];
//Incr the state counter of the resource
state.counter[rid] += 1; state.type = SEMAPHORE;
return rd_done; //release calling wave This
action will release one waved if any are queued
in this resource.

	155

	DS_GWS_SEMA_BR

	GDS Only: The GWS resource indicated will
process this opcode by updating the counter by
the bulk release delivered count and labeling
the resource as a semaphore. //Determine the GWS
resource to work on rid[5:0] =
SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];
index = find first valid (vector mask) count =
DATA[thread: index]; //Add count to the resource
state counter state.counter[rid] += count;
state.type = SEMAPHORE; return rd_done;
//release calling wave This action will release
count number of waves, immediately if queued, or
as they arrive from the noted resource.

	156

	DS_GWS_SEMA_P

	GDS Only: The GWS resource indicated will
process this opcode by queueing it until counter
enables a release and then decrementing the
counter of the resource as a semaphore.
//Determine the GWS resource to work on rid[5:0]
= SH_SX_EXPCMD.gds_base[5:0] + offset0[5:0];
state.type = SEMAPHORE; ENQUEUE
until(state[rid].counter > 0) state[rid].counter
-= 1; return rd_done;

	157

	DS_GWS_BARRIER

	GDS Only: The GWS resource indicated will
process this opcode by queueing it until barrier
is satisfied. The number of waves needed is
passed in as DATA of first valid thread.
//Determine the GWS resource to work on rid[5:0]
= SH_SX_EXPCMD.gds_base[5:0] + OFFSET0[5:0];
index = find first valid (vector mask); value =
DATA[thread: index]; // Input Decision Machine
state.type[rid] = BARRIER; if(state[rid].counter
<= 0) then thread[rid].flag = state[rid].flag;
ENQUEUE; state[rid].flag = !state.flag;
state[rid].counter = value; return rd_done;
else state[rid].counter -= 1; thread.flag =
state[rid].flag; ENQUEUE; endif. Since the waves
deliver the count for the next barrier, this
function can have a different size barrier for
each occurrence. // Release Machine
if(state.type == BARRIER) then if(state.flag !=
thread.flag) then return rd_done; endif; endif.

	182

	DS_READ_ADDTID_B32

	RETURN_DATA = MEM[ADDR_BASE + OFFSET +
M0.OFFSET + TID*4]. Dword read.

	189

	DS_CONSUME

	LDS & GDS. Subtract (count_bits(exec_mask))
from the value stored in DS memory at (M0.base +
instr_offset). Return the pre-operation value
to VGPRs.

	190

	DS_APPEND

	LDS & GDS. Add (count_bits(exec_mask)) to the
value stored in DS memory at (M0.base +
instr_offset). Return the pre-operation value
to VGPRs.

	191

	DS_ORDERED_COUN
T

	GDS-only. Add (count_bits(exec_mask)) to one
of 4 dedicated ordered-count counters (aka
‘packers’). Additional bits of instr.offset
field are overloaded to hold packer-id, ‘last’.

	192

	DS_ADD_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] + MEM[B].

	193

	DS_SUB_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] - MEM[B].

	194

	DS_RSUB_SRC2_U
64

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[B] - MEM[A].

	195

	DS_INC_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[A] >= MEM[B] ? 0 : MEM[A] + 1).

	196

	DS_DEC_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[A] == 0 || MEM[A] > MEM[B] ? MEM[B] :
MEM[A] - 1). Uint decrement.

	197

	DS_MIN_SRC2_I6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
min(MEM[A], MEM[B]).

	198

	DS_MAX_SRC2_I6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
max(MEM[A], MEM[B]).

	199

	DS_MIN_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
min(MEM[A], MEM[B]).

	200

	DS_MAX_SRC2_U6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
max(MEM[A], MEM[B]).

	201

	DS_AND_SRC2_B6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] & MEM[B].

	202

	DS_OR_SRC2_B64

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] | MEM[B].

	203

	DS_XOR_SRC2_B6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[A] ^ MEM[B].

	205

	DS_WRITE_SRC2_
B64

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
MEM[B]. Write qword.

	210

	DS_MIN_SRC2_F6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[B] < MEM[A]) ? MEM[B] : MEM[A]. Float,
handles NaN/INF/denorm.

	211

	DS_MAX_SRC2_F6
4

	//64bit A = ADDR_BASE; B = A + 4*(offset1[7] ?
{A[31],A[31:17]} :
{offset1[6],offset1[6:0],offset0}); MEM[A] =
(MEM[B] > MEM[A]) ? MEM[B] : MEM[A]. Float,
handles NaN/INF/denorm.

	222

	DS_WRITE_B96

	{MEM[ADDR + 8], MEM[ADDR + 4], MEM[ADDR]} =
DATA[95:0]. Tri-dword write.

	223

	DS_WRITE_B128

	{MEM[ADDR + 12], MEM[ADDR + 8], MEM[ADDR + 4],
MEM[ADDR]} = DATA[127:0]. Quad-dword write.

	254

	DS_READ_B96

	Tri-dword read.

	255

	DS_READ_B128

	Quad-dword read.

LDS Instruction Limitations

Some of the DS instructions are available only to GDS, not LDS. These
are:

	DS_GWS_SEMA_RELEASE_ALL

	DS_GWS_INIT

	DS_GWS_SEMA_V

	DS_GWS_SEMA_BR

	DS_GWS_SEMA_P

	DS_GWS_BARRIER

	DS_ORDERED_COUNT

MUBUF Instructions

The bitfield map of the MUBUF format is:

[image: microcode mubuf]

where:

OFFSET = Unsigned immediate byte offset.
OFFEN = Send offset either as VADDR or as zero..
IDXEN = Send index either as VADDR or as zero.
GLC = Global coherency.
ADDR64 = Buffer address of 64 bits.
LDS = Data read from/written to LDS or VGPR.
OP = Opcode instructions.
VADDR = VGPR address source.
VDATA = Destination vector GPR.
SRSRC = Scalar GPR that specifies resource constant.
SLC = System level coherent.
TFE = Texture fail enable.
SOFFSET = Byte offset added to the memory address of an SGPR.

	Opcode

	Name

	Description

	0

	BUFFER_LOAD_FORMAT_X

	Untyped buffer load 1 dword with format
conversion.

	1

	BUFFER_LOAD_FORMAT_X
Y

	Untyped buffer load 2 dwords with format
conversion.

	2

	BUFFER_LOAD_FORMAT_X
YZ

	Untyped buffer load 3 dwords with format
conversion.

	3

	BUFFER_LOAD_FORMAT_X
YZW

	Untyped buffer load 4 dwords with format
conversion.

	4

	BUFFER_STORE_FORMAT_
X

	Untyped buffer store 1 dword with format
conversion.

	5

	BUFFER_STORE_FORMAT_
XY

	Untyped buffer store 2 dwords with format
conversion.

	6

	BUFFER_STORE_FORMAT_
XYZ

	Untyped buffer store 3 dwords with format
conversion.

	7

	BUFFER_STORE_FORMAT_
XYZW

	Untyped buffer store 4 dwords with format
conversion.

	8

	BUFFER_LOAD_FORMAT_D
16_X

	Untyped buffer load 1 dword with format
conversion. D0[15:0] = {8’h0, MEM[ADDR]}.

	9

	BUFFER_LOAD_FORMAT_D
16_XY

	Untyped buffer load 1 dword with format
conversion.

	10

	BUFFER_LOAD_FORMAT_D
16_XYZ

	Untyped buffer load 2 dwords with format
conversion.

	11

	BUFFER_LOAD_FORMAT_D
16_XYZW

	Untyped buffer load 2 dwords with format
conversion.

	12

	BUFFER_STORE_FORMAT_
D16_X

	Untyped buffer store 1 dword with format
conversion.

	13

	BUFFER_STORE_FORMAT_
D16_XY

	Untyped buffer store 1 dword with format
conversion.

	14

	BUFFER_STORE_FORMAT_
D16_XYZ

	Untyped buffer store 2 dwords with format
conversion.

	15

	BUFFER_STORE_FORMAT_
D16_XYZW

	Untyped buffer store 2 dwords with format
conversion.

	16

	BUFFER_LOAD_UBYTE

	Untyped buffer load unsigned byte (zero
extend to VGPR destination).

	17

	BUFFER_LOAD_SBYTE

	Untyped buffer load signed byte (sign
extend to VGPR destination).

	18

	BUFFER_LOAD_USHORT

	Untyped buffer load unsigned short (zero
extend to VGPR destination).

	19

	BUFFER_LOAD_SSHORT

	Untyped buffer load signed short (sign
extend to VGPR destination).

	20

	BUFFER_LOAD_DWORD

	Untyped buffer load dword.

	21

	BUFFER_LOAD_DWORDX2

	Untyped buffer load 2 dwords.

	22

	BUFFER_LOAD_DWORDX3

	Untyped buffer load 3 dwords.

	23

	BUFFER_LOAD_DWORDX4

	Untyped buffer load 4 dwords.

	24

	BUFFER_STORE_BYTE

	Untyped buffer store byte. Stores
S0[7:0].

	25

	BUFFER_STORE_BYTE_D1
6_HI

	Untyped buffer store byte. Stores
S0[23:16].

	26

	BUFFER_STORE_SHORT

	Untyped buffer store short. Stores
S0[15:0].

	27

	BUFFER_STORE_SHORT_D
16_HI

	Untyped buffer store short. Stores
S0[31:16].

	28

	BUFFER_STORE_DWORD

	Untyped buffer store dword.

	29

	BUFFER_STORE_DWORDX2

	Untyped buffer store 2 dwords.

	30

	BUFFER_STORE_DWORDX3

	Untyped buffer store 3 dwords.

	31

	BUFFER_STORE_DWORDX4

	Untyped buffer store 4 dwords.

	32

	BUFFER_LOAD_UBYTE_D1
6

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	33

	BUFFER_LOAD_UBYTE_D1
6_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	34

	BUFFER_LOAD_SBYTE_D1
6

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	35

	BUFFER_LOAD_SBYTE_D1
6_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	36

	BUFFER_LOAD_SHORT_D1
6

	D0[15:0] = MEM[ADDR]. Untyped buffer load
short.

	37

	BUFFER_LOAD_SHORT_D1
6_HI

	D0[31:16] = MEM[ADDR]. Untyped buffer
load short.

	38

	BUFFER_LOAD_FORMAT_D
16_HI_X

	D0[31:16] = MEM[ADDR]. Untyped buffer
load 1 dword with format conversion.

	39

	BUFFER_STORE_FORMAT_
D16_HI_X

	Untyped buffer store 1 dword with format
conversion.

	61

	BUFFER_STORE_LDS_DWO
RD

	Store one DWORD from LDS memory to system
memory without utilizing VGPRs.

	62

	BUFFER_WBINVL1

	Write back and invalidate the shader L1.
Returns ACK to shader.

	63

	BUFFER_WBINVL1_VOL

	Write back and invalidate the shader L1
only for lines that are marked volatile.
Returns ACK to shader.

	64

	BUFFER_ATOMIC_SWAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA; RETURN_DATA = tmp.

	65

	BUFFER_ATOMIC_CMPSWAP

	// 32bit tmp = MEM[ADDR]; src = DATA[0];
cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0] = tmp.

	66

	BUFFER_ATOMIC_ADD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA; RETURN_DATA = tmp.

	67

	BUFFER_ATOMIC_SUB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA; RETURN_DATA = tmp.

	68

	BUFFER_ATOMIC_SMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(DATA < tmp) ? DATA : tmp; // signed
compare RETURN_DATA = tmp.

	69

	BUFFER_ATOMIC_UMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(DATA < tmp) ? DATA : tmp; // unsigned
compare RETURN_DATA = tmp.

	70

	BUFFER_ATOMIC_SMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(DATA > tmp) ? DATA : tmp; // signed
compare RETURN_DATA = tmp.

	71

	BUFFER_ATOMIC_UMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(DATA > tmp) ? DATA : tmp; // unsigned
compare RETURN_DATA = tmp.

	72

	BUFFER_ATOMIC_AND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA; RETURN_DATA = tmp.

	73

	BUFFER_ATOMIC_OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA; RETURN_DATA = tmp.

	74

	BUFFER_ATOMIC_XOR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA; RETURN_DATA = tmp.

	75

	BUFFER_ATOMIC_INC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(tmp >= DATA) ? 0 : tmp + 1; // unsigned
compare RETURN_DATA = tmp.

	76

	BUFFER_ATOMIC_DEC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] =
(tmp == 0 || tmp > DATA) ? DATA : tmp -
1; // unsigned compare RETURN_DATA =
tmp.

	96

	BUFFER_ATOMIC_SWAP_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	97

	BUFFER_ATOMIC_CMPSWAP
_X2

	// 64bit tmp = MEM[ADDR]; src =
DATA[0:1]; cmp = DATA[2:3]; MEM[ADDR] =
(tmp == cmp) ? src : tmp;
RETURN_DATA[0:1] = tmp.

	98

	BUFFER_ATOMIC_ADD_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	99

	BUFFER_ATOMIC_SUB_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	100

	BUFFER_ATOMIC_SMIN_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	101

	BUFFER_ATOMIC_UMIN_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	102

	BUFFER_ATOMIC_SMAX_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	103

	BUFFER_ATOMIC_UMAX_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	104

	BUFFER_ATOMIC_AND_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	105

	BUFFER_ATOMIC_OR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	106

	BUFFER_ATOMIC_XOR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	107

	BUFFER_ATOMIC_INC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
(tmp >= DATA[0:1]) ? 0 : tmp + 1; //
unsigned compare RETURN_DATA[0:1] = tmp.

	108

	BUFFER_ATOMIC_DEC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
(tmp == 0 || tmp > DATA[0:1]) ?
DATA[0:1] : tmp - 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

MTBUF Instructions

The bitfield map of the MTBUF format is:

[image: microcode mtbuf]

where:

OFFSET = Unsigned immediate byte offset.
OFFEN = Send offset either as VADDR or as zero.
IDXEN = Send index either as VADDR or as zero.
GLC = Global coherency.
ADDR64 = Buffer address of 64 bits.
OP = Opcode instructions.
DFMT = Data format for typed buffer.
NFMT = Number format for typed buffer.
VADDR = VGPR address source.
VDATA = Vector GPR for read/write result.
SRSRC = Scalar GPR that specifies resource constant.
SOFFSET = Unsigned byte offset from an SGPR.

	Opcode

	Name

	Description

	0

	TBUFFER_LOAD_FORMAT_X

	Typed buffer load 1 dword with format
conversion.

	1

	TBUFFER_LOAD_FORMAT_X
Y

	Typed buffer load 2 dwords with format
conversion.

	2

	TBUFFER_LOAD_FORMAT_X
YZ

	Typed buffer load 3 dwords with format
conversion.

	3

	TBUFFER_LOAD_FORMAT_X
YZW

	Typed buffer load 4 dwords with format
conversion.

	4

	TBUFFER_STORE_FORMAT_
X

	Typed buffer store 1 dword with format
conversion.

	5

	TBUFFER_STORE_FORMAT_
XY

	Typed buffer store 2 dwords with format
conversion.

	6

	TBUFFER_STORE_FORMAT_
XYZ

	Typed buffer store 3 dwords with format
conversion.

	7

	TBUFFER_STORE_FORMAT_
XYZW

	Typed buffer store 4 dwords with format
conversion.

	8

	TBUFFER_LOAD_FORMAT_D
16_X

	Typed buffer load 1 dword with format
conversion.

	9

	TBUFFER_LOAD_FORMAT_D
16_XY

	Typed buffer load 1 dword with format
conversion.

	10

	TBUFFER_LOAD_FORMAT_D
16_XYZ

	Typed buffer load 2 dwords with format
conversion.

	11

	TBUFFER_LOAD_FORMAT_D
16_XYZW

	Typed buffer load 2 dwords with format
conversion.

	12

	TBUFFER_STORE_FORMAT_
D16_X

	Typed buffer store 1 dword with format
conversion.

	13

	TBUFFER_STORE_FORMAT_
D16_XY

	Typed buffer store 1 dword with format
conversion.

	14

	TBUFFER_STORE_FORMAT_
D16_XYZ

	Typed buffer store 2 dwords with format
conversion.

	15

	TBUFFER_STORE_FORMAT_
D16_XYZW

	Typed buffer store 2 dwords with format
conversion.

MIMG Instructions

The bitfield map of the MIMG format is:

[image: microcode mimg]

where:

DMASK = Enable mask for image read/write data components.
UNRM = Force address to be unnormalized.
GLC = Global coherency.
DA = Declare an array.
A16 = Texture address component size.
TFE = Texture fail enable.
LWE = LOD warning enable.
OP = Opcode instructions.
SLC = System level coherent.
VADDR = VGPR address source.
VDATA = Vector GPR for read/write result.
SRSRC = Scalar GPR that specifies resource constant.
SSAMP = Scalar GPR that specifies sampler constant.
D16 = Data in VGPRs is 16 bits, not 32 bits.

	Opcode

	Name

	Description

	0

	IMAGE_LOAD

	Image memory load with format conversion
specified in T#. No sampler.

	1

	IMAGE_LOAD_MIP

	Image memory load with user-supplied mip
level. No sampler.

	2

	IMAGE_LOAD_PCK

	Image memory load with no format
conversion. No sampler.

	3

	IMAGE_LOAD_PCK_SGN

	Image memory load with with no format
conversion and sign extension. No sampler.

	4

	IMAGE_LOAD_MIP_PCK

	Image memory load with user-supplied mip
level, no format conversion. No sampler.

	5

	IMAGE_LOAD_MIP_PCK
_SGN

	Image memory load with user-supplied mip
level, no format conversion and with sign
extension. No sampler.

	8

	IMAGE_STORE

	Image memory store with format conversion
specified in T#. No sampler.

	9

	IMAGE_STORE_MIP

	Image memory store with format conversion
specified in T# to user specified mip
level. No sampler.

	10

	IMAGE_STORE_PCK

	Image memory store of packed data without
format conversion . No sampler.

	11

	IMAGE_STORE_MIP_PC
K

	Image memory store of packed data without
format conversion to user-supplied mip
level. No sampler.

	14

	IMAGE_GET_RESINFO

	return resource info for a given mip level
specified in the address vgpr. No sampler.
Returns 4 integer values into VGPRs 3-0:
{num_mip_levels, depth, height, width}.

	16

	IMAGE_ATOMIC_SWAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA;
RETURN_DATA = tmp.

	17

	IMAGE_ATOMIC_CMPSWA
P

	// 32bit tmp = MEM[ADDR]; src = DATA[0];
cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0] = tmp.

	18

	IMAGE_ATOMIC_ADD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA; RETURN_DATA = tmp.

	19

	IMAGE_ATOMIC_SUB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA; RETURN_DATA = tmp.

	20

	IMAGE_ATOMIC_SMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	21

	IMAGE_ATOMIC_UMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	22

	IMAGE_ATOMIC_SMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	23

	IMAGE_ATOMIC_UMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	24

	IMAGE_ATOMIC_AND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA; RETURN_DATA = tmp.

	25

	IMAGE_ATOMIC_OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA; RETURN_DATA = tmp.

	26

	IMAGE_ATOMIC_XOR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA; RETURN_DATA = tmp.

	27

	IMAGE_ATOMIC_INC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
>= DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	28

	IMAGE_ATOMIC_DEC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
== 0 || tmp > DATA) ? DATA : tmp - 1; //
unsigned compare RETURN_DATA = tmp.

	32

	IMAGE_SAMPLE

	sample texture map.

	33

	IMAGE_SAMPLE_CL

	sample texture map, with LOD clamp
specified in shader.

	34

	IMAGE_SAMPLE_D

	sample texture map, with user derivatives

	35

	IMAGE_SAMPLE_D_CL

	sample texture map, with LOD clamp
specified in shader, with user derivatives.

	36

	IMAGE_SAMPLE_L

	sample texture map, with user LOD.

	37

	IMAGE_SAMPLE_B

	sample texture map, with lod bias.

	38

	IMAGE_SAMPLE_B_CL

	sample texture map, with LOD clamp
specified in shader, with lod bias.

	39

	IMAGE_SAMPLE_LZ

	sample texture map, from level 0.

	40

	IMAGE_SAMPLE_C

	sample texture map, with PCF.

	41

	IMAGE_SAMPLE_C_CL

	SAMPLE_C, with LOD clamp specified in
shader.

	42

	IMAGE_SAMPLE_C_D

	SAMPLE_C, with user derivatives.

	43

	IMAGE_SAMPLE_C_D_
CL

	SAMPLE_C, with LOD clamp specified in
shader, with user derivatives.

	44

	IMAGE_SAMPLE_C_L

	SAMPLE_C, with user LOD.

	45

	IMAGE_SAMPLE_C_B

	SAMPLE_C, with lod bias.

	46

	IMAGE_SAMPLE_C_B_
CL

	SAMPLE_C, with LOD clamp specified in
shader, with lod bias.

	47

	IMAGE_SAMPLE_C_LZ

	SAMPLE_C, from level 0.

	48

	IMAGE_SAMPLE_O

	sample texture map, with user offsets.

	49

	IMAGE_SAMPLE_CL_O

	SAMPLE_O with LOD clamp specified in
shader.

	50

	IMAGE_SAMPLE_D_O

	SAMPLE_O, with user derivatives.

	51

	IMAGE_SAMPLE_D_CL_O

	SAMPLE_O, with LOD clamp specified in
shader, with user derivatives.

	52

	IMAGE_SAMPLE_L_O

	SAMPLE_O, with user LOD.

	53

	IMAGE_SAMPLE_B_O

	SAMPLE_O, with lod bias.

	54

	IMAGE_SAMPLE_B_CL_O

	SAMPLE_O, with LOD clamp specified in
shader, with lod bias.

	55

	IMAGE_SAMPLE_LZ_O

	SAMPLE_O, from level 0.

	56

	IMAGE_SAMPLE_C_O

	SAMPLE_C with user specified offsets.

	57

	IMAGE_SAMPLE_C_CL_O

	SAMPLE_C_O, with LOD clamp specified in
shader.

	58

	IMAGE_SAMPLE_C_D_
O

	SAMPLE_C_O, with user derivatives.

	59

	IMAGE_SAMPLE_C_D_
CL_O

	SAMPLE_C_O, with LOD clamp specified in
shader, with user derivatives.

	60

	IMAGE_SAMPLE_C_L_
O

	SAMPLE_C_O, with user LOD.

	61

	IMAGE_SAMPLE_C_B_
O

	SAMPLE_C_O, with lod bias.

	62

	IMAGE_SAMPLE_C_B_
CL_O

	SAMPLE_C_O, with LOD clamp specified in
shader, with lod bias.

	63

	IMAGE_SAMPLE_C_LZ_O

	SAMPLE_C_O, from level 0.

	64

	IMAGE_GATHER4

	gather 4 single component elements (2x2).

	65

	IMAGE_GATHER4_CL

	gather 4 single component elements (2x2)
with user LOD clamp.

	66

	IMAGE_GATHER4H

	Same as Gather4, but fetches one component
per texel, from a 4x1 group of texels.

	68

	IMAGE_GATHER4_L

	gather 4 single component elements (2x2)
with user LOD.

	69

	IMAGE_GATHER4_B

	gather 4 single component elements (2x2)
with user bias.

	70

	IMAGE_GATHER4_B_CL

	gather 4 single component elements (2x2)
with user bias and clamp.

	71

	IMAGE_GATHER4_LZ

	gather 4 single component elements (2x2) at
level 0.

	72

	IMAGE_GATHER4_C

	gather 4 single component elements (2x2)
with PCF.

	73

	IMAGE_GATHER4_C_CL

	gather 4 single component elements (2x2)
with user LOD clamp and PCF.

	74

	IMAGE_GATHER4H_PCK

	Same as GATHER4H, but fetched elements are
treated as a single component and packed
into GPR(s).

	75

	IMAGE_GATHER8H_PCK

	Simliar to GATHER4H_PCK, but packs eight
elements from a 8x1 group of texels.

	76

	IMAGE_GATHER4_C_L

	gather 4 single component elements (2x2)
with user LOD and PCF.

	77

	IMAGE_GATHER4_C_B

	gather 4 single component elements (2x2)
with user bias and PCF.

	78

	IMAGE_GATHER4_C_B_CL

	gather 4 single component elements (2x2)
with user bias, clamp and PCF.

	79

	IMAGE_GATHER4_C_LZ

	gather 4 single component elements (2x2) at
level 0, with PCF.

	80

	IMAGE_GATHER4_O

	GATHER4, with user offsets.

	81

	IMAGE_GATHER4_CL_O

	GATHER4_CL, with user offsets.

	84

	IMAGE_GATHER4_L_O

	GATHER4_L, with user offsets.

	85

	IMAGE_GATHER4_B_O

	GATHER4_B, with user offsets.

	86

	IMAGE_GATHER4_B_CL
_O

	GATHER4_B_CL, with user offsets.

	87

	IMAGE_GATHER4_LZ_O

	GATHER4_LZ, with user offsets.

	88

	IMAGE_GATHER4_C_O

	GATHER4_C, with user offsets.

	89

	IMAGE_GATHER4_C_CL
_O

	GATHER4_C_CL, with user offsets.

	92

	IMAGE_GATHER4_C_L_O

	GATHER4_C_L, with user offsets.

	93

	IMAGE_GATHER4_C_B_O

	GATHER4_B, with user offsets.

	94

	IMAGE_GATHER4_C_B_CL_O

	GATHER4_B_CL, with user offsets.

	95

	IMAGE_GATHER4_C_LZ
_O

	GATHER4_C_LZ, with user offsets.

	96

	IMAGE_GET_LOD

	Return calculated LOD. Vdata gets 2 32bit
integer values: { rawLOD, clampedLOD }.

	104

	IMAGE_SAMPLE_CD

	sample texture map, with user derivatives
(LOD per quad)

	105

	IMAGE_SAMPLE_CD_CL

	sample texture map, with LOD clamp
specified in shader, with user derivatives
(LOD per quad).

	106

	IMAGE_SAMPLE_C_CD

	SAMPLE_C, with user derivatives (LOD per
quad).

	107

	IMAGE_SAMPLE_C_CD_CL

	SAMPLE_C, with LOD clamp specified in
shader, with user derivatives (LOD per
quad).

	108

	IMAGE_SAMPLE_CD_O

	SAMPLE_O, with user derivatives (LOD per
quad).

	109

	IMAGE_SAMPLE_CD_CL
_O

	SAMPLE_O, with LOD clamp specified in
shader, with user derivatives (LOD per
quad).

	110

	IMAGE_SAMPLE_C_CD_O

	SAMPLE_C_O, with user derivatives (LOD
per quad).

	111

	IMAGE_SAMPLE_C_CD_CL_O

	SAMPLE_C_O, with LOD clamp specified in
shader, with user derivatives (LOD per
quad).

EXPORT Instructions

Transfer vertex position, vertex parameter, pixel color, or pixel depth
information to the output buffer. Every pixel shader must do at least
one export to a color, depth or NULL target with the VM bit set to 1.
This communicates the pixel-valid mask to the color and depth buffers.
Every pixel does only one of the above export types with the DONE bit
set to 1. Vertex shaders must do one or more position exports, and at
least one parameter export. The final position export must have the DONE
bit set to 1.

[image: microcode exp]

FLAT, Scratch and Global Instructions

The bitfield map of the FLAT format is:

[image: microcode flat]

where:

GLC = Global coherency.
SLC = System level coherency.
OP = Opcode instructions.
ADDR = Source of flat address VGPR.
DATA = Source data.
VDST = Destination VGPR.
NV = Access to non-volatile memory.
SADDR = SGPR holding address or offset
SEG = Instruction type: Flat, Scratch, or Global
LDS = Data is transferred between LDS and Memory, not VGPRs.
OFFSET = Immediate address byte-offset.

Flat Instructions

Flat instructions look at the per-workitem address and determine for
each work item if the target memory address is in global, private or
scratch memory.

	Opcode

	Name

	Description

	16

	FLAT_LOAD_UBYTE

	Untyped buffer load unsigned byte (zero
extend to VGPR destination).

	17

	FLAT_LOAD_SBYTE

	Untyped buffer load signed byte (sign
extend to VGPR destination).

	18

	FLAT_LOAD_USHORT

	Untyped buffer load unsigned short (zero
extend to VGPR destination).

	19

	FLAT_LOAD_SSHORT

	Untyped buffer load signed short (sign
extend to VGPR destination).

	20

	FLAT_LOAD_DWORD

	Untyped buffer load dword.

	21

	FLAT_LOAD_DWORDX2

	Untyped buffer load 2 dwords.

	22

	FLAT_LOAD_DWORDX3

	Untyped buffer load 3 dwords.

	23

	FLAT_LOAD_DWORDX4

	Untyped buffer load 4 dwords.

	24

	FLAT_STORE_BYTE

	Untyped buffer store byte. Stores S0[7:0].

	25

	FLAT_STORE_BYTE_D1
6_HI

	Untyped buffer store byte. Stores
S0[23:16].

	26

	FLAT_STORE_SHORT

	Untyped buffer store short. Stores
S0[15:0].

	27

	FLAT_STORE_SHORT_D
16_HI

	Untyped buffer store short. Stores
S0[31:16].

	28

	FLAT_STORE_DWORD

	Untyped buffer store dword.

	29

	FLAT_STORE_DWORDX2

	Untyped buffer store 2 dwords.

	30

	FLAT_STORE_DWORDX3

	Untyped buffer store 3 dwords.

	31

	FLAT_STORE_DWORDX4

	Untyped buffer store 4 dwords.

	32

	FLAT_LOAD_UBYTE_D1
6

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	33

	FLAT_LOAD_UBYTE_D1
6_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	34

	FLAT_LOAD_SBYTE_D1
6

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	35

	FLAT_LOAD_SBYTE_D1
6_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	36

	FLAT_LOAD_SHORT_D1
6

	D0[15:0] = MEM[ADDR]. Untyped buffer load
short.

	37

	FLAT_LOAD_SHORT_D1
6_HI

	D0[31:16] = MEM[ADDR]. Untyped buffer load
short.

	64

	FLAT_ATOMIC_SWAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA;
RETURN_DATA = tmp.

	65

	FLAT_ATOMIC_CMPSWAP

	// 32bit tmp = MEM[ADDR]; src = DATA[0];
cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0] = tmp.

	66

	FLAT_ATOMIC_ADD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA; RETURN_DATA = tmp.

	67

	FLAT_ATOMIC_SUB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA; RETURN_DATA = tmp.

	68

	FLAT_ATOMIC_SMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	69

	FLAT_ATOMIC_UMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	70

	FLAT_ATOMIC_SMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	71

	FLAT_ATOMIC_UMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	72

	FLAT_ATOMIC_AND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA; RETURN_DATA = tmp.

	73

	FLAT_ATOMIC_OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA; RETURN_DATA = tmp.

	74

	FLAT_ATOMIC_XOR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA; RETURN_DATA = tmp.

	75

	FLAT_ATOMIC_INC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
>= DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	76

	FLAT_ATOMIC_DEC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
== 0 || tmp > DATA) ? DATA : tmp - 1; //
unsigned compare RETURN_DATA = tmp.

	96

	FLAT_ATOMIC_SWAP_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	97

	FLAT_ATOMIC_CMPSWAP
_X2

	// 64bit tmp = MEM[ADDR]; src = DATA[0:1];
cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0:1] = tmp.

	98

	FLAT_ATOMIC_ADD_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	99

	FLAT_ATOMIC_SUB_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	100

	FLAT_ATOMIC_SMIN_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	101

	FLAT_ATOMIC_UMIN_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	102

	FLAT_ATOMIC_SMAX_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	103

	FLAT_ATOMIC_UMAX_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	104

	FLAT_ATOMIC_AND_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	105

	FLAT_ATOMIC_OR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	106

	FLAT_ATOMIC_XOR_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	107

	FLAT_ATOMIC_INC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
>= DATA[0:1]) ? 0 : tmp + 1; // unsigned
compare RETURN_DATA[0:1] = tmp.

	108

	FLAT_ATOMIC_DEC_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
== 0 || tmp > DATA[0:1]) ? DATA[0:1] :
tmp - 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

Scratch Instructions

Scratch instructions are like Flat, but assume all workitem addresses
fall in scratch (private) space.

	Opcode

	Name

	Description

	16

	SCRATCH_LOAD_UBYTE

	Untyped buffer load unsigned byte (zero
extend to VGPR destination).

	17

	SCRATCH_LOAD_SBYTE

	Untyped buffer load signed byte (sign
extend to VGPR destination).

	18

	SCRATCH_LOAD_USHORT

	Untyped buffer load unsigned short (zero
extend to VGPR destination).

	19

	SCRATCH_LOAD_SSHORT

	Untyped buffer load signed short (sign
extend to VGPR destination).

	20

	SCRATCH_LOAD_DWORD

	Untyped buffer load dword.

	21

	SCRATCH_LOAD_DWORDX
2

	Untyped buffer load 2 dwords.

	22

	SCRATCH_LOAD_DWORDX
3

	Untyped buffer load 3 dwords.

	23

	SCRATCH_LOAD_DWORDX
4

	Untyped buffer load 4 dwords.

	24

	SCRATCH_STORE_BYTE

	Untyped buffer store byte. Stores S0[7:0].

	25

	SCRATCH_STORE_BYTE_D16_HI

	Untyped buffer store byte. Stores
S0[23:16].

	26

	SCRATCH_STORE_SHORT

	Untyped buffer store short. Stores
S0[15:0].

	27

	SCRATCH_STORE_SHORT
_D16_HI

	Untyped buffer store short. Stores
S0[31:16].

	28

	SCRATCH_STORE_DWORD

	Untyped buffer store dword.

	29

	SCRATCH_STORE_DWORD
X2

	Untyped buffer store 2 dwords.

	30

	SCRATCH_STORE_DWORD
X3

	Untyped buffer store 3 dwords.

	31

	SCRATCH_STORE_DWORD
X4

	Untyped buffer store 4 dwords.

	32

	SCRATCH_LOAD_UBYTE_D16

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	33

	SCRATCH_LOAD_UBYTE_D16_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	34

	SCRATCH_LOAD_SBYTE_D16

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	35

	SCRATCH_LOAD_SBYTE_D16_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	36

	SCRATCH_LOAD_SHORT_D16

	D0[15:0] = MEM[ADDR]. Untyped buffer load
short.

	37

	SCRATCH_LOAD_SHORT_D16_HI

	D0[31:16] = MEM[ADDR]. Untyped buffer load
short.

Global Instructions

Global instructions are like Flat, but assume all workitem addresses
fall in global memory space.

	Opcode

	Name

	Description

	16

	GLOBAL_LOAD_UBYTE

	Untyped buffer load unsigned byte (zero
extend to VGPR destination).

	17

	GLOBAL_LOAD_SBYTE

	Untyped buffer load signed byte (sign
extend to VGPR destination).

	18

	GLOBAL_LOAD_USHORT

	Untyped buffer load unsigned short (zero
extend to VGPR destination).

	19

	GLOBAL_LOAD_SSHORT

	Untyped buffer load signed short (sign
extend to VGPR destination).

	20

	GLOBAL_LOAD_DWORD

	Untyped buffer load dword.

	21

	GLOBAL_LOAD_DWORDX2

	Untyped buffer load 2 dwords.

	22

	GLOBAL_LOAD_DWORDX3

	Untyped buffer load 3 dwords.

	23

	GLOBAL_LOAD_DWORDX4

	Untyped buffer load 4 dwords.

	24

	GLOBAL_STORE_BYTE

	Untyped buffer store byte. Stores S0[7:0].

	25

	GLOBAL_STORE_BYTE_
D16_HI

	Untyped buffer store byte. Stores
S0[23:16].

	26

	GLOBAL_STORE_SHORT

	Untyped buffer store short. Stores
S0[15:0].

	27

	GLOBAL_STORE_SHORT_D16_HI

	Untyped buffer store short. Stores
S0[31:16].

	28

	GLOBAL_STORE_DWORD

	Untyped buffer store dword.

	29

	GLOBAL_STORE_DWORDX
2

	Untyped buffer store 2 dwords.

	30

	GLOBAL_STORE_DWORDX
3

	Untyped buffer store 3 dwords.

	31

	GLOBAL_STORE_DWORDX
4

	Untyped buffer store 4 dwords.

	32

	GLOBAL_LOAD_UBYTE_
D16

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	33

	GLOBAL_LOAD_UBYTE_
D16_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load unsigned byte.

	34

	GLOBAL_LOAD_SBYTE_
D16

	D0[15:0] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	35

	GLOBAL_LOAD_SBYTE_
D16_HI

	D0[31:16] = {8’h0, MEM[ADDR]}. Untyped
buffer load signed byte.

	36

	GLOBAL_LOAD_SHORT_
D16

	D0[15:0] = MEM[ADDR]. Untyped buffer load
short.

	37

	GLOBAL_LOAD_SHORT_
D16_HI

	D0[31:16] = MEM[ADDR]. Untyped buffer load
short.

	64

	GLOBAL_ATOMIC_SWAP

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = DATA;
RETURN_DATA = tmp.

	65

	GLOBAL_ATOMIC_CMPSW
AP

	// 32bit tmp = MEM[ADDR]; src = DATA[0];
cmp = DATA[1]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0] = tmp.

	66

	GLOBAL_ATOMIC_ADD

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA; RETURN_DATA = tmp.

	67

	GLOBAL_ATOMIC_SUB

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA; RETURN_DATA = tmp.

	68

	GLOBAL_ATOMIC_SMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	69

	GLOBAL_ATOMIC_UMIN

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
< tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	70

	GLOBAL_ATOMIC_SMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // signed compare
RETURN_DATA = tmp.

	71

	GLOBAL_ATOMIC_UMAX

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (DATA
> tmp) ? DATA : tmp; // unsigned compare
RETURN_DATA = tmp.

	72

	GLOBAL_ATOMIC_AND

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA; RETURN_DATA = tmp.

	73

	GLOBAL_ATOMIC_OR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA; RETURN_DATA = tmp.

	74

	GLOBAL_ATOMIC_XOR

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA; RETURN_DATA = tmp.

	75

	GLOBAL_ATOMIC_INC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
>= DATA) ? 0 : tmp + 1; // unsigned compare
RETURN_DATA = tmp.

	76

	GLOBAL_ATOMIC_DEC

	// 32bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
== 0 || tmp > DATA) ? DATA : tmp - 1; //
unsigned compare RETURN_DATA = tmp.

	96

	GLOBAL_ATOMIC_SWAP_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] =
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	97

	GLOBAL_ATOMIC_CMPSW
AP_X2

	// 64bit tmp = MEM[ADDR]; src = DATA[0:1];
cmp = DATA[2:3]; MEM[ADDR] = (tmp == cmp) ?
src : tmp; RETURN_DATA[0:1] = tmp.

	98

	GLOBAL_ATOMIC_ADD_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] +=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	99

	GLOBAL_ATOMIC_SUB_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	100

	GLOBAL_ATOMIC_SMIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	101

	GLOBAL_ATOMIC_UMIN_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] < tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	102

	GLOBAL_ATOMIC_SMAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
signed compare RETURN_DATA[0:1] = tmp.

	103

	GLOBAL_ATOMIC_UMAX_X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] -=
(DATA[0:1] > tmp) ? DATA[0:1] : tmp; //
unsigned compare RETURN_DATA[0:1] = tmp.

	104

	GLOBAL_ATOMIC_AND_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] &=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	105

	GLOBAL_ATOMIC_OR_X
2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] |=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	106

	GLOBAL_ATOMIC_XOR_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] ^=
DATA[0:1]; RETURN_DATA[0:1] = tmp.

	107

	GLOBAL_ATOMIC_INC_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
>= DATA[0:1]) ? 0 : tmp + 1; // unsigned
compare RETURN_DATA[0:1] = tmp.

	108

	GLOBAL_ATOMIC_DEC_
X2

	// 64bit tmp = MEM[ADDR]; MEM[ADDR] = (tmp
== 0 || tmp > DATA[0:1]) ? DATA[0:1] :
tmp - 1; // unsigned compare
RETURN_DATA[0:1] = tmp.

Instruction Limitations

DPP

The following instructions cannot use DPP:

	V_MADMK_F32

	V_MADAK_F32

	V_MADMK_F16

	V_MADAK_F16

	V_READFIRSTLANE_B32

	V_CVT_I32_F64

	V_CVT_F64_I32

	V_CVT_F32_F64

	V_CVT_F64_F32

	V_CVT_U32_F64

	V_CVT_F64_U32

	V_TRUNC_F64

	V_CEIL_F64

	V_RNDNE_F64

	V_FLOOR_F64

	V_RCP_F64

	V_RSQ_F64

	V_SQRT_F64

	V_FREXP_EXP_I32_F64

	V_FREXP_MANT_F64

	V_FRACT_F64

	V_CLREXCP

	V_SWAP_B32

	V_CMP_CLASS_F64

	V_CMPX_CLASS_F64

	V_CMP_*_F64

	V_CMPX_*_F64

	V_CMP_*_I64

	V_CMP_*_U64

	V_CMPX_*_I64

	V_CMPX_*_U64

SDWA

The following instructions cannot use SDWA:

	V_MAC_F32

	V_MADMK_F32

	V_MADAK_F32

	V_MAC_F16

	V_MADMK_F16

	V_MADAK_F16

	V_FMAC_F32

	V_READFIRSTLANE_B32

	V_CLREXCP

	V_SWAP_B32

Microcode Formats

This section specifies the microcode formats. The definitions can be
used to simplify compilation by providing standard templates and
enumeration names for the various instruction formats.

Endian Order - The GCN architecture addresses memory and registers using
littleendian byte-ordering and bit-ordering. Multi-byte values are
stored with their least-significant (low-order) byte (LSB) at the lowest
byte address, and they are illustrated with their LSB at the right side.
Byte values are stored with their least-significant (low-order) bit
(lsb) at the lowest bit address, and they are illustrated with their lsb
at the right side.

The table below summarizes the microcode formats and their widths. The
sections that follow provide details

	Microcode Formats

	Reference

	Width
(bits)

	Scalar ALU and Control Formats

	
	

	SOP2

	section_title

	32

	SOP1

	section_title

	

	SOPK

	section_title

	

	SOPP

	section_title

	

	SOPC

	section_title

	

	Scalar Memory Format

	
	

	SMEM

	section_title

	64

	Vector ALU Format

	
	

	VOP1

	section_title

	32

	VOP2

	section_title

	32

	VOPC

	section_title

	32

	VOP3A

	section_title

	64

	VOP3B

	section_title

	64

	VOP3P

	section_title

	64

	DPP

	section_title

	32

	SDWA

	section_title

	32

	Vector Parameter Interpolation
Format

	
	

	VINTRP

	section_title

	32

	LDS/GDS Format

	
	

	DS

	`section_title <#_ds
>`__

	64

	Vector Memory Buffer Formats

	
	

	MTBUF

	???

	64

	MUBUF

	section_title

	64

	Vector Memory Image Format

	
	

	MIMG

	section_title

	64

	Export Format

	
	

	EXP

	section_title

	64

	Flat Formats

	
	

	FLAT

	section_title

	64

	GLOBAL

	section_title

	64

	SCRATCH

	section_title

	64

Table: Summary of Microcode Formats

The field-definition tables that accompany the descriptions in the
sections below use the following notation.

	int(2) - A two-bit field that specifies an unsigned integer value.

	enum(7) - A seven-bit field that specifies an enumerated set of
values (in this case, a set of up to 27 values). The number of valid
values can be less than the maximum.

The default value of all fields is zero. Any bitfield not identified is
assumed to be reserved.

Instruction Suffixes

Most instructions include a suffix which indicates the data type the
instruction handles. This suffix may also include a number which
indicate the size of the data.

For example: “F32” indicates “32-bit floating point data”, or “B16” is
“16-bit binary data”.

	B = binary

	F = floating point

	U = unsigned integer

	S = signed integer

When more than one data-type specifier occurs in an instruction, the
last one is the result type and size, and the earlier one(s) is/are
input data type and size.

Scalar ALU and Control Formats

SOP2

Scalar format with Two inputs, one output

[image: microcode sop2]

	Format

	SOP2

	Descriptio
n

	This is a scalar instruction with two inputs and one output.
Can be followed by a 32-bit literal constant.

	Field Name

	Bits

	Format or Description

	SSRC0

	
[7:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249 -
250

251

252

253

254

255

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

	SSRC1

	[15:8]

	
Second scalar source operand.

Same codes as SSRC0, above.

	SDST

	[22:16]

	
Scalar destination.

Same codes as SSRC0, above except only codes
0-127 are valid.

	OP

	[29:23]

	See Opcode table below.

	ENCODING

	[31:30]

	Must be: 10

Table: SOP2 Fields

	Opcode #

	Name

	0

	S_ADD_U32

	1

	S_SUB_U32

	2

	S_ADD_I32

	3

	S_SUB_I32

	4

	S_ADDC_U32

	5

	S_SUBB_U32

	6

	S_MIN_I32

	7

	S_MIN_U32

	8

	S_MAX_I32

	9

	S_MAX_U32

	10

	S_CSELECT_B32

	11

	S_CSELECT_B64

	12

	S_AND_B32

	13

	S_AND_B64

	14

	S_OR_B32

	15

	S_OR_B64

	16

	S_XOR_B32

	17

	S_XOR_B64

	18

	S_ANDN2_B32

	19

	S_ANDN2_B64

	20

	S_ORN2_B32

	21

	S_ORN2_B64

	22

	S_NAND_B32

	23

	S_NAND_B64

	24

	S_NOR_B32

	25

	S_NOR_B64

	26

	S_XNOR_B32

	27

	S_XNOR_B64

	28

	S_LSHL_B32

	29

	S_LSHL_B64

	30

	S_LSHR_B32

	31

	S_LSHR_B64

	32

	S_ASHR_I32

	33

	S_ASHR_I64

	34

	S_BFM_B32

	35

	S_BFM_B64

	36

	S_MUL_I32

	37

	S_BFE_U32

	38

	S_BFE_I32

	39

	S_BFE_U64

	40

	S_BFE_I64

	41

	S_CBRANCH_G_FORK

	42

	S_ABSDIFF_I32

	43

	S_RFE_RESTORE_B64

	44

	S_MUL_HI_U32

	45

	S_MUL_HI_I32

	46

	S_LSHL1_ADD_U32

	47

	S_LSHL2_ADD_U32

	48

	S_LSHL3_ADD_U32

	49

	S_LSHL4_ADD_U32

	50

	S_PACK_LL_B32_B16

	51

	S_PACK_LH_B32_B16

	52

	S_PACK_HH_B32_B16

Table: SOP2 Opcodes

SOPK

[image: microcode sopk]

	Format

	SOPK

	Descriptio
n

	This is a scalar instruction with one 16-bit signed immediate
(SIMM16) input and a single destination. Instructions which
take 2 inputs use the destination as the second input.

	Field Name

	Bits

	Format or Description

	SIMM16

	[15:0]

	Signed immediate 16-bit value.

	SDST

	
[22:16]

0 - 101

102

103

104

105

106

107

108-123

124

125

126

127

	
Scalar destination, and can provide second
source operand.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

	OP

	[27:23]

	See Opcode table below.

	ENCODING

	[31:28]

	Must be: 1011

Table: SOPK Fields

	Opcode #

	Name

	0

	S_MOVK_I32

	1

	S_CMOVK_I32

	2

	S_CMPK_EQ_I32

	3

	S_CMPK_LG_I32

	4

	S_CMPK_GT_I32

	5

	S_CMPK_GE_I32

	6

	S_CMPK_LT_I32

	7

	S_CMPK_LE_I32

	8

	S_CMPK_EQ_U32

	9

	S_CMPK_LG_U32

	10

	S_CMPK_GT_U32

	11

	S_CMPK_GE_U32

	12

	S_CMPK_LT_U32

	13

	S_CMPK_LE_U32

	14

	S_ADDK_I32

	15

	S_MULK_I32

	16

	S_CBRANCH_I_FORK

	17

	S_GETREG_B32

	18

	S_SETREG_B32

	20

	S_SETREG_IMM32_B32

	21

	S_CALL_B64

Table: SOPK Opcodes

SOP1

[image: microcode sop1]

	Format

	SOP1

	Descriptio
n

	This is a scalar instruction with two inputs and one output.
Can be followed by a 32-bit literal constant.

	Field Name

	Bits

	Format or Description

	SSRC0

	
[7:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249 -
250

251

252

253

254

255

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

	OP

	[15:8]

	See Opcode table below.

	SDST

	[22:16]

	
Scalar destination.

Same codes as SSRC0, above except only codes
0-127 are valid.

	ENCODING

	[31:23]

	Must be: 10_1111101

Table: SOP1 Fields

	Opcode #

	Name

	0

	S_MOV_B32

	1

	S_MOV_B64

	2

	S_CMOV_B32

	3

	S_CMOV_B64

	4

	S_NOT_B32

	5

	S_NOT_B64

	6

	S_WQM_B32

	7

	S_WQM_B64

	8

	S_BREV_B32

	9

	S_BREV_B64

	10

	S_BCNT0_I32_B32

	11

	S_BCNT0_I32_B64

	12

	S_BCNT1_I32_B32

	13

	S_BCNT1_I32_B64

	14

	S_FF0_I32_B32

	15

	S_FF0_I32_B64

	16

	S_FF1_I32_B32

	17

	S_FF1_I32_B64

	18

	S_FLBIT_I32_B32

	19

	S_FLBIT_I32_B64

	20

	S_FLBIT_I32

	21

	S_FLBIT_I32_I64

	22

	S_SEXT_I32_I8

	23

	S_SEXT_I32_I16

	24

	S_BITSET0_B32

	25

	S_BITSET0_B64

	26

	S_BITSET1_B32

	27

	S_BITSET1_B64

	28

	S_GETPC_B64

	29

	S_SETPC_B64

	30

	S_SWAPPC_B64

	31

	S_RFE_B64

	32

	S_AND_SAVEEXEC_B64

	33

	S_OR_SAVEEXEC_B64

	34

	S_XOR_SAVEEXEC_B64

	35

	S_ANDN2_SAVEEXEC_B64

	36

	S_ORN2_SAVEEXEC_B64

	37

	S_NAND_SAVEEXEC_B64

	38

	S_NOR_SAVEEXEC_B64

	39

	S_XNOR_SAVEEXEC_B64

	40

	S_QUADMASK_B32

	41

	S_QUADMASK_B64

	42

	S_MOVRELS_B32

	43

	S_MOVRELS_B64

	44

	S_MOVRELD_B32

	45

	S_MOVRELD_B64

	46

	S_CBRANCH_JOIN

	48

	S_ABS_I32

	50

	S_SET_GPR_IDX_IDX

	51

	S_ANDN1_SAVEEXEC_B64

	52

	S_ORN1_SAVEEXEC_B64

	53

	S_ANDN1_WREXEC_B64

	54

	S_ANDN2_WREXEC_B64

	55

	S_BITREPLICATE_B64_B32

Table: SOP1 Opcodes

SOPC

[image: microcode sop1]

	Format

	SOPC

	Descriptio
n

	This is a scalar instruction with two inputs which are
compared and produce SCC as a result. Can be followed by a
32-bit literal constant.

	Field Name

	Bits

	Format or Description

	SSRC0

	
[7:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249 -
250

251

252

253

254

255

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

Reserved.

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

	SSRC1

	[15:8]

	
Second scalar source operand.

Same codes as SSRC0, above.

	OP

	[22:16]

	See Opcode table below.

	ENCODING

	[31:23]

	Must be: 10_1111110

Table: SOPC Fields

	Opcode #

	Name

	0

	S_CMP_EQ_I32

	1

	S_CMP_LG_I32

	2

	S_CMP_GT_I32

	3

	S_CMP_GE_I32

	4

	S_CMP_LT_I32

	5

	S_CMP_LE_I32

	6

	S_CMP_EQ_U32

	7

	S_CMP_LG_U32

	8

	S_CMP_GT_U32

	9

	S_CMP_GE_U32

	10

	S_CMP_LT_U32

	11

	S_CMP_LE_U32

	12

	S_BITCMP0_B32

	13

	S_BITCMP1_B32

	14

	S_BITCMP0_B64

	15

	S_BITCMP1_B64

	16

	S_SETVSKIP

	17

	S_SET_GPR_IDX_ON

	18

	S_CMP_EQ_U64

	19

	S_CMP_LG_U64

Table: SOPC Opcodes

SOPP

[image: microcode sopp]

	Format

	SOPP

	Descriptio
n

	This is a scalar instruction with one 16-bit signed immediate
(SIMM16) input.

	Field Name

	Bits

	Format or Description

	SIMM16

	[15:0]

	Signed immediate 16-bit value.

	OP

	[22:16]

	See Opcode table below.

	ENCODING

	[31:23]

	Must be: 10_1111111

Table: SOPP Fields

	Opcode #

	Name

	0

	S_NOP

	1

	S_ENDPGM

	2

	S_BRANCH

	3

	S_WAKEUP

	4

	S_CBRANCH_SCC0

	5

	S_CBRANCH_SCC1

	6

	S_CBRANCH_VCCZ

	7

	S_CBRANCH_VCCNZ

	8

	S_CBRANCH_EXECZ

	9

	S_CBRANCH_EXECNZ

	10

	S_BARRIER

	11

	S_SETKILL

	12

	S_WAITCNT

	13

	S_SETHALT

	14

	S_SLEEP

	15

	S_SETPRIO

	16

	S_SENDMSG

	17

	S_SENDMSGHALT

	18

	S_TRAP

	19

	S_ICACHE_INV

	20

	S_INCPERFLEVEL

	21

	S_DECPERFLEVEL

	22

	S_TTRACEDATA

	23

	S_CBRANCH_CDBGSYS

	24

	S_CBRANCH_CDBGUSER

	25

	S_CBRANCH_CDBGSYS_OR_USER

	26

	S_CBRANCH_CDBGSYS_AND_USER

	27

	S_ENDPGM_SAVED

	28

	S_SET_GPR_IDX_OFF

	29

	S_SET_GPR_IDX_MODE

	30

	S_ENDPGM_ORDERED_PS_DONE

Table: SOPP Opcodes

Scalar Memory Format

SMEM

[image: microcode smem]

	Format

	SMEM

	Descriptio
n

	Scalar Memory data load/store

	Field Name

	Bits

	Format or Description

	SBASE

	[5:0]

	SGPR-pair which provides base address or
SGPR-quad which provides V#. (LSB of SGPR address
is omitted).

	SDATA

	[12:6]

	SGPR which provides write data or accepts return
data.

	SOE

	[14]

	Scalar offset enable.

	NV

	[15]

	Non-volatile

	GLC

	[16]

	Globally memory Coherent. Force bypass of L1
cache, or for atomics, cause pre-op value to be
returned.

	IMM

	[17]

	Immediate enable.

	OP

	[25:18]

	See Opcode table below.

	ENCODING

	[31:26]

	Must be: 110000

	OFFSET

	[52:32]

	An immediate signed byte offset, or the address
of an SGPR holding the unsigned byte offset.
Signed offsets only work with S_LOAD/STORE.

	SOFFSET

	[63:57]

	SGPR offset. Used only when SOFFSET_EN = 1 May
only specify an SGPR or M0.

Table: SMEM Fields

	Opcode #

	Name

	0

	S_LOAD_DWORD

	1

	S_LOAD_DWORDX2

	2

	S_LOAD_DWORDX4

	3

	S_LOAD_DWORDX8

	4

	S_LOAD_DWORDX16

	5

	S_SCRATCH_LOAD_DWORD

	6

	S_SCRATCH_LOAD_DWORDX2

	7

	S_SCRATCH_LOAD_DWORDX4

	8

	S_BUFFER_LOAD_DWORD

	9

	S_BUFFER_LOAD_DWORDX2

	10

	S_BUFFER_LOAD_DWORDX4

	11

	S_BUFFER_LOAD_DWORDX8

	12

	S_BUFFER_LOAD_DWORDX16

	16

	S_STORE_DWORD

	17

	S_STORE_DWORDX2

	18

	S_STORE_DWORDX4

	21

	S_SCRATCH_STORE_DWORD

	22

	S_SCRATCH_STORE_DWORDX2

	23

	S_SCRATCH_STORE_DWORDX4

	24

	S_BUFFER_STORE_DWORD

	25

	S_BUFFER_STORE_DWORDX2

	26

	S_BUFFER_STORE_DWORDX4

	32

	S_DCACHE_INV

	33

	S_DCACHE_WB

	34

	S_DCACHE_INV_VOL

	35

	S_DCACHE_WB_VOL

	36

	S_MEMTIME

	37

	S_MEMREALTIME

	38

	S_ATC_PROBE

	39

	S_ATC_PROBE_BUFFER

	40

	S_DCACHE_DISCARD

	41

	S_DCACHE_DISCARD_X2

	64

	S_BUFFER_ATOMIC_SWAP

	65

	S_BUFFER_ATOMIC_CMPSWAP

	66

	S_BUFFER_ATOMIC_ADD

	67

	S_BUFFER_ATOMIC_SUB

	68

	S_BUFFER_ATOMIC_SMIN

	69

	S_BUFFER_ATOMIC_UMIN

	70

	S_BUFFER_ATOMIC_SMAX

	71

	S_BUFFER_ATOMIC_UMAX

	72

	S_BUFFER_ATOMIC_AND

	73

	S_BUFFER_ATOMIC_OR

	74

	S_BUFFER_ATOMIC_XOR

	75

	S_BUFFER_ATOMIC_INC

	76

	S_BUFFER_ATOMIC_DEC

	96

	S_BUFFER_ATOMIC_SWAP_X2

	97

	S_BUFFER_ATOMIC_CMPSWAP_X2

	98

	S_BUFFER_ATOMIC_ADD_X2

	99

	S_BUFFER_ATOMIC_SUB_X2

	100

	S_BUFFER_ATOMIC_SMIN_X2

	101

	S_BUFFER_ATOMIC_UMIN_X2

	102

	S_BUFFER_ATOMIC_SMAX_X2

	103

	S_BUFFER_ATOMIC_UMAX_X2

	104

	S_BUFFER_ATOMIC_AND_X2

	105

	S_BUFFER_ATOMIC_OR_X2

	106

	S_BUFFER_ATOMIC_XOR_X2

	107

	S_BUFFER_ATOMIC_INC_X2

	108

	S_BUFFER_ATOMIC_DEC_X2

	128

	S_ATOMIC_SWAP

	129

	S_ATOMIC_CMPSWAP

	130

	S_ATOMIC_ADD

	131

	S_ATOMIC_SUB

	132

	S_ATOMIC_SMIN

	133

	S_ATOMIC_UMIN

	134

	S_ATOMIC_SMAX

	135

	S_ATOMIC_UMAX

	136

	S_ATOMIC_AND

	137

	S_ATOMIC_OR

	138

	S_ATOMIC_XOR

	139

	S_ATOMIC_INC

	140

	S_ATOMIC_DEC

	160

	S_ATOMIC_SWAP_X2

	161

	S_ATOMIC_CMPSWAP_X2

	162

	S_ATOMIC_ADD_X2

	163

	S_ATOMIC_SUB_X2

	164

	S_ATOMIC_SMIN_X2

	165

	S_ATOMIC_UMIN_X2

	166

	S_ATOMIC_SMAX_X2

	167

	S_ATOMIC_UMAX_X2

	168

	S_ATOMIC_AND_X2

	169

	S_ATOMIC_OR_X2

	170

	S_ATOMIC_XOR_X2

	171

	S_ATOMIC_INC_X2

	172

	S_ATOMIC_DEC_X2

Table: SMEM Opcodes

Vector ALU Formats

VOP2

[image: microcode vop2]

	Format

	VOP2

	Descriptio
n

	Vector ALU format with two operands

	Field Name

	Bits

	Format or Description

	SRC0

	
[8:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 -
511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	VSRC1

	[16:9]

	VGPR which provides the second operand.

	VDST

	[24:17]

	Destination VGPR.

	OP

	[30:25]

	See Opcode table below.

	ENCODING

	[31]

	Must be: 0

Table: VOP2 Fields

	Opcode #

	Name

	0

	V_CNDMASK_B32

	1

	V_ADD_F32

	2

	V_SUB_F32

	3

	V_SUBREV_F32

	4

	V_MUL_LEGACY_F32

	5

	V_MUL_F32

	6

	V_MUL_I32_I24

	7

	V_MUL_HI_I32_I24

	8

	V_MUL_U32_U24

	9

	V_MUL_HI_U32_U24

	10

	V_MIN_F32

	11

	V_MAX_F32

	12

	V_MIN_I32

	13

	V_MAX_I32

	14

	V_MIN_U32

	15

	V_MAX_U32

	16

	V_LSHRREV_B32

	17

	V_ASHRREV_I32

	18

	V_LSHLREV_B32

	19

	V_AND_B32

	20

	V_OR_B32

	21

	V_XOR_B32

	22

	V_MAC_F32

	23

	V_MADMK_F32

	24

	V_MADAK_F32

	25

	V_ADD_CO_U32

	26

	V_SUB_CO_U32

	27

	V_SUBREV_CO_U32

	28

	V_ADDC_CO_U32

	29

	V_SUBB_CO_U32

	30

	V_SUBBREV_CO_U32

	31

	V_ADD_F16

	32

	V_SUB_F16

	33

	V_SUBREV_F16

	34

	V_MUL_F16

	35

	V_MAC_F16

	36

	V_MADMK_F16

	37

	V_MADAK_F16

	38

	V_ADD_U16

	39

	V_SUB_U16

	40

	V_SUBREV_U16

	41

	V_MUL_LO_U16

	42

	V_LSHLREV_B16

	43

	V_LSHRREV_B16

	44

	V_ASHRREV_I16

	45

	V_MAX_F16

	46

	V_MIN_F16

	47

	V_MAX_U16

	48

	V_MAX_I16

	49

	V_MIN_U16

	50

	V_MIN_I16

	51

	V_LDEXP_F16

	52

	V_ADD_U32

	53

	V_SUB_U32

	54

	V_SUBREV_U32

Table: VOP2 Opcodes

VOP1

[image: microcode vop1]

	Format

	VOP1

	Descriptio
n

	Vector ALU format with one operand

	Field Name

	Bits

	Format or Description

	SRC0

	
[8:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 -
511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	OP

	[16:9]

	See Opcode table below.

	VDST

	[24:17]

	Destination VGPR.

	ENCODING

	[31:25]

	Must be: 0_111111

Table: VOP1 Fields

	Opcode #

	Name

	0

	V_NOP

	1

	V_MOV_B32

	2

	V_READFIRSTLANE_B32

	3

	V_CVT_I32_F64

	4

	V_CVT_F64_I32

	5

	V_CVT_F32_I32

	6

	V_CVT_F32_U32

	7

	V_CVT_U32_F32

	8

	V_CVT_I32_F32

	10

	V_CVT_F16_F32

	11

	V_CVT_F32_F16

	12

	V_CVT_RPI_I32_F32

	13

	V_CVT_FLR_I32_F32

	14

	V_CVT_OFF_F32_I4

	15

	V_CVT_F32_F64

	16

	V_CVT_F64_F32

	17

	V_CVT_F32_UBYTE0

	18

	V_CVT_F32_UBYTE1

	19

	V_CVT_F32_UBYTE2

	20

	V_CVT_F32_UBYTE3

	21

	V_CVT_U32_F64

	22

	V_CVT_F64_U32

	23

	V_TRUNC_F64

	24

	V_CEIL_F64

	25

	V_RNDNE_F64

	26

	V_FLOOR_F64

	27

	V_FRACT_F32

	28

	V_TRUNC_F32

	29

	V_CEIL_F32

	30

	V_RNDNE_F32

	31

	V_FLOOR_F32

	32

	V_EXP_F32

	33

	V_LOG_F32

	34

	V_RCP_F32

	35

	V_RCP_IFLAG_F32

	36

	V_RSQ_F32

	37

	V_RCP_F64

	38

	V_RSQ_F64

	39

	V_SQRT_F32

	40

	V_SQRT_F64

	41

	V_SIN_F32

	42

	V_COS_F32

	43

	V_NOT_B32

	44

	V_BFREV_B32

	45

	V_FFBH_U32

	46

	V_FFBL_B32

	47

	V_FFBH_I32

	48

	V_FREXP_EXP_I32_F64

	49

	V_FREXP_MANT_F64

	50

	V_FRACT_F64

	51

	V_FREXP_EXP_I32_F32

	52

	V_FREXP_MANT_F32

	53

	V_CLREXCP

	55

	V_SCREEN_PARTITION_4SE_B32

	57

	V_CVT_F16_U16

	58

	V_CVT_F16_I16

	59

	V_CVT_U16_F16

	60

	V_CVT_I16_F16

	61

	V_RCP_F16

	62

	V_SQRT_F16

	63

	V_RSQ_F16

	64

	V_LOG_F16

	65

	V_EXP_F16

	66

	V_FREXP_MANT_F16

	67

	V_FREXP_EXP_I16_F16

	68

	V_FLOOR_F16

	69

	V_CEIL_F16

	70

	V_TRUNC_F16

	71

	V_RNDNE_F16

	72

	V_FRACT_F16

	73

	V_SIN_F16

	74

	V_COS_F16

	75

	V_EXP_LEGACY_F32

	76

	V_LOG_LEGACY_F32

	77

	V_CVT_NORM_I16_F16

	78

	V_CVT_NORM_U16_F16

	79

	V_SAT_PK_U8_I16

	81

	V_SWAP_B32

Table: VOP1 Opcodes

VOPC

[image: microcode vopc]

	Format

	VOPC

	Descriptio
n

	Vector instruction taking two inputs and producing a
comparison result. Can be followed by a 32- bit literal
constant. Vector Comparison operations are divided into three
groups:

	those which can use any one of 16 comparison operations,

	those which can use any one of 8, and

	those which have only a single comparison operation.

The final opcode number is determined by adding the base for the opcode
family plus the offset from the compare op. Every compare instruction
writes a result to VCC (for VOPC) or an SGPR (for VOP3). Additionally,
every compare instruction has a variant that also writes to the EXEC
mask. The destination of the compare result is always VCC when encoded
using the VOPC format, and can be an arbitrary SGPR when encoded in the
VOP3 format.

Comparison Operations

	Compare
Operation

	Opcode
Offset

	Description

	Sixteen Compare
Operations
(OP16)

	
	

	F

	0

	D.u = 0

	LT

	1

	D.u = (S0 < S1)

	EQ

	2

	D.u = (S0 == S1)

	LE

	3

	D.u = (S0 <= S1)

	GT

	4

	D.u = (S0 > S1)

	LG

	5

	D.u = (S0 <> S1)

	GE

	6

	D.u = (S0 >= S1)

	O

	7

	D.u = (!isNaN(S0) && !isNaN(S1))

	U

	8

	D.u = (!isNaN(S0) || !isNaN(S1))

	NGE

	9

	D.u = !(S0 >= S1)

	NLG

	10

	D.u = !(S0 <> S1)

	NGT

	11

	D.u = !(S0 > S1)

	NLE

	12

	D.u = !(S0 <= S1)

	NEQ

	13

	D.u = !(S0 == S1)

	NLT

	14

	D.u = !(S0 < S1)

	TRU

	15

	D.u = 1

	Eight Compare
Operations
(OP8)

	
	

	F

	0

	D.u = 0

	LT

	1

	D.u = (S0 < S1)

	EQ

	2

	D.u = (S0 == S1)

	LE

	3

	D.u = (S0 <= S1)

	GT

	4

	D.u = (S0 > S1)

	LG

	5

	D.u = (S0 <> S1)

	GE

	6

	D.u = (S0 >= S1)

	TRU

	7

	D.u = 1

Table: Comparison Operations

	Field Name

	Bits

	Format or Description

	SRC0

	
[8:0]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 -
511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	VSRC1

	[16:9]

	VGPR which provides the second operand.

	OP

	[24:17]

	See Opcode table below.

	ENCODING

	[31:25]

	Must be: 0_111110

Table: VOPC Fields

	Opcode #

	Name

	16

	V_CMP_CLASS_F32

	17

	V_CMPX_CLASS_F32

	18

	V_CMP_CLASS_F64

	19

	V_CMPX_CLASS_F64

	20

	V_CMP_CLASS_F16

	21

	V_CMPX_CLASS_F16

	32

	V_CMP_F_F16

	33

	V_CMP_LT_F16

	34

	V_CMP_EQ_F16

	35

	V_CMP_LE_F16

	36

	V_CMP_GT_F16

	37

	V_CMP_LG_F16

	38

	V_CMP_GE_F16

	39

	V_CMP_O_F16

	40

	V_CMP_U_F16

	41

	V_CMP_NGE_F16

	42

	V_CMP_NLG_F16

	43

	V_CMP_NGT_F16

	44

	V_CMP_NLE_F16

	45

	V_CMP_NEQ_F16

	46

	V_CMP_NLT_F16

	47

	V_CMP_TRU_F16

	48

	V_CMPX_F_F16

	49

	V_CMPX_LT_F16

	50

	V_CMPX_EQ_F16

	51

	V_CMPX_LE_F16

	52

	V_CMPX_GT_F16

	53

	V_CMPX_LG_F16

	54

	V_CMPX_GE_F16

	55

	V_CMPX_O_F16

	56

	V_CMPX_U_F16

	57

	V_CMPX_NGE_F16

	58

	V_CMPX_NLG_F16

	59

	V_CMPX_NGT_F16

	60

	V_CMPX_NLE_F16

	61

	V_CMPX_NEQ_F16

	62

	V_CMPX_NLT_F16

	63

	V_CMPX_TRU_F16

	64

	V_CMP_F_F32

	65

	V_CMP_LT_F32

	66

	V_CMP_EQ_F32

	67

	V_CMP_LE_F32

	68

	V_CMP_GT_F32

	69

	V_CMP_LG_F32

	70

	V_CMP_GE_F32

	71

	V_CMP_O_F32

	72

	V_CMP_U_F32

	73

	V_CMP_NGE_F32

	74

	V_CMP_NLG_F32

	75

	V_CMP_NGT_F32

	76

	V_CMP_NLE_F32

	77

	V_CMP_NEQ_F32

	78

	V_CMP_NLT_F32

	79

	V_CMP_TRU_F32

	80

	V_CMPX_F_F32

	81

	V_CMPX_LT_F32

	82

	V_CMPX_EQ_F32

	83

	V_CMPX_LE_F32

	84

	V_CMPX_GT_F32

	85

	V_CMPX_LG_F32

	86

	V_CMPX_GE_F32

	87

	V_CMPX_O_F32

	88

	V_CMPX_U_F32

	89

	V_CMPX_NGE_F32

	90

	V_CMPX_NLG_F32

	91

	V_CMPX_NGT_F32

	92

	V_CMPX_NLE_F32

	93

	V_CMPX_NEQ_F32

	94

	V_CMPX_NLT_F32

	95

	V_CMPX_TRU_F32

	96

	V_CMP_F_F64

	97

	V_CMP_LT_F64

	98

	V_CMP_EQ_F64

	99

	V_CMP_LE_F64

	100

	V_CMP_GT_F64

	101

	V_CMP_LG_F64

	102

	V_CMP_GE_F64

	103

	V_CMP_O_F64

	104

	V_CMP_U_F64

	105

	V_CMP_NGE_F64

	106

	V_CMP_NLG_F64

	107

	V_CMP_NGT_F64

	108

	V_CMP_NLE_F64

	109

	V_CMP_NEQ_F64

	110

	V_CMP_NLT_F64

	111

	V_CMP_TRU_F64

	112

	V_CMPX_F_F64

	113

	V_CMPX_LT_F64

	114

	V_CMPX_EQ_F64

	115

	V_CMPX_LE_F64

	116

	V_CMPX_GT_F64

	117

	V_CMPX_LG_F64

	118

	V_CMPX_GE_F64

	119

	V_CMPX_O_F64

	120

	V_CMPX_U_F64

	121

	V_CMPX_NGE_F64

	122

	V_CMPX_NLG_F64

	123

	V_CMPX_NGT_F64

	124

	V_CMPX_NLE_F64

	125

	V_CMPX_NEQ_F64

	126

	V_CMPX_NLT_F64

	127

	V_CMPX_TRU_F64

	160

	V_CMP_F_I16

	161

	V_CMP_LT_I16

	162

	V_CMP_EQ_I16

	163

	V_CMP_LE_I16

	164

	V_CMP_GT_I16

	165

	V_CMP_NE_I16

	166

	V_CMP_GE_I16

	167

	V_CMP_T_I16

	168

	V_CMP_F_U16

	169

	V_CMP_LT_U16

	170

	V_CMP_EQ_U16

	171

	V_CMP_LE_U16

	172

	V_CMP_GT_U16

	173

	V_CMP_NE_U16

	174

	V_CMP_GE_U16

	175

	V_CMP_T_U16

	176

	V_CMPX_F_I16

	177

	V_CMPX_LT_I16

	178

	V_CMPX_EQ_I16

	179

	V_CMPX_LE_I16

	180

	V_CMPX_GT_I16

	181

	V_CMPX_NE_I16

	182

	V_CMPX_GE_I16

	183

	V_CMPX_T_I16

	184

	V_CMPX_F_U16

	185

	V_CMPX_LT_U16

	186

	V_CMPX_EQ_U16

	187

	V_CMPX_LE_U16

	188

	V_CMPX_GT_U16

	189

	V_CMPX_NE_U16

	190

	V_CMPX_GE_U16

	191

	V_CMPX_T_U16

	192

	V_CMP_F_I32

	193

	V_CMP_LT_I32

	194

	V_CMP_EQ_I32

	195

	V_CMP_LE_I32

	196

	V_CMP_GT_I32

	197

	V_CMP_NE_I32

	198

	V_CMP_GE_I32

	199

	V_CMP_T_I32

	200

	V_CMP_F_U32

	201

	V_CMP_LT_U32

	202

	V_CMP_EQ_U32

	203

	V_CMP_LE_U32

	204

	V_CMP_GT_U32

	205

	V_CMP_NE_U32

	206

	V_CMP_GE_U32

	207

	V_CMP_T_U32

	208

	V_CMPX_F_I32

	209

	V_CMPX_LT_I32

	210

	V_CMPX_EQ_I32

	211

	V_CMPX_LE_I32

	212

	V_CMPX_GT_I32

	213

	V_CMPX_NE_I32

	214

	V_CMPX_GE_I32

	215

	V_CMPX_T_I32

	216

	V_CMPX_F_U32

	217

	V_CMPX_LT_U32

	218

	V_CMPX_EQ_U32

	219

	V_CMPX_LE_U32

	220

	V_CMPX_GT_U32

	221

	V_CMPX_NE_U32

	222

	V_CMPX_GE_U32

	223

	V_CMPX_T_U32

	224

	V_CMP_F_I64

	225

	V_CMP_LT_I64

	226

	V_CMP_EQ_I64

	227

	V_CMP_LE_I64

	228

	V_CMP_GT_I64

	229

	V_CMP_NE_I64

	230

	V_CMP_GE_I64

	231

	V_CMP_T_I64

	232

	V_CMP_F_U64

	233

	V_CMP_LT_U64

	234

	V_CMP_EQ_U64

	235

	V_CMP_LE_U64

	236

	V_CMP_GT_U64

	237

	V_CMP_NE_U64

	238

	V_CMP_GE_U64

	239

	V_CMP_T_U64

	240

	V_CMPX_F_I64

	241

	V_CMPX_LT_I64

	242

	V_CMPX_EQ_I64

	243

	V_CMPX_LE_I64

	244

	V_CMPX_GT_I64

	245

	V_CMPX_NE_I64

	246

	V_CMPX_GE_I64

	247

	V_CMPX_T_I64

	248

	V_CMPX_F_U64

	249

	V_CMPX_LT_U64

	250

	V_CMPX_EQ_U64

	251

	V_CMPX_LE_U64

	252

	V_CMPX_GT_U64

	253

	V_CMPX_NE_U64

	254

	V_CMPX_GE_U64

	255

	V_CMPX_T_U64

Table: VOPC Opcodes

VOP3A

[image: microcode vop3a]

	Format

	VOP3A

	Descriptio
n

	Vector ALU format with three operands

	Field Name

	Bits

	Format or Description

	VDST

	[7:0]

	Destination VGPR

	ABS

	[10:8]

	Absolute value of input. [8] = src0, [9] = src1,
[10] = src2

	OPSEL

	[14:11]

	Operand select for 16-bit data. 0 = select low
half, 1 = select high half. [11] = src0, [12] =
src1, [13] = src2, [14] = dest.

	CLMP

	[15]

	Clamp output

	OP

	[25:16]

	Opcode. See next table.

	ENCODING

	[31:26]

	Must be: 110100

	SRC0

	
[40:3
2]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 -
511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	SRC1

	[49:41]

	Second input operand. Same options as SRC0.

	SRC2

	[58:50]

	Third input operand. Same options as SRC0.

	OMOD

	[60:59]

	Output Modifier: 0=none, 1=*2, 2=*4, 3=div-2

	NEG

	[63:61]

	Negate input. [61] = src0, [62] = src1, [63] =
src2

Table: VOP3A Fields

	Opcode #

	Name

	448

	V_MAD_LEGACY_F32

	449

	V_MAD_F32

	450

	V_MAD_I32_I24

	451

	V_MAD_U32_U24

	452

	V_CUBEID_F32

	453

	V_CUBESC_F32

	454

	V_CUBETC_F32

	455

	V_CUBEMA_F32

	456

	V_BFE_U32

	457

	V_BFE_I32

	458

	V_BFI_B32

	459

	V_FMA_F32

	460

	V_FMA_F64

	461

	V_LERP_U8

	462

	V_ALIGNBIT_B32

	463

	V_ALIGNBYTE_B32

	464

	V_MIN3_F32

	465

	V_MIN3_I32

	466

	V_MIN3_U32

	467

	V_MAX3_F32

	468

	V_MAX3_I32

	469

	V_MAX3_U32

	470

	V_MED3_F32

	471

	V_MED3_I32

	472

	V_MED3_U32

	473

	V_SAD_U8

	474

	V_SAD_HI_U8

	475

	V_SAD_U16

	476

	V_SAD_U32

	477

	V_CVT_PK_U8_F32

	478

	V_DIV_FIXUP_F32

	479

	V_DIV_FIXUP_F64

	482

	V_DIV_FMAS_F32

	483

	V_DIV_FMAS_F64

	484

	V_MSAD_U8

	485

	V_QSAD_PK_U16_U8

	486

	V_MQSAD_PK_U16_U8

	487

	V_MQSAD_U32_U8

	490

	V_MAD_LEGACY_F16

	491

	V_MAD_LEGACY_U16

	492

	V_MAD_LEGACY_I16

	493

	V_PERM_B32

	494

	V_FMA_LEGACY_F16

	495

	V_DIV_FIXUP_LEGACY_F16

	496

	V_CVT_PKACCUM_U8_F32

	497

	V_MAD_U32_U16

	498

	V_MAD_I32_I16

	499

	V_XAD_U32

	500

	V_MIN3_F16

	501

	V_MIN3_I16

	502

	V_MIN3_U16

	503

	V_MAX3_F16

	504

	V_MAX3_I16

	505

	V_MAX3_U16

	506

	V_MED3_F16

	507

	V_MED3_I16

	508

	V_MED3_U16

	509

	V_LSHL_ADD_U32

	510

	V_ADD_LSHL_U32

	511

	V_ADD3_U32

	512

	V_LSHL_OR_B32

	513

	V_AND_OR_B32

	514

	V_OR3_B32

	515

	V_MAD_F16

	516

	V_MAD_U16

	517

	V_MAD_I16

	518

	V_FMA_F16

	519

	V_DIV_FIXUP_F16

	628

	V_INTERP_P1LL_F16

	629

	V_INTERP_P1LV_F16

	630

	V_INTERP_P2_LEGACY_F16

	631

	V_INTERP_P2_F16

	640

	V_ADD_F64

	641

	V_MUL_F64

	642

	V_MIN_F64

	643

	V_MAX_F64

	644

	V_LDEXP_F64

	645

	V_MUL_LO_U32

	646

	V_MUL_HI_U32

	647

	V_MUL_HI_I32

	648

	V_LDEXP_F32

	649

	V_READLANE_B32

	650

	V_WRITELANE_B32

	651

	V_BCNT_U32_B32

	652

	V_MBCNT_LO_U32_B32

	653

	V_MBCNT_HI_U32_B32

	655

	V_LSHLREV_B64

	656

	V_LSHRREV_B64

	657

	V_ASHRREV_I64

	658

	V_TRIG_PREOP_F64

	659

	V_BFM_B32

	660

	V_CVT_PKNORM_I16_F32

	661

	V_CVT_PKNORM_U16_F32

	662

	V_CVT_PKRTZ_F16_F32

	663

	V_CVT_PK_U16_U32

	664

	V_CVT_PK_I16_I32

	665

	V_CVT_PKNORM_I16_F16

	666

	V_CVT_PKNORM_U16_F16

	668

	V_ADD_I32

	669

	V_SUB_I32

	670

	V_ADD_I16

	671

	V_SUB_I16

	672

	V_PACK_B32_F16

Table: VOP3A Opcodes

VOP3B

[image: microcode vop3b]

	Format

	VOP3B

	Descriptio
n

	Vector ALU format with three operands and a scalar result.
This encoding is used only for a few opcodes.

This encoding allows specifying a unique scalar destination, and is used
only for the opcodes listed below. All other opcodes use VOP3A.

	
V_ADD_CO_U32

	
V_SUB_CO_U32

	
V_SUBREV_CO_U32

	
V_ADDC_CO_U32

	
V_SUBB_CO_U32

	
V_SUBBREV_CO_U32

	
V_DIV_SCALE_F32

	
V_DIV_SCALE_F64

	
V_MAD_U64_U32

	V_MAD_I64_I32

	Field Name

	Bits

	Format or Description

	VDST

	[7:0]

	Destination VGPR

	SDST

	[14:8]

	Scalar destination

	CLMP

	[15]

	Clamp result

	OP

	[25:16]

	Opcode. see next table.

	ENCODING

	[31:26]

	Must be: 110100

	SRC0

	
[40:3
2]

0 -
101

102

103

104

105

106

107

108-1
23

124

125

126

127

128

129-1
92

193-2
08

209-2
34

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256 -
511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	SRC1

	[49:41]

	Second input operand. Same options as SRC0.

	SRC2

	[58:50]

	Third input operand. Same options as SRC0.

	OMOD

	[60:59]

	Output Modifier: 0=none, 1=*2, 2=*4, 3=div-2

	NEG

	[63:61]

	Negate input. [61] = src0, [62] = src1, [63] =
src2

Table: VOP3B Fields

	Opcode #

	Name

	480

	V_DIV_SCALE_F32

	481

	V_DIV_SCALE_F64

	488

	V_MAD_U64_U32

	489

	V_MAD_I64_I32

Table: VOP3B Opcodes

VOP3P

[image: microcode vop3p]

	Format

	VOP3P

	Descriptio
n

	Vector ALU format taking one, two or three pairs of 16 bit
inputs and producing two 16-bit outputs (packed into 1
dword).

	Field Name

	Bits

	Format or Description

	VDST

	[7:0]

	Destination VGPR

	NEG_HI

	[10:8]

	Negate sources 0,1,2 of the high 16-bits.

	OPSEL

	[13:11]

	Select low or high for low sources 0=[11],
1=[12], 2=[13].

	OPSEL_HI2

	[14]

	Select low or high for high sources 0=[14],
1=[60], 2=[59].

	CLMP

	[15]

	1 = clamp result.

	OP

	[22:16]

	Opcode. see next table.

	ENCODING

	[31:24]

	Must be: 11010011

	SRC0

	
[40:32]

0 - 101

102

103

104

105

106

107

108-123

124

125

126

127

128

129-192

193-208

209-234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256-511

	
Source 0. First operand for the instruction.

SGPR0 to SGPR101: Scalar general-purpose
registers.

FLAT_SCRATCH_LO.

FLAT_SCRATCH_HI.

XNACK_MASK_LO.

XNACK_MASK_HI.

VCC_LO: vcc[31:0].

VCC_HI: vcc[63:32].

TTMP0 - TTMP15: Trap handler temporary
register.

M0. Memory register 0.

Reserved

EXEC_LO: exec[31:0].

EXEC_HI: exec[63:32].

0.

Signed integer 1 to 64.

Signed integer -1 to -16.

Reserved.

SHARED_BASE (Memory Aperture definition).

SHARED_LIMIT (Memory Aperture definition).

PRIVATE_BASE (Memory Aperture definition).

PRIVATE_LIMIT (Memory Aperture definition).

POPS_EXITING_WAVE_ID .

0.5.

-0.5.

1.0.

-1.0.

2.0.

-2.0.

4.0.

-4.0.

1/(2*PI).

SDWA

DPP

VCCZ.

EXECZ.

SCC.

Reserved.

Literal constant.

VGPR 0 - 255

	SRC1

	[49:41]

	Second input operand. Same options as SRC0.

	SRC2

	[58:50]

	Third input operand. Same options as SRC0.

	OPSEL_HI

	[60:59]

	See OP_SEL_HI2.

	NEG

	[63:61]

	Negate input for low 16-bits of sources. [61] =
src0, [62] = src1, [63] = src2

Table: VOP3P Fields

	Opcode #

	Name

	0

	V_PK_MAD_I16

	1

	V_PK_MUL_LO_U16

	2

	V_PK_ADD_I16

	3

	V_PK_SUB_I16

	4

	V_PK_LSHLREV_B16

	5

	V_PK_LSHRREV_B16

	6

	V_PK_ASHRREV_I16

	7

	V_PK_MAX_I16

	8

	V_PK_MIN_I16

	9

	V_PK_MAD_U16

	10

	V_PK_ADD_U16

	11

	V_PK_SUB_U16

	12

	V_PK_MAX_U16

	13

	V_PK_MIN_U16

	14

	V_PK_FMA_F16

	15

	V_PK_ADD_F16

	16

	V_PK_MUL_F16

	17

	V_PK_MIN_F16

	18

	V_PK_MAX_F16

	32

	V_MAD_MIX_F32

	33

	V_MAD_MIXLO_F16

	34

	V_MAD_MIXHI_F16

Table: VOP3P Opcodes

SDWA

[image: microcode sdwa]

	Format

	SDWA

	Descriptio
n

	Sub-Dword Addressing. This is a second dword which can follow
VOP1 or VOP2 instructions (in place of a literal constant) to
control selection of sub-dword (16-bit) operands. Use of SDWA
is indicated by assigning the SRC0 field to SDWA, and then
the actual VGPR used as source-zero is determined in SDWA
instruction word.

	Field Name

	Bits

	Format or Description

	SRC0

	[39:32]

	Real SRC0 operand (VGPR).

	DST_SEL

	[42:40]

	
Select the data destination:

0 = data[7:0]

1 = data[15:8]

2 = data[23:16]

3 = data[31:24]

4 = data[15:0]

5 = data[31:16]

6 = data[31:0]

7 = reserved

	DST_U

	[44:43]

	
Destination format: what do with the bits in
the VGPR that are not selected by DST_SEL:

0 = pad with zeros + 1 = sign extend upper /
zero lower

2 = preserve (don’t modify)

3 = reserved

	CLMP

	[45]

	1 = clamp result

	OMOD

	[47:46]

	Output modifiers (see VOP3). [46] = low half,
[47] = high half

	SRC0_SEL

	[50:48]

	Source 0 select. Same options as DST_SEL.

	SRC0_SEXT

	[51]

	Sign extend modifier for source 0.

	SRC0_NEG

	[52]

	1 = negate source 0.

	SRC0_ABS

	[53]

	1 = Absolute value of source 0.

	S0

	[55]

	0 = source 0 is VGPR, 1 = is SGPR.

	SRC1_SEL

	[58:56]

	Same options as SRC0_SEL.

	SRC1_SEXT

	[59]

	Sign extend modifier for source 1.

	SRC1_NEG

	[60]

	1 = negate source 1.

	SRC1_ABS

	[61]

	1 = Absolute value of source 1.

	S1

	[63]

	0 = source 1 is VGPR, 1 = is SGPR.

Table: SDWA Fields

SDWAB

[image: microcode sdwab]

	Format

	SDWAB

	Descriptio
n

	Sub-Dword Addressing. This is a second dword which can follow
VOPC instructions (in place of a literal constant) to control
selection of sub-dword (16-bit) operands. Use of SDWA is
indicated by assigning the SRC0 field to SDWA, and then the
actual VGPR used as source-zero is determined in SDWA
instruction word. This version has a scalar destination.

	Field Name

	Bits

	Format or Description

	SRC0

	[39:32]

	Real SRC0 operand (VGPR).

	SDST

	[46:40]

	Scalar GPR destination.

	SD

	[47]

	Scalar destination type: 0 = VCC, 1 = normal
SGPR.

	SRC0_SEL

	[50:48]

	Source 0 select. Same options as DST_SEL.

	SRC0_SEXT

	[51]

	Sign extend modifier for source 0.

	SRC0_NEG

	[52]

	1 = negate source 0.

	SRC0_ABS

	[53]

	1 = Absolute value of source 0.

	S0

	[55]

	0 = source 0 is VGPR, 1 = is SGPR.

	SRC1_SEL

	[58:56]

	Same options as SRC0_SEL.

	SRC1_SEXT

	[59]

	Sign extend modifier for source 1.

	SRC1_NEG

	[60]

	1 = negate source 1.

	SRC1_ABS

	[61]

	1 = Absolute value of source 1.

	S1

	[63]

	0 = source 1 is VGPR, 1 = is SGPR.

Table: SDWAB Fields

DPP

[image: microcode dpp16]

	Format

	DPP

	Descriptio
n

	Data Parallel Primitives. This is a second dword which can
follow VOP1, VOP2 or VOPC instructions (in place of a literal
constant) to control selection of data from other lanes.

	Field Name

	Bits

	Format or Description

	SRC0

	[39:32]

	Real SRC0 operand (VGPR).

	DPP_CTRL

	[48:40]

	See next table: “DPP_CTRL Enumeration”

	BC

	[51]

	Bounds Control: 0 = do not write when source is
out of range, 1 = write.

	SRC0_NEG

	[52]

	1 = negate source 0.

	SRC0_ABS

	[53]

	1 = Absolute value of source 0.

	SRC1_NEG

	[54]

	1 = negate source 1.

	SRC1_ABS

	[55]

	1 = Absolute value of source 1.

	BANK_MASK

	[59:56]

	
Bank Mask Applies to the VGPR destination write
only, does not impact the thread mask when
fetching source VGPR data.

27==0: lanes[12:15, 28:31, 44:47, 60:63] are
disabled

26==0: lanes[8:11, 24:27, 40:43, 56:59] are
disabled

25==0: lanes[4:7, 20:23, 36:39, 52:55] are
disabled

24==0: lanes[0:3, 16:19, 32:35, 48:51] are
disabled

Notice: the term “bank” here is not the same as
we used for the VGPR bank.

	ROW_MASK

	[63:60]

	
Row Mask Applies to the VGPR destination write
only, does not impact the thread mask when
fetching source VGPR data.

31==0: lanes[63:48] are disabled (wave 64 only)

30==0: lanes[47:32] are disabled (wave 64 only)

29==0: lanes[31:16] are disabled

28==0: lanes[15:0] are disabled

Table: DPP Fields

	DPP_Cntl
Enumeration

	Hex Value

	Function

	Description

	DPP_QUAD_PERM*

	000-0FF

	pix[n].srca =
pix[(n&0x3c)+
dpp_cntl[n%4*2+1
: n%4*2]].srca

	Full permute of
four threads.

	DPP_UNUSED

	100

	Undefined

	Reserved.

	DPP_ROW_SL*

	101-10F

	if n&0xf) <
(16-cntl[3:0]n&0xf
)
< (16-cntl[3:0]
pix[n].srca =
pix[n+
cntl[3:0]].srca
else use
bound_cntl

	Row shift left by
1-15 threads.

	DPP_ROW_SR*

	111-11F

	if ((n&0xf) >=
cntl[3:0])
pix[n].srca =
pix[n -
cntl[3:0]].srca
else use
bound_cntl

	Row shift right by
1-15 threads.

	DPP_ROW_RR*

	121-12F

	if ((n&0xf) >=
cnt[3:0])
pix[n].srca =
pix[n -
cntl[3:0]].srca
else pix[n].srca =
pix[n + 16 -
cntl[3:0]].srca

	Row rotate right
by 1-15 threads.

	DPP_WF_SL1*

	130

	if (n<63)
pix[n].srca =
pix[n+1].srca else
use bound_cntl

	Wavefront left
shift by 1 thread.

	DPP_WF_RL1*

	134

	if (n<63)
pix[n].srca =
pix[n+1].srca else
pix[n].srca =
pix[0].srca

	Wavefront left
rotate by 1
thread.

	DPP_WF_SR1*

	138

	if (n>0)
pix[n].srca =
pix[n-1].srca else
use bound_cntl

	Wavefront right
shift by 1 thread.

	DPP_WF_RR1*

	13C

	if (n>0)
pix[n].srca =
pix[n-1].srca else
pix[n].srca =
pix[63].srca

	Wavefront right
rotate by 1
thread.

	DPP_ROW_MIRROR*

	140

	pix[n].srca =
pix[15-(n&f)].srca

	Mirror threads
within row.

	DPP_ROW_HALF_MI
RROR*

	141

	pix[n].srca =
pix[7-(n&7)].srca

	Mirror threads
within row (8
threads).

	DPP_ROW_BCAST15*

	142

	if (n>15)
pix[n].srca =
pix[n & 0x30 -
1].srca

	Broadcast 15th
thread of each row
to next row.

	DPP_ROW_BCAST31*

	143

	if (n>31)
pix[n].srca =
pix[n & 0x20 -
1].srca

	Broadcast thread
31 to rows 2 and
3.

Table: DPP_CTRL Enumeration

Vector Parameter Interpolation Format

VINTRP

[image: microcode vintrp]

	Format

	VINTRP

	Descriptio
n

	
Vector Parameter Interpolation.

These opcodes perform parameter interpolation using vertex
data in pixel shaders.

	Field Name

	Bits

	Format or Description

	VSRC

	[7:0]

	SRC0 operand (VGPR).

	ATTR_CHAN

	[9:8]

	Attribute channel: 0=X, 1=Y, 2=Z, 3=W

	ATTR

	[15:10]

	Attribute number: 0 - 32.

	OP

	[17:16]

	
Opcode:

0: v_interp_p1_f32 : VDST = P10 * VSRC + P0

1: v_interp_p2_f32: VDST = P20 * VSRC +
VDST

2: v_interp_mov_f32: VDST = (P0, P10 or P20
selected by VSRC[1:0])

	VDST

	[25:18]

	Destination VGPR

	ENCODING

	[31:26]

	Must be: 110101

Table: VINTRP Fields

Note

VSRC must be different from VDST.

LDS and GDS format

DS

[image: microcode ds]

	Format

	LDS and GDS

	Descriptio
n

	Local and Global Data Sharing instructions

	Field Name

	Bits

	Format or Description

	OFFSET0

	[7:0]

	First address offset

	OFFSET1

	[15:8]

	Second address offset. For some opcodes this is
concatenated with OFFSET0.

	GDS

	[16]

	1=GDS, 0=LDS operation.

	OP

	[24:17]

	See Opcode table below.

	ENCODING

	[31:26]

	Must be: 110110

	ADDR

	[39:32]

	VGPR which supplies the address.

	DATA0

	[47:40]

	First data VGPR.

	DATA1

	[55:48]

	Second data VGPR.

	VDST

	[63:56]

	Destination VGPR when results returned to VGPRs.

Table: DS Fields

	Opcode #

	Name

	0

	DS_ADD_U32

	1

	DS_SUB_U32

	2

	DS_RSUB_U32

	3

	DS_INC_U32

	4

	DS_DEC_U32

	5

	DS_MIN_I32

	6

	DS_MAX_I32

	7

	DS_MIN_U32

	8

	DS_MAX_U32

	9

	DS_AND_B32

	10

	DS_OR_B32

	11

	DS_XOR_B32

	12

	DS_MSKOR_B32

	13

	DS_WRITE_B32

	14

	DS_WRITE2_B32

	15

	DS_WRITE2ST64_B32

	16

	DS_CMPST_B32

	17

	DS_CMPST_F32

	18

	DS_MIN_F32

	19

	DS_MAX_F32

	20

	DS_NOP

	21

	DS_ADD_F32

	29

	DS_WRITE_ADDTID_B32

	30

	DS_WRITE_B8

	31

	DS_WRITE_B16

	32

	DS_ADD_RTN_U32

	33

	DS_SUB_RTN_U32

	34

	DS_RSUB_RTN_U32

	35

	DS_INC_RTN_U32

	36

	DS_DEC_RTN_U32

	37

	DS_MIN_RTN_I32

	38

	DS_MAX_RTN_I32

	39

	DS_MIN_RTN_U32

	40

	DS_MAX_RTN_U32

	41

	DS_AND_RTN_B32

	42

	DS_OR_RTN_B32

	43

	DS_XOR_RTN_B32

	44

	DS_MSKOR_RTN_B32

	45

	DS_WRXCHG_RTN_B32

	46

	DS_WRXCHG2_RTN_B32

	47

	DS_WRXCHG2ST64_RTN_B32

	48

	DS_CMPST_RTN_B32

	49

	DS_CMPST_RTN_F32

	50

	DS_MIN_RTN_F32

	51

	DS_MAX_RTN_F32

	52

	DS_WRAP_RTN_B32

	53

	DS_ADD_RTN_F32

	54

	DS_READ_B32

	55

	DS_READ2_B32

	56

	DS_READ2ST64_B32

	57

	DS_READ_I8

	58

	DS_READ_U8

	59

	DS_READ_I16

	60

	DS_READ_U16

	61

	DS_SWIZZLE_B32

	62

	DS_PERMUTE_B32

	63

	DS_BPERMUTE_B32

	64

	DS_ADD_U64

	65

	DS_SUB_U64

	66

	DS_RSUB_U64

	67

	DS_INC_U64

	68

	DS_DEC_U64

	69

	DS_MIN_I64

	70

	DS_MAX_I64

	71

	DS_MIN_U64

	72

	DS_MAX_U64

	73

	DS_AND_B64

	74

	DS_OR_B64

	75

	DS_XOR_B64

	76

	DS_MSKOR_B64

	77

	DS_WRITE_B64

	78

	DS_WRITE2_B64

	79

	DS_WRITE2ST64_B64

	80

	DS_CMPST_B64

	81

	DS_CMPST_F64

	82

	DS_MIN_F64

	83

	DS_MAX_F64

	84

	DS_WRITE_B8_D16_HI

	85

	DS_WRITE_B16_D16_HI

	86

	DS_READ_U8_D16

	87

	DS_READ_U8_D16_HI

	88

	DS_READ_I8_D16

	89

	DS_READ_I8_D16_HI

	90

	DS_READ_U16_D16

	91

	DS_READ_U16_D16_HI

	96

	DS_ADD_RTN_U64

	97

	DS_SUB_RTN_U64

	98

	DS_RSUB_RTN_U64

	99

	DS_INC_RTN_U64

	100

	DS_DEC_RTN_U64

	101

	DS_MIN_RTN_I64

	102

	DS_MAX_RTN_I64

	103

	DS_MIN_RTN_U64

	104

	DS_MAX_RTN_U64

	105

	DS_AND_RTN_B64

	106

	DS_OR_RTN_B64

	107

	DS_XOR_RTN_B64

	108

	DS_MSKOR_RTN_B64

	109

	DS_WRXCHG_RTN_B64

	110

	DS_WRXCHG2_RTN_B64

	111

	DS_WRXCHG2ST64_RTN_B64

	112

	DS_CMPST_RTN_B64

	113

	DS_CMPST_RTN_F64

	114

	DS_MIN_RTN_F64

	115

	DS_MAX_RTN_F64

	118

	DS_READ_B64

	119

	DS_READ2_B64

	120

	DS_READ2ST64_B64

	126

	DS_CONDXCHG32_RTN_B64

	128

	DS_ADD_SRC2_U32

	129

	DS_SUB_SRC2_U32

	130

	DS_RSUB_SRC2_U32

	131

	DS_INC_SRC2_U32

	132

	DS_DEC_SRC2_U32

	133

	DS_MIN_SRC2_I32

	134

	DS_MAX_SRC2_I32

	135

	DS_MIN_SRC2_U32

	136

	DS_MAX_SRC2_U32

	137

	DS_AND_SRC2_B32

	138

	DS_OR_SRC2_B32

	139

	DS_XOR_SRC2_B32

	141

	DS_WRITE_SRC2_B32

	146

	DS_MIN_SRC2_F32

	147

	DS_MAX_SRC2_F32

	149

	DS_ADD_SRC2_F32

	152

	DS_GWS_SEMA_RELEASE_ALL

	153

	DS_GWS_INIT

	154

	DS_GWS_SEMA_V

	155

	DS_GWS_SEMA_BR

	156

	DS_GWS_SEMA_P

	157

	DS_GWS_BARRIER

	182

	DS_READ_ADDTID_B32

	189

	DS_CONSUME

	190

	DS_APPEND

	191

	DS_ORDERED_COUNT

	192

	DS_ADD_SRC2_U64

	193

	DS_SUB_SRC2_U64

	194

	DS_RSUB_SRC2_U64

	195

	DS_INC_SRC2_U64

	196

	DS_DEC_SRC2_U64

	197

	DS_MIN_SRC2_I64

	198

	DS_MAX_SRC2_I64

	199

	DS_MIN_SRC2_U64

	200

	DS_MAX_SRC2_U64

	201

	DS_AND_SRC2_B64

	202

	DS_OR_SRC2_B64

	203

	DS_XOR_SRC2_B64

	205

	DS_WRITE_SRC2_B64

	210

	DS_MIN_SRC2_F64

	211

	DS_MAX_SRC2_F64

	222

	DS_WRITE_B96

	223

	DS_WRITE_B128

	254

	DS_READ_B96

	255

	DS_READ_B128

Table: DS Opcodes

Vector Memory Buffer Formats

There are two memory buffer instruction formats:

	MTBUF
	typed buffer access (data type is defined by the instruction)

	MUBUF
	untyped buffer access (data type is defined by the buffer /
resource-constant)

MTBUF

[image: microcode mtbuf]

	Format

	MTBUF

	Descriptio
n

	Memory Typed-Buffer Instructions

	Field Name

	Bits

	Format or Description

	OFFSET

	[11:0]

	Address offset, unsigned byte.

	OFFEN

	[12]

	1 = enable offset VGPR, 0 = use zero for address
offset

	IDXEN

	[13]

	1 = enable index VGPR, 0 = use zero for address
index

	GLC

	[14]

	0 = normal, 1 = globally coherent (bypass L0
cache) or for atomics, return pre-op value to
VGPR.

	OP

	[18:15]

	Opcode. See table below.

	DFMT

	22:19

	
Data Format of data in memory buffer:

0 invalid

1 8

2 16

3 8_8

4 32

5 16_16

6 10_11_11

8 10_10_10_2

9 2_10_10_10

10 8_8_8_8

11 32_32

12 16_16_16_16

13 32_32_32

14 32_32_32_32

	NFMT

	25:23

	
Numeric format of data in memory:

0 unorm

1 snorm

2 uscaled

3 sscaled

4 uint

5 sint

6 reserved

7 float

	ENCODING

	[31:26]

	Must be: 111010

	VADDR

	[39:32]

	Address of VGPR to supply first component of
address (offset or index). When both index and
offset are used, index is in the first VGPR and
offset in the second.

	VDATA

	[47:40]

	Address of VGPR to supply first component of
write data or receive first component of
read-data.

	SRSRC

	[52:48]

	SGPR to supply V# (resource constant) in 4 or 8
consecutive SGPRs. It is missing 2 LSB’s of
SGPR-address since must be aligned to 4.

	SLC

	[54]

	System level coherent: bypass L2 cache.

	TFE

	[55]

	Partially resident texture, texture fail enable.

	SOFFSET

	[63:56]

	Address offset, unsigned byte.

Table: MTBUF Fields

	Opcode #

	Name

	0

	TBUFFER_LOAD_FORMAT_X

	1

	TBUFFER_LOAD_FORMAT_XY

	2

	TBUFFER_LOAD_FORMAT_XYZ

	3

	TBUFFER_LOAD_FORMAT_XYZW

	4

	TBUFFER_STORE_FORMAT_X

	5

	TBUFFER_STORE_FORMAT_XY

	6

	TBUFFER_STORE_FORMAT_XYZ

	7

	TBUFFER_STORE_FORMAT_XYZW

	8

	TBUFFER_LOAD_FORMAT_D16_X

	9

	TBUFFER_LOAD_FORMAT_D16_XY

	10

	TBUFFER_LOAD_FORMAT_D16_XYZ

	11

	TBUFFER_LOAD_FORMAT_D16_XYZW

	12

	TBUFFER_STORE_FORMAT_D16_X

	13

	TBUFFER_STORE_FORMAT_D16_XY

	14

	TBUFFER_STORE_FORMAT_D16_XYZ

	15

	TBUFFER_STORE_FORMAT_D16_XYZW

Table: MTBUF Opcodes

MUBUF

[image: microcode mubuf]

	Format

	MUBUF

	Descriptio
n

	Memory Untyped-Buffer Instructions

	Field Name

	Bits

	Format or Description

	OFFSET

	[11:0]

	Address offset, unsigned byte.

	OFFEN

	[12]

	1 = enable offset VGPR, 0 = use zero for address
offset

	IDXEN

	[13]

	1 = enable index VGPR, 0 = use zero for address
index

	GLC

	[14]

	0 = normal, 1 = globally coherent (bypass L0
cache) or for atomics, return pre-op value to
VGPR.

	LDS

	[16]

	0 = normal, 1 = transfer data between LDS and
memory instead of VGPRs and memory.

	SLC

	[17]

	System level coherent: bypass L2 cache.

	OP

	[24:18]

	Opcode. See table below.

	ENCODING

	[31:26]

	Must be: 111000

	VADDR

	[39:32]

	Address of VGPR to supply first component of
address (offset or index). When both index and
offset are used, index is in the first VGPR and
offset in the second.

	VDATA

	[47:40]

	Address of VGPR to supply first component of
write data or receive first component of
read-data.

	SRSRC

	[52:48]

	SGPR to supply V# (resource constant) in 4 or 8
consecutive SGPRs. It is missing 2 LSB’s of
SGPR-address since must be aligned to 4.

	TFE

	[55]

	Partially resident texture, texture fail enable.

	SOFFSET

	[63:56]

	Address offset, unsigned byte.

Table: MUBUF Fields

	Opcode #

	Name

	0

	BUFFER_LOAD_FORMAT_X

	1

	BUFFER_LOAD_FORMAT_XY

	2

	BUFFER_LOAD_FORMAT_XYZ

	3

	BUFFER_LOAD_FORMAT_XYZW

	4

	BUFFER_STORE_FORMAT_X

	5

	BUFFER_STORE_FORMAT_XY

	6

	BUFFER_STORE_FORMAT_XYZ

	7

	BUFFER_STORE_FORMAT_XYZW

	8

	BUFFER_LOAD_FORMAT_D16_X

	9

	BUFFER_LOAD_FORMAT_D16_XY

	10

	BUFFER_LOAD_FORMAT_D16_XYZ

	11

	BUFFER_LOAD_FORMAT_D16_XYZW

	12

	BUFFER_STORE_FORMAT_D16_X

	13

	BUFFER_STORE_FORMAT_D16_XY

	14

	BUFFER_STORE_FORMAT_D16_XYZ

	15

	BUFFER_STORE_FORMAT_D16_XYZW

	16

	BUFFER_LOAD_UBYTE

	17

	BUFFER_LOAD_SBYTE

	18

	BUFFER_LOAD_USHORT

	19

	BUFFER_LOAD_SSHORT

	20

	BUFFER_LOAD_DWORD

	21

	BUFFER_LOAD_DWORDX2

	22

	BUFFER_LOAD_DWORDX3

	23

	BUFFER_LOAD_DWORDX4

	24

	BUFFER_STORE_BYTE

	25

	BUFFER_STORE_BYTE_D16_HI

	26

	BUFFER_STORE_SHORT

	27

	BUFFER_STORE_SHORT_D16_HI

	28

	BUFFER_STORE_DWORD

	29

	BUFFER_STORE_DWORDX2

	30

	BUFFER_STORE_DWORDX3

	31

	BUFFER_STORE_DWORDX4

	32

	BUFFER_LOAD_UBYTE_D16

	33

	BUFFER_LOAD_UBYTE_D16_HI

	34

	BUFFER_LOAD_SBYTE_D16

	35

	BUFFER_LOAD_SBYTE_D16_HI

	36

	BUFFER_LOAD_SHORT_D16

	37

	BUFFER_LOAD_SHORT_D16_HI

	38

	BUFFER_LOAD_FORMAT_D16_HI_X

	39

	BUFFER_STORE_FORMAT_D16_HI_X

	61

	BUFFER_STORE_LDS_DWORD

	62

	BUFFER_WBINVL1

	63

	BUFFER_WBINVL1_VOL

	64

	BUFFER_ATOMIC_SWAP

	65

	BUFFER_ATOMIC_CMPSWAP

	66

	BUFFER_ATOMIC_ADD

	67

	BUFFER_ATOMIC_SUB

	68

	BUFFER_ATOMIC_SMIN

	69

	BUFFER_ATOMIC_UMIN

	70

	BUFFER_ATOMIC_SMAX

	71

	BUFFER_ATOMIC_UMAX

	72

	BUFFER_ATOMIC_AND

	73

	BUFFER_ATOMIC_OR

	74

	BUFFER_ATOMIC_XOR

	75

	BUFFER_ATOMIC_INC

	76

	BUFFER_ATOMIC_DEC

	96

	BUFFER_ATOMIC_SWAP_X2

	97

	BUFFER_ATOMIC_CMPSWAP_X2

	98

	BUFFER_ATOMIC_ADD_X2

	99

	BUFFER_ATOMIC_SUB_X2

	100

	BUFFER_ATOMIC_SMIN_X2

	101

	BUFFER_ATOMIC_UMIN_X2

	102

	BUFFER_ATOMIC_SMAX_X2

	103

	BUFFER_ATOMIC_UMAX_X2

	104

	BUFFER_ATOMIC_AND_X2

	105

	BUFFER_ATOMIC_OR_X2

	106

	BUFFER_ATOMIC_XOR_X2

	107

	BUFFER_ATOMIC_INC_X2

	108

	BUFFER_ATOMIC_DEC_X2

Table: MUBUF Opcodes

Vector Memory Image Format

MIMG

[image: microcode mimg]

	Format

	MIMG

	Descriptio
n

	Memory Image Instructions

	Field Name

	Bits

	Format or Description

	DMASK

	[11:8]

	
Data VGPR enable mask: 1 .. 4 consecutive VGPRs

Reads: defines which components are returned:

0=red,1=green,2=blue,3=alpha

Writes: defines which components are written
with data from VGPRs (missing components get
0).

Enabled components come from consecutive VGPRs.

E.G. dmask=1001 : Red is in VGPRn and alpha in
VGPRn+1.

For D16 writes, DMASK is only used as a word
count: each bit represents 16 bits of data to
be written starting at the LSB’s of VADDR, then
MSBs, then VADDR+1 etc. Bit position is
ignored.

	UNRM

	[12]

	1 = enable offset VGPR

	GLC

	[13]

	0 = normal, 1 = globally coherent (bypass L0
cache) or for atomics, return pre-op value to
VGPR.

	DA

	[14]

	
Declare an Array.

1 Kernel has declared this resource to be an
array of texture maps.

0 Kernel has declared this resource to be a
single texture map.

	A16

	[15]

	
Address components are 16-bits (instead of the
usual 32 bits).

When set, all address components are 16 bits
(packed into 2 per dword), except:

Texel offsets (3 6bit UINT packed into 1 dword)

PCF reference (for “_C” instructions)

Address components are 16b uint for image ops
without sampler; 16b float with sampler.

	TFE

	[16]

	Partially resident texture, texture fail enable.

	LWE

	[17]

	LOD Warning Enable. When set to 1, a texture
fetch may return “LOD_CLAMPED = 1”.

	OP

	[0],[24
:18]

	Opcode. See table below. (combine bits zero and
18-24 to form opcode).

	SLC

	[25]

	System level coherent: bypass L2 cache.

	ENCODING

	[31:26]

	Must be: 111100

	VADDR

	[39:32]

	Address of VGPR to supply first component of
address (offset or index). When both index and
offset are used, index is in the first VGPR and
offset in the second.

	VDATA

	[47:40]

	Address of VGPR to supply first component of
write data or receive first component of
read-data.

	SRSRC

	[52:48]

	SGPR to supply V# (resource constant) in 4 or 8
consecutive SGPRs. It is missing 2 LSB’s of
SGPR-address since must be aligned to 4.

	SSAMP

	[57:53]

	SGPR to supply V# (resource constant) in 4 or 8
consecutive SGPRs. It is missing 2 LSB’s of
SGPR-address since must be aligned to 4.

	D16

	[63]

	Address offset, unsigned byte.

Table: MIMG Fields

	Opcode #

	Name

	0

	IMAGE_LOAD

	1

	IMAGE_LOAD_MIP

	2

	IMAGE_LOAD_PCK

	3

	IMAGE_LOAD_PCK_SGN

	4

	IMAGE_LOAD_MIP_PCK

	5

	IMAGE_LOAD_MIP_PCK_SGN

	8

	IMAGE_STORE

	9

	IMAGE_STORE_MIP

	10

	IMAGE_STORE_PCK

	11

	IMAGE_STORE_MIP_PCK

	14

	IMAGE_GET_RESINFO

	16

	IMAGE_ATOMIC_SWAP

	17

	IMAGE_ATOMIC_CMPSWAP

	18

	IMAGE_ATOMIC_ADD

	19

	IMAGE_ATOMIC_SUB

	20

	IMAGE_ATOMIC_SMIN

	21

	IMAGE_ATOMIC_UMIN

	22

	IMAGE_ATOMIC_SMAX

	23

	IMAGE_ATOMIC_UMAX

	24

	IMAGE_ATOMIC_AND

	25

	IMAGE_ATOMIC_OR

	26

	IMAGE_ATOMIC_XOR

	27

	IMAGE_ATOMIC_INC

	28

	IMAGE_ATOMIC_DEC

	32

	IMAGE_SAMPLE

	33

	IMAGE_SAMPLE_CL

	34

	IMAGE_SAMPLE_D

	35

	IMAGE_SAMPLE_D_CL

	36

	IMAGE_SAMPLE_L

	37

	IMAGE_SAMPLE_B

	38

	IMAGE_SAMPLE_B_CL

	39

	IMAGE_SAMPLE_LZ

	40

	IMAGE_SAMPLE_C

	41

	IMAGE_SAMPLE_C_CL

	42

	IMAGE_SAMPLE_C_D

	43

	IMAGE_SAMPLE_C_D_CL

	44

	IMAGE_SAMPLE_C_L

	45

	IMAGE_SAMPLE_C_B

	46

	IMAGE_SAMPLE_C_B_CL

	47

	IMAGE_SAMPLE_C_LZ

	48

	IMAGE_SAMPLE_O

	49

	IMAGE_SAMPLE_CL_O

	50

	IMAGE_SAMPLE_D_O

	51

	IMAGE_SAMPLE_D_CL_O

	52

	IMAGE_SAMPLE_L_O

	53

	IMAGE_SAMPLE_B_O

	54

	IMAGE_SAMPLE_B_CL_O

	55

	IMAGE_SAMPLE_LZ_O

	56

	IMAGE_SAMPLE_C_O

	57

	IMAGE_SAMPLE_C_CL_O

	58

	IMAGE_SAMPLE_C_D_O

	59

	IMAGE_SAMPLE_C_D_CL_O

	60

	IMAGE_SAMPLE_C_L_O

	61

	IMAGE_SAMPLE_C_B_O

	62

	IMAGE_SAMPLE_C_B_CL_O

	63

	IMAGE_SAMPLE_C_LZ_O

	64

	IMAGE_GATHER4

	65

	IMAGE_GATHER4_CL

	66

	IMAGE_GATHER4H

	68

	IMAGE_GATHER4_L

	69

	IMAGE_GATHER4_B

	70

	IMAGE_GATHER4_B_CL

	71

	IMAGE_GATHER4_LZ

	72

	IMAGE_GATHER4_C

	73

	IMAGE_GATHER4_C_CL

	74

	IMAGE_GATHER4H_PCK

	75

	IMAGE_GATHER8H_PCK

	76

	IMAGE_GATHER4_C_L

	77

	IMAGE_GATHER4_C_B

	78

	IMAGE_GATHER4_C_B_CL

	79

	IMAGE_GATHER4_C_LZ

	80

	IMAGE_GATHER4_O

	81

	IMAGE_GATHER4_CL_O

	84

	IMAGE_GATHER4_L_O

	85

	IMAGE_GATHER4_B_O

	86

	IMAGE_GATHER4_B_CL_O

	87

	IMAGE_GATHER4_LZ_O

	88

	IMAGE_GATHER4_C_O

	89

	IMAGE_GATHER4_C_CL_O

	92

	IMAGE_GATHER4_C_L_O

	93

	IMAGE_GATHER4_C_B_O

	94

	IMAGE_GATHER4_C_B_CL_O

	95

	IMAGE_GATHER4_C_LZ_O

	96

	IMAGE_GET_LOD

	104

	IMAGE_SAMPLE_CD

	105

	IMAGE_SAMPLE_CD_CL

	106

	IMAGE_SAMPLE_C_CD

	107

	IMAGE_SAMPLE_C_CD_CL

	108

	IMAGE_SAMPLE_CD_O

	109

	IMAGE_SAMPLE_CD_CL_O

	110

	IMAGE_SAMPLE_C_CD_O

	111

	IMAGE_SAMPLE_C_CD_CL_O

Table: MIMG Opcodes

Flat Formats

Flat memory instruction come in three versions: FLAT:: memory address
(per work-item) may be in global memory, scratch (private) memory or
shared memory (LDS) GLOBAL:: same as FLAT, but assumes all memory
addresses are global memory. SCRATCH:: same as FLAT, but assumes all
memory addresses are scratch (private) memory.

The microcode format is identical for each, and only the value of the
SEG (segment) field differs.

FLAT

[image: microcode flat]

	Format

	FLAT

	Descriptio
n

	FLAT Memory Access

	Field Name

	Bits

	Format or Description

	OFFSET

	[12:0]

	
Address offset

Scratch, Global: 13-bit signed byte offset

FLAT: 12-bit unsigned offset (MSB is ignored)

	LDS

	[13]

	0 = normal, 1 = transfer data between LDS and
memory instead of VGPRs and memory.

	SEG

	[15:14]

	Memory Segment (instruction type): 0 = flat, 1 =
scratch, 2 = global.

	GLC

	[16]

	0 = normal, 1 = globally coherent (bypass L0
cache) or for atomics, return pre-op value to
VGPR.

	SLC

	[17]

	System level coherent: bypass L2 cache.

	OP

	[24:18]

	Opcode. See tables below for FLAT, SCRATCH and
GLOBAL opcodes.

	ENCODING

	[31:26]

	Must be: 110111

	ADDR

	[39:32]

	
VGPR which holds address or offset. For 64-bit
addresses, ADDR has the LSB’s and ADDR+1 has
the MSBs. For offset a single VGPR has a 32 bit
unsigned offset.

For FLAT_*: always specifies an address.

For GLOBAL_* and SCRATCH_* when SADDR is
0x7f: specifies an address.

For GLOBAL_* and SCRATCH_* when SADDR is
not 0x7f: specifies an offset.

	DATA

	[47:40]

	VGPR which supplies data.

	SADDR

	[54:48]

	
Scalar SGPR which provides an address of offset
(unsigned). Set this field to 0x7f to disable
use.

Meaning of this field is different for Scratch
and Global:

FLAT: Unused

Scratch: use an SGPR for the address instead of
a VGPR

Global: use the SGPR to provide a base address
and the VGPR provides a 32-bit byte offset.

	NV

	[55]

	Non-Volatile.

	VDST

	[63:56]

	Destination VGPR for data returned from memory to
VGPRs.

Table: FLAT Fields

	Opcode #

	Name

	16

	FLAT_LOAD_UBYTE

	17

	FLAT_LOAD_SBYTE

	18

	FLAT_LOAD_USHORT

	19

	FLAT_LOAD_SSHORT

	20

	FLAT_LOAD_DWORD

	21

	FLAT_LOAD_DWORDX2

	22

	FLAT_LOAD_DWORDX3

	23

	FLAT_LOAD_DWORDX4

	24

	FLAT_STORE_BYTE

	25

	FLAT_STORE_BYTE_D16_HI

	26

	FLAT_STORE_SHORT

	27

	FLAT_STORE_SHORT_D16_HI

	28

	FLAT_STORE_DWORD

	29

	FLAT_STORE_DWORDX2

	30

	FLAT_STORE_DWORDX3

	31

	FLAT_STORE_DWORDX4

	32

	FLAT_LOAD_UBYTE_D16

	33

	FLAT_LOAD_UBYTE_D16_HI

	34

	FLAT_LOAD_SBYTE_D16

	35

	FLAT_LOAD_SBYTE_D16_HI

	36

	FLAT_LOAD_SHORT_D16

	37

	FLAT_LOAD_SHORT_D16_HI

	64

	FLAT_ATOMIC_SWAP

	65

	FLAT_ATOMIC_CMPSWAP

	66

	FLAT_ATOMIC_ADD

	67

	FLAT_ATOMIC_SUB

	68

	FLAT_ATOMIC_SMIN

	69

	FLAT_ATOMIC_UMIN

	70

	FLAT_ATOMIC_SMAX

	71

	FLAT_ATOMIC_UMAX

	72

	FLAT_ATOMIC_AND

	73

	FLAT_ATOMIC_OR

	74

	FLAT_ATOMIC_XOR

	75

	FLAT_ATOMIC_INC

	76

	FLAT_ATOMIC_DEC

	96

	FLAT_ATOMIC_SWAP_X2

	97

	FLAT_ATOMIC_CMPSWAP_X2

	98

	FLAT_ATOMIC_ADD_X2

	99

	FLAT_ATOMIC_SUB_X2

	100

	FLAT_ATOMIC_SMIN_X2

	101

	FLAT_ATOMIC_UMIN_X2

	102

	FLAT_ATOMIC_SMAX_X2

	103

	FLAT_ATOMIC_UMAX_X2

	104

	FLAT_ATOMIC_AND_X2

	105

	FLAT_ATOMIC_OR_X2

	106

	FLAT_ATOMIC_XOR_X2

	107

	FLAT_ATOMIC_INC_X2

	108

	FLAT_ATOMIC_DEC_X2

Table: FLAT Opcodes

GLOBAL

	Opcode #

	Name

	16

	GLOBAL_LOAD_UBYTE

	17

	GLOBAL_LOAD_SBYTE

	18

	GLOBAL_LOAD_USHORT

	19

	GLOBAL_LOAD_SSHORT

	20

	GLOBAL_LOAD_DWORD

	21

	GLOBAL_LOAD_DWORDX2

	22

	GLOBAL_LOAD_DWORDX3

	23

	GLOBAL_LOAD_DWORDX4

	24

	GLOBAL_STORE_BYTE

	25

	GLOBAL_STORE_BYTE_D16_HI

	26

	GLOBAL_STORE_SHORT

	27

	GLOBAL_STORE_SHORT_D16_HI

	28

	GLOBAL_STORE_DWORD

	29

	GLOBAL_STORE_DWORDX2

	30

	GLOBAL_STORE_DWORDX3

	31

	GLOBAL_STORE_DWORDX4

	32

	GLOBAL_LOAD_UBYTE_D16

	33

	GLOBAL_LOAD_UBYTE_D16_HI

	34

	GLOBAL_LOAD_SBYTE_D16

	35

	GLOBAL_LOAD_SBYTE_D16_HI

	36

	GLOBAL_LOAD_SHORT_D16

	37

	GLOBAL_LOAD_SHORT_D16_HI

	64

	GLOBAL_ATOMIC_SWAP

	65

	GLOBAL_ATOMIC_CMPSWAP

	66

	GLOBAL_ATOMIC_ADD

	67

	GLOBAL_ATOMIC_SUB

	68

	GLOBAL_ATOMIC_SMIN

	69

	GLOBAL_ATOMIC_UMIN

	70

	GLOBAL_ATOMIC_SMAX

	71

	GLOBAL_ATOMIC_UMAX

	72

	GLOBAL_ATOMIC_AND

	73

	GLOBAL_ATOMIC_OR

	74

	GLOBAL_ATOMIC_XOR

	75

	GLOBAL_ATOMIC_INC

	76

	GLOBAL_ATOMIC_DEC

	96

	GLOBAL_ATOMIC_SWAP_X2

	97

	GLOBAL_ATOMIC_CMPSWAP_X2

	98

	GLOBAL_ATOMIC_ADD_X2

	99

	GLOBAL_ATOMIC_SUB_X2

	100

	GLOBAL_ATOMIC_SMIN_X2

	101

	GLOBAL_ATOMIC_UMIN_X2

	102

	GLOBAL_ATOMIC_SMAX_X2

	103

	GLOBAL_ATOMIC_UMAX_X2

	104

	GLOBAL_ATOMIC_AND_X2

	105

	GLOBAL_ATOMIC_OR_X2

	106

	GLOBAL_ATOMIC_XOR_X2

	107

	GLOBAL_ATOMIC_INC_X2

	108

	GLOBAL_ATOMIC_DEC_X2

Table: GLOBAL Opcodes

SCRATCH

	Opcode #

	Name

	16

	SCRATCH_LOAD_UBYTE

	17

	SCRATCH_LOAD_SBYTE

	18

	SCRATCH_LOAD_USHORT

	19

	SCRATCH_LOAD_SSHORT

	20

	SCRATCH_LOAD_DWORD

	21

	SCRATCH_LOAD_DWORDX2

	22

	SCRATCH_LOAD_DWORDX3

	23

	SCRATCH_LOAD_DWORDX4

	24

	SCRATCH_STORE_BYTE

	25

	SCRATCH_STORE_BYTE_D16_HI

	26

	SCRATCH_STORE_SHORT

	27

	SCRATCH_STORE_SHORT_D16_HI

	28

	SCRATCH_STORE_DWORD

	29

	SCRATCH_STORE_DWORDX2

	30

	SCRATCH_STORE_DWORDX3

	31

	SCRATCH_STORE_DWORDX4

	32

	SCRATCH_LOAD_UBYTE_D16

	33

	SCRATCH_LOAD_UBYTE_D16_HI

	34

	SCRATCH_LOAD_SBYTE_D16

	35

	SCRATCH_LOAD_SBYTE_D16_HI

	36

	SCRATCH_LOAD_SHORT_D16

	37

	SCRATCH_LOAD_SHORT_D16_HI

Table: SCRATCH Opcodes

Export Format

EXP

[image: microcode mubuf]

	Format

	EXP

	Descriptio
n

	EXPORT instructions

The export format has only a single opcode, “EXPORT”.

	Field Name

	Bits

	Format or Description

	EN

	[3:0]

	
COMPR==1: export half-dword enable. Valid
values are: 0x0,3,c,f

[0] enables VSRC0 : R,G from one VGPR (R in low
bits, G high)

[2] enables VSRC1 : B,A from one VGPR (B in low
bits, A high)

COMPR==0: [0-3] = enables for VSRC0..3.

EN may be zero only for “NULL Pixel Shader”
exports (used when exporting only valid mask to
NULL target).

	TARGET

	[9:4]

	
Export destination:

0-7: MRT 0..7

8: Z

9: Null pixel shader export (no data)

12-15: Position 0..3

32-63: Parameter 0..31

	COMPR

	[10]

	Indicates that data is float-16/short/byte
(compressed). Data is written to consecutive
components (rgba or xyzw).

	DONE

	[11]

	Indicates that this is the last export from the
shader. Used only for Position and Pixel/color
data.

	VM

	[12]

	1 = the exec mask IS the valid mask for this
export. Can be sent multiple times, must be sent
at least once per pixel shader. This bit is only
used for Pixel Shaders.

	ENCODING

	[31:26]

	Must be: 110001

	VSRC0

	[39:32]

	VGPR for source 0.

	VSRC1

	[47:40]

	VGPR for source 1.

	VSRC2

	[55:48]

	VGPR for source 2.

	VSRC3

	[63:56]

	VGPR for source 3.

Table: EXP Fields

Frequently Asked Questions - Installation

Determining if the video card is installed correctly

The ROCm software stack has specific requirements regarding the type of GPU supported and how it is installed in the system. The card must be installed in a PCIe slot that supports the 3.0 PCIe specification and the atomics extension. Preferably the slot is x16; x8 an x4 slots will work, but data transfer rates between host memory and GPU memory will be reduced. If the card is not installed in a compatible PCIe slot applications that dispatch a compute kernel will hang waiting for a completion signal from the GPU, which is an atomic operation.

After booting the system with the new driver installed the dmesg output will indicate if there were any problems initializing the GPU. The output of the command ‘sudo dmesg | grep kfd’ will indicate if there were any initialization problems. A properly initialized system will have dmesg output similar to this

dmesg | grep kfd
[0.000000] Linux version 4.11.0-kfd-compute-roc-master-5051 (jenkins@jenkins-raptor-5) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.4)) #1 SMP Thu Jun 29 21:00:37 CDT 2017
[0.000000] Command line: BOOT_IMAGE=/boot/vmlinuz-4.11.0-kfd-compute-roc-master-5051 root=UUID=084440bf-e6be-4175-a72c-e3cc6ae4448c ro quiet splash vt.handoff=7
[0.000000] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-4.11.0-kfd-compute-roc-master-5051 root=UUID=084440bf-e6be-4175-a72c-e3cc6ae4448c ro quiet splash vt.handoff=7
[1.245721] usb usb1: Manufacturer: Linux 4.11.0-kfd-compute-roc-master-5051 xhci-hcd
[1.253148] usb usb2: Manufacturer: Linux 4.11.0-kfd-compute-roc-master-5051 xhci-hcd
[1.316964] usb usb3: Manufacturer: Linux 4.11.0-kfd-compute-roc-master-5051 xhci-hcd
[1.317167] usb usb4: Manufacturer: Linux 4.11.0-kfd-compute-roc-master-5051 xhci-hcd
[1.428356] kfd kfd: Initialized module
[2.379347] kfd kfd: Allocated 3969056 bytes on gart for device 1002:7300
[2.379452] kfd kfd: Reserved 2 pages for cwsr.
[2.379468] kfd kfd: added device 1002:7300

If the GPU is installed in a PCIe slot that is not supported there will be error messages indicating that the devices full capabilities are not available.

Meta package Installation issues, rpm and dpkg

The ROCm repository uses several “meta” packages that provide easy installation for several components of ROCm that do not have natural dependencies. The “meta” packages are empty debian or rpm files that have dependencies on several, unrelated, ROCm components. They are useful in installing or uninstalling the entire ROCm stack with one apt-get or dnf command, and also provide automatic configuration of the /dev/kfd file permissions using the udev service.

In some cases users can “break” a ROCm installation by removing one of the “meta” packages using the rpm or dpkg command directly. The rpm and dpkg commands do not resolve dependencies like the dnf and apt-get commands do, and should not be used to remove any ‘meta’ packages, or any other ROCm package. For example, a user can remove the rocm package with the command ‘sudo dpkg –r rocm’ on Ubuntu, but that will not remove any of its dependencies. This is also true for the ‘sudo apt-get remove rocm’ command which will only remove the rocm ‘meta’ package and not its dependencies. To remove a ROCm installation completely, use ‘sudo apt-get autoremove rocm’ for Ubuntu and ‘sudo dnf remove rocm’ for Fedora.

The current meta packages are: rocm – Depends on the kernel drivers, firmware and the rocm-dev packages. rocm-dev – Depends on the roct, rocr, rocr extension, hcc and hip packages. rocm-libs – Depends on the hcBLAS, hcFFT, hcRNG, rocBLAS and hipBLAS packages.

If an installation has its ‘meta’ packages removed they can be reinstall using the standard apt-get or dnf command. Reinstall the ‘meta’ packages will not reinstall already installed dependencies

Linux Kernels are not uninstalled by default

If ROCm is uninstalled using dnf or apt-get the kernel packages are not uninstalled by default. This is a Linux convention, and isn’t unique the ROCm stack. To remove the kernel packages, they will have to be removed explicitly:

For debian – ‘sudo apt-get autoremove ’ For RPM – ‘sudo dnf remove ’

The rpm or dpkg command can also be used, but isn’t recommended.

Updating firmware may not trigger a rebuilding of ramfs

If a device isn’t detected by the ROCm kernel drivers, it is possible there is an issue loading required device firmware. This can happen if the system has downlevel firmware or if the firmware is updated, but the ramfs hasn’t been initialized with the new firmware images. To see if this is a problem, check the dmesg of the system:

dmesg | grep amdgpu
[4.434129] [drm] amdgpu kernel modesetting enabled.
[4.517484] amdgpu 0000:05:00.0: enabling device (0100 -> 0103)
[4.517690] amdgpu 0000:05:00.0: Direct firmware load for amdgpu/vega10_gpu_info.bin failed with error -2
[4.517692] amdgpu 0000:05:00.0: Failed to load gpu_info firmware "amdgpu/vega10_gpu_info.bin"
[4.517733] amdgpu 0000:05:00.0: Fatal error during GPU init
[4.517757] [drm] amdgpu: finishing device.
[4.517914] amdgpu: probe of 0000:05:00.0 failed with error -2

The error displayed above indicates the kernel is having trouble loading the firmware.

If the firmware version isn’t correct, please install updated firmware packages, which should be available on the repository server. If the correct firmware is installed, reinitialize the ramfs as follows:

Ubuntu

update-initramfs -u

Fedora

sudo dracut --regenerate-all --force

/boot filesystem too small for installation

This problem can occur on Fedora installation if several previous kernels are currently installed. The dnf installation will fail with the following message:

Error: Transaction check error:
 installing package kernel-4.9.0_kfd_compute_rocm_rel_1.6_67-2.x86_64 needs 17MB on the /boot filesystem
Error Summary

Disk Requirements:
 At least 17MB more space needed on the /boot filesystem.

This is not an issue with the YUM repository; it is caused by the size of the /boot filesystem and the size of the kernels already installed on it. This issue can be fixed by uninstalling previous versions of the rocm Linux kernel:

sudo dnf remove rocm
rpm -qa | grep kfd | xargs sudo rpm –e
sudo dnf install rocm

Installing from an archived repository

The Radeon repo server stores several archived releases, supporting both debian and rpm repositories. These archives are located here at http://repo.radeon.com/rocm/archive. Users can install with an archive by downloading the desired archive and then updating the package configuration file to point at the localized repo.

Debian Archive Example

Here is an Example:

cd /temp && wget http://repo.radeon.com/rocm/archive/apt_1.6.3.tar.bz2
tar -xvf apt_1.6.3.tar.bz2
sudo echo “deb [amd64] file://temp/apt_1.6.3 xenial main” > /etc/apt/sources.lists.d/rocm.local.list
sudo apt-get update && sudo apt-get install rocm

Users should make sure that no other list files contain another rocm repo configuration.

RPM Archive Example

Add a /etc/yum.d/rocm.local.repo file with the following contents:

[remote]
name=ROCm Repo
baseurl=file://packages.amd.com/rocm/yum/rpm/
enabled=1
gpgcheck=0
cd /temp && wget http://repo.radeon.com/rocm/archive/yum_1.6.3.tar.bz2
tar –xvf yum_1.6.3.tar.bz2

Then execute:

sudo dnf clean all
sudo dnf install rocm

Again, users should make sure that no other repo files contain another rocm repo reference.

HCC : An open source C++ compiler for heterogeneous devices (Deprecated)

This repository hosts the HCC compiler implementation project. The goal is to implement a compiler that takes a program that conforms to a parallel programming standard such as C++ AMP, HC, C++ 17 ParallelSTL, or OpenMP, and transforms it into the AMD GCN ISA.

The project is based on LLVM+CLANG. For more information, please visit the hcc wiki: [https://github.com/RadeonOpenCompute/hcc/wiki]

https://github.com/RadeonOpenCompute/hcc/wiki

Download HCC

The project now employs git submodules to manage external components it depends upon. It it advised to add –recursive when you clone the project so all submodules are fetched automatically.

For example:

automatically fetches all submodules
git clone --recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.git

For more information about git submodules, please refer to git documentation [https://git-scm.com/book/en/v2/Git-Tools-Submodules].

Build HCC from source

To configure and build HCC from source, use the following steps:

mkdir -p build; cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make

To install it, use the following steps:

sudo make install

Use HCC

For C++AMP source codes:

hcc `clamp-config --cxxflags --ldflags` foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes:

hcc `hcc-config --cxxflags --ldflags` foo.cpp

In case you build HCC from source and want to use the compiled binaries directly in the build directory:

For C++AMP source codes:

notice the --build flag
bin/hcc `bin/clamp-config --build --cxxflags --ldflags` foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes:

notice the --build flag
bin/hcc `bin/hcc-config --build --cxxflags --ldflags` foo.cpp

Multiple ISA

HCC now supports having multiple GCN ISAs in one executable file. You can do it in different ways:

use –amdgpu-target= command line option

It’s possible to specify multiple –amdgpu-target= option. Example:

ISA for Hawaii(gfx701), Carrizo(gfx801), Tonga(gfx802) and Fiji(gfx803) would
be produced
hcc `hcc-config --cxxflags --ldflags` \
 --amdgpu-target=gfx701 \
 --amdgpu-target=gfx801 \
 --amdgpu-target=gfx802 \
 --amdgpu-target=gfx803 \
 foo.cpp

use HCC_AMDGPU_TARGET env var

Use , to delimit each AMDGPU target in HCC. Example:

export HCC_AMDGPU_TARGET=gfx701,gfx801,gfx802,gfx803
ISA for Hawaii(gfx701), Carrizo(gfx801), Tonga(gfx802) and Fiji(gfx803) would
be produced
hcc `hcc-config --cxxflags --ldflags` foo.cpp

configure HCC use CMake HSA_AMDGPU_GPU_TARGET variable

If you build HCC from source, it’s possible to configure it to automatically produce multiple ISAs via HSA_AMDGPU_GPU_TARGET CMake variable.

Use ; to delimit each AMDGPU target. Example:

ISA for Hawaii(gfx701), Carrizo(gfx801), Tonga(gfx802) and Fiji(gfx803) would
be produced by default
cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DROCM_DEVICE_LIB_DIR=~hcc/ROCm-Device-Libs/build/dist/lib \
 -DHSA_AMDGPU_GPU_TARGET="gfx701;gfx801;gfx802;gfx803" \
 ../hcc

CodeXL Activity Logger

To enable the CodeXL Activity Logger [https://github.com/RadeonOpenCompute/ROCm-Profiler/tree/master/CXLActivityLogger], use the USE_CODEXL_ACTIVITY_LOGGER environment variable.

Configure the build in the following way:

cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DHSA_AMDGPU_GPU_TARGET=<AMD GPU ISA version string> \
 -DROCM_DEVICE_LIB_DIR=<location of the ROCm-Device-Libs bitcode> \
 -DUSE_CODEXL_ACTIVITY_LOGGER=1 \
 <ToT HCC checkout directory>

In your application compiled using hcc, include the CodeXL Activity Logger header:

#include <CXLActivityLogger.h>

For information about the usage of the Activity Logger for profiling, please refer to its documentation [https://github.com/RadeonOpenCompute/ROCm-Profiler/blob/master/CXLActivityLogger/doc/AMDTActivityLogger.pdf].

HCC with ThinLTO Linking

To enable the ThinLTO link time, use the KMTHINLTO environment variable.

Set up your environment in the following way:

export KMTHINLTO=1

ThinLTO Phase 1 - Implemented

For applications compiled using hcc, ThinLTO could significantly improve link-time performance. This implementation will maintain kernels in their .bc file format, create module-summaries for each, perform llvm-lto’s cross-module function importing and then perform clamp-device (which uses opt and llc tools) on each of the kernel files. These files are linked with lld into one .hsaco per target specified.

ThinLTO Phase 2 - Under development

This ThinLTO implementation which will use llvm-lto LLVM tool to replace clamp-device bash script. It adds an optllc option into ThinLTOGenerator, which will perform in-program opt and codegen in parallel.

HIP

What is this repository for?

HIP allows developers to convert CUDA code to portable C++. The same source code can be compiled to run on NVIDIA or AMD GPUs. Key features include:

	HIP is very thin and has little or no performance impact over coding directly in CUDA or hcc “HC” mode.

	HIP allows coding in a single-source C++ programming language including features such as templates, C++11 lambdas, classes, namespaces, and more.

	HIP allows developers to use the “best” development environment and tools on each target platform.

	The “hipify” tool automatically converts source from CUDA to HIP.

	Developers can specialize for the platform (CUDA or hcc) to tune for performance or handle tricky cases

New projects can be developed directly in the portable HIP C++ language and can run on either NVIDIA or AMD platforms. Additionally, HIP provides porting tools which make it easy to port existing CUDA codes to the HIP layer, with no loss of performance as compared to the original CUDA application. HIP is not intended to be a drop-in replacement for CUDA, and developers should expect to do some manual coding and performance tuning work to complete the port.

Repository branches:

The HIP repository maintains several branches. The branches that are of importance are:

	master branch: This is the stable branch. All stable releases are based on this branch.

	developer-preview branch: This is the branch were the new features still under development are visible. While this maybe of interest to many, it should be noted that this branch and the features under development might not be stable.

Release tagging:

HIP releases are typically of two types. The tag naming convention is different for both types of releases to help differentiate them.

	release_x.yy.zzzz: These are the stable releases based on the master branch. This type of release is typically made once a month.

	preview_x.yy.zzzz: These denote pre-release code and are based on the developer-preview branch. This type of release is typically made once a week.

More Info:

	Installation

	HIP FAQ

	HIP Kernel Language

	HIP Runtime API (Doxygen)

	HIP Porting Guide

	HIP Porting Driver Guide

	HIP Programming Guide

	HIP Profiling

	HIP Debugging

	HIP Terminology (including Rosetta Stone of GPU computing terms across CUDA/HIP/HC/AMP/OpenL)

	hipify-clang

	Developer/CONTRIBUTING Info

	Release Notes

How do I get set up?

See the Installation [https://github.com/ROCm-Developer-Tools/HIP/blob/roc-1.7.x/INSTALL.md] notes.

Simple Example

The HIP API includes functions such as hipMalloc, hipMemcpy, and hipFree.
Programmers familiar with CUDA will also be able to quickly learn and start coding with the HIP API. Compute kernels are launched with the “hipLaunchKernelGGL” macro call. Here is simple example showing a snippet of HIP API code:

hipMalloc(&A_d, Nbytes));
hipMalloc(&C_d, Nbytes));

hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);

const unsigned blocks = 512;
const unsigned threadsPerBlock = 256;
hipLaunchKernelGGL(vector_square, /* compute kernel*/
 dim3(blocks), dim3(threadsPerBlock), 0/*dynamic shared*/, 0/*stream*/, /* launch config*/
 C_d, A_d, N); /* arguments to the compute kernel */

hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

The HIP kernel language defines builtins for determining grid and block coordinates, math functions, short vectors, atomics, and timer functions. It also specifies additional defines and keywords for function types, address spaces, and optimization controls. (See the HIP Kernel Language for a full description). Here’s an example of defining a simple ‘vector_square’ kernel.

template <typename T>
__global__ void
vector_square(T *C_d, const T *A_d, size_t N)
{
 size_t offset = (hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x);
 size_t stride = hipBlockDim_x * hipGridDim_x ;

 for (size_t i=offset; i<N; i+=stride) {
 C_d[i] = A_d[i] * A_d[i];
 }
}

The HIP Runtime API code and compute kernel definition can exist in the same source file - HIP takes care of generating host and device code appropriately.

HIP C++ code can be compiled with either :

	On the NVIDIA CUDA platform, HIP provides header file which translate from the HIP runtime APIs to CUDA runtime APIs. The header file contains mostly inlined functions and thus has very low overhead - developers coding in HIP should expect the same performance as coding in native CUDA. The code is then compiled with nvcc, the standard C++ compiler provided with the CUDA SDK. Developers can use any tools supported by the CUDA SDK including the CUDA profiler and debugger.

	On the AMD ROCm platform, HIP provides a header and runtime library built on top of hcc compiler. The HIP runtime implements HIP streams, events, and memory APIs, and is a object library that is linked with the application. The source code for all headers and the library implementation is available on GitHub.
HIP developers on ROCm can use AMD’s CodeXL for debugging and profiling.

Thus HIP source code can be compiled to run on either platform. Platform-specific features can be isolated to a specific platform using conditional compilation. Thus HIP provides source portability to either platform. HIP provides the hipcc compiler driver which will call the appropriate toolchain depending on the desired platform.

Examples and Getting Started:

	A sample and blog [http://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial] that uses hipify to convert a simple app from CUDA to HIP:

cd samples/01_Intro/square
follow README / blog steps to hipify the application.

	A sample and blog [http://gpuopen.com/platform-aware-coding-inside-hip/] demonstrating platform specialization:

cd samples/01_Intro/bit_extract
make

	Guide to Porting a New Cuda Project [https://github.com/ROCm-Developer-Tools/HIP/blob/roc-1.7.x/docs/markdown/hip_porting_guide.md#porting-a-new-cuda-project%22]

More Examples

The GitHub repository HIP-Examples [https://github.com/ROCm-Developer-Tools/HIP-Examples.git] contains a hipified version of the popular Rodinia benchmark suite. The README with the procedures and tips the team used during this porting effort is here: Rodinia Porting Guide [https://github.com/ROCm-Developer-Tools/HIP-Examples/blob/master/rodinia_3.0/hip/README.hip_porting]

Tour of the HIP Directories

	Include:

	hip_runtime_api.h : Defines HIP runtime APIs and can be compiled with many standard Linux compilers (hcc, GCC, ICC, CLANG, etc), in either C or C++ mode.

	hip_runtime.h : Includes everything in hip_runtime_api.h PLUS hipLaunchKernelGGL and syntax for writing device kernels and device functions. hip_runtime.h can only be compiled with hcc.

	hcc_detail/** , *nvcc_detail/** : Implementation details for specific platforms. HIP applications should not include these files directly.

	hcc.h : Includes interop APIs for HIP and HCC

	bin: Tools and scripts to help with hip porting

	hipify : Tool to convert CUDA code to portable CPP. Converts CUDA APIs and kernel builtins.

	hipcc : Compiler driver that can be used to replace nvcc in existing CUDA code. hipcc will call nvcc or hcc depending on platform, and include appropriate platform-specific headers and libraries.

	hipconfig : Print HIP configuration (HIP_PATH, HIP_PLATFORM, CXX config flags, etc)

	hipexamine.sh : Script to scan directory, find all code, and report statistics on how much can be ported with HIP (and identify likely features not yet supported)

	doc: Documentation - markdown and doxygen info

Reporting an issue

Use the GitHub issue tracker [https://github.com/ROCm-Developer-Tools/HIP/issues]. If reporting a bug, include the output of “hipconfig –full” and samples/1_hipInfo/hipInfo (if possible).

For More Info checkout GitHub Link here [https://github.com/ROCm-Developer-Tools/HIP/tree/roc-1.7.x]

List of ROCm Packages for Ubuntu and Fedora

	Package

	Debian

	RPM

	ROCm Master Package

	rocm

	rocm-1.6.77-Linux.rpm

	ROCm Developer Master Package

	rocm-dev

	rocm-dev-1.6.77-Linux.rpm

	ROCm Libraries Master Package

	rocm-libs

	rocm-libs-1.6.77-Linux.rpm

	ATMI

	atmi

	atmi-0.3.7-45-gde867f2-Linux.rpm

	HCC

	hcc

	hcc-1.0.17262-Linux.rpm

	hcBLAS

	hcblas

	hcblas-master-482646f-Linux.rpm

	hcFFT

	hcfft.

	hcfft-master-1a96022-Linux.rpm

	hcRNG

	hcrng.

	hcrng-master-c2ada99-Linux.rpm

	HIP Core

	hip_base

	hip_base-1.2.17263.rpm

	HIP Documents

	hip_doc

	hip_doc-1.2.17263.rpm

	HIP Compiler

	hip_hcc

	hip_hcc-1.2.17263.rpm

	HIP Samples

	hip_samples

	hip_samples-1.2.17263.rpm.

	HIPBLAS

	hipblas

	hipblas-0.4.0.3-Linux.rpm

	MIOpen OpenCL Lib

	miopen-opencl.

	MIOpen-OpenCL-1.0.0-Linux.rpm

	rocBLAS

	rocblas

	rocblas-0.4.2.3-Linux.rpm

	rocFFT

	rocfft

	rocm-device-libs-0.0.1-Linux.rpm

	ROCm Device Libs

	rocm-device-libs

	rocm-device-libs-0.0.1-Linux.rpm

	ROCm OpenCL for Dev with CL headers

	rocm-opencl-dev

	rocm-opencl-devel-1.2.0-1424893.x86_64.rpm

	ROCm GDB

	rocm-gdb

	rocm-gdb-1.5.265-gc4fb045.x86_64.rpm

	RCP profiler

	rocm-profiler

	rocm-profiler-5.1.6386-gbaddcc9.x86_64.rpm

	ROCm SMI Tool

	rocm-smi

	rocm-smi-1.0.0_24_g68893bc-1.x86_64.rpm

	ROCm Utilities

	rocm-utils

	rocm-utils-1.0.0-Linux.rpm

More about how ROCm uses PCIe Atomics

ROCm PCIe Feature and Overview BAR Memory

ROCm is an extension of HSA platform architecture, so it shares the queueing model, memory model, signaling and synchronization protocols. Platform atomics are integral to perform queuing and signaling memory operations where there may be multiple-writers across CPU and GPU agents.

The full list of HSA system architecture platform requirements are here: HSA Sys Arch Features [http://www.hsafoundation.com/html/HSA_Library.htm#SysArch/Topics/01_Overview/list_of_requirements.htm].

The ROCm Platform uses the new PCI Express 3.0 (PCIe 3.0) features for Atomic Read-Modify-Write Transactions which extends inter-processor synchronization mechanisms to IO to support the defined set of HSA capabilities needed for queuing and signaling memory operations.

The new PCIe AtomicOps operate as completers for CAS(Compare and Swap), FetchADD, SWAP atomics. The AtomicsOps are initiated by the
I/O device which support 32-bit, 64-bit and 128-bit operand which target address have to be naturally aligned to operation sizes.

For ROCm the Platform atomics are used in ROCm in the following ways:

	Update HSA queue’s read_dispatch_id: 64 bit atomic add used by the command processor on the GPU agent to update the packet ID it processed.

	Update HSA queue’s write_dispatch_id: 64 bit atomic add used by the CPU and GPU agent to support multi-writer queue insertions.

	Update HSA Signals – 64bit atomic ops are used for CPU & GPU synchronization.

The PCIe 3.0 AtomicOp feature allows atomic transactions to be requested by, routed through and completed by PCIe components. Routing and completion does not require software support. Component support for each is detectable via the DEVCAP2 register. Upstream bridges need to have AtomicOp routing enabled or the Atomic Operations will fall even though PCIe endpoint and PCIe I/O Devices has the capability to Atomics Operations.

To do AtomicOp routing capability between two or more Root Ports, each associated Root Port must indicate that capability via the AtomicOp Routing Supported bit in the Device Capabilities 2 register.

If your system has a PCIe Express Switch it needs to support AtomicsOp routing. Again AtomicOp requests are permitted only if a component’s DEVCTL2.ATOMICOP_REQUESTER_ENABLE field is set. These requests can only be serviced if the upstream components support AtomicOp completion and/or routing to a component which does. AtomicOp Routing Support=1 Routing is supported, AtomicOp Routing Support=0 routing is not supported.

Atomic Operation is a Non-Posted transaction supporting 32-bit and 64-bit address formats, there must be a response for Completion containing the result of the operation. Errors associated with the operation (uncorrectable error accessing the target location or carrying out the Atomic operation) are signaled to the requester by setting the Completion Status field in the completion descriptor, they are set to to Completer Abort (CA) or Unsupported Request (UR).

To understand more about how PCIe Atomic operations work PCIe Atomics [https://pcisig.com/sites/default/files/specification_documents/ECN_Atomic_Ops_080417.pdf]

Linux Kernel Patch to pci_enable_atomic_request [https://patchwork.kernel.org/patch/7261731/]

There are also a number of papers which talk about these new capabilities:

	Atomic Read Modify Write Primitives by Intel [https://www.intel.es/content/dam/doc/white-paper/atomic-read-modify-write-primitives-i-o-devices-paper.pdf]

	PCI express 3 Accelerator Whitepaper by Intel [https://www.intel.sg/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf]

	Intel PCIe Generation 3 Hotchips Paper [https://www.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf]

	PCIe Generation 4 Base Specification includes Atomics Operation [http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_4.0.Ver.0.3.pdf]

Other I/O devices with PCIe Atomics support

	Mellanox ConnectX-5 InfiniBand Card [http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf]

	Cray Aries Interconnect [http://www.hoti.org/hoti20/slides/Bob_Alverson.pdf]

	Xilinx PCIe Ultrascale Whitepaper [https://www.xilinx.com/support/documentation/white_papers/wp464-PCIe-ultrascale.pdf]

	Xilinx 7 Series Devices [https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_1/pg054-7series-pcie.pdf]

Future bus technology with richer I/O Atomics Operation Support

	GenZ [http://genzconsortium.org/faq/gen-z-technology/#33/]

New PCIe Endpoints with support beyond AMD Ryzen and EPYC CPU; Intel Haswell or newer CPU’s with PCIe Generation 3.0 support.

	Mellanox Bluefield SOC [http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf]

	Cavium Thunder X2 [http://www.cavium.com/ThunderX2_ARM_Processors.html]

In ROCm, we also take advantage of PCIe ID based ordering technology for P2P when the GPU originates two writes to two different targets:

1. write to another GPU memory,

2. then write to system memory to indicate transfer complete.

They are routed off to different ends of the computer but we want to make sure the write to system memory to indicate transfer complete occurs AFTER P2P write to GPU has complete.

Good Paper on Understanding PCIe Generation 3 Throughput [https://www.altera.com/en_US/pdfs/literature/an/an690.pdf]

BAR Memory Overview

On a Xeon E5 based system in the BIOS we can turn on above 4GB PCIe addressing, if so he need to set MMIO Base address (MMIOH Base) and Range (MMIO High Size) in the BIOS.

In SuperMicro system in the system bios you need to see the following

	Advanced->PCIe/PCI/PnP configuration-> Above 4G Decoding = Enabled

	Advanced->PCIe/PCI/PnP Configuration->MMIOH Base = 512G

	Advanced->PCIe/PCI/PnP Configuration->MMIO High Size = 256G

When we support Large Bar Capability there is a Large Bar Vbios which also disable the IO bar.

For GFX9 and Vega10 which have Physical Address up 44 bit and 48 bit Virtual address.

	BAR0-1 registers: 64bit, prefetchable, GPU memory. 8GB or 16GB depending on Vega10 SKU. Must be placed < 2^44 to support P2P access from other Vega10.

	BAR2-3 registers: 64bit, prefetchable, Doorbell. Must be placed < 2^44 to support P2P access from other Vega10.

	BAR4 register: Optional, not a boot device.

	BAR5 register: 32bit, non-prefetchable, MMIO. Must be placed < 4GB.

Here is how our BAR works on GFX 8 GPU’s with 40 bit Physical Address Limit

11:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Fiji [Radeon R9 FURY / NANO Series] (rev c1)

Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0b35

Flags: bus master, fast devsel, latency 0, IRQ 119

Memory at bf40000000 (64-bit, prefetchable) [size=256M]

Memory at bf50000000 (64-bit, prefetchable) [size=2M]

I/O ports at 3000 [size=256]

Memory at c7400000 (32-bit, non-prefetchable) [size=256K]

Expansion ROM at c7440000 [disabled] [size=128K]

Legend:

1 : GPU Frame Buffer BAR – In this example it happens to be 256M, but typically this will be size of the GPU memory (typically 4GB+). This BAR has to be placed < 2^40 to allow peer-to-peer access from other GFX8 AMD GPUs. For GFX9 (Vega GPU) the BAR has to be placed < 2^44 to allow peer-to-peer access from other GFX9 AMD GPUs.

2 : Doorbell BAR – The size of the BAR is typically will be < 10MB (currently fixed at 2MB) for this generation GPUs. This BAR has to be placed < 2^40 to allow peer-to-peer access from other current generation AMD GPUs.

3 : IO BAR - This is for legacy VGA and boot device support, but since this the GPUs in this project are not VGA devices (headless), this is not a concern even if the SBIOS does not setup.

4 : MMIO BAR – This is required for the AMD Driver SW to access the configuration registers. Since the reminder of the BAR available is only 1 DWORD (32bit), this is placed < 4GB. This is fixed at 256KB.

5 : Expansion ROM – This is required for the AMD Driver SW to access the GPU’s video-bios. This is currently fixed at 128KB.

Excepts form Overview of Changes to PCI Express 3.0

By Mike Jackson, Senior Staff Architect, MindShare, Inc.

Atomic Operations – Goal:

Support SMP-type operations across a PCIe network to allow for things like offloading tasks between CPU cores and accelerators like a GPU. The spec says this enables advanced synchronization mechanisms that are particularly useful with multiple producers or consumers that need to be synchronized in a non-blocking fashion. Three new atomic non-posted requests were added, plus the corresponding completion (the address must be naturally aligned with the operand size or the TLP is malformed):

	Fetch and Add – uses one operand as the “add” value. Reads the target location, adds the operand, and then writes the result back to the original location.

	Unconditional Swap – uses one operand as the “swap” value. Reads the target location and then writes the swap value to it.

	Compare and Swap – uses 2 operands: first data is compare value, second is swap value. Reads the target location, checks it against the compare value and, if equal, writes the swap value to the target location.

	AtomicOpCompletion – new completion to give the result so far atomic request and indicate that the atomicity of the transaction has been maintained.

Since AtomicOps are not locked they don’t have the performance downsides of the PCI locked protocol. Compared to locked cycles, they provide “lower latency, higher scalability, advanced synchronization algorithms, and dramatically lower impact on other PCIe traffic.” The lock mechanism can still be used across a bridge to PCI or PCI-X to achieve the desired operation.

AtomicOps can go from device to device, device to host, or host to device. Each completer indicates whether it supports this capability and guarantees atomic access if it does. The ability to route AtomicOps is also indicated in the registers for a given port.

ID-based Ordering – Goal:

Improve performance by avoiding stalls caused by ordering rules. For example, posted writes are never normally allowed to pass each other in a queue, but if they are requested by different functions, we can have some confidence that the requests are not dependent on each other. The previously reserved Attribute bit [2] is now combined with the RO bit to indicate ID ordering with or without relaxed ordering.

This only has meaning for memory requests, and is reserved for Configuration or IO requests. Completers are not required to copy this bit into a completion, and only use the bit if their enable bit is set for this operation.

To read more on PCIe Gen 3 new options https://www.mindshare.com/files/resources/PCIe%203-0.pdf

 [image: ../_images/AMD1.png]

AMD ROCm Installation Guide v3.1.0

	Deploying ROCm

	Ubuntu

	Centos RHEL v7.7

	SLES 15 Service Pack 1

	`Multi\-Verion Installation`_

	ROCm Installation Known Issues and Workarounds

	Getting the ROCm Source Code

Deploying ROCm

AMD hosts both Debian and RPM repositories for the ROCm v3.0x packages.

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04.x

Note: These directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu may not be compatible with the rock-dkms kernel driver. In this case, you can exclude the rocm-dkms and rock-dkms packages.

For more information on the ROCm binary structure, see https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#rocm-binary-package-structure

For information about upstream kernel drivers, see the Using Debian-based ROCm with Upstream Kernel Drivers section.

Ubuntu

Installing a ROCm Package from a Debian Repository

To install from a Debian Repository:

	Run the following code to ensure that your system is up to date:

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev

sudo reboot

	Add the ROCm apt repository.

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

wget -q -O - https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -

echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo tee /etc/apt/sources.list.d/rocm.list

The gpg key may change; ensure it is updated when installing a new release. If the key signature verification fails while updating, re-add the key from the ROCm apt repository.

The current rocm.gpg.key is not available in a standard key ring distribution, but has the following sha1sum hash:

e85a40d1a43453fe37d63aa6899bc96e08f2817a rocm.gpg.key

	Install the ROCm meta-package. Update the appropriate repository list and install the rocm-dkms meta-package:

sudo apt update

sudo apt install rocm-dkms

	Set permissions. To access the GPU, you must be a user in the video group. Ensure your user account is a member of the video group prior to using ROCm. To identify the groups you are a member of, use the following command:

groups

	To add your user to the video group, use the following command for the sudo password:

sudo usermod -a -G video $LOGNAME

	By default, add any future users to the video group. Run the following command to add users to the video group:

echo 'ADD_EXTRA_GROUPS=1'
sudo tee -a /etc/adduser.conf

echo 'EXTRA_GROUPS=video'
sudo tee -a /etc/adduser.conf

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/x86_64/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64' |
sudo tee -a /etc/profile.d/rocm.sh

Uninstalling ROCm Packages from Ubuntu

To uninstall the ROCm packages from Ubuntu 1v6.04 or Ubuntu v18.04.x, run the following command:

sudo apt autoremove rocm-dkms rocm-dev rocm-utils

Installing Development Packages for Cross Compilation

It is recommended that you develop and test development packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you must avoid installing the ROCk kernel driver on the development system.

Instead, install the following development subset of packages:

sudo apt update
sudo apt install rocm-dev

Note: To execute ROCm enabled applications, you must install the full ROCm driver stack on your system.

Using Debian-based ROCm with Upstream Kernel Drivers

You can install the ROCm user-level software without installing the AMD’s custom ROCk kernel driver. To use the upstream kernels, run the following commands instead of installing rocm-dkms:

sudo apt update
sudo apt install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"'
sudo tee /etc/udev/rules.d/70-kfd.rules

CentOS RHEL v7.7

This section describes how to install ROCm on supported RPM-based systems such as CentOS v7.7.

For more details, refer: https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#rocm-binary-package-structure

Preparing RHEL v7 (7.7) for Installation

RHEL is a subscription-based operating system. You must enable the external repositories to install on the devtoolset-7 environment and the dkms support files.

Note: The following steps do not apply to the CentOS installation.

	The subscription for RHEL must be enabled and attached to a pool ID. See the Obtaining an RHEL image and license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

	Enable the following repositories:

sudo subscription-manager repos --enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos --enable rhel-7-server-optional-rpms
sudo subscription-manager repos --enable rhel-7-server-extras-rpms

	Enable additional repositories by downloading and installing the epel-release-latest-7 repository RPM:

sudo rpm -ivh

For more details, see https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

	Install and set up Devtoolset-7.

To setup the Devtoolset-7 environment, follow the instructions on this page: https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note: devtoolset-7 is a software collections package and is not supported by AMD.

Installing CentOS/RHEL (v7.7) for DKMS

Use the dkms tool to install the kernel drivers on CentOS/RHEL v7.7:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers-`uname -r` kernel-devel-`uname -r`

Installing ROCm

To install ROCm on your system, follow the instructions below:

	Delete the previous versions of ROCm before installing the latest version.

	Create a /etc/yum.repos.d/rocm.repo file with the following contents:

[ROCm]
name=ROCm
baseurl=http://repo.radeon.com/rocm/yum/rpm
enabled=1
gpgcheck=0

Note: The URL of the repository must point to the location of the repositories’ repodata database.

	Install ROCm components using the following command:

sudo yum install rocm-dkms

	Restart the system. The rock-dkms component is installed and the /dev/kfd device is now available.

	Set permissions. To access the GPU, you must be a user in the video group. Ensure your user account is a member of the video group prior to using ROCm. To identify the groups you are a member of, use the following command:

groups

	To add your user to the video group, use the following command for the sudo password:

sudo usermod -a -G video $LOGNAME

	By default, add any future users to the video group. Run the following command to add users to the video group:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

Note: The current release supports CentOS/RHEL v7.6. Before updating to the latest version of the operating system, delete the ROCm packages to avoid DKMS-related issues.

	Restart the system.

	Test the ROCm installation.

Testing the ROCm Installation

After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed, you are good to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/x86_64/clinfo

Note: Add the ROCm binaries in your PATH for easy implementation of the ROCm programs.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64' |
sudo tee -a /etc/profile.d/rocm.sh

For more information about installation issues, see: https://rocm.github.io/install_issues.html

Compiling Applications Using HCC, HIP, and Other ROCm Software

To compile applications or samples, run the following command to use gcc-7.2 provided by the devtoolset-7 environment:

scl enable devtoolset-7 bash

Uninstalling ROCm from CentOS/RHEL v7.7

To uninstall the ROCm packages, run the following command:

sudo yum autoremove rocm-dkms rock-dkms

Installing Development Packages for Cross Compilation

You can develop and test ROCm packages on different systems. For example, some development or build systems may not have an AMD GPU installed. In this scenario, you can avoid installing the ROCm kernel driver on your development system. Instead, install the following development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm-enabled applications, you will require a system installed with the full ROCm driver stack.

Using ROCm with Upstream Kernel Drivers

You can install ROCm user-level software without installing AMD’s custom ROCk kernel driver. To use the upstream kernel drivers, run the following commands

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"'
sudo tee /etc/udev/rules.d/70-kfd.rules

Note: You can use this command instead of installing rocm-dkms.

SLES 15 Service Pack 1

The following section tells you how to perform an install and uninstall ROCm on SLES 15 SP 1.

Installation

	Install the “dkms” package.

sudo SUSEConnect --product PackageHub/15.1/x86_64
sudo zypper install dkms

	Add the ROCm repo.

sudo zypper clean –all
sudo zypper addrepo --no-gpgcheck http://repo.radeon.com/rocm/zyp/zypper/ rocm
sudo zypper ref
zypper install rocm-dkms
sudo zypper install rocm-dkms
sudo reboot

	Run the following command once

cat <<EOF | sudo tee /etc/modprobe.d/10-unsupported-modules.conf
allow_unsupported_modules 1
EOF
sudo modprobe amdgpu

	Verify the ROCm installation.

	Run /opt/rocm/bin/rocminfo and /opt/rocm/opencl/bin/x86_64/clinfo commands to list the GPUs and verify that the ROCm installation is successful.

	Set permissions.

To access the GPU, you must be a user in the video group. Ensure your user account is a member of the video group prior to using ROCm. To identify the groups you are a member of, use the following command:

groups

	To add your user to the video group, use the following command for the sudo password:

sudo usermod -a -G video $LOGNAME

	By default, add any future users to the video group. Run the following command to add users to the video group:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

	Restart the system.

	Test the basic ROCm installation.

	After restarting the system, run the following commands to verify that the ROCm installation is successful. If you see your GPUs listed by both commands, the installation is considered successful.

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/x86_64/clinfo

Note: To run the ROCm programs more efficiently, add the ROCm binaries in your PATH.
echo ‘export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64’ |

sudo tee -a /etc/profile.d/rocm.sh

Uninstallation

To uninstall, use the following command:

sudo zypper remove rocm-dkms rock-dkms

Note: Ensure all other installed packages/components are removed.
Note: Ensure all the content in the /opt/rocm directory is completely removed.

Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. If you are trying to install on a system with a limited amount of storage space, or which will only run a small collection of known applications, you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel

Multi-Version Installation

Users can install and access multiple versions of the ROCm toolkit simultaneously.

Previously, users could install only a single version of the ROCm toolkit.

Now, users have the option to install multiple versions simultaneously and toggle to the desired version of the ROCm toolkit. From the v3.3 release, multiple versions of ROCm packages can be installed in the /opt/rocm-<version> folder.

Ensure the existing installations of ROCm, including /opt/rocm, are completely removed before the v3.3 ROCm toolkit installation. The ROCm v3.3 package requires a clean installation.

	To install a single instance of ROCm, use the rocm-dkms or rocm-dev packages to install all the required components. This creates a symbolic link /opt/rocm pointing to the corresponding version of ROCm installed on the system.

	To install individual ROCm components, create the /opt/rocm symbolic link pointing to the version of ROCm installed on the system. For example, # ln -s /opt/rocm-3.3.0 /opt/rocm

	To install multiple instance ROCm packages, create /opt/rocm symbolic link pointing to the version of ROCm installed/used on the system. For example, # ln -s /opt/rocm-3.3.0 /opt/rocm

Note: The Kernel Fusion Driver (KFD) must be compatible with all versions of the ROCm software installed on the system.

Review the following important notes:

Single Version Installation

To install a single instance of the ROCm package, access the non-versioned packages. You must not install any components from the multi-instance set.

For example,

	rocm-dkms

	rocm-dev

	hip

A fresh installation or an upgrade of the single-version installation will remove the existing version completely and install the new version in the /opt/rocm-<version> folder.

[image: ../_images/singleinstance.png]
Multi Version Installation

	To install a multi-instance of the ROCm package, access the versioned packages and components.

For example,

	rocm-dkms3.3.0

	rocm-dev3.3.0

	hip3.3.0

	The new multi-instance package enables you to install two versions of the ROCm toolkit simultaneously and provides the ability to toggle between the two versioned packages.

	The ROCm-DEV package does not create symlinks

	Users must create symlinks if required

	Multi-version installation with previous ROCm versions is not supported

	Kernel Fusion Driver (KFD) must be compatible with all versions of ROCm installations

[image: ../_images/MultiIns.png]
IMPORTANT: A single instance ROCm package cannot co-exist with the multi-instance package.

NOTE: The multi-instance installation applies only to ROCm v3.3 and above. This package requires a fresh installation after the complete removal of existing ROCm packages. The multi-version installation is not backward compatible.

ROCm Installation Known Issues and Workarounds

Closed source components

The ROCm platform relies on some closed source components to provide functionalities like HSA image support. These components are only available through the ROCm repositories, and they may be deprecated or become open source components in the future. These components are made available in the following packages:

	hsa-ext-rocr-dev

Getting the ROCm Source Code

AMD ROCm is built from open source software. It is, therefore, possible to modify the various components of ROCm by downloading the source code and rebuilding the components. The source code for ROCm components can be cloned from each of the GitHub repositories using git. For easy access to download the correct versions of each of these tools, the ROCm repository contains a repo manifest file called default.xml. You can use this manifest file to download the source code for ROCm software.

Installing the Repo

The repo tool from Google® allows you to manage multiple git repositories simultaneously. Run the following commands to install the repo:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note: You can choose a different folder to install the repo into if you desire. ~/bin/ is used as an example.

Downloading the ROCm Source Code

The following example shows how to use the repo binary to download the ROCm source code. If you choose a directory other than ~/bin/ to install the repo, you must use that chosen directory in the code as shown below:

mkdir -p ~/ROCm/
cd ~/ROCm/
~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-3.0.0
repo sync

Note: Using this sample code will cause the repo to download the open source code associated with this ROCm release. Ensure that you have ssh-keys configured on your machine for your GitHub ID prior to the download.

Building the ROCm Source Code

Each ROCm component repository contains directions for building that component. You can access the desired component for instructions to build the repository.

Quick Start Guide For OpenCL

	ROCm 1.7 introduces big updates to our OpenCL compiler and runtime implementation – built on top of the ROCm software stack!

This developer release includes the following:

	OpenCL 2.0 compatible kernel language support with OpenCL 1.2 compatible runtime

	OpenCL compiler also has assembler and disassembler support, inline assembly support is now in place.

	Big improvements in the base compiler as we roll in new optimization for application in new Native LLVM code generator.

	We made our base compiler intrinsics source code available
* OCML https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/master/doc/OCML.md
* Source code for the Intrinsic https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/master/opencl/src

	Supports offline ahead of time compilation and in-process/in-memory compilation.

	Binary Package support for Ubuntu 16.04 and Fedora 24

Quickstart Instructions

Here’s a simple workflow to get you quickly up and running with OpenCL on ROCm.

Install the ROCm OpenCL implementation (assuming you already have the ‘rocm’ package installed)

sudo apt-get install rocm-opencl-dev

For a sample OpenCL application, let’s use a simple vector-add example from the University of Bristol’s very nice “Hands On OpenCL” lectures.

git clone https://github.com/HandsOnOpenCL/Exercises-Solutions.git

cd Exercises-Solutions/Exercises/Exercise02/C

make \
 CCFLAGS="-I$OPENCL_ROOT/include/opencl1.2 -O3 -DDEVICE=CL_DEVICE_TYPE_DEFAULT" \
 LIBS="-L$OPENCL_ROOT/lib/x86_64 -lOpenCL -lm"

./vadd

Not for all your application that supported the AMDGPU SDK for OpenCL to get the Header, rocm-opencl-dev now included the headerfiles.

If your built all your code with the AMDAPPSDK you do not need to download anything else, you can just export environment variable to /opt/rocm/opencl

Do not install the AMDAPPSDK 3.0 on ROCm OpenCL it designed for old driver which need headers installed. rocm-opencl-dev package does this for you.

Example 1 for AMDAPPSDKROOT

export AMDAPPSDKROOT=/opt/rocm/opencl

Example 2 for AMDAPPSDK

export AMDAPPSDK=/opt/rocm/opencl

Where is clinfo?

/opt/rocm/opencl/bin/x86_64/clinfo

	That’s it! Super easy.

Related Resources

ROCm Developer website will have more information: http:/rocm.github.io

University of Bristol’s “Hands On OpenCL” course webpage: https://handsonopencl.github.io/

ROCm System Management Interface

This repository includes the rocm-smi tool. This tool exposes functionality for clock and temperature management of your ROCm enabled system.

Installation

You may find rocm-smi at the following location after installing the rocm package:

/opt/rocm/bin/rocm-smi

Alternatively, you may clone this repository and run the tool directly.

Usage

For detailed and up to date usage information, we recommend consulting the help:

/opt/rocm/bin/rocm-smi -h

For convenience purposes, following is a quick excerpt:

usage: rocm-smi [-h] [-d DEVICE] [-i] [-t] [-c] [-g] [-f] [-p] [-P] [-o] [-l] [-s] [-a] [-r]
 [--setsclk LEVEL [LEVEL ...]] [--setmclk LEVEL [LEVEL ...]] [--setfan LEVEL]
 [--setperflevel LEVEL] [--setoverdrive %] [--setprofile # # # # #] [--resetprofile]
 [--load FILE | --save FILE] [--autorespond RESPONSE]

AMD ROCm System Management Interface

 optional arguments:
 -h, --help show this help message and exit
 --load FILE Load Clock, Fan, Performance and Profile settings from FILE
 --save FILE Save Clock, Fan, Performance and Profile settings to FILE

 -d DEVICE, --device DEVICE Execute command on specified device

 -i, --showid Show GPU ID
 -t, --showtemp Show current temperature
 -c, --showclocks Show current clock frequencies
 -g, --showgpuclocks Show current GPU clock frequencies
 -f, --showfan Show current fan speed
 -p, --showperflevel Show current PowerPlay Performance Level
 -P, --showpower Show current Graphics Asic power consumption
 -o, --showoverdrive Show current OverDrive level
 -l, --showprofile Show Compute Profile attributes
 -s, --showclkfrq Show supported GPU and Memory Clock
 -a, --showallinfo Show all SMI-supported values values

 -r, --resetclocks Reset clocks to default (auto)
 --setsclk LEVEL [LEVEL ...] Set GPU Clock Frequency Level Mask (manual)
 --setmclk LEVEL [LEVEL ...] Set GPU Memory Clock Frequency Mask (manual)
 --setfan LEVEL Set GPU Fan Speed Level
 --setperflevel LEVEL Set PowerPlay Performance Level
 --setoverdrive % Set GPU OverDrive level (manual|high)
 --setprofile # # # # # Specify Compute Profile attributes (auto)
 --resetprofile Reset Compute Profile

 --autorespond RESPONSE Response to automatically provide for all prompts (NOT RECOMMENDED)

Detailed Option Descriptions

–setsclk/–setmclk # [# # …]: This allows you to set a mask for the levels. For example, if a GPU has 8 clock levels, you can set a mask to use levels 0, 5, 6 and 7 with –setsclk 0 5 6 7 . This will only use the base level, and the top 3 clock levels. This will allow you to keep the GPU at base level when there is no GPU load, and the top 3 levels when the GPU load increases.

NOTES:
 The clock levels will change dynamically based on GPU load based on the default
 Compute and Graphics profiles. The thresholds and delays for a custom mask cannot
 be controlled through the SMI tool

 This flag automatically sets the Performance Level to "manual" as the mask is not
 applied when the Performance level is set to auto

–setfan LEVEL: This sets the fan speed to a value ranging from 0 to 255 (not from 0-100%).

NOTE: While the hardware is usually capable of overriding this value when required, it is
 recommended to not set the fan level lower than the default value for extended periods
 of time

–setperflevel LEVEL: This lets you use the pre-defined Performance Level values, which can include: auto (Automatically change PowerPlay values based on GPU workload) low (Keep PowerPlay values low, regardless of workload) high (Keep PowerPlay values high, regardless of workload) manual (Only use values defined by –setsclk and –setmclk)

–setoverdrive #: This sets the percentage above maximum for the max Performance Level. For example, –setoverdrive 20 will increase the top sclk level by 20%. If the maximum sclk level is 1000MHz, then –setoverdrive 20 will increase the maximum sclk to 1200MHz

NOTES:
 This option can be used in conjunction with the --setsclk mask

 Operating the GPU outside of specifications can cause irreparable damage to your hardware
 Please observe the warning displayed when using this option

 This flag automatically sets the sclk to the highest level, as only the highest level is
 increased by the OverDrive value

–setprofile # # # # #: The Compute Profile accepts 5 parameters, which are (in order): Minimum SCLK - Minimum GPU clock speed in MHz Minimum MCLK - Minimum GPU Memory clock speed in MHz Activity threshold - Workload required before clock levels change (%) Hysteresis Up - Delay before clock level is increased in milliseconds Hysteresis Down - Delay before clock level is decresed in milliseconds

NOTES:
 When a compute queue is detected, these values will be automatically applied to the system

 Compute Power Profiles are only applied when the Performance Level is set to "auto"
 so using this flag will automatically set the performance level to "auto"

Testing changes

After making changes to the SMI, run the test script to ensure that all functionality remains intact before uploading the patch. This can be done using:

./test-rocm-smi.sh /opt/rocm/bin/rocm-smi

The test can run all flags for the SMI, or specific flags can be tested with the -s option.

Any new functionality added to the SMI should have a corresponding test added to the test script.

GitHub

For more information please refer Github link [https://github.com/RadeonOpenCompute/ROC-smi/tree/roc-1.7.x].

Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Copyright (c) 2014-2017 Advanced Micro Devices, Inc. All rights reserved.

ROCk-Kernel-Driver

AMD Radeon Open Compute Kernel driver

What’s New in this tree ?

	dGPU support for Fiji

	device and host memory support

	multiple GPU support

	host memory allocations are shared between GPUs

Known Issues

	On consumer grade products (Nano, Fury, Fury X), thermal control is not working correctly. As a workaround, fans are hardcoded to 100% to prevent overheating.

Package Contents

The kernel image is built from a source tree based on the 4.13 upstream release plus:

	Features in the HSA kernel driver (“amdkfd”) that are not yet upstreamed to the mainline Linux kernel.

	Changes in the AMDGPU kernel driver (“amdgpu”) that may not yet be upstreamed to the mainline Linux kernel.

Note regarding libhsakmt compatibility

Please note that the libhsakmt library in this repository is NOT compatible with amdkfd that is distributed as part of the mainline Linux kernel from 3.19 and onward.

Target Platform

This release is intended for use with any hardware configuration that contains only Carrizo APU, or configurations which contain an Intel Haswell or newer CPU plus Fiji dGPUs.

APU motherboards must support run latest BIOS version and have the IOMMU enabled in the BIOS.

The following is a reference hardware configuration that was used for testing purposes:

dGPU Config:

	CPU: Intel i7-4790

	Motherboard: ASUS Z97-PRO

	Memory: G.Skill Ripjaws 4 32GB RAM (4 x 8GB)

	OS: Ubuntu 14.04.03 64-bit edition

	dGPU: ASUS R9 Nano

Installing and configuring the kernel

Note

Binary packages are no longer part of this git repository. Please refer to the ROCm project [https://github.com/RadeonOpenCompute/ROCm/wiki] for instructions on configuring the AMD apt/yum package server

Config files for building the kernel
The configuration used to build our kernel can be re-created by running: make rock-rel_defconfig

This config is based on the Ubuntu 14.04 build patches by Canonical.

	Obtaining kernel and libhsakmt source code
	
	Source code used to build the kernel is in this repo. Source code to build libhsakmt is in the ROCT-Thunk-Interface [https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface] repository

LICENSE

The following lists the different licenses that apply to the different components in this repository:

The Linux kernel images are covered by the modified GPL license in COPYING

The firmware image is covered by the license in LICENSE.ucode

Link to go directly to the repository ROCK-Kernel-Driver [https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/roc-1.7.x]

ROCr-Runtime

HSA Runtime API and runtime for ROCm

This repository includes the user-mode API interfaces and libraries necessary for host applications to launch compute kernels to available HSA ROCm kernel agents. Reference source code for the core runtime is also available.

Initial target platform requirements

	CPU: Intel Haswell or newer, Core i5, Core i7, Xeon E3 v4 & v5; Xeon E5 v3

	GPU: Fiji ASIC (AMD R9 Nano, R9 Fury and R9 Fury X)

	GPU: Polaris ASIC (AMD RX480)

Source code

The HSA core runtime source code for the ROCR runtime is located in the src subdirectory. Please consult the associated README.md file for contents and build instructions.

Binaries for Ubuntu & Fedora and installation instructions

Pre-built binaries are available for installation from the ROCm package repository. For ROCR, they include:

Core runtime package:

	HSA include files to support application development on the HSA runtime for the ROCR runtime

	A 64-bit version of AMD’s HSA core runtime for the ROCR runtime

Runtime extension package:

	A 64-bit version of AMD’s finalizer extension for ROCR runtime

	A 64-bit version of AMD’s runtime tools library

	A 64-bit version of AMD’s runtime image library, which supports the HSAIL image implementation only.

The contents of these packages are installed in /opt/rocm/hsa and /opt/rocm by default. The core runtime package depends on the hsakmt-roct-dev package

Installation instructions can be found in the ROCm manifest repository README.md :

https://github.com/RadeonOpenCompute/ROCm

Infrastructure

The HSA runtime is a thin, user-mode API that exposes the necessary interfaces to access and interact with graphics hardware driven by the AMDGPU driver set and the ROCK kernel driver. Together they enable programmers to directly harness the power of AMD discrete graphics devices by allowing host applications to launch compute kernels directly to the graphics hardware.

The capabilities expressed by the HSA Runtime API are:

	Error handling

	Runtime initialization and shutdown

	System and agent information

	Signals and synchronization

	Architected dispatch

	Memory management

	HSA runtime fits into a typical software architecture stack.

The HSA runtime provides direct access to the graphics hardware to give the programmer more control of the execution. An example of low level hardware access is the support of one or more user mode queues provides programmers with a low-latency kernel dispatch interface, allowing them to develop customized dispatch algorithms specific to their application.

The HSA Architected Queuing Language is an open standard, defined by the HSA Foundation, specifying the packet syntax used to control supported AMD/ATI Radeon (c) graphics devices. The AQL language supports several packet types, including packets that can command the hardware to automatically resolve inter-packet dependencies (barrier AND & barrier OR packet), kernel dispatch packets and agent dispatch packets.

In addition to user mode queues and AQL, the HSA runtime exposes various virtual address ranges that can be accessed by one or more of the system’s graphics devices, and possibly the host. The exposed virtual address ranges either support a fine grained or a coarse grained access. Updates to memory in a fine grained region are immediately visible to all devices that can access it, but only one device can have access to a coarse grained allocation at a time. Ownership of a coarse grained region can be changed using the HSA runtime memory APIs, but this transfer of ownership must be explicitly done by the host application.

Programmers should consult the HSA Runtime Programmer’s Reference Manual for a full description of the HSA Runtime APIs, AQL and the HSA memory policy.

Sample

The simplest way to check if the kernel, runtime and base development environment are installed correctly is to run a simple sample. A modified version of the vector_copy sample was taken from the HSA-Runtime-AMD repository and added to the ROCR repository to facilitate this. Build the sample and run it, using this series of commands:

cd ROCR-Runtime/sample && make && ./vector_copy

If the sample runs without generating errors, the installation is complete.

Known issues

	The image extension is currently not supported for discrete GPUs. An image extension library is not provided in the binary package. The standard hsa_ext_image.h extension include file is provided for reference.

	Each HSA process creates and internal DMA queue, but there is a system-wide limit of four DMA queues. The fifth simultaneous HSA process will fail hsa_init() with HSA_STATUS_ERROR_OUT_OF_RESOURCES. To run an unlimited number of simultaneous HSA processes, set the environment variable HSA_ENABLE_SDMA=0.

Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Copyright (c) 2014-2017 Advanced Micro Devices, Inc. All rights reserved.

Github repository for ROCR-Runtime [https://github.com/RadeonOpenCompute/ROCR-Runtime/tree/roc-1.7.x]

ROCk-Kernel

The following is a sequence of commands to Install ROCk-Kernel into the system:

OPTIONAL :
upgrade your base kernel to 4.13.0-32-generic, reboot required

sudo apt update && sudo apt install linux-headers-4.13.0-32-generic linux-image-4.13.0-32-generic linux-image-extra-4.13.0-32-generic linux-signed-image-4.13.0-32-generic
sudo reboot

Installation steps:

Install the ROCm compute firmware and rock-dkms kernel modules, reboot required

wget -qO - https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main | sudo tee /etc/apt/sources.list.d/rocm.list
sudo apt-get update && sudo apt-get install compute-firmware rock-dkms
sudo update-initramfs -u
sudo reboot

Add user to the video group

sudo adduser $LOGNAME video

Make sure to reboot the machine after installing the ROCm kernel package to force the new kernel to load on reboot.

You can verify the ROCm kernel is loaded by typing the following command at a prompt:

lsmod | grep kfd

Printed on the screen should be similar as follows:

amdkfd 270336 4
amd_iommu_v2 20480 1 amdkfd
amdkcl 24576 3 amdttm,amdgpu,amdkfd

ROCT-Thunk-Interface

ROCt Library

This repository includes the user-mode API interfaces used to interact with the ROCk driver. Currently supported agents include only the AMD/ATI Fiji family of discrete GPUs.

Starting at 1.7 release, ROCt uses drm render device. This requires the user to belong to video group. Add the user account to video group with “sudo usermod -a -G video username” command if the user if not part of video group yet.

ROCk Driver

The ROCt library is not a standalone product and requires that you have the correct ROCk driver set installed. We recommend reading the full compatibility and installation details which are available in the ROCk github:

https://github.com/RadeonOpenCompute/ROCK-Radeon-Open-Compute-Kernel-Driver

Building the Thunk

A simple cmake-based system is available for building thunk. To build the thunk from the the ROCT-Thunk-Interface directory, execute:

mkdir -p build
cd build
cmake ..
make

If the hsakmt-roct and hsakmt-roct-dev packages are desired:

mkdir -p build
cd build
cmake ..
make package
make package-dev

For Github repository link : ROCT-Thunk-Interface [https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/roc-2.4.0]

Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Copyright (c) 2014-2017 Advanced Micro Devices, Inc. All rights reserved.

ATMI

ATMI (Asynchronous Task and Memory Interface) Asynchronous Task and Memory Interface, or ATMI, is a runtime framework and declarative programming model for heterogeneous CPU-GPU systems. It provides a consistent API to create task graphs on CPUs and GPUs (integrated and discrete). ATMI is a declarative programming model, where high-level tasks can be simply described by using a few predefined C-style structures. The task description includes specifying its granularity, dependencies to other tasks, data requirements and so on. The ATMI runtime, based on the task graph, will perform task scheduling and memory management that is optimal for the underlying platform. ATMI provides a rich and flexible user interface so that the end user can relinquish scheduling to the runtime (default behavior) or take full control of scheduling and mapping, if desired. The target audience for ATMI is application programmers or middleware developers for high-level languages.

Compilation and Runtime Workflow

The below figure depicts the ATMI runtime workflow with CLOC as the compiler utility.

atmi-workflow

[image: ../_images/atmi.png]

What’s New?

ATMI v0.3

	ATMI-RT: runtime library to manage tasks

	ATMI-C: language extension for declaring tasks

	A comprehensive machine model for CPUs, integrated GPU (APU) and discrete GPU (dGPU) systems.

	
	Consistent task management API for CPU tasks and GPU tasks
	
	GPU kernel language: CL (more kernel language support to come in the future)

	CPU tasks: support for multi-dimensional task grids (similar to GPU tasks)

	Task dependencies

	Task groups

	Recursive tasks (tasks creating other tasks)

	
	Efficient resource management
	
	Signaling among dependent tasks

	Kernel argument memory regions

	Reuse of task handles

	
	Data movement API (synchronous and asynchronous options)
	
	Asynchronous data movement is treated as an ATMI task in the task graph.

	Devices supported: AMD Carrizo and Kaveri APUs, and AMD Fiji dGPU

	Runtimes used: ROCm v1.2

License

MIT License

Copyright © 2016 Advanced Micro Devices, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Link to Github Repository ATMI [https://github.com/RadeonOpenCompute/atmi/tree/0.3.7]

ROCm PCIe Debug

lspci helpfull options to help you debug ROCm install issue

To find if the Linux Kerenl is seeing your GPU and to get the the slot number of the device part number you want to look at

~$ lspci |grep ATI
06:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
23:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
43:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
63:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860

Show Device Slot

lspci -s _slot number_

~$ lspci -s 43:00.0
43:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860

If you want to see the capabilites of the device

lspci -vs _slot number_

Example

~$ sudo lspci -vs 63:00.0
[sudo] password for rocm:
63:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860 (prog-if 00 [VGA controller])
 Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0c35
 Flags: bus master, fast devsel, latency 0, IRQ 412
 Memory at 16ff0000000 (64-bit, prefetchable) [size=256M]
 Memory at 17000000000 (64-bit, prefetchable) [size=2M]
 I/O ports at f000 [size=256]
 Memory at e7100000 (32-bit, non-prefetchable) [size=512K]
 Expansion ROM at e7180000 [disabled] [size=128K]
 Capabilities: [48] Vendor Specific Information: Len=08 <?>
 Capabilities: [50] Power Management version 3
 Capabilities: [64] Express Legacy Endpoint, MSI 00
 Capabilities: [a0] MSI: Enable+ Count=1/1 Maskable- 64bit+
 Capabilities: [100] Vendor Specific Information: ID=0001 Rev=1 Len=010 <?>
 Capabilities: [150] Advanced Error Reporting
 Capabilities: [200] #15
 Capabilities: [270] #19
 Capabilities: [2a0] Access Control Services
 Capabilities: [2b0] Address Translation Service (ATS)
 Capabilities: [2c0] #13
 Capabilities: [2d0] #1b
 Capabilities: [320] Latency Tolerance Reporting
 Kernel driver in use: amdgpu
 Kernel modules: amdgpu

Display Vendor and Device Codes and numbers

lspci -nvmms _slot number_

~$ lspci -nvmms 43:00.0
Slot: 43:00.0
Class: 0300
Vendor: 1002
Device: 6860
SVendor: 1002
SDevice: 0c35

To show kernel module running on device

lspci -ks _slot number_

~$ lspci -ks 63:00.0
63:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
 Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0c35
 Kernel driver in use: amdgpu
 Kernel modules: amdgpu

When you need more information on the device

sudo lspci -vvvs _slot number_

Example

~$ sudo lspci -vvvs 43:00.0
43:00.0 VGA compatible controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 6860 (prog-if 00 [VGA controller])
 Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0c35
 Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+
 Status: Cap+ 66MHz- UDF- FastB2B- ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx-
 Latency: 0, Cache Line Size: 64 bytes
 Interrupt: pin A routed to IRQ 411
 Region 0: Memory at 19ff0000000 (64-bit, prefetchable) [size=256M]
 Region 2: Memory at 1a000000000 (64-bit, prefetchable) [size=2M]
 Region 4: I/O ports at b000 [size=256]
 Region 5: Memory at e9700000 (32-bit, non-prefetchable) [size=512K]
 Expansion ROM at e9780000 [disabled] [size=128K]
 Capabilities: [48] Vendor Specific Information: Len=08 <?>
 Capabilities: [50] Power Management version 3
 Flags: PMEClk- DSI- D1- D2- AuxCurrent=0mA PME(D0-,D1+,D2+,D3hot+,D3cold+)
 Status: D0 NoSoftRst+ PME-Enable- DSel=0 DScale=0 PME-
 Capabilities: [64] Express (v2) Legacy Endpoint, MSI 00
 DevCap: MaxPayload 256 bytes, PhantFunc 0, Latency L0s <4us, L1 unlimited
 ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset-
 DevCtl: Report errors: Correctable- Non-Fatal- Fatal- Unsupported-
 RlxdOrd+ ExtTag+ PhantFunc- AuxPwr- NoSnoop+
 MaxPayload 256 bytes, MaxReadReq 512 bytes
 DevSta: CorrErr- UncorrErr- FatalErr- UnsuppReq- AuxPwr- TransPend-
 LnkCap: Port #0, Speed 8GT/s, Width x16, ASPM L0s L1, Exit Latency L0s <64ns, L1 <1us
 ClockPM- Surprise- LLActRep- BwNot- ASPMOptComp+
 LnkCtl: ASPM L0s L1 Enabled; RCB 64 bytes Disabled- CommClk+
 ExtSynch- ClockPM- AutWidDis- BWInt- AutBWInt-
 LnkSta: Speed 8GT/s, Width x16, TrErr- Train- SlotClk+ DLActive- BWMgmt- ABWMgmt-
 DevCap2: Completion Timeout: Not Supported, TimeoutDis-, LTR+, OBFF Not Supported
 DevCtl2: Completion Timeout: 50us to 50ms, TimeoutDis-, LTR-, OBFF Disabled
 LnkCtl2: Target Link Speed: 8GT/s, EnterCompliance- SpeedDis-
 Transmit Margin: Normal Operating Range, EnterModifiedCompliance- ComplianceSOS-
 Compliance De-emphasis: -6dB
 LnkSta2: Current De-emphasis Level: -3.5dB, EqualizationComplete+, EqualizationPhase1+
 EqualizationPhase2+, EqualizationPhase3+, LinkEqualizationRequest-
 Capabilities: [a0] MSI: Enable+ Count=1/1 Maskable- 64bit+
 Address: 00000000fee20000 Data: 4021
 Capabilities: [100 v1] Vendor Specific Information: ID=0001 Rev=1 Len=010 <?>
 Capabilities: [150 v2] Advanced Error Reporting
 UESta: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq- ACSViol-
 UEMsk: DLP- SDES- TLP- FCP- CmpltTO- CmpltAbrt- UnxCmplt- RxOF- MalfTLP- ECRC- UnsupReq- ACSViol-
 UESvrt: DLP+ SDES+ TLP- FCP+ CmpltTO- CmpltAbrt- UnxCmplt- RxOF+ MalfTLP+ ECRC- UnsupReq- ACSViol-
 CESta: RxErr- BadTLP- BadDLLP- Rollover- Timeout- NonFatalErr-
 CEMsk: RxErr- BadTLP- BadDLLP- Rollover- Timeout- NonFatalErr+
 AERCap: First Error Pointer: 00, GenCap+ CGenEn- ChkCap+ ChkEn-
 Capabilities: [200 v1] #15
 Capabilities: [270 v1] #19
 Capabilities: [2a0 v1] Access Control Services
 ACSCap: SrcValid- TransBlk- ReqRedir- CmpltRedir- UpstreamFwd- EgressCtrl- DirectTrans-
 ACSCtl: SrcValid- TransBlk- ReqRedir- CmpltRedir- UpstreamFwd- EgressCtrl- DirectTrans-
 Capabilities: [2b0 v1] Address Translation Service (ATS)
 ATSCap: Invalidate Queue Depth: 00
 ATSCtl: Enable-, Smallest Translation Unit: 00
 Capabilities: [2c0 v1] #13
 Capabilities: [2d0 v1] #1b
 Capabilities: [320 v1] Latency Tolerance Reporting
 Max snoop latency: 0ns
 Max no snoop latency: 0ns
 Kernel driver in use: amdgpu
 Kernel modules: amdgpu

To print PCIe root tree

 ~$ lspci -tv
-+-[0000:60]-+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1450
 | +-01.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-01.1-[61-63]----00.0-[62-63]----00.0-[63]----00.0 Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
 | +-02.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-03.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-03.1-[64]--+-00.0 Mellanox Technologies Device 1019
 | | \-00.1 Mellanox Technologies Device 1019
 | +-04.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.1-[65]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 145a
 | | \-00.2 Advanced Micro Devices, Inc. [AMD] Device 1456
 | +-08.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | \-08.1-[66]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1455
 | \-00.1 Advanced Micro Devices, Inc. [AMD] Device 1468
 +-[0000:40]-+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1450
 | +-01.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-02.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-03.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-03.1-[41-43]----00.0-[42-43]----00.0-[43]----00.0 Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
 | +-04.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.1-[44]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 145a
 | | \-00.2 Advanced Micro Devices, Inc. [AMD] Device 1456
 | +-08.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | \-08.1-[45]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1455
 | +-00.1 Advanced Micro Devices, Inc. [AMD] Device 1468
 | \-00.2 Advanced Micro Devices, Inc. [AMD] FCH SATA Controller [AHCI mode]
 +-[0000:20]-+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1450
 | +-01.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-01.1-[21-23]----00.0-[22-23]----00.0-[23]----00.0 Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
 | +-02.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-03.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-04.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | +-07.1-[24]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 145a
 | | +-00.2 Advanced Micro Devices, Inc. [AMD] Device 1456
 | | \-00.3 Advanced Micro Devices, Inc. [AMD] Device 145f
 | +-08.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 | \-08.1-[25]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1455
 | \-00.1 Advanced Micro Devices, Inc. [AMD] Device 1468
 \-[0000:00]-+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1450
 +-01.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-01.2-[01-02]----00.0-[02]----00.0 ASPEED Technology, Inc. ASPEED Graphics Family
 +-01.3-[03]----00.0 Device 1987:5007
 +-02.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-03.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-03.1-[04-06]----00.0-[05-06]----00.0-[06]----00.0 Advanced Micro Devices, Inc. [AMD/ATI] Device 6860
 +-04.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-07.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-07.1-[07]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 145a
 | +-00.2 Advanced Micro Devices, Inc. [AMD] Device 1456
 | \-00.3 Advanced Micro Devices, Inc. [AMD] Device 145f
 +-08.0 Advanced Micro Devices, Inc. [AMD] Device 1452
 +-08.1-[08]--+-00.0 Advanced Micro Devices, Inc. [AMD] Device 1455
 | \-00.1 Advanced Micro Devices, Inc. [AMD] Device 1468
 +-14.0 Advanced Micro Devices, Inc. [AMD] FCH SMBus Controller
 +-14.3 Advanced Micro Devices, Inc. [AMD] FCH LPC Bridge
 +-18.0 Advanced Micro Devices, Inc. [AMD] Device 1460
 +-18.1 Advanced Micro Devices, Inc. [AMD] Device 1461
 +-18.2 Advanced Micro Devices, Inc. [AMD] Device 1462
 +-18.3 Advanced Micro Devices, Inc. [AMD] Device 1463
 +-18.4 Advanced Micro Devices, Inc. [AMD] Device 1464
 +-18.5 Advanced Micro Devices, Inc. [AMD] Device 1465
 +-18.6 Advanced Micro Devices, Inc. [AMD] Device 1466
 +-18.7 Advanced Micro Devices, Inc. [AMD] Device 1467
 +-19.0 Advanced Micro Devices, Inc. [AMD] Device 1460
 +-19.1 Advanced Micro Devices, Inc. [AMD] Device 1461
 +-19.2 Advanced Micro Devices, Inc. [AMD] Device 1462
 +-19.3 Advanced Micro Devices, Inc. [AMD] Device 1463
 +-19.4 Advanced Micro Devices, Inc. [AMD] Device 1464
 +-19.5 Advanced Micro Devices, Inc. [AMD] Device 1465
 +-19.6 Advanced Micro Devices, Inc. [AMD] Device 1466
 +-19.7 Advanced Micro Devices, Inc. [AMD] Device 1467
 +-1a.0 Advanced Micro Devices, Inc. [AMD] Device 1460
 +-1a.1 Advanced Micro Devices, Inc. [AMD] Device 1461
 +-1a.2 Advanced Micro Devices, Inc. [AMD] Device 1462
 +-1.3 Advanced Micro Devices, Inc. [AMD] Device 1463
 +-1a.4 Advanced Micro Devices, Inc. [AMD] Device 1464
 +-1a.5 Advanced Micro Devices, Inc. [AMD] Device 1465
 +-1a.6 Advanced Micro Devices, Inc. [AMD] Device 1466
 +-1a.7 Advanced Micro Devices, Inc. [AMD] Device 1467
 +-1b.0 Advanced Micro Devices, Inc. [AMD] Device 1460
 +-1b.1 Advanced Micro Devices, Inc. [AMD] Device 1461
 +-1b.2 Advanced Micro Devices, Inc. [AMD] Device 1462
 +-1b.3 Advanced Micro Devices, Inc. [AMD] Device 1463
 +-1b.4 Advanced Micro Devices, Inc. [AMD] Device 1464
 +-1b.5 Advanced Micro Devices, Inc. [AMD] Device 1465
 +-1b.6 Advanced Micro Devices, Inc. [AMD] Device 1466
 \-1b.7 Advanced Micro Devices, Inc. [AMD] Device 1467

CUDA Driver API functions supported by HIP

1. Data types used by CUDA driver

	type

	CUDA

	HIP

	struct

	CUDA_ARRAY3D_DESCRIPTOR

	

	struct

	CUDA_ARRAY_DESCRIPTOR

	

	struct

	CUDA_MEMCPY2D

	

	struct

	CUDA_MEMCPY3D

	

	struct

	CUDA_MEMCPY3D_PEER

	

	struct

	CUDA_POINTER_ATTRIBUTE_P2P_TOKENS

	

	struct

	CUDA_RESOURCE_DESC

	

	struct

	CUDA_RESOURCE_VIEW_DESC

	

	struct

	CUdevprop

	hipDeviceProp_t

	struct

	CUipcEventHandle

	

	struct

	CUipcMemHandle

	

	enum

	CUaddress_mode

	

	0

	CU_TR_ADDRESS_MODE_WRAP

	

	1

	CU_TR_ADDRESS_MODE_CLAMP

	

	2

	CU_TR_ADDRESS_MODE_MIRROR

	

	3

	CU_TR_ADDRESS_MODE_BORDER

	

	enum

	CUarray_cubemap_face

	

	0x00

	CU_CUBEMAP_FACE_POSITIVE_X

	

	0x01

	CU_CUBEMAP_FACE_NEGATIVE_X

	

	0x02

	CU_CUBEMAP_FACE_POSITIVE_Y

	

	0x03

	CU_CUBEMAP_FACE_NEGATIVE_Y

	

	0x04

	CU_CUBEMAP_FACE_POSITIVE_Z

	

	0x05

	CU_CUBEMAP_FACE_NEGATIVE_Z

	

	enum

	CUarray_format

	

	0x01

	CU_AD_FORMAT_UNSIGNED_INT8

	

	0x02

	CU_AD_FORMAT_UNSIGNED_INT16

	

	0x03

	CU_AD_FORMAT_UNSIGNED_INT32

	

	0x08

	CU_AD_FORMAT_SIGNED_INT8

	

	0x09

	CU_AD_FORMAT_SIGNED_INT16

	

	0x0a

	CU_AD_FORMAT_SIGNED_INT32

	

	0x10

	CU_AD_FORMAT_HALF

	

	0x20

	CU_AD_FORMAT_FLOAT

	

	enum

	CUctx_flags

	

	0x00

	CU_CTX_SCHED_AUTO

	

	0x01

	CU_CTX_SCHED_SPIN

	

	0x02

	CU_CTX_SCHED_YIELD

	

	0x04

	CU_CTX_SCHED_BLOCKING_SYNC

	

	0x04

	CU_CTX_BLOCKING_SYNC

	

	0x07

	CU_CTX_SCHED_MASK

	

	0x08

	CU_CTX_MAP_HOST

	

	0x10

	CU_CTX_LMEM_RESIZE_TO_MAX

	

	0x1f

	CU_CTX_FLAGS_MASK

	

	enum

	CUdevice_attribute

	

	1

	CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK

	hipDeviceAttributeMaxThreadsPerBlock

	2

	CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X

	hipDeviceAttributeMaxBlockDimX

	3

	CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y

	hipDeviceAttributeMaxBlockDimY

	4

	CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z

	hipDeviceAttributeMaxBlockDimZ

	5

	CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X

	hipDeviceAttributeMaxGridDimX

	6

	CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y

	hipDeviceAttributeMaxGridDimY

	7

	CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z

	hipDeviceAttributeMaxGridDimZ

	8

	CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK

	hipDeviceAttributeMaxSharedMemoryPerBlock

	8

	CU_DEVICE_ATTRIBUTE_SHARED_MEMORY_PER_BLOCK

	hipDeviceAttributeMaxSharedMemoryPerBlock

	9

	CU_DEVICE_ATTRIBUTE_TOTAL_CONSTANT_MEMORY

	hipDeviceAttributeTotalConstantMemory

	10

	CU_DEVICE_ATTRIBUTE_WARP_SIZE

	hipDeviceAttributeWarpSize

	11

	CU_DEVICE_ATTRIBUTE_MAX_PITCH

	

	12

	CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK

	hipDeviceAttributeMaxRegistersPerBlock

	12

	CU_DEVICE_ATTRIBUTE_REGISTERS_PER_BLOCK

	hipDeviceAttributeMaxRegistersPerBlock

	13

	CU_DEVICE_ATTRIBUTE_CLOCK_RATE

	hipDeviceAttributeClockRate

	14

	CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT

	

	15

	CU_DEVICE_ATTRIBUTE_GPU_OVERLAP

	

	16

	CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT

	hipDeviceAttributeMultiprocessorCount

	17

	CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT

	

	18

	CU_DEVICE_ATTRIBUTE_INTEGRATED

	

	19

	CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY

	

	20

	CU_DEVICE_ATTRIBUTE_COMPUTE_MODE

	hipDeviceAttributeComputeMode

	21

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_WIDTH

	

	22

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_WIDTH

	

	23

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_HEIGHT

	

	24

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH

	

	25

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT

	

	26

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH

	

	27

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_WIDTH

	

	28

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_HEIGHT

	

	29

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LAYERED_LAYERS

	

	27

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_WIDTH

	

	28

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_HEIGHT

	

	29

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_ARRAY_NUMSLICES

	

	30

	CU_DEVICE_ATTRIBUTE_SURFACE_ALIGNMENT

	

	31

	CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS

	hipDeviceAttributeConcurrentKernels

	32

	CU_DEVICE_ATTRIBUTE_ECC_ENABLED

	

	33

	CU_DEVICE_ATTRIBUTE_PCI_BUS_ID

	hipDeviceAttributePciBusId

	34

	CU_DEVICE_ATTRIBUTE_PCI_DEVICE_ID

	hipDeviceAttributePciDeviceId

	35

	CU_DEVICE_ATTRIBUTE_TCC_DRIVER

	

	36

	CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE

	hipDeviceAttributeMemoryClockRate

	37

	CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH

	hipDeviceAttributeMemoryBusWidth

	38

	CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE

	hipDeviceAttributeL2CacheSize

	39

	CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR

	hipDeviceAttributeMaxThreadsPerMultiProcessor

	40

	CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT

	

	41

	CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING

	

	42

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_WIDTH

	

	43

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LAYERED_LAYERS

	

	44

	CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER

	

	45

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_WIDTH

	

	46

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_GATHER_HEIGHT

	

	47

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_WIDTH_ALTERNATE

	

	48

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_HEIGHT_ALTERNATE

	

	49

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE3D_DEPTH_ALTERNATE

	

	50

	CU_DEVICE_ATTRIBUTE_PCI_DOMAIN_ID

	

	51

	CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT

	

	52

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_WIDTH

	

	53

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_WIDTH

	

	54

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURECUBEMAP_LAYERED_LAYERS

	

	55

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_WIDTH

	

	56

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_WIDTH

	

	57

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_HEIGHT

	

	58

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_WIDTH

	

	59

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_HEIGHT

	

	60

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE3D_DEPTH

	

	61

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_WIDTH

	

	62

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE1D_LAYERED_LAYERS

	

	63

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_WIDTH

	

	64

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_HEIGHT

	

	65

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACE2D_LAYERED_LAYERS

	

	66

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_WIDTH

	

	67

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_WIDTH

	

	68

	CU_DEVICE_ATTRIBUTE_MAXIMUM_SURFACECUBEMAP_LAYERED_LAYERS

	

	69

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_LINEAR_WIDTH

	

	70

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_WIDTH

	

	71

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_HEIGHT

	

	72

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_LINEAR_PITCH

	

	73

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_WIDTH

	

	74

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE2D_MIPMAPPED_HEIGHT

	

	75

	CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR

	hipDeviceAttributeComputeCapabilityMajor

	76

	CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR

	hipDeviceAttributeComputeCapabilityMinor

	77

	CU_DEVICE_ATTRIBUTE_MAXIMUM_TEXTURE1D_MIPMAPPED_WIDTH

	

	78

	CU_DEVICE_ATTRIBUTE_STREAM_PRIORITIES_SUPPORTED

	

	79

	CU_DEVICE_ATTRIBUTE_GLOBAL_L1_CACHE_SUPPORTED

	

	80

	CU_DEVICE_ATTRIBUTE_LOCAL_L1_CACHE_SUPPORTED

	

	81

	CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR

	hipDeviceAttributeMaxSharedMemoryPerMultiprocessor

	82

	CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR

	

	83

	CU_DEVICE_ATTRIBUTE_MANAGED_MEMORY

	hipDeviceAttributeManagedMemory

	84

	CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD

	

	85

	CU_DEVICE_ATTRIBUTE_MULTI_GPU_BOARD_GROUP_ID

	

	86

	CU_DEVICE_ATTRIBUTE_MAX

	

	enum

	CUevent_flags

	

	0x00

	CU_EVENT_DEFAULT

	hipEventDefault

	0x01

	CU_EVENT_BLOCKING_SYNC

	hipEventBlockingSync

	0x02

	CU_EVENT_DISABLE_TIMING

	hipEventDisableTiming

	0x04

	CU_EVENT_INTERPROCESS

	hipEventInterprocess

	enum

	CUfilter_mode

	hipTextureFilterMode

	0

	CU_TR_FILTER_MODE_POINT

	hipFilterModePoint

	1

	CU_TR_FILTER_MODE_LINEAR

	hipFilterModeLinear

	enum

	CUfunc_cache

	hipFuncCache

	0x00

	CU_FUNC_CACHE_PREFER_NONE

	hipFuncCachePreferNone

	0x01

	CU_FUNC_CACHE_PREFER_SHARED

	hipFuncCachePreferShared

	0x02

	CU_FUNC_CACHE_PREFER_L1

	hipFuncCachePreferL1

	0x03

	CU_FUNC_CACHE_PREFER_EQUAL

	hipFuncCachePreferEqual

	enum

	CUfunction_attribute

	

	0

	CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK

	

	1

	CU_FUNC_ATTRIBUTE_SHARED_SIZE_BYTES

	

	2

	CU_FUNC_ATTRIBUTE_CONST_SIZE_BYTES

	

	3

	CU_FUNC_ATTRIBUTE_LOCAL_SIZE_BYTES

	

	4

	CU_FUNC_ATTRIBUTE_NUM_REGS

	

	5

	CU_FUNC_ATTRIBUTE_PTX_VERSION

	

	6

	CU_FUNC_ATTRIBUTE_BINARY_VERSION

	

	7

	CU_FUNC_ATTRIBUTE_CACHE_MODE_CA

	

	8

	CU_FUNC_ATTRIBUTE_MAX

	

	enum

	CUgraphicsMapResourceFlags

	

	0x00

	CU_GRAPHICS_MAP_RESOURCE_FLAGS_NONE

	

	0x01

	CU_GRAPHICS_MAP_RESOURCE_FLAGS_READ_ONLY

	

	0x02

	CU_GRAPHICS_MAP_RESOURCE_FLAGS_WRITE_DISCARD

	

	enum

	CUgraphicsRegisterFlags

	

	0x00

	CU_GRAPHICS_REGISTER_FLAGS_NONE

	

	0x01

	CU_GRAPHICS_REGISTER_FLAGS_READ_ONLY

	

	0x02

	CU_GRAPHICS_REGISTER_FLAGS_WRITE_DISCARD

	

	0x04

	CU_GRAPHICS_REGISTER_FLAGS_SURFACE_LDST

	

	0x08

	CU_GRAPHICS_REGISTER_FLAGS_TEXTURE_GATHER

	

	enum

	CUipcMem_flags

	

	0x1

	CU_IPC_MEM_LAZY_ENABLE_PEER_ACCESS

	hipIpcMemLazyEnablePeerAccess

	enum

	CUjit_cacheMode

	

	0

	CU_JIT_CACHE_OPTION_NONE

	

	CU_JIT_CACHE_OPTION_CG

	
	

	CU_JIT_CACHE_OPTION_CA

	
	

	enum

	CUjit_fallback

	

	0

	CU_PREFER_PTX

	

	CU_PREFER_BINARY

	
	

	enum

	CUjit_option

	

	0

	CU_JIT_MAX_REGISTERS

	

	CU_JIT_THREADS_PER_BLOCK

	
	

	CU_JIT_WALL_TIME

	
	

	CU_JIT_INFO_LOG_BUFFER

	
	

	CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES

	
	

	CU_JIT_OPTIMIZATION_LEVEL

	
	

	CU_JIT_TARGET_FROM_CUCONTEXT

	
	

	CU_JIT_TARGET

	
	

	CU_JIT_FALLBACK_STRATEGY

	
	

	CU_JIT_GENERATE_DEBUG_INFO

	
	

	CU_JIT_LOG_VERBOSE

	
	

	CU_JIT_GENERATE_LINE_INFO

	
	

	CU_JIT_CACHE_MODE

	
	

	CU_JIT_NUM_OPTIONS

	
	

	enum

	CUjit_target

	

	10

	CU_TARGET_COMPUTE_10

	

	11

	CU_TARGET_COMPUTE_11

	

	12

	CU_TARGET_COMPUTE_12

	

	13

	CU_TARGET_COMPUTE_13

	

	20

	CU_TARGET_COMPUTE_20

	

	21

	CU_TARGET_COMPUTE_21

	

	30

	CU_TARGET_COMPUTE_30

	

	32

	CU_TARGET_COMPUTE_32

	

	35

	CU_TARGET_COMPUTE_35

	

	37

	CU_TARGET_COMPUTE_37

	

	50

	CU_TARGET_COMPUTE_50

	

	52

	CU_TARGET_COMPUTE_52

	

	enum

	CUjitInputType

	

	0

	CU_JIT_INPUT_CUBIN

	

	CU_JIT_INPUT_PTX

	
	

	CU_JIT_INPUT_FATBINARY

	
	

	CU_JIT_INPUT_OBJECT

	
	

	CU_JIT_INPUT_LIBRARY

	
	

	CU_JIT_NUM_INPUT_TYPES

	
	

	enum

	CUlimit

	hipLimit_t

	0x00

	CU_LIMIT_STACK_SIZE

	

	0x01

	CU_LIMIT_PRINTF_FIFO_SIZE

	

	0x02

	CU_LIMIT_MALLOC_HEAP_SIZE

	hipLimitMallocHeapSize

	0x03

	CU_LIMIT_DEV_RUNTIME_SYNC_DEPTH

	

	0x04

	CU_LIMIT_DEV_RUNTIME_PENDING_LAUNCH_COUNT

	

	CU_LIMIT_MAX

	
	

	enum

	CUmemAttach_flags

	

	0x1

	CU_MEM_ATTACH_GLOBAL

	

	0x2

	CU_MEM_ATTACH_HOST

	

	0x4

	CU_MEM_ATTACH_SINGLE

	

	enum

	CUmemorytype

	

	0x01

	CU_MEMORYTYPE_HOST

	

	0x02

	CU_MEMORYTYPE_DEVICE

	

	0x03

	CU_MEMORYTYPE_ARRAY

	

	0x04

	CU_MEMORYTYPE_UNIFIED

	

	enum

	CUoccupancy_flags

	

	0x00

	CU_OCCUPANCY_DEFAULT

	

	0x01

	CU_OCCUPANCY_DISABLE_CACHING_OVERRIDE

	

	enum

	CUpointer_attribute

	

	1

	CU_POINTER_ATTRIBUTE_CONTEXT

	

	2

	CU_POINTER_ATTRIBUTE_MEMORY_TYPE

	

	3

	CU_POINTER_ATTRIBUTE_DEVICE_POINTER

	

	4

	CU_POINTER_ATTRIBUTE_HOST_POINTER

	

	5

	CU_POINTER_ATTRIBUTE_P2P_TOKENS

	

	6

	CU_POINTER_ATTRIBUTE_SYNC_MEMOPS

	

	7

	CU_POINTER_ATTRIBUTE_BUFFER_ID

	

	8

	CU_POINTER_ATTRIBUTE_IS_MANAGED

	

	enum

	CUmemorytype

	

	0x00

	CU_RESOURCE_TYPE_ARRAY

	

	0x01

	CU_RESOURCE_TYPE_MIPMAPPED_ARRAY

	

	0x02

	CU_RESOURCE_TYPE_LINEAR

	

	0x03

	CU_RESOURCE_TYPE_PITCH2D

	

	enum

	CUresourceViewFormat

	

	0x00

	CU_RES_VIEW_FORMAT_NONE

	

	0x01

	CU_RES_VIEW_FORMAT_UINT_1X8

	

	0x02

	CU_RES_VIEW_FORMAT_UINT_2X8

	

	0x03

	CU_RES_VIEW_FORMAT_UINT_4X8

	

	0x04

	CU_RES_VIEW_FORMAT_SINT_1X8

	

	0x05

	CU_RES_VIEW_FORMAT_SINT_2X8

	

	0x06

	CU_RES_VIEW_FORMAT_SINT_4X8

	

	0x07

	CU_RES_VIEW_FORMAT_UINT_1X16

	

	0x08

	CU_RES_VIEW_FORMAT_UINT_2X16

	

	0x09

	CU_RES_VIEW_FORMAT_UINT_4X16

	

	0x0a

	CU_RES_VIEW_FORMAT_SINT_1X16

	

	0x0b

	CU_RES_VIEW_FORMAT_SINT_2X16

	

	0x0c

	CU_RES_VIEW_FORMAT_SINT_4X16

	

	0x0d

	CU_RES_VIEW_FORMAT_UINT_1X32

	

	0x0e

	CU_RES_VIEW_FORMAT_UINT_2X32

	

	0x0f

	CU_RES_VIEW_FORMAT_UINT_4X32

	

	0x10

	CU_RES_VIEW_FORMAT_SINT_1X32

	

	0x11

	CU_RES_VIEW_FORMAT_SINT_2X32

	

	0x12

	CU_RES_VIEW_FORMAT_SINT_4X32

	

	0x13

	CU_RES_VIEW_FORMAT_FLOAT_1X16

	

	0x14

	CU_RES_VIEW_FORMAT_FLOAT_2X16

	

	0x15

	CU_RES_VIEW_FORMAT_FLOAT_4X16

	

	0x16

	CU_RES_VIEW_FORMAT_FLOAT_1X32

	

	0x17

	CU_RES_VIEW_FORMAT_FLOAT_2X32

	

	0x18

	CU_RES_VIEW_FORMAT_FLOAT_4X32

	

	0x19

	CU_RES_VIEW_FORMAT_UNSIGNED_BC1

	

	0x1a

	CU_RES_VIEW_FORMAT_UNSIGNED_BC3

	

	0x1b

	CU_RES_VIEW_FORMAT_UNSIGNED_BC3

	

	0x1c

	CU_RES_VIEW_FORMAT_UNSIGNED_BC4

	

	0x1d

	CU_RES_VIEW_FORMAT_SIGNED_BC4

	

	0x1e

	CU_RES_VIEW_FORMAT_UNSIGNED_BC5

	

	0x1f

	CU_RES_VIEW_FORMAT_SIGNED_BC5

	

	0x20

	CU_RES_VIEW_FORMAT_UNSIGNED_BC6H

	

	0x21

	CU_RES_VIEW_FORMAT_SIGNED_BC6H

	

	0x22

	CU_RES_VIEW_FORMAT_UNSIGNED_BC7

	

	enum

	CUresult

	hipError_t

	0

	CUDA_SUCCESS

	hipSuccess

	1

	CUDA_ERROR_INVALID_VALUE

	hipErrorInvalidValue

	2

	CUDA_ERROR_OUT_OF_MEMORY

	hipErrorMemoryAllocation

	3

	CUDA_ERROR_NOT_INITIALIZED

	hipErrorNotInitialized

	4

	CUDA_ERROR_DEINITIALIZED

	hipErrorDeinitialized

	5

	CUDA_ERROR_PROFILER_DISABLED

	hipErrorProfilerDisabled

	6

	CUDA_ERROR_PROFILER_NOT_INITIALIZED

	hipErrorProfilerNotInitialized

	7

	CUDA_ERROR_PROFILER_ALREADY_STARTED

	hipErrorProfilerAlreadyStarted

	8

	CUDA_ERROR_PROFILER_ALREADY_STOPPED

	hipErrorProfilerAlreadyStopped

	100

	CUDA_ERROR_NO_DEVICE

	hipErrorNoDevice

	101

	CUDA_ERROR_INVALID_DEVICE

	hipErrorInvalidDevice

	200

	CUDA_ERROR_INVALID_IMAGE

	hipErrorInvalidImage

	201

	CUDA_ERROR_INVALID_CONTEXT

	hipErrorInvalidContext

	202

	CUDA_ERROR_CONTEXT_ALREADY_CURRENT

	hipErrorContextAlreadyCurrent

	205

	CUDA_ERROR_MAP_FAILED

	hipErrorMapFailed

	206

	CUDA_ERROR_UNMAP_FAILED

	hipErrorUnmapFailed

	207

	CUDA_ERROR_ARRAY_IS_MAPPED

	hipErrorArrayIsMapped

	208

	CUDA_ERROR_ALREADY_MAPPED

	hipErrorAlreadyMapped

	209

	CUDA_ERROR_NO_BINARY_FOR_GPU

	hipErrorNoBinaryForGpu

	210

	CUDA_ERROR_ALREADY_ACQUIRED

	hipErrorAlreadyAcquired

	211

	CUDA_ERROR_NOT_MAPPED

	hipErrorNotMapped

	212

	CUDA_ERROR_NOT_MAPPED_AS_ARRAY

	hipErrorNotMappedAsArray

	213

	CUDA_ERROR_NOT_MAPPED_AS_POINTER

	hipErrorNotMappedAsPointer

	214

	CUDA_ERROR_ECC_UNCORRECTABLE

	hipErrorECCNotCorrectable

	215

	CUDA_ERROR_UNSUPPORTED_LIMIT

	hipErrorUnsupportedLimit

	216

	CUDA_ERROR_CONTEXT_ALREADY_IN_USE

	hipErrorContextAlreadyInUse

	217

	CUDA_ERROR_PEER_ACCESS_UNSUPPORTED

	hipErrorPeerAccessUnsupported

	218

	CUDA_ERROR_INVALID_PTX

	hipErrorInvalidKernelFile

	219

	CUDA_ERROR_INVALID_GRAPHICS_CONTEXT

	hipErrorInvalidGraphicsContext

	300

	CUDA_ERROR_INVALID_SOURCE

	hipErrorInvalidSource

	301

	CUDA_ERROR_FILE_NOT_FOUND

	hipErrorFileNotFound

	302

	CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND

	hipErrorSharedObjectSymbolNotFound

	303

	CUDA_ERROR_SHARED_OBJECT_INIT_FAILED

	hipErrorSharedObjectInitFailed

	304

	CUDA_ERROR_OPERATING_SYSTEM

	hipErrorOperatingSystem

	400

	CUDA_ERROR_INVALID_HANDLE

	hipErrorInvalidResourceHandle

	500

	CUDA_ERROR_NOT_FOUND

	hipErrorNotFound

	600

	CUDA_ERROR_NOT_READY

	hipErrorNotReady

	700

	CUDA_ERROR_ILLEGAL_ADDRESS

	hipErrorIllegalAddress

	701

	CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES

	hipErrorLaunchOutOfResources

	702

	CUDA_ERROR_LAUNCH_TIMEOUT

	hipErrorLaunchTimeOut

	703

	CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING

	

	704

	CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED

	hipErrorPeerAccessAlreadyEnabled

	705

	CUDA_ERROR_PEER_ACCESS_NOT_ENABLED

	hipErrorPeerAccessNotEnabled

	708

	CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE

	

	709

	CUDA_ERROR_CONTEXT_IS_DESTROYED

	

	710

	CUDA_ERROR_ASSERT

	

	711

	CUDA_ERROR_TOO_MANY_PEERS

	

	712

	CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED

	hipErrorHostMemoryAlreadyRegistered

	713

	CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED

	hipErrorHostMemoryNotRegistered

	714

	CUDA_ERROR_HARDWARE_STACK_ERROR

	

	715

	CUDA_ERROR_ILLEGAL_INSTRUCTION

	

	716

	CUDA_ERROR_MISALIGNED_ADDRESS

	

	717

	CUDA_ERROR_INVALID_ADDRESS_SPACE

	

	718

	CUDA_ERROR_INVALID_PC

	

	719

	CUDA_ERROR_LAUNCH_FAILED

	

	800

	CUDA_ERROR_NOT_PERMITTED

	

	801

	CUDA_ERROR_NOT_SUPPORTED

	

	999

	CUDA_ERROR_UNKNOWN

	

	enum

	CUstream_flags

	hipStreamFlags

	0x0

	CU_STREAM_DEFAULT

	hipStreamDefault

	0x1

	CU_STREAM_NON_BLOCKING

	hipStreamNonBlocking

	enum

	CUGLDeviceList

	

	0x01

	CU_GL_DEVICE_LIST_ALL

	

	0x02

	CU_GL_DEVICE_LIST_CURRENT_FRAME

	

	0x03

	CU_GL_DEVICE_LIST_NEXT_FRAME

	

	enum

	CUGLmap_flags

	

	0x00

	CU_GL_MAP_RESOURCE_FLAGS_NONE

	

	0x01

	CU_GL_MAP_RESOURCE_FLAGS_READ_ONLY

	

	0x02

	CU_GL_MAP_RESOURCE_FLAGS_WRITE_DISCARD

	

	enum

	CUd3d9DeviceList

	

	0x01

	CU_D3D9_DEVICE_LIST_ALL

	

	0x02

	CU_D3D9_DEVICE_LIST_CURRENT_FRAME

	

	0x03

	CU_D3D9_DEVICE_LIST_NEXT_FRAME

	

	enum

	CUd3d9map_flags

	

	0x00

	CU_D3D9_MAPRESOURCE_FLAGS_NONE

	

	0x01

	CU_D3D9_MAPRESOURCE_FLAGS_READONLY

	

	0x02

	CU_D3D9_MAPRESOURCE_FLAGS_WRITEDISCARD

	

	enum

	CUd3d9register_flags

	

	0x00

	CU_D3D9_REGISTER_FLAGS_NONE

	

	0x01

	CU_D3D9_REGISTER_FLAGS_ARRAY

	

	enum

	CUd3d10DeviceList

	

	0x01

	CU_D3D10_DEVICE_LIST_ALL

	

	0x02

	CU_D3D10_DEVICE_LIST_CURRENT_FRAME

	

	0x03

	CU_D3D10_DEVICE_LIST_NEXT_FRAME

	

	enum

	CUd3d10map_flags

	

	0x00

	CU_D3D10_MAPRESOURCE_FLAGS_NONE

	

	0x01

	CU_D3D10_MAPRESOURCE_FLAGS_READONLY

	

	0x02

	CU_D3D10_MAPRESOURCE_FLAGS_WRITEDISCARD

	

	enum

	CUd3d10register_flags

	

	0x00

	CU_D3D10_REGISTER_FLAGS_NONE

	

	0x01

	CU_D3D10_REGISTER_FLAGS_ARRAY

	

	enum

	CUd3d11DeviceList

	

	0x01

	CU_D3D11_DEVICE_LIST_ALL

	

	0x02

	CU_D3D11_DEVICE_LIST_CURRENT_FRAME

	

	0x03

	CU_D3D11_DEVICE_LIST_NEXT_FRAME

	

	typedef

	CUarray

	hipArray *

	struct

	CUarray_st

	hipArray

	typedef

	CUcontext

	hipCtx_t

	typedef

	CUdevice

	hipDevice_t

	typedef

	CUdeviceptr

	hipDeviceptr_t

	typedef

	CUevent

	hipEvent_t

	typedef

	CUfunction

	hipFunction_t

	typedef

	CUgraphicsResource

	

	typedef

	CUmipmappedArray

	

	typedef

	CUmodule

	hipModule_t

	typedef

	CUstream

	hipStream_t

	typedef

	CUstreamCallback

	hipStreamCallback_t

	typedef

	CUsurfObject

	

	typedef

	CUsurfref

	

	typedef

	CUtexObject

	

	typedef

	CUtexref

	

	define

	CU_IPC_HANDLE_SIZE

	

	define

	CU_LAUNCH_PARAM_BUFFER_POINTER

	HIP_LAUNCH_PARAM_BUFFER_POINTER

	define

	CU_LAUNCH_PARAM_BUFFER_SIZE

	HIP_LAUNCH_PARAM_BUFFER_SIZE

	define

	CU_LAUNCH_PARAM_END

	HIP_LAUNCH_PARAM_END

	define

	CU_MEMHOSTALLOC_DEVICEMAP

	

	define

	CU_MEMHOSTALLOC_PORTABLE

	

	define

	CU_MEMHOSTALLOC_WRITECOMBINED

	

	define

	CU_MEMHOSTREGISTER_DEVICEMAP

	

	define

	CU_MEMHOSTREGISTER_IOMEMORY

	

	define

	CU_MEMHOSTREGISTER_PORTABLE

	

	define

	CU_PARAM_TR_DEFAULT

	

	define

	CU_STREAM_LEGACY

	

	define

	CU_STREAM_PER_THREAD

	

	define

	CU_TRSA_OVERRIDE_FORMAT

	

	define

	CU_TRSF_NORMALIZED_COORDINATES

	

	define

	CU_TRSF_SRGB

	

	define

	CUDA_ARRAY3D_2DARRAY

	

	define

	CUDA_ARRAY3D_CUBEMAP

	

	define

	CUDA_ARRAY3D_DEPTH_TEXTURE

	

	define

	CUDA_ARRAY3D_LAYERED

	

	define

	CUDA_ARRAY3D_SURFACE_LDST

	

	define

	CUDA_ARRAY3D_TEXTURE_GATHER

	

	define

	CUDA_VERSION

	

2. Error Handling

	CUDA

	HIP

	cuGetErrorName

	

	cuGetErrorString

	

3. Initialization

	CUDA

	HIP

	cuInit

	hipInit

4. Version Management

	CUDA

	HIP

	cuDriverGetVersion

	hipDriverGetVersion

5. Device Management

	CUDA

	HIP

	cuDriverGetVersion

	hipGetDevice

	cuDeviceGetAttribute

	hipDeviceGetAttribute

	cuDeviceGetCount

	hipGetDeviceCount

	cuDeviceGetName

	hipDeviceGetName

	cuDeviceTotalMem

	hipDeviceTotalMem

6. Device Management [DEPRECATED]

	CUDA

	HIP

	cuDeviceComputeCapability

	hipDeviceComputeCapability

	cuDeviceGetProperties

	hipGetDeviceProperties

7. Primary Context Management

	CUDA

	HIP

	cuDevicePrimaryCtxGetState

	hipDevicePrimaryCtxGetState

	cuDevicePrimaryCtxRelease

	hipDevicePrimaryCtxRelease

	cuDevicePrimaryCtxReset

	hipDevicePrimaryCtxReset

	cuDevicePrimaryCtxRetain

	hipDevicePrimaryCtxRetain

	cuDevicePrimaryCtxSetFlags

	hipDevicePrimaryCtxSetFlags

8. Context Management

	CUDA

	HIP

	cuCtxCreate

	hipCtxCreate

	cuCtxDestroy

	hipCtxDestroy

	cuCtxGetApiVersion

	hipCtxGetApiVersion

	cuCtxGetCacheConfig

	hipCtxGetCacheConfig

	cuCtxGetCurrent

	hipCtxGetCurrent

	cuCtxGetDevice

	hipCtxGetDevice

	cuCtxGetFlags

	hipCtxGetFlags

	cuCtxGetLimit

	

	cuCtxGetSharedMemConfig

	hipCtxGetSharedMemConfig

	cuCtxGetStreamPriorityRange

	

	cuCtxPopCurrent

	hipCtxPopCurrent

	cuCtxPushCurrent

	hipCtxPushCurrent

	cuCtxSetCacheConfig

	hipCtxSetCacheConfig

	cuCtxSetCurrent

	hipCtxSetCurrent

	cuCtxSetLimit

	

	cuCtxSetSharedMemConfig

	hipCtxSetSharedMemConfig

	cuCtxSynchronize

	hipCtxSynchronize

9. Context Management [DEPRECATED]

	CUDA

	HIP

	cuCtxAttach

	

	cuCtxDetach

	

10. Module Management

	CUDA

	HIP

	cuLinkAddData

	

	cuLinkAddFile

	

	cuLinkComplete

	

	cuLinkCreate

	

	cuLinkDestroy

	

	cuModuleGetFunction

	hipModuleGetFunction

	cuModuleGetGlobal

	hipModuleGetGlobal

	cuModuleGetSurfRef

	

	cuModuleGetTexRef

	

	cuModuleLoad

	hipModuleLoad

	cuModuleLoadData

	hipModuleLoadData

	cuModuleLoadDataEx

	hipModuleLoadDataEx

	cuModuleLoadFatBinary

	

	cuModuleUnload

	hipModuleUnload

11. Memory Management

	CUDA

	HIP

	cuArray3DCreate

	

	cuArray3DGetDescriptor

	

	cuArrayCreate

	

	cuArrayDestroy

	

	cuArrayGetDescriptor

	

	cuDeviceGetByPCIBusId

	hipDeviceGetByPCIBusId

	cuDeviceGetPCIBusId

	hipDeviceGetPCIBusId

	cuIpcCloseMemHandle

	

	cuIpcGetEventHandle

	

	cuIpcGetMemHandle

	

	cuIpcOpenEventHandle

	

	cuIpcOpenMemHandle

	

	cuMemAlloc

	hipMalloc

	cuMemAllocHost

	

	cuMemAllocManaged

	

	cuMemAllocPitch

	

	cuMemcpy

	

	cuMemcpy2D

	

	cuMemcpy2DAsync

	

	cuMemcpy2DUnaligned

	

	cuMemcpy3D

	

	cuMemcpy3DAsync

	

	cuMemcpy3DPeer

	

	cuMemcpy3DPeerAsync

	

	cuMemcpyAsync

	

	cuMemcpyAtoA

	

	cuMemcpyAtoD

	

	cuMemcpyAtoH

	

	cuMemcpyAtoHAsync

	

	cuMemcpyDtoA

	

	cuMemcpyDtoD

	hipMemcpyDtoD

	cuMemcpyDtoDAsync

	hipMemcpyDtoDAsync

	cuMemcpyDtoH

	hipMemcpyDtoH

	cuMemcpyDtoHAsync

	hipMemcpyDtoHAsync

	cuMemcpyHtoA

	

	cuMemcpyHtoAAsync

	

	cuMemcpyHtoD

	hipMemcpyHtoD

	cuMemcpyHtoDAsync

	hipMemcpyHtoDAsync

	cuMemcpyPeer

	

	cuMemcpyPeerAsync

	

	cuMemFree

	hipFree

	cuMemFreeHost

	hipFreeHost

	cuMemGetAddressRange

	

	cuMemGetInfo

	hipMemGetInfo

	cuMemHostAlloc

	hipHostMalloc

	cuMemHostGetDevicePointer

	

	cuMemHostGetFlags

	

	cuMemHostRegister

	hipHostRegister

	cuMemHostUnregister

	hipHostUnregister

	cuMemsetD16

	

	cuMemsetD16Async

	

	cuMemsetD2D16

	

	cuMemsetD2D16Async

	

	cuMemsetD2D32

	

	cuMemsetD2D32Async

	

	cuMemsetD2D8

	

	cuMemsetD2D8Async

	

	cuMemsetD32

	hipMemset

	cuMemsetD32Async

	hipMemsetAsync

	cuMemsetD2D8

	

	cuMemsetD2D8Async

	

	cuMipmappedArrayCreate

	

	cuMipmappedArrayDestroy

	

	cuMipmappedArrayGetLevel

	

12. Unified Addressing

	CUDA

	HIP

	cuMemAdvise

	

	cuMemPrefetchAsync

	

	cuMemRangeGetAttribute

	

	cuMemRangeGetAttributes

	

	cuPointerGetAttribute

	

	cuPointerGetAttributes

	

	cuPointerSetAttribute

	

13. Stream Management

	CUDA

	HIP

	cuStreamAddCallback

	hipStreamAddCallback

	cuStreamAttachMemAsync

	

	cuStreamCreate

	

	cuStreamCreateWithPriority

	

	cuStreamDestroy

	hipStreamDestroy

	cuStreamGetFlags

	hipStreamGetFlags

	cuStreamGetPriority

	hipStreamGetPriority

	cuStreamQuery

	hipStreamQuery

	cuStreamSynchronize

	hipStreamSynchronize

	cuStreamWaitEvent

	hipStreamWaitEvent

	cuStreamBatchMemOp

	

	cuStreamWaitValue32

	

	cuStreamWriteValue32

	

14. Event Management

	CUDA

	HIP

	cuEventCreate

	hipEventCreate

	cuEventDestroy

	hipEventDestroy

	cuEventElapsedTime

	hipEventElapsedTime

	cuEventQuery

	hipEventQuery

	cuEventRecord

	hipEventRecord

	cuEventSynchronize

	hipEventSynchronize

15. Execution Control

	CUDA

	HIP

	cuFuncGetAttribute

	

	cuFuncSetCacheConfig

	hipFuncSetCacheConfig

	cuFuncSetSharedMemConfig

	

	cuLaunchKernel

	hipModuleLaunchKernel

16. Execution Control [DEPRECATED]

	CUDA

	HIP

	cuFuncSetBlockShape

	

	cuFuncSetSharedSize

	

	cuLaunch

	

	cuLaunchGrid

	

	cuLaunchGridAsync

	

	cuParamSetf

	

	cuParamSeti

	

	cuParamSetTexRef

	

	cuParamSetv

	

17. Occupancy

	CUDA

	HIP

	cuOccupancyMaxActiveBlocksPerMultiprocessor

	hipOccupancyMaxActiveBlocksPerMultiprocessor

	cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

	

	cuOccupancyMaxPotentialBlockSize

	hipOccupancyMaxPotentialBlockSize

	cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

	

18. Texture Reference Management

	CUDA

	HIP

	cuTexRefGetAddress

	

	cuTexRefGetAddressMode

	

	cuTexRefGetArray

	

	cuTexRefGetBorderColor

	

	cuTexRefGetFilterMode

	

	cuTexRefGetFlags

	

	cuTexRefGetFormat

	

	cuTexRefGetMaxAnisotropy

	

	cuTexRefGetMipmapFilterMode

	

	cuTexRefGetMipmapLevelBias

	

	cuTexRefGetMipmapLevelClamp

	

	cuTexRefGetMipmappedArray

	

	cuTexRefSetAddress

	

	cuTexRefSetAddress2D

	

	cuTexRefSetAddressMode

	

	cuTexRefSetArray

	

	cuTexRefSetBorderColor

	

	cuTexRefSetFilterMode

	

	cuTexRefSetFlags

	

	cuTexRefSetFormat

	

	cuTexRefSetMaxAnisotropy

	

	cuTexRefSetMipmapFilterMode

	

	cuTexRefSetMipmapLevelBias

	

	cuTexRefSetMipmapLevelClamp

	

	cuTexRefSetMipmappedArray

	

19. Texture Reference Management [DEPRECATED]

	CUDA

	HIP

	cuTexRefCreate

	

	cuTexRefDestroy

	

20. Surface Reference Management

	CUDA

	HIP

	cuSurfRefGetArray

	

	cuSurfRefSetArray

	

21. Texture Object Management

	CUDA

	HIP

	cuTexObjectCreate

	

	cuTexObjectDestroy

	

	cuTexObjectGetResourceDesc

	

	cuTexObjectGetResourceViewDesc

	

	cuTexObjectGetTextureDesc

	

22. Surface Object Management

	CUDA

	HIP

	cuSurfObjectCreate

	

	cuSurfObjectDestroy

	

	cuSurfObjectGetResourceDesc

	

23. Peer Context Memory Access

	CUDA

	HIP

	cuCtxEnablePeerAccess

	hipCtxEnablePeerAccess

	cuCtxDisablePeerAccess

	hipCtxDisablePeerAccess

	cuDeviceCanAccessPeer

	hipDeviceCanAccessPeer

	cuDeviceGetP2PAttribute

	

24. Graphics Interoperability

	CUDA

	HIP

	cuGraphicsMapResources

	

	cuGraphicsResourceGetMappedMipmappedArray

	

	cuGraphicsResourceGetMappedPointer

	

	cuGraphicsResourceSetMapFlags

	

	cuGraphicsSubResourceGetMappedArray

	

	cuGraphicsUnmapResources

	

	cuGraphicsUnregisterResource

	

25. Profiler Control

	CUDA

	HIP

	cuProfilerInitialize

	

	cuProfilerStart

	hipProfilerStart

	cuProfilerStop

	hipProfilerStop

26. OpenGL Interoperability

	CUDA

	HIP

	cuGLGetDevices

	

	cuGraphicsGLRegisterBuffer

	

	cuGraphicsGLRegisterImage

	

	cuWGLGetDevice

	

26.1. OpenGL Interoperability [DEPRECATED]

	CUDA

	HIP

	cuGLCtxCreate

	

	cuGLInit

	

	cuGLMapBufferObject

	

	cuGLMapBufferObjectAsync

	

	cuGLRegisterBufferObject

	

	cuGLSetBufferObjectMapFlags

	

	cuGLUnmapBufferObject

	

	cuGLUnmapBufferObjectAsync

	

	cuGLUnregisterBufferObject

	

27. Direct3D 9 Interoperability

	CUDA

	HIP

	cuD3D9CtxCreate

	

	cuD3D9CtxCreateOnDevice

	

	cuD3D9GetDevice

	

	cuD3D9GetDevices

	

	cuD3D9GetDirect3DDevice

	

	cuGraphicsD3D9RegisterResource

	

27.1. Direct3D 9 Interoperability [DEPRECATED]

	CUDA

	HIP

	cuD3D9MapResources

	

	cuD3D9RegisterResource

	

	cuD3D9ResourceGetMappedArray

	

	cuD3D9ResourceGetMappedPitch

	

	cuD3D9ResourceGetMappedPointer

	

	cuD3D9ResourceGetMappedSize

	

	cuD3D9ResourceGetSurfaceDimensions

	

	cuD3D9ResourceSetMapFlags

	

	cuD3D9UnmapResources

	

	cuD3D9UnregisterResource

	

28. Direct3D 10 Interoperability

	CUDA

	HIP

	cuD3D10GetDevice

	

	cuD3D10GetDevices

	

	cuGraphicsD3D10RegisterResource

	

28.1. Direct3D 10 Interoperability [DEPRECATED]

	CUDA

	HIP

	cuD3D10CtxCreate

	

	cuD3D10CtxCreateOnDevice

	

	cuD3D10GetDirect3DDevice

	

	cuD3D10MapResources

	

	cuD3D10RegisterResource

	

	cuD3D10ResourceGetMappedArray

	

	cuD3D10ResourceGetMappedPitch

	

	cuD3D10ResourceGetMappedPointer

	

	cuD3D10ResourceGetMappedSize

	

	cuD3D10ResourceGetSurfaceDimensions

	

	cuD3D10ResourceSetMapFlags

	

	cuD3D10UnmapResources

	

	cuD3D10UnregisterResource

	

29. Direct3D 11 Interoperability

	CUDA

	HIP

	cuD3D11GetDevice

	

	cuD3D11GetDevices

	

	cuGraphicsD3D11RegisterResource

	

29.1. Direct3D 11 Interoperability [DEPRECATED]

	CUDA

	HIP

	cuD3D11CtxCreate

	

	cuD3D11CtxCreateOnDevice

	

	cuD3D11GetDirect3DDevice

	

30. VDPAU Interoperability

	CUDA

	HIP

	cuGraphicsVDPAURegisterOutputSurface

	

	cuGraphicsVDPAURegisterVideoSurface

	

	cuVDPAUCtxCreate

	

	cuVDPAUGetDevice

	

31. EGL Interoperability

	CUDA

	HIP

	cuEGLStreamConsumerAcquireFrame

	

	cuEGLStreamConsumerConnect

	

	cuEGLStreamConsumerConnectWithFlags

	

	cuEGLStreamConsumerDisconnect

	

	cuEGLStreamConsumerReleaseFrame

	

	cuEGLStreamProducerConnect

	

	cuEGLStreamProducerDisconnect

	

	cuEGLStreamProducerPresentFrame

	

	cuEGLStreamProducerReturnFrame

	

	cuGraphicsEGLRegisterImage

	

	cuGraphicsResourceGetMappedEglFrame

	

CUDA Runtime API functions supported by HIP

1. Device Management

	CUDA

	HIP

	cudaChooseDevice

	hipChooseDevice

	cudaDeviceGetAttribute

	hipDeviceGetAttribute

	cudaDeviceGetByPCIBusId

	hipDeviceGetByPCIBusId

	cudaDeviceGetCacheConfig

	hipDeviceGetCacheConfig

	cudaDeviceGetLimit

	hipDeviceGetLimit

	cudaDeviceGetPCIBusId

	hipDeviceGetPCIBusId

	cudaDeviceGetSharedMemConfig

	hipDeviceGetSharedMemConfig

	cudaDeviceGetStreamPriorityRange

	

	cudaDeviceReset

	hipDeviceReset

	cudaDeviceSetCacheConfig

	hipDeviceSetCacheConfig

	cudaDeviceSetLimit

	hipDeviceSetLimit

	cudaDeviceSetSharedMemConfig

	hipDeviceSetSharedMemConfig

	cudaDeviceSynchronize

	hipDeviceSynchronize

	cudaGetDevice

	hipGetDevice

	cudaGetDeviceCount

	hipGetDeviceCount

	cudaGetDeviceFlags

	

	cudaGetDeviceProperties

	hipGetDeviceProperties

	cudaIpcCloseMemHandle

	hipIpcCloseMemHandle

	cudaIpcGetEventHandle

	hipIpcGetEventHandle

	cudaIpcGetMemHandle

	hipIpcGetMemHandle

	cudaIpcOpenEventHandle

	hipIpcOpenEventHandle

	cudaIpcOpenMemHandle

	hipIpcOpenMemHandle

	cudaSetDevice

	hipSetDevice

	cudaSetDeviceFlags

	hipSetDeviceFlags

	cudaSetValidDevices

	

2. Thread Management [DEPRECATED]

	CUDA

	HIP

	cudaThreadExit

	hipDeviceReset

	cudaThreadGetCacheConfig

	hipDeviceGetCacheConfig

	cudaThreadGetLimit

	

	cudaThreadSetCacheConfig

	hipDeviceSetCacheConfig

	cudaThreadSetLimit

	

	cudaThreadSynchronize

	hipDeviceSynchronize

3. Error Handling

	CUDA

	HIP

	cudaGetErrorName

	hipGetErrorName

	cudaGetErrorString

	hipGetErrorString

	cudaGetLastError

	hipGetLastError

	cudaPeekAtLastError

	hipPeekAtLastError

4. Stream Management

	CUDA

	HIP

	cudaStreamAddCallback

	hipStreamAddCallback

	cudaStreamAttachMemAsync

	

	cudaStreamCreate

	hipStreamCreate

	cudaStreamCreateWithFlags

	hipStreamCreateWithFlags

	cudaStreamCreateWithPriority

	

	cudaStreamDestroy

	hipStreamDestroy

	cudaStreamGetFlags

	hipStreamGetFlags

	cudaStreamGetPriority

	

	cudaStreamQuery

	hipStreamQuery

	cudaStreamSynchronize

	hipStreamSynchronize

	cudaStreamWaitEvent

	hipStreamWaitEvent

5. Event Management

	CUDA

	HIP

	cudaEventCreate

	hipEventCreate

	cudaEventCreateWithFlags

	hipEventCreateWithFlags

	cudaEventDestroy

	hipEventDestroy

	cudaEventElapsedTime

	hipEventElapsedTime

	cudaEventQuery

	hipEventQuery

	cudaEventRecord

	hipEventRecord

	cudaEventSynchronize

	hipEventSynchronize

6. Execution Control

	CUDA

	HIP

	cudaFuncGetAttributes

	

	cudaFuncSetCacheConfig

	hipFuncSetCacheConfig

	cudaFuncSetSharedMemConfig

	

	cudaGetParameterBuffer

	

	cudaGetParameterBufferV2

	

	cudaLaunchKernel

	hipLaunchKernelGGL

	cudaSetDoubleForDevice

	

	cudaSetDoubleForHost

	

7. Occupancy

	CUDA

	HIP

	cudaOccupancyMaxActiveBlocksPerMultiprocessor

	hipOccupancyMaxActiveBlocksPerMultiprocessor

	cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

	

8. Execution Control [deprecated since 7.0]

	CUDA

	HIP

	cudaConfigureCall

	

	cudaLaunch

	

	cudaSetupArgument

	

9. Memory Management

	CUDA

	HIP

	cudaArrayGetInfo

	

	cudaFree

	hipFree

	cudaFreeArray

	hipFreeArray

	cudaFreeHost

	hipHostFree

	cudaFreeMipmappedArray

	

	cudaGetMipmappedArrayLevel

	

	cudaGetSymbolAddress

	

	cudaGetSymbolSize

	

	cudaHostAlloc

	hipHostMalloc

	cudaHostGetDevicePointer

	hipHostGetDevicePointer

	cudaHostGetFlags

	hipHostGetFlags

	cudaHostRegister

	hipHostRegister

	cudaHostUnregister

	hipHostUnregister

	cudaMalloc

	hipMalloc

	cudaMalloc3D

	

	cudaMalloc3DArray

	hipMalloc3DArray

	cudaMallocArray

	hipMallocArray

	cudaMallocHost

	hipHostMalloc

	cudaMallocManaged

	

	cudaMallocMipmappedArray

	

	cudaMallocPitch

	

	cudaMemGetInfo

	hipMemGetInfo

	cudaMemcpy

	hipMemcpy

	cudaMemcpy2D

	hipMemcpy2D

	cudaMemcpy2DArrayToArray

	

	cudaMemcpy2DAsync

	

	cudaMemcpy2DFromArray

	

	cudaMemcpy2DFromArrayAsync

	

	cudaMemcpy2DToArray

	hipMemcpy2DToArray

	cudaMemcpy2DToArrayAsync

	

	cudaMemcpy3D

	hipMemcpy3D

	cudaMemcpy3DAsync

	

	cudaMemcpy3DPeer

	

	cudaMemcpy3DPeerAsync

	

	cudaMemcpyArrayToArray

	

	cudaMemcpyAsync

	hipMemcpyAsync

	cudaMemcpyFromArray

	MemcpyFromArray

	cudaMemcpyFromArrayAsync

	

	cudaMemcpyFromSymbol

	hipMemcpyFromSymbol

	cudaMemcpyFromSymbolAsync

	

	cudaMemcpyPeer

	hipMemcpyPeer

	cudaMemcpyPeerAsync

	hipMemcpyPeerAsync

	cudaMemcpyToArray

	hipMemcpyToArray

	cudaMemcpyToArrayAsync

	

	cudaMemcpyToSymbol

	hipMemcpyToSymbol

	cudaMemcpyToSymbolAsync

	hipMemcpyToSymbolAsync

	cudaMemset

	hipMemset

	cudaMemset2D

	hipMemset2D

	cudaMemset2DAsync

	

	cudaMemset3D

	

	cudaMemset3DAsync

	

	cudaMemsetAsync

	hipMemsetAsync

	make_cudaExtent

	make_hipExtent

	make_cudaPitchedPtr

	make_hipPitchedPtr

	make_cudaPos

	make_hipPos

10. Unified Addressing

	CUDA

	HIP

	cudaPointerGetAttributes

	hipPointerGetAttributes

11. Peer Device Memory Access

	CUDA

	HIP

	cudaDeviceCanAccessPeer

	hipDeviceCanAccessPeer

	cudaDeviceDisablePeerAccess

	hipDeviceDisablePeerAccess

	cudaDeviceEnablePeerAccess

	hipDeviceEnablePeerAccess

12. OpenGL Interoperability

	CUDA

	HIP

	cudaGLGetDevices

	

	cudaGraphicsGLRegisterBuffer

	

	cudaGraphicsGLRegisterImage

	

	cudaWGLGetDevice

	

13. OpenGL Interoperability [DEPRECATED]

	CUDA

	HIP

	cudaGLMapBufferObject

	

	cudaGLMapBufferObjectAsync

	

	cudaGLRegisterBufferObject

	

	cudaGLSetBufferObjectMapFlags

	

	cudaGLSetGLDevice

	

	cudaGLUnmapBufferObject

	

	cudaGLUnmapBufferObjectAsync

	

	cudaGLUnregisterBufferObject

	

14. Direct3D 9 Interoperability

	CUDA

	HIP

	cudaD3D9GetDevice

	

	cudaD3D9GetDevices

	

	cudaD3D9GetDirect3DDevice

	

	cudaD3D9SetDirect3DDevice

	

	cudaGraphicsD3D9RegisterResource

	

15. Direct3D 9 Interoperability [DEPRECATED]

	CUDA

	HIP

	cudaD3D9MapResources

	

	cudaD3D9RegisterResource

	

	cudaD3D9ResourceGetMappedArray

	

	cudaD3D9ResourceGetMappedPitch

	

	cudaD3D9ResourceGetMappedPointer

	

	cudaD3D9ResourceGetMappedSize

	

	cudaD3D9ResourceGetSurfaceDimensions

	

	cudaD3D9ResourceSetMapFlags

	

	cudaD3D9UnmapResources

	

	cudaD3D9UnregisterResource

	

16. Direct3D 10 Interoperability

	CUDA

	HIP

	cudaD3D10GetDevice

	

	cudaD3D10GetDevices

	

	cudaGraphicsD3D10RegisterResource

	

17. Direct3D 10 Interoperability [DEPRECATED]

	CUDA

	HIP

	cudaD3D10GetDirect3DDevice

	

	cudaD3D10MapResources

	

	cudaD3D10RegisterResource

	

	cudaD3D10ResourceGetMappedArray

	

	cudaD3D10ResourceGetMappedPitch

	

	cudaD3D10ResourceGetMappedPointer

	

	cudaD3D10ResourceGetMappedSize

	

	cudaD3D10ResourceGetSurfaceDimensions

	

	cudaD3D10ResourceSetMapFlags

	

	cudaD3D10SetDirect3DDevice

	

	cudaD3D10UnmapResources

	

	cudaD3D10UnregisterResource

	

18. Direct3D 11 Interoperability

	CUDA

	HIP

	cudaD3D11GetDevice

	

	cudaD3D11GetDevices

	

	cudaGraphicsD3D11RegisterResource

	

19. Direct3D 11 Interoperability [DEPRECATED]

	CUDA

	HIP

	cudaD3D11GetDirect3DDevice

	

	cudaD3D11SetDirect3DDevice

	

20. VDPAU Interoperability

	CUDA

	HIP

	cudaGraphicsVDPAURegisterOutputSurface

	

	cudaGraphicsVDPAURegisterVideoSurface

	

	cudaVDPAUGetDevice

	

	cudaVDPAUSetVDPAUDevice

	

21. EGL Interoperability

	CUDA

	HIP

	cudaEGLStreamConsumerAcquireFrame

	

	cudaEGLStreamConsumerConnect

	

	cudaEGLStreamConsumerConnectWithFlags

	

	cudaEGLStreamConsumerReleaseFrame

	

	cudaEGLStreamProducerConnect

	

	cudaEGLStreamProducerDisconnect

	

	cudaEGLStreamProducerPresentFrame

	

	cudaEGLStreamProducerReturnFrame

	

	cudaGraphicsEGLRegisterImage

	

	cudaGraphicsResourceGetMappedEglFrame

	

22. Graphics Interoperability

	CUDA

	HIP

	cudaGraphicsMapResources

	

	cudaGraphicsResourceGetMappedMipmappedArray

	

	cudaGraphicsResourceGetMappedPointer

	

	cudaGraphicsResourceSetMapFlags

	

	cudaGraphicsSubResourceGetMappedArray

	

	cudaGraphicsUnmapResources

	

	cudaGraphicsUnregisterResource

	

23. Texture Reference Management

	CUDA

	HIP

	cudaBindTexture

	hipBindTexture

	cudaBindTexture2D

	hipBindTexture2D

	cudaBindTextureToArray

	hipBindTextureToArray

	cudaBindTextureToMipmappedArray

	

	cudaCreateChannelDesc

	hipCreateChannelDesc

	cudaGetChannelDesc

	hipGetChannelDesc

	cudaGetTextureAlignmentOffset

	

	cudaGetTextureReference

	

	cudaUnbindTexture

	hipUnbindTexture

24. Surface Reference Management

	CUDA

	HIP

	cudaBindSurfaceToArray

	

	cudaGetSurfaceReference

	

25. Texture Object Management

	CUDA

	HIP

	cudaCreateTextureObject

	hipCreateTextureObject

	cudaDestroyTextureObject

	hipDestroyTextureObject

	cudaGetTextureObjectResourceDesc

	hipGetTextureObjectResourceDesc

	cudaGetTextureObjectResourceViewDesc

	hipGetTextureObjectResourceViewDesc

	cudaGetTextureObjectTextureDesc

	hipGetTextureObjectTextureDesc

26. Surface Object Management

	CUDA

	HIP

	cudaCreateSurfaceObject

	

	cudaDestroySurfaceObject

	

	cudaGetSurfaceObjectResourceDesc

	

27. Version Management

	CUDA

	HIP

	cudaDriverGetVersion

	hipDriverGetVersion

	cudaRuntimeGetVersion

	hipRuntimeGetVersion

28. C++ API Routines

(7.0 contains, 7.5 doesn’t)

	CUDA

	HIP

	cudaBindSurfaceToArray

	

	cudaBindTexture

	hipBindTexture

	cudaBindTexture2D

	

	cudaBindTextureToArray

	

	cudaBindTextureToMipmappedArray

	

	cudaCreateChannelDesc

	hipCreateChannelDesc

	cudaFuncGetAttributes

	

	cudaFuncSetCacheConfig

	

	cudaGetSymbolAddress

	

	cudaGetSymbolSize

	

	cudaGetTextureAlignmentOffset

	

	cudaLaunch

	

	cudaLaunchKernel

	

	cudaMallocHost

	

	cudaMallocManaged

	

	cudaMemcpyFromSymbol

	

	cudaMemcpyFromSymbolAsync

	

	cudaMemcpyToSymbol

	

	cudaMemcpyToSymbolAsync

	

	cudaOccupancyMaxActiveBlocksPerMultiprocessor

	hipOccupancyMaxActiveBlocksPerMultiprocessor

	cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

	

	cudaOccupancyMaxPotentialBlockSize

	hipOccupancyMaxPotentialBlockSize

	cudaOccupancyMaxPotentialBlockSizeVariableSMem

	

	cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

	

	cudaOccupancyMaxPotentialBlockSizeWithFlags

	

	cudaSetupArgument

	

	cudaStreamAttachMemAsync

	

	cudaUnbindTexture

	hipUnbindTexture

30. Profiler Control

	CUDA

	HIP

	cudaProfilerInitialize

	

	cudaProfilerStart

	hipProfilerStart

	cudaProfilerStop

	hipProfilerStop

	Data types used by CUDA Runtime API and supported by HIP

	

31. Data types

	type

	CUDA

	HIP

	struct

	cudaChannelFormatDesc

	hipChannelFormatDesc

	struct

	cudaDeviceProp

	hipDeviceProp_t

	struct

	cudaExtent

	hipExtent

	struct

	cudaFuncAttributes

	

	struct

	cudaIpcEventHandle_t

	hipIpcEventHandle_t

	struct

	cudaIpcMemHandle_t

	hipIpcMemHandle_t

	struct

	cudaMemcpy3DParms

	hipMemcpy3DParms

	struct

	cudaMemcpy3DPeerParms

	

	struct

	cudaPitchedPtr

	hipPitchedPtr

	struct

	cudaPointerAttributes

	hipPointerAttribute_t

	struct

	cudaPos

	hipPos

	struct

	cudaResourceDesc

	hipResourceDesc

	struct

	cudaResourceViewDesc

	hipResourceViewDesc

	struct

	cudaTextureDesc

	hipTextureDesc

	struct

	surfaceReference

	

	struct

	textureReference

	textureReference

	enum

	cudaChannelFormatKind

	hipChannelFormatKind

	0

	cudaChannelFormatKindSigned

	hipChannelFormatKindSigned

	1

	cudaChannelFormatKindUnsigned

	hipChannelFormatKindUnsigned

	2

	cudaChannelFormatKindFloat

	hipChannelFormatKindFloat

	3

	cudaChannelFormatKindNone

	hipChannelFormatKindNone

	enum

	cudaComputeMode

	

	0

	cudaComputeModeDefault

	

	1

	cudaComputeModeExclusive

	

	2

	cudaComputeModeProhibited

	

	3

	cudaComputeModeExclusiveProcess

	

	enum

	cudaDeviceAttr

	hipDeviceAttribute_t

	1

	cudaDevAttrMaxThreadsPerBlock

	hipDeviceAttributeMaxThreadsPerBlock

	2

	cudaDevAttrMaxBlockDimX

	hipDeviceAttributeMaxBlockDimX

	3

	cudaDevAttrMaxBlockDimY

	hipDeviceAttributeMaxBlockDimY

	4

	cudaDevAttrMaxBlockDimZ

	hipDeviceAttributeMaxBlockDimZ

	5

	cudaDevAttrMaxGridDimX

	hipDeviceAttributeMaxGridDimX

	6

	cudaDevAttrMaxGridDimY

	hipDeviceAttributeMaxGridDimY

	7

	cudaDevAttrMaxGridDimZ

	hipDeviceAttributeMaxGridDimZ

	8

	cudaDevAttrMaxSharedMemoryPerBlock

	hipDeviceAttributeMaxSharedMemoryPerBlock

	9

	cudaDevAttrTotalConstantMemory

	hipDeviceAttributeTotalConstantMemory

	10

	cudaDevAttrWarpSize

	hipDeviceAttributeWarpSize

	11

	cudaDevAttrMaxPitch

	

	12

	cudaDevAttrMaxRegistersPerBlock

	hipDeviceAttributeMaxRegistersPerBlock

	13

	cudaDevAttrClockRate

	hipDeviceAttributeClockRate

	14

	cudaDevAttrTextureAlignment

	

	15

	cudaDevAttrGpuOverlap

	

	16

	cudaDevAttrMultiProcessorCount

	hipDeviceAttributeMultiprocessorCount

	17

	cudaDevAttrKernelExecTimeout

	

	18

	cudaDevAttrIntegrated

	

	19

	cudaDevAttrCanMapHostMemory

	

	20

	cudaDevAttrComputeMode

	hipDeviceAttributeComputeMode

	21

	cudaDevAttrMaxTexture1DWidth

	

	22

	cudaDevAttrMaxTexture2DWidth

	

	23

	cudaDevAttrMaxTexture2DHeight

	

	24

	cudaDevAttrMaxTexture3DWidth

	

	25

	cudaDevAttrMaxTexture3DHeight

	

	26

	cudaDevAttrMaxTexture3DDepth

	

	27

	cudaDevAttrMaxTexture2DLayeredWidth

	

	28

	cudaDevAttrMaxTexture2DLayeredHeight

	

	29

	cudaDevAttrMaxTexture2DLayeredLayers

	

	30

	cudaDevAttrSurfaceAlignment

	

	31

	cudaDevAttrConcurrentKernels

	hipDeviceAttributeConcurrentKernels

	32

	cudaDevAttrEccEnabled

	

	33

	cudaDevAttrPciBusId

	hipDeviceAttributePciBusId

	34

	cudaDevAttrPciDeviceId

	hipDeviceAttributePciDeviceId

	35

	cudaDevAttrTccDriver

	

	36

	cudaDevAttrMemoryClockRate

	hipDeviceAttributeMemoryClockRate

	37

	cudaDevAttrGlobalMemoryBusWidth

	hipDeviceAttributeMemoryBusWidth

	38

	cudaDevAttrL2CacheSize

	hipDeviceAttributeL2CacheSize

	39

	cudaDevAttrMaxThreadsPerMultiProcessor

	hipDeviceAttributeMaxThreadsPerMultiProcessor

	40

	cudaDevAttrAsyncEngineCount

	

	41

	cudaDevAttrUnifiedAddressing

	

	42

	cudaDevAttrMaxTexture1DLayeredWidth

	

	43

	cudaDevAttrMaxTexture1DLayeredLayers

	

	44

	
	

	45

	cudaDevAttrMaxTexture2DGatherWidth

	

	46

	cudaDevAttrMaxTexture2DGatherHeight

	

	47

	cudaDevAttrMaxTexture3DWidthAlt

	

	48

	cudaDevAttrMaxTexture3DHeightAlt

	

	49

	cudaDevAttrMaxTexture3DDepthAlt

	

	50

	cudaDevAttrPciDomainId

	

	51

	cudaDevAttrTexturePitchAlignment

	

	52

	cudaDevAttrMaxTextureCubemapWidth

	

	53

	cudaDevAttrMaxTextureCubemapLayeredWidth

	

	54

	cudaDevAttrMaxTextureCubemapLayeredLayers

	

	55

	cudaDevAttrMaxSurface1DWidth

	

	56

	cudaDevAttrMaxSurface2DWidth

	

	57

	cudaDevAttrMaxSurface2DHeight

	

	58

	cudaDevAttrMaxSurface3DWidth

	

	59

	cudaDevAttrMaxSurface3DHeight

	

	60

	cudaDevAttrMaxSurface3DDepth

	

	61

	cudaDevAttrMaxSurface1DLayeredWidth

	

	62

	cudaDevAttrMaxSurface1DLayeredLayers

	

	63

	cudaDevAttrMaxSurface2DLayeredWidth

	

	64

	cudaDevAttrMaxSurface2DLayeredHeight

	

	65

	cudaDevAttrMaxSurface2DLayeredLayers

	

	66

	cudaDevAttrMaxSurfaceCubemapWidth

	

	67

	cudaDevAttrMaxSurfaceCubemapLayeredWidth

	

	68

	cudaDevAttrMaxSurfaceCubemapLayeredLayers

	

	69

	cudaDevAttrMaxTexture1DLinearWidth

	

	70

	cudaDevAttrMaxTexture2DLinearWidth

	

	71

	cudaDevAttrMaxTexture2DLinearHeight

	

	72

	cudaDevAttrMaxTexture2DLinearPitch

	

	73

	cudaDevAttrMaxTexture2DMipmappedWidth

	

	74

	cudaDevAttrMaxTexture2DMipmappedHeight

	

	75

	cudaDevAttrComputeCapabilityMajor

	hipDeviceAttributeComputeCapabilityMajor

	76

	cudaDevAttrComputeCapabilityMinor

	hipDeviceAttributeComputeCapabilityMinor

	77

	cudaDevAttrMaxTexture1DMipmappedWidth

	

	78

	cudaDevAttrStreamPrioritiesSupported

	

	79

	cudaDevAttrGlobalL1CacheSupported

	

	80

	cudaDevAttrLocalL1CacheSupported

	

	81

	cudaDevAttrMaxSharedMemoryPerMultiprocessor

	hipDeviceAttributeMaxSharedMemoryPerMultiprocessor

	82

	cudaDevAttrMaxRegistersPerMultiprocessor

	

	83

	cudaDevAttrManagedMemory

	

	84

	cudaDevAttrIsMultiGpuBoard

	hipDeviceAttributeIsMultiGpuBoard

	85

	cudaDevAttrMultiGpuBoardGroupID

	

	enum

	cudaError

	hipError_t

	enum

	cudaError_t

	hipError_t

	0

	cudaSuccess

	hipSuccess

	1

	cudaErrorMissingConfiguration

	

	2

	cudaErrorMemoryAllocation

	hipErrorMemoryAllocation

	3

	cudaErrorInitializationError

	hipErrorInitializationError

	4

	cudaErrorLaunchFailure

	

	5

	cudaErrorPriorLaunchFailure

	

	6

	cudaErrorLaunchTimeout

	

	7

	cudaErrorLaunchOutOfResources

	hipErrorLaunchOutOfResources

	8

	cudaErrorInvalidDeviceFunction

	

	9

	cudaErrorInvalidConfiguration

	

	10

	cudaErrorInvalidDevice

	hipErrorInvalidDevice

	11

	cudaErrorInvalidValue

	hipErrorInvalidValue

	12

	cudaErrorInvalidPitchValue

	

	13

	cudaErrorInvalidSymbol

	

	14

	cudaErrorMapBufferObjectFailed

	

	15

	cudaErrorUnmapBufferObjectFailed

	

	16

	cudaErrorInvalidHostPointer

	

	17

	cudaErrorInvalidDevicePointer

	hipErrorInvalidDevicePointer

	18

	cudaErrorInvalidTexture

	

	19

	cudaErrorInvalidTextureBinding

	

	20

	cudaErrorInvalidChannelDescriptor

	

	21

	cudaErrorInvalidMemcpyDirection

	

	22

	cudaErrorAddressOfConstant

	

	23

	cudaErrorTextureFetchFailed

	

	24

	cudaErrorTextureNotBound

	

	25

	cudaErrorSynchronizationError

	

	26

	cudaErrorInvalidFilterSetting

	

	27

	cudaErrorInvalidNormSetting

	

	28

	cudaErrorMixedDeviceExecution

	

	29

	cudaErrorCudartUnloading

	

	30

	cudaErrorUnknown

	hipErrorUnknown

	31

	cudaErrorNotYetImplemented

	

	32

	cudaErrorMemoryValueTooLarge

	

	33

	cudaErrorInvalidResourceHandle

	hipErrorInvalidResourceHandle

	34

	cudaErrorNotReady

	hipErrorNotReady

	35

	cudaErrorInsufficientDriver

	

	36

	cudaErrorSetOnActiveProcess

	

	37

	cudaErrorInvalidSurface

	

	38

	cudaErrorNoDevice

	hipErrorNoDevice

	39

	cudaErrorECCUncorrectable

	

	40

	cudaErrorSharedObjectSymbolNotFound

	

	41

	cudaErrorSharedObjectInitFailed

	

	42

	cudaErrorUnsupportedLimit

	hipErrorUnsupportedLimit

	43

	cudaErrorDuplicateVariableName

	

	44

	cudaErrorDuplicateTextureName

	

	45

	cudaErrorDuplicateSurfaceName

	

	46

	cudaErrorDevicesUnavailable

	

	47

	cudaErrorInvalidKernelImage

	

	48

	cudaErrorNoKernelImageForDevice

	

	49

	cudaErrorIncompatibleDriverContext

	

	50

	cudaErrorPeerAccessAlreadyEnabled

	hipErrorPeerAccessAlreadyEnabled

	51

	cudaErrorPeerAccessNotEnabled

	hipErrorPeerAccessNotEnabled

	52

	
	

	53

	
	

	54

	cudaErrorDeviceAlreadyInUse

	

	55

	cudaErrorProfilerDisabled

	

	56

	cudaErrorProfilerNotInitialized

	

	57

	cudaErrorProfilerAlreadyStarted

	

	58

	cudaErrorProfilerAlreadyStopped

	

	59

	cudaErrorAssert

	

	60

	cudaErrorTooManyPeers

	

	61

	cudaErrorHostMemoryAlreadyRegistered

	hipErrorHostMemoryAlreadyRegistered

	62

	cudaErrorHostMemoryNotRegistered

	hipErrorHostMemoryNotRegistered

	63

	cudaErrorOperatingSystem

	

	64

	cudaErrorPeerAccessUnsupported

	

	65

	cudaErrorLaunchMaxDepthExceeded

	

	66

	cudaErrorLaunchFileScopedTex

	

	67

	cudaErrorLaunchFileScopedSurf

	

	68

	cudaErrorSyncDepthExceeded

	

	69

	cudaErrorLaunchPendingCountExceeded

	

	70

	cudaErrorNotPermitted

	

	71

	cudaErrorNotSupported

	

	72

	cudaErrorHardwareStackError

	

	73

	cudaErrorIllegalInstruction

	

	74

	cudaErrorMisalignedAddress

	

	75

	cudaErrorInvalidAddressSpace

	

	76

	cudaErrorInvalidPc

	

	77

	cudaErrorIllegalAddress

	

	78

	cudaErrorInvalidPtx

	

	79

	cudaErrorInvalidGraphicsContext

	

	0x7f

	cudaErrorStartupFailure

	

	1000

	cudaErrorApiFailureBase

	

	enum

	cudaFuncCache

	hipFuncCache_t

	0

	cudaFuncCachePreferNone

	hipFuncCachePreferNone

	1

	cudaFuncCachePreferShared

	hipFuncCachePreferShared

	2

	cudaFuncCachePreferL1

	hipFuncCachePreferL1

	3

	cudaFuncCachePreferEqual

	hipFuncCachePreferEqual

	enum

	cudaGraphicsCubeFace

	

	0x00

	cudaGraphicsCubeFacePositiveX

	

	0x01

	cudaGraphicsCubeFaceNegativeX

	

	0x02

	cudaGraphicsCubeFacePositiveY

	

	0x03

	cudaGraphicsCubeFaceNegativeY

	

	0x04

	cudaGraphicsCubeFacePositiveZ

	

	0x05

	cudaGraphicsCubeFaceNegativeZ

	

	enum

	cudaGraphicsMapFlags

	

	0

	cudaGraphicsMapFlagsNone

	

	1

	cudaGraphicsMapFlagsReadOnly

	

	2

	cudaGraphicsMapFlagsWriteDiscard

	

	enum

	cudaGraphicsRegisterFlags

	

	0

	cudaGraphicsRegisterFlagsNone

	

	1

	cudaGraphicsRegisterFlagsReadOnly

	

	2

	cudaGraphicsRegisterFlagsWriteDiscard

	

	4

	cudaGraphicsRegisterFlagsSurfaceLoadStore

	

	8

	cudaGraphicsRegisterFlagsTextureGather

	

	enum

	cudaLimit

	hipLimit_t

	0x00

	cudaLimitStackSize

	

	0x01

	cudaLimitPrintfFifoSize

	

	0x02

	cudaLimitMallocHeapSize

	hipLimitMallocHeapSize

	0x03

	cudaLimitDevRuntimeSyncDepth

	

	0x04

	cudaLimitDevRuntimePendingLaunchCount

	

	enum

	cudaMemcpyKind

	hipMemcpyKind

	0

	cudaMemcpyHostToHost

	hipMemcpyHostToHost

	1

	cudaMemcpyHostToDevice

	hipMemcpyHostToDevice

	2

	cudaMemcpyDeviceToHost

	hipMemcpyDeviceToHost

	3

	cudaMemcpyDeviceToDevice

	hipMemcpyDeviceToDevice

	4

	cudaMemcpyDefault

	hipMemcpyDefault

	enum

	cudaMemoryType

	hipMemoryType

	1

	cudaMemoryTypeHost

	hipMemoryTypeHost

	2

	cudaMemoryTypeDevice

	hipMemoryTypeDevice

	enum

	cudaResourceType

	hipResourceType

	0

	cudaResourceTypeArray

	hipResourceTypeArray

	1

	cudaResourceTypeMipmappedArray

	hipResourceTypeMipmappedArray

	2

	cudaResourceTypeLinear

	hipResourceTypeLinear

	3

	cudaResourceTypePitch2D

	hipResourceTypePitch2D

	enum

	cudaResourceViewFormat

	hipResourceViewFormat

	0x00

	cudaResViewFormatNone

	hipResViewFormatNone

	0x01

	cudaResViewFormatUnsignedChar1

	hipResViewFormatUnsignedChar1

	0x02

	cudaResViewFormatUnsignedChar2

	hipResViewFormatUnsignedChar2

	0x03

	cudaResViewFormatUnsignedChar4

	hipResViewFormatUnsignedChar4

	0x04

	cudaResViewFormatSignedChar1

	hipResViewFormatSignedChar1

	0x05

	cudaResViewFormatSignedChar2

	hipResViewFormatSignedChar2

	0x06

	cudaResViewFormatSignedChar4

	hipResViewFormatSignedChar4

	0x07

	cudaResViewFormatUnsignedShort1

	hipResViewFormatUnsignedShort1

	0x08

	cudaResViewFormatUnsignedShort2

	hipResViewFormatUnsignedShort2

	0x09

	cudaResViewFormatUnsignedShort4

	hipResViewFormatUnsignedShort4

	0x0a

	cudaResViewFormatSignedShort1

	hipResViewFormatSignedShort1

	0x0b

	cudaResViewFormatSignedShort2

	hipResViewFormatSignedShort2

	0x0c

	cudaResViewFormatSignedShort4

	hipResViewFormatSignedShort4

	0x0d

	cudaResViewFormatUnsignedInt1

	hipResViewFormatUnsignedInt1

	0x0e

	cudaResViewFormatUnsignedInt2

	hipResViewFormatUnsignedInt2

	0x0f

	cudaResViewFormatUnsignedInt4

	hipResViewFormatUnsignedInt4

	0x10

	cudaResViewFormatSignedInt1

	hipResViewFormatSignedInt1

	0x11

	cudaResViewFormatSignedInt2

	hipResViewFormatSignedInt2

	0x12

	cudaResViewFormatSignedInt4

	hipResViewFormatSignedInt4

	0x13

	cudaResViewFormatHalf1

	hipResViewFormatHalf1

	0x14

	cudaResViewFormatHalf2

	hipResViewFormatHalf2

	0x15

	cudaResViewFormatHalf4

	hipResViewFormatHalf4

	0x16

	cudaResViewFormatFloat1

	hipResViewFormatFloat1

	0x17

	cudaResViewFormatFloat2

	hipResViewFormatFloat2

	0x18

	cudaResViewFormatFloat4

	hipResViewFormatFloat4

	0x19

	cudaResViewFormatUnsignedBlockCompressed1

	hipResViewFormatUnsignedBlockCompressed1

	0x1a

	cudaResViewFormatUnsignedBlockCompressed2

	hipResViewFormatUnsignedBlockCompressed2

	0x1b

	cudaResViewFormatUnsignedBlockCompressed3

	hipResViewFormatUnsignedBlockCompressed3

	0x1c

	cudaResViewFormatUnsignedBlockCompressed4

	hipResViewFormatUnsignedBlockCompressed4

	0x1d

	cudaResViewFormatSignedBlockCompressed4

	hipResViewFormatSignedBlockCompressed4

	0x1e

	cudaResViewFormatUnsignedBlockCompressed5

	hipResViewFormatUnsignedBlockCompressed5

	0x1f

	cudaResViewFormatSignedBlockCompressed5

	hipResViewFormatSignedBlockCompressed5

	0x20

	cudaResViewFormatUnsignedBlockCompressed6H

	hipResViewFormatUnsignedBlockCompressed6H

	0x21

	cudaResViewFormatSignedBlockCompressed6H

	hipResViewFormatSignedBlockCompressed6H

	0x22

	cudaResViewFormatUnsignedBlockCompressed7

	hipResViewFormatUnsignedBlockCompressed7

	enum

	cudaSharedMemConfig

	hipSharedMemConfig

	0

	cudaSharedMemBankSizeDefault

	hipSharedMemBankSizeDefault

	1

	cudaSharedMemBankSizeFourByte

	hipSharedMemBankSizeFourByte

	2

	cudaSharedMemBankSizeEightByte

	hipSharedMemBankSizeEightByte

	enum

	cudaSurfaceBoundaryMode

	

	0

	cudaBoundaryModeZero

	

	1

	cudaBoundaryModeClamp

	

	2

	cudaBoundaryModeTrap

	

	enum

	cudaSurfaceFormatMode

	

	0

	cudaFormatModeForced

	

	1

	cudaFormatModeAuto

	

	enum

	cudaTextureAddressMode

	hipTextureAddressMode

	0

	cudaAddressModeWrap

	hipAddressModeWrap

	1

	cudaAddressModeClamp

	hipAddressModeClamp

	2

	cudaAddressModeMirror

	hipAddressModeMirror

	3

	cudaAddressModeBorder

	hipAddressModeBorder

	enum

	cudaTextureFilterMode

	hipTextureFilterMode

	0

	cudaFilterModePoint

	hipFilterModePoint

	1

	cudaFilterModeLinear

	hipFilterModeLinear

	enum

	cudaTextureReadMode

	hipTextureReadMode

	0

	cudaReadModeElementType

	hipReadModeElementType

	1

	cudaReadModeNormalizedFloat

	hipReadModeNormalizedFloat

	enum

	cudaGLDeviceList

	

	0x01

	cudaGLDeviceListAll

	

	0x02

	cudaGLDeviceListCurrentFrame

	

	0x03

	cudaGLDeviceListNextFrame

	

	enum

	cudaGLMapFlags

	

	0x00

	cudaGLMapFlagsNone

	

	0x01

	cudaGLMapFlagsReadOnly

	

	0x02

	cudaGLMapFlagsWriteDiscard

	

	enum

	cudaD3D9DeviceList

	

	1

	cudaD3D9DeviceListAll

	

	2

	cudaD3D9DeviceListCurrentFrame

	

	3

	cudaD3D9DeviceListNextFrame

	

	enum

	cudaD3D9MapFlags

	

	0

	cudaD3D9MapFlagsNone

	

	1

	cudaD3D9MapFlagsReadOnly

	

	2

	cudaD3D9MapFlagsWriteDiscard

	

	enum

	cudaD3D9RegisterFlags

	

	0

	cudaD3D9RegisterFlagsNone

	

	1

	cudaD3D9RegisterFlagsArray

	

	enum

	cudaD3D10DeviceList

	

	1

	cudaD3D10DeviceListAll

	

	2

	cudaD3D10DeviceListCurrentFrame

	

	3

	cudaD3D10DeviceListNextFrame

	

	enum

	cudaD3D10MapFlags

	

	0

	cudaD3D10MapFlagsNone

	

	1

	cudaD3D10MapFlagsReadOnly

	

	2

	cudaD3D10MapFlagsWriteDiscard

	

	enum

	cudaD3D10RegisterFlags

	

	0

	cudaD3D10RegisterFlagsNone

	

	1

	cudaD3D10RegisterFlagsArray

	

	enum

	cudaD3D11DeviceList

	

	1

	cudaD3D11DeviceListAll

	

	2

	cudaD3D11DeviceListCurrentFrame

	

	3

	cudaD3D11DeviceListNextFrame

	

	struct

	cudaArray

	hipArray

	typedef

	cudaArray_t

	hipArray_t

	typedef

	cudaArray_const_t

	hipArray_const_t

	enum

	cudaError

	hipError_t

	typedef

	cudaError_t

	hipError_t

	typedef

	cudaEvent_t

	hipEvent_t

	typedef

	cudaGraphicsResource_t

	

	typedef

	cudaMipmappedArray_t

	hipMipmappedArray_t

	typedef

	cudaMipmappedArray_const_t

	hipMipmappedArray_const_t

	enum

	cudaOutputMode

	

	0x00

	cudaKeyValuePair

	

	0x01

	cudaCSV

	

	typedef

	cudaOutputMode_t

	

	typedef

	cudaStream_t

	hipStream_t

	typedef

	cudaStreamCallback_t

	hipStreamCallback_t

	typedef

	cudaSurfaceObject_t

	

	typedef

	cudaTextureObject_t

	

	typedef

	CUuuid_stcudaUUID_t

	

	define

	CUDA_IPC_HANDLE_SIZE

	

	define

	cudaArrayCubemap

	

	define

	cudaArrayDefault

	

	define

	cudaArrayLayered

	

	define

	cudaArraySurfaceLoadStore

	

	define

	cudaArrayTextureGather

	

	define

	cudaDeviceBlockingSync

	hipDeviceScheduleBlockingSync

	define

	cudaDeviceLmemResizeToMax

	

	define

	cudaDeviceMapHost

	

	define

	cudaDeviceMask

	

	define

	cudaDevicePropDontCare

	

	define

	cudaDeviceScheduleAuto

	hipDeviceScheduleAuto

	define

	cudaDeviceScheduleBlockingSync

	hipDeviceScheduleBlockingSync

	define

	cudaDeviceScheduleMask

	hipDeviceScheduleMask

	define

	cudaDeviceScheduleSpin

	hipDeviceScheduleSpin

	define

	cudaDeviceScheduleYield

	hipDeviceScheduleYield

	define

	cudaEventDefault

	hipEventDefault

	define

	cudaEventDisableTiming

	hipEventDisableTiming

	define

	cudaEventInterprocess

	hipEventInterprocess

	define

	cudaHostAllocDefault

	hipHostMallocDefault

	define

	cudaHostAllocMapped

	hipHostMallocMapped

	define

	cudaHostAllocPortable

	hipHostMallocPortable

	define

	cudaHostAllocWriteCombined

	hipHostMallocWriteCombined

	define

	cudaHostRegisterDefault

	hipHostRegisterDefault

	define

	cudaHostRegisterIoMemory

	hipHostRegisterIoMemory

	define

	cudaHostRegisterMapped

	hipHostRegisterMapped

	define

	cudaHostRegisterPortable

	hipHostRegisterPortable

	define

	cudaIpcMemLazyEnablePeerAccess

	hipIpcMemLazyEnablePeerAccess

	define

	cudaMemAttachGlobal

	

	define

	cudaMemAttachHost

	

	define

	cudaMemAttachSingle

	

	define

	cudaOccupancyDefault

	

	define

	cudaOccupancyDisableCachingOverride

	

	define

	cudaPeerAccessDefault

	

	define

	cudaStreamDefault

	hipStreamDefault

	define

	cudaStreamLegacy

	

	define

	cudaStreamNonBlocking

	hipStreamNonBlocking

	define

	cudaStreamPerThread

	

HIP-FAQ

Contents

	HIP-FAQ

	What APIs and features does HIP support?

	What is not supported?

	Runtime/Driver API features

	Kernel language features

	Is HIP a drop-in replacement for CUDA?

	What specific version of CUDA does HIP support?

	What libraries does HIP support?

	How does HIP compare with OpenCL?

	How does porting CUDA to HIP compare to porting CUDA to OpenCL?

	What hardware does HIP support?

	Do HIPIFY tools automatically convert all source code?

	What is NVCC?

	What is HIP-Clang?

	Why use HIP rather than supporting CUDA directly?

	Can I develop HIP code on NVIDIA CUDA platform?

	Can I develop HIP code on an AMD HIP-Clang platform?

	How to use HIP-Clang to build HIP programs?

	What is ROCclr?

	Can a HIP binary run on both AMD and NVIDIA platforms?

	Linking HIP code with host code compiled with another compiler on HIP Clang

	Installing CUDA SDK and HIP-Clang on the same machine

	HIP detects my platform incorrectly

	On CUDA, can I mix CUDA code with HIP code?

	How do I trace HIP application flow?

	Maximum limit of generic kernel launching parameter

	Shuffle functions supported on HIP platform

	How to create a guard for code that is specific to the host or the GPU?

	OpenMP is undefined when compiling with fopenmp

	Does the HIP-Clang compiler support extern shared declarations?

	How is the HIP version defined?

What APIs and features does HIP support?

HIP provides the following:

	Devices (hipSetDevice(), hipGetDeviceProperties())

	Memory management (hipMalloc(), hipMemcpy(), hipFree())

	Streams (hipStreamCreate(),hipStreamSynchronize(), hipStreamWaitEvent())

	Events (hipEventRecord(), hipEventElapsedTime())

	Kernel launching (hipLaunchKernel is a standard C/C++ function that replaces <<< >>>)

	HIP Module API to control when adn how code is loaded.

	CUDA-style kernel coordinate functions (threadIdx, blockIdx, blockDim, gridDim)

	Cross-lane instructions including shfl, ballot, any, all - Most device-side math built-ins.

	Error reporting (hipGetLastError(), hipGetErrorString())

The HIP API documentation describes each API and its limitations, if any, compared with the equivalent CUDA API.

What is not supported?

Runtime/Driver API features

At a high-level, the following features are not supported:

	Textures (partial support available)

	Dynamic parallelism (CUDA 5.0)

	Managed memory (CUDA 6.5)

	Graphics interoperability with OpenGL or Direct3D

CUDA IPC Functions (Under Development)

	CUDA array, mipmappedArray and pitched memory

	Queue priority controls

See the API Support Table for more detailed information.

Kernel language features

	C++-style device-side dynamic memory allocations (free, new, delete)
(CUDA 4.0)

	Virtual functions, indirect functions and try/catch (CUDA 4.0)

	__prof_trigger

	PTX assembly (CUDA 4.0). HIP-Clang supports inline GCN assembly..

Several kernel features are under development. See the HIP Kernel Language for more information. This includes:

	printf

Is HIP a drop-in replacement for CUDA?

No. HIP provides porting tools which do most of the work to convert CUDA code into portable C++ code that uses the HIP APIs. Most developers will port their code from CUDA to HIP and then maintain the HIP version. HIP code provides the same performance as native CUDA code, plus the benefits of running on AMD platforms.

What specific version of CUDA does HIP support?

HIP APIs and features do not map to a specific CUDA version. HIP provides a strong subset of the functionality provided in CUDA, and the
hipify tools can scan code to identify any unsupported CUDA functions. This is useful for identifying the specific features required by a given application.

However, we can provide a rough summary of the features included in each CUDA SDK and the support level in HIP. Each bullet below lists the major new language features in each CUDA release and then indicate which are supported/not supported in HIP:

	CUDA 4.0 and earlier :

	HIP supports CUDA 4.0 except for the limitations described above.

	CUDA 5.0 :

	Dynamic Parallelism (not supported)

	cuIpc functions (under development).

	CUDA 5.5 :

	CUPTI (not directly supported, AMD
GPUPerfAPI [http://developer.amd.com/tools-and-sdks/graphics-development/gpuperfapi/]
can be used as an alternative in some cases)

	CUDA 6.0 :

	Managed memory (under development)

	CUDA 6.5 :

	__shfl intriniscs (supported)

	CUDA 7.0 :

	Per-thread-streams (under development)

	C++11 (Hip-Clang supports all of C++11, all of C++14 and some C++17 features)

	CUDA 7.5 :

	float16 (supported)

	CUDA 8.0 :

	Page Migration including cudaMemAdvise, cudaMemPrefetch, other cudaMem* APIs(not supported)

	CUDA 9.0 :

	Cooperative Launch, Surface Object Management, Version Management

What libraries does HIP support?

HIP includes growing support for the four key math libraries using hcBlas, hcFft, hcrng and hcsparse, as well as MIOpen for machine
intelligence applications. These offer pointer-based memory interfaces (as opposed to opaque buffers) and can be easily interfaced with other HIP applications. The hip interfaces support both ROCm and CUDA paths, with familiar library interfaces.

	hipBlas [https://github.com/ROCmSoftwarePlatform/hipBLAS], which
utilizes
rocBlas [https://github.com/ROCmSoftwarePlatform/rocBLAS].

	hipfft [https://github.com/ROCmSoftwarePlatform/hcFFT]

	hipsparse [https://github.com/ROCmSoftwarePlatform/hcSPARSE]

	hiprng [https://github.com/ROCmSoftwarePlatform/hcrng]

Additionally, some of the cublas routines are automatically converted to hipblas equivalents by the HIPIFY tools. These APIs use cublas or hcblas depending on the platform and replace the need to use conditional compilation.

How does HIP compare with OpenCL?

Both AMD and Nvidia support OpenCL 1.2 on their devices so that developers can write portable code. HIP offers several benefits over OpenCL:

	Developers can code in C++ as well as mix host and device C++ code in their source files. HIP C++ code can use templates, lambdas, classes and so on.

	The HIP API is less verbose than OpenCL and is familiar to CUDA developers.

	Because both CUDA and HIP are C++ languages, porting from CUDA to HIP is significantly easier than porting from CUDA to OpenCL.

	HIP uses the best available development tools on each platform: on Nvidia GPUs, HIP code compiles using NVCC and can

employ the nSight profiler and debugger (unlike OpenCL on Nvidia GPUs).

	HIP provides pointers and host-side pointer arithmetic.

	HIP provides device-level control over memory allocation and placement.

	HIP offers an offline compilation model.

How does porting CUDA to HIP compare to porting CUDA to OpenCL?

Both HIP and CUDA are dialects of C++, and thus porting between them is relatively straightforward. Both dialects support templates, classes, lambdas, and other C++ constructs. As one example, the hipify-perl tool was originally a Perl script that used simple text conversions from CUDA to HIP. HIP and CUDA provide similar math library calls as well. In summary, the HIP philosophy was to make the HIP language close enough to CUDA that the porting effort is relatively simple. This reduces the potential for error, and also makes it easy to automate the translation. HIP’s goal is to quickly get the ported program running on both platforms with little manual intervention, so that the programmer can focus on performance optimizations.

There have been several tools that have attempted to convert CUDA into OpenCL, such as CU2CL. OpenCL is a C99-based kernel language (rather than C++) and also does not support single-source compilation. As a result, the OpenCL syntax is different from CUDA, and the porting tools have to perform some heroic transformations to bridge this gap. The tools also struggle with more complex CUDA applications, in particular, those that use templates, classes, or other C++ features inside the kernel.

What hardware does HIP support?

	For a list of AMD-supported platforms, refer to the HIP Programming Guide.

	For Nvidia platforms, HIP requires Unified Memory and should run on any device supporting CUDA SDK 6.0 or newer. We have tested the NVIDIA Titan and Tesla K40.

Do HIPIFY tools automatically convert all source code?

Typically, HIPIFY tools can automatically convert almost all run-time code, and the coordinate indexing device code (threadIdx.x -> hipThreadIdx_x). Most device code needs no additional conversion since HIP and CUDA have similar names for math and built-in functions. The hipify-clang tool will automatically modify the kernel signature as needed (automating a step that used to be done manually). Additional porting may be required to deal with architecture feature queries or with CUDA capabilities that HIP doesn’t support. In general, developers should always expect to perform some platform-specific tuning and optimization.

What is NVCC?

NVCC is Nvidia’s compiler driver for compiling CUDA C++ code into PTX or device code for Nvidia GPUs. It’s a closed-source binary compiler that is provided by the CUDA SDK.

What is HIP-Clang?

HIP-Clang is a Clang/LLVM based compiler to compile HIP programs, which can run on the AMD platform.

Why use HIP rather than supporting CUDA directly?

While HIP is a strong subset of the CUDA, it is a subset. The HIP layer allows that subset to be clearly defined and documented. Developers who code to the HIP API can be assured their code will remain portable across Nvidia and AMD platforms. In addition, HIP defines portable mechanisms to query architectural features and supports a larger 64-bit wavesize which expands the return type for cross-lane functions like ballot and shuffle from 32-bit ints to 64-bit ints.

Can I develop HIP code on NVIDIA CUDA platform?

Yes. HIP’s CUDA path only exposes the APIs and functionality that work on both NVCC and AMDGPU back-ends. APIs, parameters, and features which exist in CUDA but not in HIP-Clang will typically result in compile-time or run-time errors. Developers need to use the HIP API for most accelerator code and bracket any CUDA-specific code with preprocessor conditionals. Developers concerned about portability should, of course, run on both platforms, and should expect to tune for performance. In some cases, CUDA has a richer set of modes for some APIs, and some C++ capabilities such as virtual functions - see the HIP @API documentation for more details.

Can I develop HIP code on an AMD HIP-Clang platform?

Yes. HIP-Clang path only exposes the APIs and functions that work on AMD runtime back ends. APIs, parameters, and features that appear in HIP-Clang but not CUDA will typically cause compile or run-time errors. Developers must use the HIP API for most accelerator code and bracket any HIP-Clang specific code with preprocessor conditionals. Those concerned about portability should, of course, test their code on both platforms and should tune it for performance.

Typically, HIP-Clang supports a more modern set of C++11/C++14/C++17 features, so HIP developers who want portability should be careful when using advanced C++ features on the HIP-Clang path.

How to use HIP-Clang to build HIP programs?

The environment variable can be used to set compiler path:

	HIP_CLANG_PATH: path to hip-clang. When set, this variable let hipcc to use hip-clang for compilation/linking.

There is an alternative environment variable to set compiler path:

	HIP_ROCCLR_HOME: path to root directory of the HIP-ROCclr runtime. When set, this variable let hipcc use hip-clang from the ROCclr distribution.

NOTE: If HIP_ROCCLR_HOME is set, there is no need to set HIP_CLANG_PATH since hipcc will deduce them from HIP_ROCCLR_HOME.

What is ROCclr?

ROCclr (Radeon Open Compute Common Language Runtime) is a virtual device interface that compute runtimes interact with backends such as ROCr on Linux, as well as PAL on Windows.

Can a HIP binary run on both AMD and NVIDIA platforms?

HIP is a source-portable language that can be compiled to run on either AMD or NVIDIA platform. HIP tools don’t create a fat binary that can run on either platform.

Linking HIP code with host code compiled with another compiler on HIP Clang

Yes. HIP generates the object code which conforms to the GCC ABI, and also links with libstdc++. This means you can compile host code with the compiler of your choice and link the generated object code with GPU code compiled with HIP. Larger projects often contain a mixture of accelerator code (initially written in CUDA with nvcc) and host code (compiled with gcc, icc, or clang). These projects can convert the accelerator code to HIP, compile that code with hipcc, and link with object code from their preferred compiler.

Installing CUDA SDK and HIP-Clang on the same machine

Yes. You can use HIP_PLATFORM to choose which path hipcc targets. This configuration can be useful when using HIP to develop an application which is portable to both AMD and NVIDIA.

HIP detects my platform incorrectly

HIP sets the platform to AMD and use HIP-Clang as the compiler if the AMD graphics driver is installed and has detected an AMD GPU.

If this is not what you want, you can force HIP to recognize the platform by setting the following,

export HIP_PLATFORM=amd

HIP then sets and uses the correct AMD compiler and runtime:

HIP_COMPILER=clang

HIP_RUNTIME=rocclr

To choose the NVIDIA platform, you can set,

export HIP_PLATFORM=nvidia

In this case, HIP will set and use the following,

HIP_COMPILER=nvcc

HIP_RUNTIME=cuda

A symptom of this problem is the error message:

‘an unknown error(11) at square.hipref.cpp:56’

This error can occur if you have a CUDA installation on an AMD platform, and HIP incorrectly detects the platform as nvcc.
HIP may be able to compile the application using the nvcc tool-chain, however, it will generate this error at runtime as the platform does not have a CUDA device.

On CUDA, can I mix CUDA code with HIP code?

Yes. Most HIP data structures (hipStream_t, hipEvent_t) are typedefs to CUDA equivalents and can be intermixed. Both CUDA and HIP use integer device ids. One notable exception is that hipError_t is a new type, and cannot be used where a cudaError_t is expected. In these cases, refactor the code to remove the expectation. Alternatively, hip_runtime_api.h defines functions which convert between the error code spaces:

hipErrorToCudaError hipCUDAErrorTohipError hipCUResultTohipError

If platform portability is important, use #ifdef HIP_PLATFORM_NVCC to guard the CUDA-specific code.

How do I trace HIP application flow?

See the HIP Profiling Guide for more information.

Maximum limit of generic kernel launching parameter

Product of block.x, block.y, and block.z should be less than 1024.

Shuffle functions supported on HIP platform

__shfl_*_sync is not supported on HIP but for NVCC path CUDA 9.0. Above all, shuffle calls get redirected to its sync version.

How to create a guard for code that is specific to the host or the GPU?

The compiler defines the __HIP_DEVICE_COMPILE__ macro only when compiling the code for the GPU. It could be used to guard code that is specific to the host or the GPU.

OpenMP is undefined when compiling with fopenmp

When compiling an OpenMP source file with hipcc -fopenmp, the compiler may generate an error if there is a reference to the _OPENMP macro. This is due to a limitation in hipcc that treats any source file type (e.g., .cpp) as HIP translation unit leading to some conflicts with the OpenMP language switch. If the OpenMP source file doesn’t contain any HIP language construct, you could work around this issue by adding the -x c++ switch to force the compiler to treat the file as regular C++.

Another approach would be to guard the OpenMP code with #ifdef _OPENMP so that the code block is disabled when compiling for the GPU. The __HIP_DEVICE_COMPILE__ macro defined by the HIP compiler when compiling the GPU code could also be used for guarding code paths specific to the host or the GPU.

Does the HIP-Clang compiler support extern shared declarations?

Previously, it was required to declare dynamic shared memory using the HIP_DYNAMIC_SHARED macro for accuracy, as using static shared memory in the same kernel could result in overlapping memory ranges and data-races.

Now, the HIP-Clang compiler provides support for extern shared declarations, and the HIP_DYNAMIC_SHARED option is no longer required. You may use the standard extern definition:

extern __shared__ type var[];

How is the HIP version defined?

The HIP version definition is updated since the ROCm v4.2 release as follows:

HIP_VERSION=HIP_VERSION_MAJOR * 10000000 + HIP_VERSION_MINOR * 100000 + HIP_VERSION_PATCH)

The HIP version can be queried from the following HIP API call,

hipRuntimeGetVersion(&runtimeVersion);

The version returned will always be greater than the versions in previous ROCm releases.

NOTE: The version definition of HIP runtime is different from CUDA. On the AMD platform, the function returns HIP runtime version, while on the NVIDIA platform, it returns CUDA runtime version. There is no mapping or a correlation between HIP version and CUDA version.

HIP Programming Guide

HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in compute kernels, including classes, namespaces, operator overloading, templates and more. Additionally, it defines other language features designed specifically to target accelerators, such as the following:

	A kernel-launch syntax that uses standard C++, resembles a function call and is portable to all HIP targets

	Short-vector headers that can serve on a host or a device

	Math functions resembling those in the “math.h” header included with standard C++ compilers

	Built-in functions for accessing specific GPU hardware capabilities

This section describes the built-in variables and functions accessible from the HIP kernel. It’s intended for readers who are familiar with Cuda kernel syntax and want to understand how HIP is different.

Features are marked with one of the following keywords:

	Supported—HIP supports the feature with a Cuda-equivalent function

	Not supported—HIP does not support the feature

	Under development—the feature is under development but not yet available

Function-Type Qualifiers

__device__

Supported __device__ functions are

	Executed on the device

	Called from the device only

The __device__ keyword can combine with the host keyword.

__global__

Supported __global__ functions are

	Executed on the device

	Called (“launched”) from the host

HIP __global__ functions must have a void return type.

HIP lacks dynamic-parallelism support, so __global__ functions cannot be called from the device.

__host__

Supported __host__ functions are

	Executed on the host

	Called from the host

__host__ can combine with __device__, in which case the function compiles for both the host and device. These functions cannot use the HIP grid coordinate functions (for example, “hipThreadIdx_x”). A possible workaround is to pass the necessary coordinate info as an argument to the function.

__host__ cannot combine with __global__.

HIP parses the __noinline__ and __forceinline__ keywords and converts them to the appropriate Clang attributes. The hcc compiler, however, currently in-lines all device functions, so they are effectively ignored.

Calling __global__ Functions

__global__ functions are often referred to as kernels, and calling one is termed launching the kernel. These functions require the caller to specify an “execution configuration” that includes the grid and block dimensions. The execution configuration can also include other information for the launch, such as the amount of additional shared memory to allocate and the stream where the kernel should execute. HIP introduces a standard C++ calling convention to pass the execution configuration to the kernel (this convention replaces the Cuda <<< >>> syntax). In HIP,

	Kernels launch with the “hipLaunchKernelGGL” function

	
	The first five parameters to hipLaunchKernelGGL are the following:
	
	symbol kernelName: the name of the kernel to launch. To support template kernels which contains “,” use the HIP_KERNEL_NAME macro. The hipify tools insert this automatically.

	dim3 gridDim: 3D-grid dimensions specifying the number of blocks to launch.

	dim3 blockDim: 3D-block dimensions specifying the number of threads in each block.

	size_t dynamicShared: amount of additional shared memory to allocate when launching the kernel

	hipStream_t: stream where the kernel should execute. A value of 0 corresponds to the NULL stream(see
Synchronization Functions).

	Kernel arguments follow these first five parameters

//Example pseudo code introducing hipLaunchKernelGGL
__global__ MyKernel(float *A, float *B, float *C, size_t N)
{
...
}
//Replace MyKernel<<<dim3(gridDim), dim3(gridDim), 0, 0>>> (a,b,c,n);
hipLaunchKernelGGL(MyKernel, dim3(gridDim), dim3(groupDim), 0/*dynamicShared*/, 0/*stream), a, b, c, n)

The hipLaunchKernelGGL macro always starts with the five parameters specified above, followed by the kernel arguments. The Hipify script automatically converts Cuda launch syntax to hipLaunchKernelGGL, including conversion of optional arguments in <<< >>> to the five required hipLaunchKernelGGL parameters. The dim3 constructor accepts zero to three arguments and will by default initialize unspecified dimensions to 1. See dim3. The kernel uses the coordinate built-ins (hipThread*, hipBlock*, hipGrid*) to determine coordinate index and coordinate bounds of the work item that’s currently executing.

Kernel-Launch Example

// Example showing use of host/device function
__host__ __device__
float PlusOne(float x)
{
 return x + 1.0;
}

__global__
void
MyKernel (const float *a, const float *b, float *c, unsigned N)
{
 unsigned gid = hipThreadIdx_x; // <- coordinate index function
 if (gid < N) {
 c[gid] = a[gid] + PlusOne(b[gid]);
 }
}
void callMyKernel()
{
 float *a, *b, *c; // initialization not shown...
 unsigned N = 1000000;
 const unsigned blockSize = 256;
 hipLaunchKernelGGL(MyKernel,
 (N/blockSize), dim3(blockSize), 0, 0, a,b,c,N);
}

Variable-Type Qualifiers

__constant__

The __constant__ keyword is supported. The host writes constant memory before launching the kernel; from the GPU, this memory is read-only during kernel execution. The functions for accessing constant memory (hipGetSymbolAddress(), hipGetSymbolSize(), hipMemcpyToSymbol(), hipMemcpyToSymbolAsync, hipMemcpyFromSymbol, hipMemcpyFromSymbolAsync) are under development.

__shared__

The __shared__ keyword is supported.
extern __shared__ allows the host to dynamically allocate shared memory and is specified as a launch parameter. HIP uses an alternate syntax based on the HIP_DYNAMIC_SHARED macro.

__managed__

Managed memory, including the __managed__ keyword, are not supported in HIP.

__restrict__

The __restrict__ keyword tells the compiler that the associated memory pointer will not alias with any other pointer in the kernel or function. This feature can help the compiler generate better code. In most cases, all pointer arguments must use this keyword to realize the benefit. hcc support for the __restrict__ qualifier on kernel arguments is under development.

Built-In Variables

Coordinate Built-Ins

These built-ins determine the coordinate of the active work item in the execution grid. They are defined in hip_runtime.h (rather than being implicitly defined by the compiler).

	HIP Syntax

	Cuda Syntax

	hipThreadIdx_x

	threadIdx.x

	hipThreadIdx_y

	threadIdx.y

	hipThreadIdx_z

	threadIdx.z

	hipBlockIdx_x

	blockIdx.x

	hipBlockIdx_y

	blockIdx.y

	hipBlockIdx_z

	blockIdx.z

	hipBlockDim_x

	blockDim.x

	hipBlockDim_y

	blockDim.y

	hipBlockDim_z

	blockDim.z

	hipGridDim_x

	gridDim.x

	hipGridDim_y

	gridDim.y

	hipGridDim_z

	gridDim.z

warpSize

The warpSize variable is of type int and contains the warp size (in threads) for the target device. Note that all current Nvidia devices return 32 for this variable, and all current AMD devices return 64. Device code should use the warpSize built-in to develop portable wave-aware code.

Vector Types

Note that these types are defined in hip_runtime.h and are not automatically provided by the compiler.

Short Vector Types

Short vector types derive from the basic integer and floating-point types. They are structures defined in hip_vector_types.h. The first, second, third and fourth components of the vector are accessible through the x, y, z and w fields, respectively. All the short vector types support a constructor function of the form make_<type_name>(). For example, float4 make_float4(float x, float y, float z, float w) creates a vector of type float4 and value (x,y,z,w).

HIP supports the following short vector formats:

	
	Signed Integers:
	
	char1, char2, char3, char4

	short1, short2, short3, short4

	int1, int2, int3, int4

	long1, long2, long3, long4

	longlong1, longlong2, longlong3, longlong4

	
	Unsigned Integers:
	
	uchar1, uchar2, uchar3, uchar4

	ushort1, ushort2, ushort3, ushort4

	uint1, uint2, uint3, uint4

	ulong1, ulong2, ulong3, ulong4

	ulonglong1, ulonglong2, ulonglong3, ulonglong4

	
	Floating Points
	
	float1, float2, float3, float4

	double1, double2, double3, double4

dim3

dim3 is a three-dimensional integer vector type commonly used to specify grid and group dimensions. Unspecified dimensions are initialized to 1.

typedef struct dim3 {
 uint32_t x;
 uint32_t y;
 uint32_t z;

 dim3(uint32_t _x=1, uint32_t _y=1, uint32_t _z=1) : x(_x), y(_y), z(_z) {};
};

Memory-Fence Instructions

HIP supports __threadfence() and __threadfence_block().

HIP provides workaround for threadfence_system() under HCC path. To enable the workaround, HIP should be built with environment variable HIP_COHERENT_HOST_ALLOC enabled. In addition,the kernels that use __threadfence_system() should be modified as follows:

	The kernel should only operate on finegrained system memory; which should be allocated with hipHostMalloc().

	Remove all memcpy for those allocated finegrained system memory regions.

Synchronization Functions

The __syncthreads() built-in function is supported in HIP. The __syncthreads_count(int), __syncthreads_and(int) and __syncthreads_or(int) functions are under development.

Math Functions

hcc supports a set of math operations callable from the device.

Single Precision Mathematical Functions

Following is the list of supported single precision mathematical functions.

	Function

	Supported on Host

	Supported on Device

	float acosf (float x)

Calculate the arc cosine of the input argument.

	✓

	✓

	float acoshf (float x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

	✓

	✓

	float asinf (float x)

Calculate the arc sine of the input argument.

	✓

	✓

	float asinhf (float x)

Calculate the arc hyperbolic sine of the input argument.

	✓

	✓

	float atan2f (float y, float x)

Calculate the arc tangent of the ratio of first and second input arguments.

	✓

	✓

	float atanf (float x)

Calculate the arc tangent of the input argument.

	✓

	✓

	float atanhf (float x)

Calculate the arc hyperbolic tangent of the input argument.

	✓

	✓

	float cbrtf (float x)

Calculate the cube root of the input argument.

	✓

	✓

	float ceilf (float x)

Calculate ceiling of the input argument.

	✓

	✓

	float copysignf (float x, float y)

Create value with given magnitude, copying sign of second value.

	✓

	✓

	float cosf (float x)

Calculate the cosine of the input argument.

	✓

	✓

	float coshf (float x)

Calculate the hyperbolic cosine of the input argument.

	✓

	✓

	float erfcf (float x)

Calculate the complementary error function of the input argument.

	✓

	✓

	float erff (float x)

Calculate the error function of the input argument.

	✓

	✓

	float exp10f (float x)

Calculate the base 10 exponential of the input argument.

	✓

	✓

	float exp2f (float x)

Calculate the base 2 exponential of the input argument.

	✓

	✓

	float expf (float x)

Calculate the base e exponential of the input argument.

	✓

	✓

	float expm1f (float x)

Calculate the base e exponential of the input argument, minus 1.

	✓

	✓

	float fabsf (float x)

Calculate the absolute value of its argument.

	✓

	✓

	float fdimf (float x, float y)

Compute the positive difference between x and y.

	✓

	✓

	float floorf (float x)

Calculate the largest integer less than or equal to x.

	✓

	✓

	float fmaf (float x, float y, float z)

Compute x × y + z as a single operation.

	✓

	✓

	float fmaxf (float x, float y)

Determine the maximum numeric value of the arguments.

	✓

	✓

	float fminf (float x, float y)

Determine the minimum numeric value of the arguments.

	✓

	✓

	float fmodf (float x, float y)

Calculate the floating-point remainder of x / y.

	✓

	✓

	float frexpf (float x, int* nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✗

	float hypotf (float x, float y)

Calculate the square root of the sum of squares of two arguments.

	✓

	✓

	int ilogbf (float x)

Compute the unbiased integer exponent of the argument.

	✓

	✓

	__RETURN_TYPE1 isfinite (float a)

Determine whether argument is finite.

	✓

	✓

	__RETURN_TYPE1 isinf (float a)

Determine whether argument is infinite.

	✓

	✓

	__RETURN_TYPE1 isnan (float a)

Determine whether argument is a NaN.

	✓

	✓

	float ldexpf (float x, int exp)

Calculate the value of x ⋅ 2exp.

	✓

	✓

	float log10f (float x)

Calculate the base 10 logarithm of the input argument.

	✓

	✓

	float log1pf (float x)

Calculate the value of loge(1 + x).

	✓

	✓

	float logbf (float x)

Calculate the floating point representation of the exponent of the input argument.

	✓

	✓

	float log2f (float x)

Calculate the base 2 logarithm of the input argument.

	✓

	✓

	float logf (float x)

Calculate the natural logarithm of the input argument.

	✓

	✓

	float modff (float x, float* iptr)

Break down the input argument into fractional and integral parts.

	✓

	✗

	float nanf (const char* tagp)

Returns “Not a Number”” value.”

	✗

	✓

	float nearbyintf (float x)

Round the input argument to the nearest integer.

	✓

	✓

	float powf (float x, float y)

Calculate the value of first argument to the power of second argument.

	✓

	✓

	float remainderf (float x, float y)

Compute single-precision floating-point remainder.

	✓

	✓

	float remquof (float x, float y, int* quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✗

	float roundf (float x)

Round to nearest integer value in floating-point.

	✓

	✓

	float scalbnf (float x, int n)

Scale floating-point input by integer power of two.

	✓

	✓

	__RETURN_TYPE1 signbit (float a)

Return the sign bit of the input.

	✓

	✓

	void sincosf (float x, float* sptr, float* cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✗

	float sinf (float x)

Calculate the sine of the input argument.

	✓

	✓

	float sinhf (float x)

Calculate the hyperbolic sine of the input argument.

	✓

	✓

	float sqrtf (float x)

Calculate the square root of the input argument.

	✓

	✓

	float tanf (float x)

Calculate the tangent of the input argument.

	✓

	✓

	float tanhf (float x)

Calculate the hyperbolic tangent of the input argument.

	✓

	✓

	float truncf (float x)

Truncate input argument to the integral part.

	✓

	✓

	float tgammaf (float x)

Calculate the gamma function of the input argument.

	✓

	✓

	float erfcinvf (float y)

Calculate the inverse complementary function of the input argument.

	✓

	✓

	float erfcxf (float x)

Calculate the scaled complementary error function of the input argument.

	✓

	✓

	float erfinvf (float y)

Calculate the inverse error function of the input argument.

	✓

	✓

	float fdividef (float x, float y)

Divide two floating point values.

	✓

	✓

	float frexpf (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✓

	float j0f (float x)

Calculate the value of the Bessel function of the first kind of order 0 for the input argument.

	✓

	✓

	float j1f (float x)

Calculate the value of the Bessel function of the first kind of order 1 for the input argument.

	✓

	✓

	float jnf (int n, float x)

Calculate the value of the Bessel function of the first kind of order n for the input argument.

	✓

	✓

	float lgammaf (float x)

Calculate the natural logarithm of the absolute value of the gamma function of the input argument.

	✓

	✓

	long long int llrintf (float x)

Round input to nearest integer value.

	✓

	✓

	long long int llroundf (float x)

Round to nearest integer value.

	✓

	✓

	long int lrintf (float x)

Round input to nearest integer value.

	✓

	✓

	long int lroundf (float x)

Round to nearest integer value.

	✓

	✓

	float modff (float x, float *iptr)

Break down the input argument into fractional and integral parts.

	✓

	✓

	float nextafterf (float x, float y)

Returns next representable single-precision floating-point value after argument.

	✓

	✓

	float norm3df (float a, float b, float c)

Calculate the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float norm4df (float a, float b, float c, float d)

Calculate the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	float normcdff (float y)

Calculate the standard normal cumulative distribution function.

	✓

	✓

	float normcdfinvf (float y)

Calculate the inverse of the standard normal cumulative distribution function.

	✓

	✓

	float normf (int dim, const float *a)

Calculate the square root of the sum of squares of any number of coordinates.

	✓

	✓

	float rcbrtf (float x)

Calculate the reciprocal cube root function.

	✓

	✓

	float remquof (float x, float y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✓

	float rhypotf (float x, float y)

Calculate one over the square root of the sum of squares of two arguments.

	✓

	✓

	float rintf (float x)

Round input to nearest integer value in floating-point.

	✓

	✓

	float rnorm3df (float a, float b, float c)

Calculate one over the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float rnorm4df (float a, float b, float c, float d)

Calculate one over the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	float rnormf (int dim, const float *a)

Calculate the reciprocal of square root of the sum of squares of any number of coordinates.

	✓

	✓

	float scalblnf (float x, long int n)

Scale floating-point input by integer power of two.

	✓

	✓

	void sincosf (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✓

	void sincospif (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

	✓

	✓

	float y0f (float x)

Calculate the value of the Bessel function of the second kind of order 0 for the input argument.

	✓

	✓

	float y1f (float x)

Calculate the value of the Bessel function of the second kind of order 1 for the input argument.

	✓

	✓

	float ynf (int n, float x)

Calculate the value of the Bessel function of the second kind of order n for the input argument.

	✓

	✓

[1] __RETURN_TYPE is dependent on compiler. It is usually ‘int’ for C compilers and ‘bool’ for C++ compilers.

Double Precision Mathematical Functions

Following is the list of supported double precision mathematical functions.

	Function

	Supported on Host

	Supported on Device

	double acos (double x)

Calculate the arc cosine of the input argument.

	✓

	✓

	double acosh (double x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

	✓

	✓

	double asin (double x)

Calculate the arc sine of the input argument.

	✓

	✓

	double asinh (double x)

Calculate the arc hyperbolic sine of the input argument.

	✓

	✓

	double atan (double x)

Calculate the arc tangent of the input argument.

	✓

	✓

	double atan2 (double y, double x)

Calculate the arc tangent of the ratio of first and second input arguments.

	✓

	✓

	double atanh (double x)

Calculate the arc hyperbolic tangent of the input argument.

	✓

	✓

	double cbrt (double x)

Calculate the cube root of the input argument.

	✓

	✓

	double ceil (double x)

Calculate ceiling of the input argument.

	✓

	✓

	double copysign (double x, double y)

Create value with given magnitude, copying sign of second value.

	✓

	✓

	double cos (double x)

Calculate the cosine of the input argument.

	✓

	✓

	double cosh (double x)

Calculate the hyperbolic cosine of the input argument.

	✓

	✓

	double erf (double x)

Calculate the error function of the input argument.

	✓

	✓

	double erfc (double x)

Calculate the complementary error function of the input argument.

	✓

	✓

	double exp (double x)

Calculate the base e exponential of the input argument.

	✓

	✓

	double exp10 (double x)

Calculate the base 10 exponential of the input argument.

	✓

	✓

	double exp2 (double x)

Calculate the base 2 exponential of the input argument.

	✓

	✓

	double expm1 (double x)

Calculate the base e exponential of the input argument, minus 1.

	✓

	✓

	double fabs (double x)

Calculate the absolute value of the input argument.

	✓

	✓

	double fdim (double x, double y)

Compute the positive difference between x and y.

	✓

	✓

	double floor (double x)

Calculate the largest integer less than or equal to x.

	✓

	✓

	double fma (double x, double y, double z)

Compute x × y + z as a single operation.

	✓

	✓

	double fmax (double , double)

Determine the maximum numeric value of the arguments.

	✓

	✓

	double fmin (double x, double y)

Determine the minimum numeric value of the arguments.

	✓

	✓

	double fmod (double x, double y)

Calculate the floating-point remainder of x / y.

	✓

	✓

	double frexp (double x, int* nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✗

	double hypot (double x, double y)

Calculate the square root of the sum of squares of two arguments.

	✓

	✓

	int ilogb (double x)

Compute the unbiased integer exponent of the argument.

	✓

	✓

	__RETURN_TYPE1 isfinite (double a)

Determine whether argument is finite.

	✓

	✓

	__RETURN_TYPE1 isinf (double a)

Determine whether argument is infinite.

	✓

	✓

	__RETURN_TYPE1 isnan (double a)

Determine whether argument is a NaN.

	✓

	✓

	double ldexp (double x, int exp)

Calculate the value of x ⋅ 2exp.

	✓

	✓

	double log (double x)

Calculate the base e logarithm of the input argument.

	✓

	✓

	double log10 (double x)

Calculate the base 10 logarithm of the input argument.

	✓

	✓

	double log1p (double x)

Calculate the value of loge(1 + x).

	✓

	✓

	double log2 (double x)

Calculate the base 2 logarithm of the input argument.

	✓

	✓

	double logb (double x)

Calculate the floating point representation of the exponent of the input argument.

	✓

	✓

	double modf (double x, double* iptr)

Break down the input argument into fractional and integral parts.

	✓

	✗

	double nan (const char* tagp)

Returns “Not a Number”” value.”

	✗

	✓

	double nearbyint (double x)

Round the input argument to the nearest integer.

	✓

	✓

	double pow (double x, double y)

Calculate the value of first argument to the power of second argument.

	✓

	✓

	double remainder (double x, double y)

Compute double-precision floating-point remainder.

	✓

	✓

	double remquo (double x, double y, int* quo)

Compute double-precision floating-point remainder and part of quotient.

	✓

	✗

	double round (double x)

Round to nearest integer value in floating-point.

	✓

	✓

	double scalbn (double x, int n)

Scale floating-point input by integer power of two.

	✓

	✓

	__RETURN_TYPE1 signbit (double a)

Return the sign bit of the input.

	✓

	✓

	double sin (double x)

Calculate the sine of the input argument.

	✓

	✓

	void sincos (double x, double* sptr, double* cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✗

	double sinh (double x)

Calculate the hyperbolic sine of the input argument.

	✓

	✓

	double sqrt (double x)

Calculate the square root of the input argument.

	✓

	✓

	double tan (double x)

Calculate the tangent of the input argument.

	✓

	✓

	double tanh (double x)

Calculate the hyperbolic tangent of the input argument.

	✓

	✓

	double tgamma (double x)

Calculate the gamma function of the input argument.

	✓

	✓

	double trunc (double x)

Truncate input argument to the integral part.

	✓

	✓

	double erfcinv (double y)

Calculate the inverse complementary function of the input argument.

	✓

	✓

	double erfcx (double x)

Calculate the scaled complementary error function of the input argument.

	✓

	✓

	double erfinv (double y)

Calculate the inverse error function of the input argument.

	✓

	✓

	double frexp (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✓

	double j0 (double x)

Calculate the value of the Bessel function of the first kind of order 0 for the input argument.

	✓

	✓

	double j1 (double x)

Calculate the value of the Bessel function of the first kind of order 1 for the input argument.

	✓

	✓

	double jn (int n, double x)

Calculate the value of the Bessel function of the first kind of order n for the input argument.

	✓

	✓

	double lgamma (double x)

Calculate the natural logarithm of the absolute value of the gamma function of the input argument.

	✓

	✓

	long long int llrint (double x)

Round input to nearest integer value.

	✓

	✓

	long long int llround (double x)

Round to nearest integer value.

	✓

	✓

	long int lrint (double x)

Round input to nearest integer value.

	✓

	✓

	long int lround (double x)

Round to nearest integer value.

	✓

	✓

	double modf (double x, double *iptr)

Break down the input argument into fractional and integral parts.

	✓

	✓

	double nextafter (double x, double y)

Returns next representable single-precision floating-point value after argument.

	✓

	✓

	double norm3d (double a, double b, double c)

Calculate the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float norm4d (double a, double b, double c, double d)

Calculate the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	double normcdf (double y)

Calculate the standard normal cumulative distribution function.

	✓

	✓

	double normcdfinv (double y)

Calculate the inverse of the standard normal cumulative distribution function.

	✓

	✓

	double rcbrt (double x)

Calculate the reciprocal cube root function.

	✓

	✓

	double remquo (double x, double y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✓

	double rhypot (double x, double y)

Calculate one over the square root of the sum of squares of two arguments.

	✓

	✓

	double rint (double x)

Round input to nearest integer value in floating-point.

	✓

	✓

	double rnorm3d (double a, double b, double c)

Calculate one over the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	double rnorm4d (double a, double b, double c, double d)

Calculate one over the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	double rnorm (int dim, const double *a)

Calculate the reciprocal of square root of the sum of squares of any number of coordinates.

	✓

	✓

	double scalbln (double x, long int n)

Scale floating-point input by integer power of two.

	✓

	✓

	void sincos (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✓

	void sincospi (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

	✓

	✓

	double y0f (double x)

Calculate the value of the Bessel function of the second kind of order 0 for the input argument.

	✓

	✓

	double y1 (double x)

Calculate the value of the Bessel function of the second kind of order 1 for the input argument.

	✓

	✓

	double yn (int n, double x)

Calculate the value of the Bessel function of the second kind of order n for the input argument.

	✓

	✓

[1] __RETURN_TYPE is dependent on compiler. It is usually ‘int’ for C compilers and ‘bool’ for C++ compilers.

Integer Intrinsics

Following is the list of supported integer intrinsics. Note that intrinsics are supported on device only.

	Function

	unsigned int __brev (unsigned int x)

Reverse the bit order of a 32 bit unsigned integer.

	unsigned long long int __brevll (unsigned long long int x)

Reverse the bit order of a 64 bit unsigned integer.

	int __clz (int x)

Return the number of consecutive high-order zero bits in a 32 bit integer.

	unsigned int __clz(unsigned int x)

Return the number of consecutive high-order zero bits in 32 bit unsigned integer.

	int __clzll (long long int x)

Count the number of consecutive high-order zero bits in a 64 bit integer.

	unsigned int __clzll(long long int x)

Return the number of consecutive high-order zero bits in 64 bit signed integer.

	unsigned int __ffs(unsigned int x)

Find the position of least signigicant bit set to 1 in a 32 bit unsigned integer.1

	unsigned int __ffs(int x)

Find the position of least signigicant bit set to 1 in a 32 bit signed integer.

	unsigned int __ffsll(unsigned long long int x)

Find the position of least signigicant bit set to 1 in a 64 bit unsigned integer.1

	unsigned int __ffsll(long long int x)

Find the position of least signigicant bit set to 1 in a 64 bit signed integer.

	unsigned int __popc (unsigned int x)

Count the number of bits that are set to 1 in a 32 bit integer.

	int __popcll (unsigned long long int x)

Count the number of bits that are set to 1 in a 64 bit integer.

	int __mul24 (int x int y)

Multiply two 24bit integers.

	unsigned int __umul24 (unsigned int x unsigned int y)

Multiply two 24bit unsigned integers.

	[1]

	The hcc implementation of __ffs() and __ffsll() contains code to add a constant +1 to produce the ffs result format.

	For the cases where this overhead is not acceptable and programmer is willing to specialize for the platform

	hcc provides hc::__lastbit_u32_u32(unsigned int input) and hc::__lastbit_u32_u64(unsigned long long int input).

	The index returned by _lastbit instructions starts at -1 while for ffs the index starts at 0.

Floating-point Intrinsics

Following is the list of supported floating-point intrinsics. Note that intrinsics are supported on device only.

	Function

	float __cosf (float x)

Calculate the fast approximate cosine of the input argument.

	float __expf (float x)

Calculate the fast approximate base e exponential of the input argument.

	float __frsqrt_rn (float x)

Compute 1/√x in round-to-nearest-even mode.

	float __fsqrt_rd (float x)

Compute √x in round-down mode.

	float __fsqrt_rn (float x)

Compute √x in round-to-nearest-even mode.

	float __fsqrt_ru (float x)

Compute √x in round-up mode.

	float __fsqrt_rz (float x)

Compute √x in round-towards-zero mode.

	float __log10f (float x)

Calculate the fast approximate base 10 logarithm of the input argument.

	float __log2f (float x)

Calculate the fast approximate base 2 logarithm of the input argument.

	float __logf (float x)

Calculate the fast approximate base e logarithm of the input argument.

	float __powf (float x float y)

Calculate the fast approximate of xy.

	float __sinf (float x)

Calculate the fast approximate sine of the input argument.

	float __tanf (float x)

Calculate the fast approximate tangent of the input argument.

	double __dsqrt_rd (double x)

Compute √x in round-down mode.

	double __dsqrt_rn (double x)

Compute √x in round-to-nearest-even mode.

	double __dsqrt_ru (double x)

Compute √x in round-up mode.

	double __dsqrt_rz (double x)

Compute √x in round-towards-zero mode.

Texture Functions

Texture functions are not supported.

Surface Functions

Surface functions are not supported.

Timer Functions

HIP provides the following built-in functions for reading a high-resolution timer from the device.

clock_t clock()
long long int clock64()

Returns the value of counter that is incremented every clock cycle on device. Difference in values returned provides the cycles used.

Atomic Functions

Atomic functions execute as read-modify-write operations residing in global or shared memory. No other device or thread can observe or modify the memory location during an atomic operation. If multiple instructions from different devices or threads target the same memory location, the instructions are serialized in an undefined order.

HIP supports the following atomic operations.

	Function

	Supported in HIP

	Supported in CUDA

	int atomicAdd(int* address, int val)

	✓

	✓

	unsigned int atomicAdd(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicAdd(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	float atomicAdd(float* address, float val)

	✓

	✓

	int atomicSub(int* address, int val)

	✓

	✓

	unsigned int atomicSub(unsigned int* address,unsigned int val)

	✓

	✓

	int atomicExch(int* address, int val)

	✓

	✓

	unsigned int atomicExch(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicExch(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	float atomicExch(float* address, float val)

	✓

	✓

	int atomicMin(int* address, int val)

	✓

	✓

	unsigned int atomicMin(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicMin(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicMax(int* address, int val)

	✓

	✓

	unsigned int atomicMax(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicMax(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	unsigned int atomicInc(unsigned int* address)

	✗

	✓

	unsigned int atomicDec(unsigned int* address)

	✗

	✓

	int atomicCAS(int* address, int compare, int val)

	✓

	✓

	unsigned int atomicCAS(unsigned int* address,unsigned int compare,unsigned int val)

	✓

	✓

	unsigned long long int atomicCAS(unsigned long long int* address,unsigned long long int compare,unsigned long long int val)

	✓

	✓

	int atomicAnd(int* address, int val)

	✓

	✓

	unsigned int atomicAnd(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicAnd(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicOr(int* address, int val)

	✓

	✓

	unsigned int atomicOr(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicOr(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicXor(int* address, int val)

	✓

	✓

	unsigned int atomicXor(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicXor(unsigned long long int* address,unsigned long long int val))

	✓

	✓

Caveats and Features Under-Development:

	HIP enables atomic operations on 32-bit integers. Additionally, it supports an atomic float add. AMD hardware, however, implements the float add using a CAS loop, so this function may not perform efficiently.

Warp Cross Lane Functions

Warp cross-lane functions operate across all lanes in a warp. The hardware guarantees that all warp lanes will execute in lockstep, so additional synchronization is unnecessary, and the instructions use no shared memory.

Note that Nvidia and AMD devices have different warp sizes, so portable code should use the warpSize built-ins to query the warp size. Hipified code from the Cuda path requires careful review to ensure it doesn’t assume a waveSize of 32. “Wave-aware” code that assumes a waveSize of 32 will run on a wave-64 machine, but it will utilize only half of the machine resources. In addition to the warpSize device function, host code can obtain the warpSize from the device properties:

cudaDeviceProp props;
cudaGetDeviceProperties(&props, deviceID);
int w = props.warpSize;
// implement portable algorithm based on w (rather than assume 32 or 64)

Warp Vote and Ballot Functions

int __all(int predicate)
int __any(int predicate)
uint64_t __ballot(int predicate)

Threads in a warp are referred to as lanes and are numbered from 0 to warpSize – 1. For these functions, each warp lane contributes 1 – the bit value (the predicate), which is efficiently broadcast to all lanes in the warp. The 32-bit int predicate from each lane reduces to a 1-bit value: 0 (predicate = 0) or 1 (predicate != 0). __any and __all provide a summary view of the predicates that the other warp lanes contribute:

	__any() returns 1 if any warp lane contributes a nonzero predicate, or 0 otherwise

	__all() returns 1 if all other warp lanes contribute nonzero predicates, or 0 otherwise

Applications can test whether the target platform supports the any/all instruction using the hasWarpVote device property or the HIP_ARCH_HAS_WARP_VOTE compiler define.

__ballot provides a bit mask containing the 1-bit predicate value from each lane. The nth bit of the result contains the 1 bit contributed by the nth warp lane. Note that HIP’s __ballot function supports a 64-bit return value (compared with Cuda’s 32 bits). Code ported from Cuda should support the larger warp sizes that the HIP version of this instruction supports. Applications can test whether the target platform supports the ballot instruction using the hasWarpBallot device property or the HIP_ARCH_HAS_WARP_BALLOT compiler define.

Warp Shuffle Functions

Half-float shuffles are not supported. The default width is warpSize—see Warp Cross Lane Functions . Applications should not assume the warpSize is 32 or 64.

int __shfl (int var, int srcLane, int width=warpSize);
float __shfl (float var, int srcLane, int width=warpSize);
int __shfl_up (int var, unsigned int delta, int width=warpSize);
float __shfl_up (float var, unsigned int delta, int width=warpSize);
int __shfl_down (int var, unsigned int delta, int width=warpSize);
float __shfl_down (float var, unsigned int delta, int width=warpSize) ;
int __shfl_xor (int var, int laneMask, int width=warpSize)
float __shfl_xor (float var, int laneMask, int width=warpSize);

Profiler Counter Function

The Cuda __prof_trigger() instruction is not supported.

Assert

The assert() and abort() functions are implemented for HIP device code.

NOTE: There may be a performance impact in the use of device assertions in its current form.

You may choose to disable the assertion in the production code. For example, to disable an assertion of:

assert(foo != 0);

you may comment it out as:

//assert(foo != 0);

NOTE: Assertions are currently enabled by default.

Printf

HIP supports the use of printf in the device code. The parameters and return value for the device-side printf follow the POSIX.1 standard, with the exception that the “%n” specifier is not supported. No host side runtime calls by the application are needed to cause the output to appear. There is no limit on the number of device-side calls to printf or the amount of data that is printed.

Device-Side Dynamic Global Memory Allocation

Device-side dynamic global memory allocation is under development. HIP now includes a preliminary implementation of malloc and free that can be called from device functions.

__launch_bounds__

GPU multiprocessors have a fixed pool of resources (primarily registers and shared memory) which are shared by the actively running warps. Using more resources can increase IPC of the kernel but reduces the resources available for other warps and limits the number of warps that can be simultaneously running. Thus GPUs have a complex relationship between resource usage and performance.

hip_launch_bounds allows the application to provide usage hints that influence the resources (primarily registers) used by the generated code. hip_launch_bounds is a function attribute that must be attached to a global function:

__global__ void `__launch_bounds__`(MAX_THREADS_PER_BLOCK, MIN_WARPS_PER_EU) MyKernel(...) ...
 MyKernel(hipGridLaunch lp, ...)
 ...

launch_bounds supports two parameters:

	MAX_THREADS_PER_BLOCK - The programmers guarantees that kernel will be launched with threads less than MAX_THREADS_PER_BLOCK. (On NVCC this maps to the .maxntid PTX directive). If no launch_bounds is specified, MAX_THREADS_PER_BLOCK is the maximum block size supported by the device (typically 1024 or larger). Specifying MAX_THREADS_PER_BLOCK less than the maximum effectively allows the compiler to use more resources than a default unconstrained compilation that supports all possible block sizes at launch time. The threads-per-block is the product of (hipBlockDim_x * hipBlockDim_y * hipBlockDim_z).

	MIN_WARPS_PER_EU - directs the compiler to minimize resource usage so that the requested number of warps can be simultaneously active on a multi-processor. Since active warps compete for the same fixed pool of resources, the compiler must reduce resources required by each warp(primarily registers). MIN_WARPS_PER_EU is optional and defaults to 1 if not specified. Specifying a MIN_WARPS_PER_EU greater than the default 1 effectively constrains the compiler’s resource usage.

Compiler Impact

The compiler uses these parameters as follows:

	The compiler uses the hints only to manage register usage, and does not automatically reduce shared memory or other resources.

	Compilation fails if compiler cannot generate a kernel which meets the requirements of the specified launch bounds.

	From MAX_THREADS_PER_BLOCK, the compiler derives the maximum number of warps/block that can be used at launch time. Values of MAX_THREADS_PER_BLOCK less than the default allows the compiler to use a larger pool of registers : each warp uses registers, and this hint contains the launch to a warps/block size which is less than maximum.

	From MIN_WARPS_PER_EU, the compiler derives a maximum number of registers that can be used by the kernel (to meet the required simultaneous active blocks). If MIN_WARPS_PER_EU is 1, then the kernel can use all registers supported by the multiprocessor.

	The compiler ensures that the registers used in the kernel is less than both allowed maximums, typically by spilling registers (to shared or global memory), or by using more instructions.

	The compiler may use heuristics to increase register usage, or may simply be able to avoid spilling. The MAX_THREADS_PER_BLOCK is particularly useful in this cases, since it allows the compiler to use more registers and avoid situations where the compiler constrains the register usage (potentially spilling) to meet the requirements of a large block size that is never used at launch time.

CU and EU Definitions

A compute unit (CU) is responsible for executing the waves of a work-group. It is composed of one or more execution units (EU) which are responsible for executing waves. An EU can have enough resources to maintain the state of more than one executing wave. This allows an EU to hide latency by switching between waves in a similar way to symmetric multithreading on a CPU. In order to allow the state for multiple waves to fit on an EU, the resources used by a single wave have to be limited. Limiting such resources can allow greater latency hiding, but can result in having to spill some register state to memory. This attribute allows an advanced developer to tune the number of waves that are capable of fitting within the resources of an EU. It can be used to ensure at least a certain number will fit to help hide latency, and can also be used to ensure no more than a certain number will fit to limit cache thrashing.

Porting from CUDA __launch_bounds

CUDA defines a __launch_bounds which is also designed to control occupancy:

 __launch_bounds(MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MULTIPROCESSOR)

 * The second parameter __launch_bounds parameters must be converted to the format used __hip_launch_bounds, which uses warps and execution-units rather than blocks and multi-processors (This conversion is performed automatically by the clang hipify tools.)

::

 MIN_WARPS_PER_EXECUTION_UNIT = (MIN_BLOCKS_PER_MULTIPROCESSOR * MAX_THREADS_PER_BLOCK)/32

The key differences in the interface are:

	Warps (rather than blocks): The developer is trying to tell the compiler to control resource utilization to guarantee some amount of active Warps/EU for latency hiding. Specifying active warps in terms of blocks appears to hide the micro-architectural details of the warp size, but makes the interface more confusing since the developer ultimately needs to compute the number of warps to obtain the desired level of control.

	Execution Units (rather than multiProcessor): The use of execution units rather than multiprocessors provides support for architectures with multiple execution units/multi-processor. For example, the AMD GCN architecture has 4 execution units per multiProcessor. The hipDeviceProps has a field executionUnitsPerMultiprocessor. Platform-specific coding techniques such as #ifdef can be used to specify different launch_bounds for NVCC and HCC platforms, if desired.

maxrregcount

Unlike nvcc, hcc does not support the “–maxrregcount” option. Instead, users are encouraged to use the hip_launch_bounds directive since the parameters are more intuitive and portable than micro-architecture details like registers, and also the directive allows per-kernel control rather than an entire file. hip_launch_bounds works on both hcc and nvcc targets.

Register Keyword

The register keyword is deprecated in C++, and is silently ignored by both nvcc and hcc. To see warnings, you can pass the option -Wdeprecated-register to hcc.

Pragma Unroll

Unroll with a bounds that is known at compile-time is supported. For example:

#pragma unroll 16 /* hint to compiler to unroll next loop by 16 */
for (int i=0; i<16; i++) ...

#pragma unroll 1 /* tell compiler to never unroll the loop */
for (int i=0; i<16; i++) ...

Unbounded loop unroll is under development on HCC compiler.

#pragma unroll /* hint to compiler to completely unroll next loop. */
for (int i=0; i<16; i++) ...

In-Line Assembly

In-line assembly, including in-line PTX, in-line HSAIL and in-line GCN ISA, is not supported. Users who need these features should employ conditional compilation to provide different functionally equivalent implementations on each target platform.

C++ Support

The following C++ features are not supported:

	Run-time-type information (RTTI)

	Virtual functions

	Try / catch

Kernel Compilation

hipcc now supports compiling C++/HIP kernels to binary code objects. The user can specify the target for which the binary can be generated. HIP/HCC does not yet support fat binaries so only a single target may be specified. The file format for binary is .co which means Code Object. The following command builds the code object using hipcc.

hipcc --genco --target-isa=[TARGET GPU] [INPUT FILE] -o [OUTPUT FILE]

[INPUT FILE] = Name of the file containing kernels
[OUTPUT FILE] = Name of the generated code object file

Note that one important fact to remember when using binary code objects is that the number of arguments to the kernel are different on HCC and NVCC path. Refer to the sample in samples/0_Intro/module_api for differences in the arguments to be passed to the kernel.

 Refer to the latest documentation:

HIP Programming Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html

HIP API Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP_API_Guide.html

HIP-Supported CUDA API Reference Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP_API_Guide.html#hip-supported-cuda-api-reference-guide-v4-2

Table Comparing Syntax for Different Compute APIs v3.x

	Term

	CUDA

	HIP

	HC

	C++AMP

	OpenCL

	Device

	int deviceId

	int deviceId

	hc::accelerator

	concurrency::accelerator

	cl_device

	Queue

	cudaStream_t

	hipStream_t

	hc::accelerator_view

	concurrency::accelerator_view

	cl_command_queue

	Event

	cudaEvent_t

	hipEvent_t

	hc::completion_future

	concurrency::completion_future

	cl_event

	Memory

	void *

	void *

	void * ; hc::array ; hc::array_view

	concurrency::array ; concurrency::array_view

	cl_mem

	
	grid

	grid

	extent

	extent

	NDRange

	
	block

	block

	tile

	tile

	work-group

	
	thread

	thread

	thread

	thread

	work-item

	
	warp

	warp

	wavefront

	N/A

	sub-group

	Thread-index

	threadIdx.x

	hipThreadIdx_x

	t_idx.local[0]

	t_idx.local[0]

	get_local_id(0)

	Block-index

	blockIdx.x

	hipBlockIdx_x

	t_idx.tile[0]

	t_idx.tile[0]

	get_group_id(0)

	Block-dim

	blockDim.x

	hipBlockDim_x

	t_ext.tile_dim[0]

	t_idx.tile_dim0

	get_local_size(0)

	Grid-dim

	gridDim.x

	hipGridDim_x

	t_ext[0]

	t_ext[0]

	get_global_size(0)

	Device Kernel

	__global__

	__global__

	lambda inside hc::parallel_for_each or [[hc]]

	restrict(amp)

	__kernel

	Device Function

	__device__

	__device__

	[[hc]] (detected automatically in many case)

	restrict(amp)

	Implied in device compilation

	Host Function

	__host_ (default)

	__host_ (default)

	[[cpu]] (default)

	restrict(cpu) (default)

	Implied in host compilation.

	Host + Device Function

	__host__
__device__

	__host__
__device__

	[[hc]] [[cpu]]

	restrict(amp,cpu)

	No equivalent

	Kernel Launch

	<<< >>>

	hipLaunchKernelGGL

	hc::parallel_for_each

	concurrency::parallel_for_each

	clEnqueueNDRangeKernel

	Global Memory

	__global__

	__global__

	Unnecessary / Implied

	Unnecessary / Implied

	__global__

	Group Memory

	__shared__

	__shared__

	tile_static

	tile_static

	__local

	Constant

	__constant__

	__constant__

	Unnecessary / Implied

	Unnecessary / Implied

	__constant

	
	__syncthreads

	__syncthreads

	tile_static.barrier()

	t_idx.barrier()

	barrier(CLK_LOCAL_MEMFENCE)

	Atomic Builtins

	atomicAdd

	atomicAdd

	hc::atomic_fetch_add

	concurrency::atomic_fetch_add

	atomic_add

	Precise Math

	cos(f)

	cos(f)

	hc::precise_math::cos(f)

	concurrency::precise_math::cos(f)

	cos(f)

	Fast Math

	__cos(f)

	__cos(f)

	hc::fast_math::cos(f)

	concurrency::fast_math::cos(f)

	native_cos(f)

	Vector

	float4

	float4

	hc::short_vector::float4

	concurrency::graphics::float_4

	float4

Notes

	For HC and C++AMP, assume a captured tiled_ext named “t_ext” and captured extent named “ext”. These languages use captured variables to pass information to the kernel rather than using special built-in functions so the exact variable name may vary.

	The indexing functions (starting with thread-index) show the terminology for a 1D grid. Some APIs use reverse order of xyz / 012 indexing for 3D grids.

	HC allows tile dimensions to be specified at runtime while C++AMP requires that tile dimensions be specified at compile-time. Thus hc syntax for tile dims is t_ext.tile_dim[0] while C++AMP is t_ext.tile_dim0.

Terms used in HIP Documentation

	host, host cpu : Executes the HIP runtime API and is capable of initiating kernel launches to one or more devices.

	default device : Each host thread maintains a “default device”.
Most HIP runtime APIs (including memory allocation, copy commands, kernel launches) do not use accept an explicit device argument but instead implicitly use the default device. The default device can be set with hipSetDevice.

	“active host thread” - the thread which is running the HIP APIs.

	completion_future becomes ready. “Completes”

	hcc = Heterogeneous Compute Compiler (https://bitbucket.org/multicoreware/hcc/wiki/Home).

	hipify - tool to convert CUDA(R) code to portable C++ code.

	hipconfig - tool to report various configuration properties of the target platform.

	nvcc = nvcc compiler, do not capitalize.

	hcc = heterogeneous compute compiler, do not capitalize.

HIP Bugs

	HIP is more restrictive in enforcing
restrictions

HIP is more restrictive in enforcing restrictions

The language specification for HIP and CUDA forbid calling a
__device__ function in a __host__ context. In practice, you may
observe differences in the strictness of this restriction, with HIP
exhibiting a tighter adherence to the specification and thus less
tolerant of infringing code. The solution is to ensure that all
functions which are called in a __device__ context are correctly
annotated to reflect it. An interesting case where these differences
emerge is shown below. This relies on a the common C++ Member Detector
idiom [https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Member_Detector],
as it would be implemented pre C++11):

#include <cassert>
#include <type_traits>

struct aye { bool a[1]; };
struct nay { bool a[2]; };

// Dual restriction is necessary in HIP if the detector is to work for
// __device__ contexts as well as __host__ ones. NVCC is less strict.
template<typename T>
__host__ __device__
const T& cref_t();

template<typename T>
struct Has_call_operator {
 // Dual restriction is necessary in HIP if the detector is to work for
 // __device__ contexts as well as __host__ ones. NVCC is less strict.
 template<typename C>
 __host__ __device__
 static
 aye test(
 C const *,
 typename std::enable_if<
 (sizeof(cref_t<C>().operator()()) > 0)>::type* = nullptr);
 static
 nay test(...);

 enum { value = sizeof(test(static_cast<T*>(0))) == sizeof(aye) };
};

template<typename T, typename U, bool callable = has_call_operator<U>::value>
struct Wrapper {
 template<typename V>
 V f() const { return T{1}; }
};

template<typename T, typename U>
struct Wrapper<T, U, true> {
 template<typename V>
 V f() const { return T{10}; }
};

// This specialisation will yield a compile-time error, if selected.
template<typename T, typename U>
struct Wrapper<T, U, false> {};

template<typename T>
struct Functor;

template<> struct Functor<float> {
 __device__
 float operator()() const { return 42.0f; }
};

__device__
void this_will_not_compile_if_detector_is_not_marked_device()
{
 float f = Wrapper<float, Functor<float>>().f<float>();
}

__host__
void this_will_not_compile_if_detector_is_marked_device_only()
{
 float f = Wrapper<float, Functor<float>>().f<float>();
}

HIP Porting Guide

In addition to providing a portable C++ programming environment for
GPUs, HIP is designed to ease the porting of existing CUDA code into the
HIP environment. This section describes the available tools and provides
practical suggestions on how to port CUDA code and work through common
issues.

	Porting a New CUDA Project

	General Tips

	Scanning existing CUDA code to scope the porting
effort

	Converting a project
in-place

	CUDA to HIP Math Library Equivalents

	Distinguishing Compiler Modes

	Identifying HIP Target
Platform

	Identifying the Compiler: hip-clang, or
nvcc

	Identifying Current Compilation Pass: Host or
Device

	Compiler Defines: Summary

	Identifying Architecture
Features

	HIP_ARCH Defines

	Device-Architecture
Properties

	Table of Architecture
Properties

	Finding HIP

	Identifying HIP Runtime

	hipLaunchKernel

	Compiler Options

	Linking Issues

	Linking With hipcc

	-lm Option

	Linking Code With Other
Compilers

	libc++ and libstdc++

	HIP Headers (hip_runtime.h,
hip_runtime_api.h)

	Using a Standard C++ Compiler

	cuda.h

	Choosing HIP File Extensions

	Workarounds

	warpSize

	Kernel launch with group size >
256

	memcpyToSymbol

	CU Pointer Attribute Memory Type

	threadfence_system

	Textures and Cache Control

	More Tips

	HIP Logging

	Debugging hipcc

	What Does This Error Mean?

	/usr/include/c++/v1/memory:5172:15: error: call to implicitly
deleted default constructor of std::__1::bad_weak_ptr throw
bad_weak_ptr();

	Editor Highlighting

Porting a New CUDA Project

General Tips

	Starting the port on a CUDA machine is often the easiest approach,
since you can incrementally port pieces of the code to HIP while
leaving the rest in CUDA. (Recall that on CUDA machines HIP is just a
thin layer over CUDA, so the two code types can interoperate on nvcc
platforms.) Also, the HIP port can be compared with the original CUDA
code for function and performance.

	Once the CUDA code is ported to HIP and is running on the CUDA
machine, compile the HIP code using the HIP compiler on an AMD
machine.

	HIP ports can replace CUDA versions: HIP can deliver the same
performance as a native CUDA implementation, with the benefit of
portability to both Nvidia and AMD architectures as well as a path to
future C++ standard support. You can handle platform-specific
features through conditional compilation or by adding them to the
open-source HIP infrastructure.

	Use
bin/hipconvertinplace-perl.sh [https://github.com/ROCm-Developer-Tools/HIP/blob/master/bin/hipconvertinplace-perl.sh]
to hipify all code files in the CUDA source directory.

Scanning existing CUDA code to scope the porting effort

The hipexamine-perl.sh tool will scan a source directory to determine
which files contain CUDA code and how much of that code can be
automatically hipified.

> cd examples/rodinia_3.0/cuda/kmeans
> $HIP_DIR/bin/hipexamine-perl.sh.
info: hipify ./kmeans.h =====>
info: hipify ./unistd.h =====>
info: hipify ./kmeans.c =====>
info: hipify ./kmeans_cuda_kernel.cu =====>
 info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0 event:0 err:0 def:0 tex:3 other:0) warn:0 LOC:185
info: hipify ./getopt.h =====>
info: hipify ./kmeans_cuda.cu =====>
 info: converted 49 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:0 math:0 stream:0 event:0 err:0 def:0 tex:12 other:0) warn:0 LOC:311
info: hipify ./rmse.c =====>
info: hipify ./cluster.c =====>
info: hipify ./getopt.c =====>
info: hipify ./kmeans_clustering.c =====>
info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0 event:0 err:0 def:0 tex:15 other:0) warn:0 LOC:3607
 kernels (1 total) : kmeansPoint(1)

hipexamine-perl scans each code file (cpp, c, h, hpp, etc.) found in the
specified directory:

	Files with no CUDA code (ie kmeans.h) print one line summary just
listing the source file name.

	Files with CUDA code print a summary of what was found - for example
the kmeans_cuda_kernel.cu file:

info: hipify ./kmeans_cuda_kernel.cu =====>
 info: converted 40 CUDA->HIP refs(dev:0 mem:0 kern:0 builtin:37 math:0 stream:0 event:0

	Interesting information in kmeans_cuda_kernel.cu :

	How many CUDA calls were converted to HIP (40)

	Breakdown of the CUDA functionality used (dev:0 mem:0 etc). This
file uses many CUDA builtins (37) and texture functions (3).

	Warning for code that looks like CUDA API but was not converted (0
in this file).

	Count Lines-of-Code (LOC) - 185 for this file.

	hipexamine-perl also presents a summary at the end of the process for
the statistics collected across all files. This has similar format to
the per-file reporting, and also includes a list of all kernels which
have been called. An example from above:

info: TOTAL-converted 89 CUDA->HIP refs(dev:3 mem:32 kern:2 builtin:37 math:0 stream:0 event:0 err:0 def:0 tex:15 other:0) warn:0 LOC:3607
 kernels (1 total) : kmeansPoint(1)

Converting a project in-place

> hipify-perl --inplace

For each input file FILE, this script will: - If FILE.prehip file does
not exist, copy the original code to a new file with extension�.prehip.
Then hipify the code file. - If�FILE.prehip” file exists, hipify
FILE.prehip and save to FILE.

This is useful for testing improvements to the hipify toolset.

The
hipconvertinplace-perl.sh [https://github.com/ROCm-Developer-Tools/HIP/blob/master/bin/hipconvertinplace-perl.sh]
script will perform inplace conversion for all code files in the
specified directory. This can be quite handy when dealing with an
existing CUDA code base since the script preserves the existing
directory structure and filenames - and includes work. After converting
in-place, you can review the code to add additional parameters to
directory names.

> hipconvertinplace-perl.sh MY_SRC_DIR

Library Equivalents

Distinguishing Compiler Modes

Identifying HIP Target Platform

All HIP projects target either AMD or NVIDIA platform. The platform
affects which headers are included and which libraries are used for
linking.

	HIP_PLATFORM_HCC is defined if the HIP platform targets AMD

	HIP_PLATFORM_NVCC is defined if the HIP platform targets NVIDIA

On AMD platform, the compiler was hcc, but is deprecated in ROCM v3.5
release, and HIP-Clang compiler is introduced for compiling HIP
programs.

For most HIP applications, the transition from hcc to HIP-Clang is
transparent. HIPCC and HIP cmake files automatically choose compilation
options for HIP-Clang and hide the difference between the hcc and
hip-clang code. However, minor changes may be required as HIP-Clang has
stricter syntax and semantic checks compared to hcc.

Many projects use a mixture of an accelerator compiler (AMD or NVIDIA)
and a standard compiler (e.g.Â g++). These defines are set for both
accelerator and standard compilers and thus are often the best option
when writing code that uses conditional compilation.

Identifying the Compiler: hip-clang or nvcc

Often, it is useful to know whether the underlying compiler is HIP-Clang
or nvcc. This knowledge can guard platform-specific code or aid in
platform-specific performance tuning.

#ifdef __HIP_PLATFORM_HCC__
// Compiled with HIP-Clang

#if defined(__HCC__) || (defined(__clang__) && defined(__HIP__))
#define __HIP_PLATFORM_HCC__
#endif
// Compiled with HIP-Clang

#ifdef __NVCC__
// Compiled with nvcc
// Could be compiling with CUDA language extensions enabled (for example, a ".cu file)
// Could be in pass-through mode to an underlying host compile OR (for example, a .cpp file)

#ifdef __CUDACC__
// Compiled with nvcc (CUDA language extensions enabled)

Compiler directly generates the host code (using the Clang x86 target)
and passes the code to another host compiler. Thus, they have no
equivalent of the __CUDA_ACC define.

Identifying Current Compilation Pass: Host or Device

nvcc makes two passes over the code: one for host code and one for
device code. HIP-Clang will have multiple passes over the code: one for
the host code, and one for each architecture on the device code.
__HIP_DEVICE_COMPILE__ is set to a nonzero value when the compiler
(HIP-Clang or nvcc) is compiling code for a device inside a
__global__ kernel or for a device function.
__HIP_DEVICE_COMPILE__ can replace #ifdef checks on the
__CUDA_ARCH__ define.

// #ifdef __CUDA_ARCH__
#if __HIP_DEVICE_COMPILE__

Unlike __CUDA_ARCH__, the __HIP_DEVICE_COMPILE__ value is 1 or
undefined, and it does not represent the feature capability of the target
device.

Compiler Defines: Summary

	Define

	HIP-Clang

	nvcc

	Other (GCC,
ICC, Clang,
etc.)

	HIP-related
defines:

	
	
	

	
``__HIP_

PLATFORM_HCC__``

	Defined

	Undefined
targeting AMD

	
Defined if

	platform;
	undefined
otherwise

	
``__HIP_

PLATFORM_NVCC__``

	Undefined

	Defined

	Defined if
targeting nvcc
platform;
undefined
otherwise

	
``

__HIP_DEVICE
_COMPILE__``

	1 if compiling
for device;
undefined if
compiling for
host

	1 if compiling
for device;
undefined if
compiling for
host

	Undefined

	__HIPCC__

	Defined

	Defined

	Undefined

	`
__HIP_ARCH_*`

	0 or 1
depending on
feature support
(see below)

	0 or 1
depending on
feature support
(see below)

	0

	nvcc-related
defines:

	
	
	

	__CUDACC__

	Defined if
source code is
compiled by
nvcc; undefined
otherwise

	Undefined

	

	__NVCC__

	Undefined

	Defined

	Undefined

	``
__CUDA_ARCH__``

	Undefined

	Unsigned
representing
compute
capability
(e.g.,130)
if in device
code; 0 if in
host code

	Undefined

	
hip-clang

related defines:

	
	
	

	__HIP__

	Defined

	Undefined

	Undefined

	HIP-Clang
common defines:

	
	
	

	__clang__

	Defined

	Defined

	Undefined

Identifying Architecture Features

HIP_ARCH Defines

Some CUDA code tests __CUDA_ARCH__ for a specific value to determine
whether the machine supports a certain architectural feature. For
instance,

#if (__CUDA_ARCH__ >= 130)
// doubles are supported

This type of code requires special attention, since hcc/AMD and
nvcc/CUDA devices have different architectural capabilities. Moreover,
you cannnot determine the presence of a feature using a simple comparison
against an architecture’s version number. HIP provides a set of defines
and device properties to query whether a specific architectural feature
is supported.

The __HIP_ARCH_* defines can replace comparisons of
__CUDA_ARCH__ values:

//#if (__CUDA_ARCH__ >= 130) // non-portable
if __HIP_ARCH_HAS_DOUBLES__ { // portable HIP feature query
 // doubles are supported
}

For host code, the __HIP_ARCH__* defines are set to 0. You should
only use the HIP_ARCH fields in device code.

Device-Architecture Properties

Host code should query the architecture feature flags in the device
properties that hipGetDeviceProperties returns, rather than testing the
‘major’and ‘minor’fields directly:

hipGetDeviceProperties(&deviceProp, device);
//if ((deviceProp.major == 1 && deviceProp.minor < 2)) // non-portable
if (deviceProp.arch.hasSharedInt32Atomics) { // portable HIP feature query
 // has shared int32 atomic operations ...
}

Table of Architecture Properties

The table below shows the full set of architectural properties that HIP
supports.

	Define (use only in
device code)

	Device Property (run-time
query)

	Comment

	32-bit atomics:

	
	

	__HIP_ARCH_HAS_GLO
BAL_INT32_ATOMICS__

	hasGlobalInt32Atomics

	32-bit integer
atomics for
global memory

	_
_HIP_ARCH_HAS_GLOBAL_
FLOAT_ATOMIC_EXCH__

	hasGlobalFloatAtomicExch

	32-bit float
atomic
exchange for
global memory

	__HIP_ARCH_HAS_SHA
RED_INT32_ATOMICS__

	hasSharedInt32Atomics

	32-bit integer
atomics for
shared memory

	_
_HIP_ARCH_HAS_SHARED_
FLOAT_ATOMIC_EXCH__

	hasSharedFloatAtomicExch

	32-bit float
atomic
exchange for
shared memory

	__HIP_ARCH_HAS
_FLOAT_ATOMIC_ADD__

	hasFloatAtomicAdd

	32-bit float
atomic add in
global and
shared memory

	64-bit atomics:

	
	

	__HIP_ARCH_HAS_GLO
BAL_INT64_ATOMICS__

	hasGlobalInt64Atomics

	64-bit integer
atomics for
global memory

	__HIP_ARCH_HAS_SHA
RED_INT64_ATOMICS__

	hasSharedInt64Atomics

	64-bit integer
atomics for
shared memory

	Doubles:

	
	

	__HIP
_ARCH_HAS_DOUBLES__

	hasDoubles

	Do
uble-precision
floating point

	Warp cross-lane
operations:

	
	

	__HIP_A
RCH_HAS_WARP_VOTE__

	hasWarpVote

	Warp vote
instructions
(any, all)

	__HIP_ARC
H_HAS_WARP_BALLOT__

	hasWarpBallot

	Warp ballot
instructions

	__HIP_ARCH
_HAS_WARP_SHUFFLE__

	hasWarpShuffle

	Warp shuffle
operations
(shfl_*)

	__HIP_ARCH_HAS_
WARP_FUNNEL_SHIFT__

	hasFunnelShift

	Funnel shift
two input
words into one

	Sync:

	
	

	__HIP_ARCH_HAS_TH
READ_FENCE_SYSTEM__

	hasThreadFenceSystem

	thre
adfence_system

	__HIP_ARCH_HA
S_SYNC_THREAD_EXT__

	hasSyncThreadsExt

	sync
threads_count,
sy
ncthreads_and,
syncthreads_or

	Miscellaneous:

	
	

	__HIP_ARCH_
HAS_SURFACE_FUNCS__

	hasSurfaceFuncs

	

	__HI
P_ARCH_HAS_3DGRID__

	has3dGrid

	Grids and
groups are 3D

	__HIP_ARCH_HAS
_DYNAMIC_PARALLEL__

	hasDynamicParallelism

	

Finding HIP

Makefiles can use the following syntax to conditionally provide a
default HIP_PATH if one does not exist:

HIP_PATH ?= $(shell hipconfig --path)

Identifying HIP Runtime

HIP can depend on ROCclr, or NVCC as runtime

	AMD platform HIP_ROCclr is defined on AMD platform that HIP use
Radeon Open Compute Common Language Runtime, called ROCclr.

ROCclr is a virtual device interface that HIP runtimes interact with
different backends which allows runtimes to work on Linux , as well as
Windows without much efforts.

	NVIDIA platform On Nvidia platform, HIP is just a thin layer on top
of CUDA. On non-AMD platform, HIP runtime determines if nvcc is
available and can be used. If available, HIP_PLATFORM is set to nvcc
and underneath CUDA path is used.

hipLaunchKernel

hipLaunchKernel is a variadic macro which accepts as parameters the
launch configurations (grid dims, group dims, dynamic shared size, stream)
followed by a variable number of kernel arguments. This sequence
is then expanded into the appropriate kernel launch syntax depending on
the platform. While this can be a convenient single-line kernel launch
syntax, the macro implementation can cause issues when nested inside
other macros. For example, consider the following:

// Will cause compile error:
#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 (command); /* The nested () will cause compile error */\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

Avoid nesting macro parameters inside parenthesis - here is an
alternative that will work:

#define MY_LAUNCH(command, doTrace) \
{\
 if (doTrace) printf ("TRACE: %s\n", #command); \
 command;\
}

MY_LAUNCH (hipLaunchKernel(vAdd, dim3(1024), dim3(1), 0, 0, Ad), true, "firstCall");

Compiler Options

hipcc is a portable compiler driver that will call nvcc or HIP-Clang
(depending on the target system) and attach all required include and
library options. It passes options through to the target compiler. Tools
that call hipcc must ensure the compiler options are appropriate for the
target compiler. The hipconfig script may helpful in identifying the
target platform, compiler and runtime. It can also help set options
appropriately.

Linking Issues

Linking With hipcc

hipcc adds the necessary libraries for HIP as well as for the
accelerator compiler (nvcc or AMD compiler). We recommend linking with
hipcc since it automatically links the binary to the necessary HIP
runtime libraries. It also has knowledge on how to link and to manage
the GPU objects.

-lm Option

hipcc adds -lm by default to the link command.

Linking Code With Other Compilers

CUDA code often uses nvcc for accelerator code (defining and launching
kernels, typically defined in .cu or .cuh files). It also uses a
standard compiler (g++) for the rest of the application. nvcc is a
preprocessor that employs a standard host compiler (gcc) to generate the
host code. Code compiled using this tool can employ only the
intersection of language features supported by both nvcc and the host
compiler. In some cases, you must take care to ensure the data types and
alignment of the host compiler are identical to those of the device
compiler. Only some host compilers are supported. For example, recent
nvcc versions lack Clang host-compiler capability.

hcc generates both device and host code using the same Clang-based
compiler. The code uses the same API as gcc, which allows code generated
by different gcc-compatible compilers to be linked together. For
example, code compiled using hcc can link with code compiled using
standard compilers (such as gcc, ICC and Clang). Take care to ensure
all compilers use the same standard C++ header and library formats.

libc++ and libstdc++

hipcc links to libstdc++ by default. This provides better compatibility
between g++ and HIP.

If you pass stdlib=libc++ to hipcc, hipcc will use the libc++
library. Generally, libc++ provides a broader set of C++ features while
libstdc++ is the standard for more compilers (notably including g++).

When cross-linking C++ code, any C++ functions that use types from the
C++ standard library (including std::string, std::vector and other
containers) must use the same standard-library implementation. They
include the following:

	Functions or kernels defined in hcc that are called from a standard
compiler

	Functions defined in a standard compiler that are called from hcc.

Applications with these interfaces should use the default libstdc++
linking.

Applications which are compiled entirely with hipcc, and which benefit
from advanced C++ features not supported in libstdc++, and which do not
require portability to nvcc, may choose to use libc++.

HIP Headers (hip_runtime.h, hip_runtime_api.h)

The hip_runtime.h and hip_runtime_api.h files define the types,
functions and enumerations needed to compile a HIP program:

	hip_runtime_api.h: defines all the HIP runtime APIs (e.g., hipMalloc)
and the types required to call them. A source file that is only
calling HIP APIs but neither defines nor launches any kernels can
include hip_runtime_api.h. hip_runtime_api.h uses no custom hc
language features and can be compiled using a standard C++ compiler.

	hip_runtime.h: included in hip_runtime_api.h. It additionally
provides the types and defines required to create and launch kernels.
hip_runtime.h does use custom hc language features, but they are
guarded by ifdef checks. It can be compiled using a standard C++
compiler but will expose a subset of the available functions.

CUDA has slightly different contents for these two files. In some cases
you may need to convert hipified code to include the richer
hip_runtime.h instead of hip_runtime_api.h.

Using a Standard C++ Compiler

You can compile hip_runtime_api.h using a standard C or C++ compiler
(e.g., gcc or ICC). The HIP include paths and defines
(__HIP_PLATFORM_HCC__ or __HIP_PLATFORM_NVCC__) must pass to the
standard compiler; hipconfig then returns the necessary options:

> hipconfig --cxx_config
 -D__HIP_PLATFORM_HCC__ -I/home/user1/hip/include

You can capture the hipconfig output and passed it to the standard
compiler; below is a sample makefile syntax:

CPPFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cpp_config)

nvcc includes some headers by default. However, HIP does not include
default headers, and instead all required files must be explicitly
included. Specifically, files that call HIP run-time APIs or define HIP
kernels must explicitly include the appropriate HIP headers. If the
compilation process reports that it cannot find necessary APIs (for
example, error: identifier ‘hipSetDevice’ is undefined, ensure that
the file includes hip_runtime.h (or hip_runtime_api.h, if appropriate).
The hipify-perl script automatically converts ‘cuda_runtime.h’ to
‘hip_runtime.h’, and it converts ‘cuda_runtime_api.h’ to
‘hip_runtime_api.h’, but it may miss nested headers or macros.

cuda.h

The hcc path provides an empty cuda.h file. Some existing CUDA programs
include this file but does not require any of the functions.

Choosing HIP File Extensions

Many existing CUDA projects use the ‘.cu’ and ‘.cuh’ file extensions to
indicate code that should be run through the nvcc compiler. For quick
HIP ports, leaving these file extensions unchanged is often easier, as
it minimizes the work required to change file names in the directory and
#include statements in the files.

For new projects or ports which can be re-factored, we recommend the use
of the extension ‘.hip.cpp’ for source files, and ‘.hip.h’ or ‘.hip.hpp’
for header files. This indicates that the code is standard C++ code, but
also provides a unique indication for make tools to run hipcc when
appropriate.

Workarounds

warpSize

Code should not assume a warp size of 32 or 64. See Warp Cross-Lane
Functions for
information on how to write portable wave-aware code.

Kernel launch with group size > 256

Kernel code should use
__attribute__((amdgpu_flat_work_group_size(<min>,<max>))).

For example:

__global__ void dot(double *a,double *b,const int n) __attribute__((amdgpu_flat_work_group_size(1, 512)))

memcpyToSymbol

HIP support for hipMemcpyToSymbol is complete. This feature allows a
kernel to define a device-side data symbol which can be accessed on the
host side. The symbol can be in __constant or device space.

Note that the symbol name needs to be encased in the HIP_SYMBOL macro,
as shown in the code example below. This also applies to
hipMemcpyFromSymbol, hipGetSymbolAddress, and hipGetSymbolSize.

For example:

Device Code:

#include<hip/hip_runtime.h>
#include<hip/hip_runtime_api.h>
#include<iostream>

#define HIP_ASSERT(status) \
 assert(status == hipSuccess)

#define LEN 512
#define SIZE 2048

__constant__ int Value[LEN];

__global__ void Get(hipLaunchParm lp, int *Ad)
{
 int tid = hipThreadIdx_x + hipBlockIdx_x * hipBlockDim_x;
 Ad[tid] = Value[tid];
}

int main()
{
 int *A, *B, *Ad;
 A = new int[LEN];
 B = new int[LEN];
 for(unsigned i=0;i<LEN;i++)
 {
 A[i] = -1*i;
 B[i] = 0;
 }

 HIP_ASSERT(hipMalloc((void**)&Ad, SIZE));

 HIP_ASSERT(hipMemcpyToSymbol(HIP_SYMBOL(Value), A, SIZE, 0, hipMemcpyHostToDevice));
 hipLaunchKernel(Get, dim3(1,1,1), dim3(LEN,1,1), 0, 0, Ad);
 HIP_ASSERT(hipMemcpy(B, Ad, SIZE, hipMemcpyDeviceToHost));

 for(unsigned i=0;i<LEN;i++)
 {
 assert(A[i] == B[i]);
 }
 std::cout<<"Passed"<<std::endl;
}

CU POINTER ATTRIBUTE MEMORY TYPE

To get pointer’s memory type in HIP/HIP-Clang one should use hipPointerGetAttributes API. First parameter of the API is hipPointerAttribute_t which has ‘memoryType’ as member variable. ‘memoryType’ indicates input pointer is allocated on device or host.

For example:

double * ptr;
hipMalloc(reinterpret_cast<void**>(&ptr), sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptr); /*attr.memoryType will have value as hipMemoryTypeDevice*/

double* ptrHost;
hipHostMalloc(&ptrHost, sizeof(double));
hipPointerAttribute_t attr;
hipPointerGetAttributes(&attr, ptrHost); /*attr.memoryType will have value as hipMemoryTypeHost*/

threadfence_system

Threadfence_system makes all device memory writes, all writes to mapped
host memory, and all writes to peer memory visible to CPU and other GPU
devices. Some implementations can provide this behavior by flushing the
GPU L2 cache. HIP/HIP-Clang does not provide this functionality. As a
workaround, users can set the environment variable
HSA_DISABLE_CACHE=1 to disable the GPU L2 cache. This will affect
all accesses and for all kernels and so may have a performance impact.

Textures and Cache Control

Compute programs sometimes use textures either to access dedicated
texture caches or to use the texture-sampling hardware for interpolation
and clamping. The former approach uses simple point samplers with linear
interpolation, essentially only reading a single point. The latter
approach uses the sampler hardware to interpolate and combine multiple
samples. AMD hardware, as well as recent competing hardware, has a
unified texture/L1 cache, so it no longer has a dedicated texture cache.
But the nvcc path often caches global loads in the L2 cache, and some
programs may benefit from explicit control of the L1 cache contents. We
recommend the __ldg instruction for this purpose.

AMD compilers currently load all data into both the L1 and L2 caches, so
__ldg is treated as a no-op.

We recommend the following for functional portability:

	For programs that use textures only to benefit from improved caching,
use the __ldg instruction

	Programs that use texture object and reference APIs, work well on HIP

More Tips

HIP Logging

On an AMD platform, set the AMD_LOG_LEVEL environment variable to log
HIP application execution information.

The value of the setting controls different logging level,

enum LogLevel {
LOG_NONE = 0,
LOG_ERROR = 1,
LOG_WARNING = 2,
LOG_INFO = 3,
LOG_DEBUG = 4
};

Logging mask is used to print types of functionalities during the
execution of HIP application. It can be set as one of the following
values,

enum LogMask {
 LOG_API = 0x00000001, //!< API call
 LOG_CMD = 0x00000002, //!< Kernel and Copy Commands and Barriers
 LOG_WAIT = 0x00000004, //!< Synchronization and waiting for commands to finish
 LOG_AQL = 0x00000008, //!< Decode and display AQL packets
 LOG_QUEUE = 0x00000010, //!< Queue commands and queue contents
 LOG_SIG = 0x00000020, //!< Signal creation, allocation, pool
 LOG_LOCK = 0x00000040, //!< Locks and thread-safety code.
 LOG_KERN = 0x00000080, //!< kernel creations and arguments, etc.
 LOG_COPY = 0x00000100, //!< Copy debug
 LOG_COPY2 = 0x00000200, //!< Detailed copy debug
 LOG_RESOURCE = 0x00000400, //!< Resource allocation, performance-impacting events.
 LOG_INIT = 0x00000800, //!< Initialization and shutdown
 LOG_MISC = 0x00001000, //!< misc debug, not yet classified
 LOG_AQL2 = 0x00002000, //!< Show raw bytes of AQL packet
 LOG_CODE = 0x00004000, //!< Show code creation debug
 LOG_CMD2 = 0x00008000, //!< More detailed command info, including barrier commands
 LOG_LOCATION = 0x00010000, //!< Log message location
 LOG_ALWAYS = 0xFFFFFFFF, //!< Log always even mask flag is zero
};

Debugging hipcc

To see the detailed commands that hipcc issues, set the environment
variable HIPCC_VERBOSE to 1. Doing so will print to stderr the HIP-clang
(or nvcc) commands that hipcc generates.

export HIPCC_VERBOSE=1
make
...
hipcc-cmd: /opt/hcc/bin/hcc -hc -I/opt/hcc/include -stdlib=libc++ -I../../../../hc/include -I../../../../include/hcc_detail/cuda -I../../../../include -x c++ -I../../common -O3 -c backprop_cuda.cu

What Does This Error Mean?

/usr/include/c++/v1/memory:5172:15: error: call to implicitly deleted default constructor of ‘std::__1::bad_weak_ptr’ throw bad_weak_ptr();

If you pass a ‘.cu’ file, hcc will attempt to compile it as a CUDA
language file. You must tell hcc that it is, infact, a C++ file: use the
-x c++ option.

Editor Highlighting

See the utils/vim or utils/gedit directories to add handy highlighting
to hip files.

HIP run-time API overview and documentation (Doxygen)

HIP terminology comparison with OpenCL, Cuda, C++ AMP 4.x

Refer to the latest documentation:

HIP Programming Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/Programming-Guides.html

HIP API Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP_API_Guide.html

HIP-Supported CUDA API Reference Guide

https://rocmdocs.amd.com/en/latest/Programming_Guides/HIP_API_Guide.html#hip-supported-cuda-api-reference-guide-v4-2

HIP terminology comparison with OpenCL, Cuda, C++ AMP and HCC 3.x

	Term

	CUDA

	HIP

	HC

	C++AMP

	OpenCL

	Device

	int deviceId

	int deviceId

	hc::accelerator

	concurrency::
accelerator

	cl_device

	Queue

	cudaStream_t

	hipStream_t

	hc::
accelerator_view

	concurrency::
accelerator_view

	cl_command_queue

	Event

	cudaEvent_t

	hipEvent_t

	hc::
completion_future

	concurrency::
completion_future

	cl_event

	Memory

	void *

	void *

	void *; hc::array;
hc::array_view

	
concurrency::array;

concurrency::array_view

	cl_mem

	
	
	
	
	
	

	
	
grid

block

thread

warp

	
grid

block

thread

warp

	
extent

tile

thread

wavefront

	
extent

tile

thread

N/A

	
NDRange

work-group

work-item

sub-group

	Thread index

	threadIdx.x

	hipThreadIdx_x

	t_idx.local[0]

	t_idx.local[0]

	get_local_id(0)

	Block index

	blockIdx.x

	hipBlockIdx_x

	t_idx.tile[0]

	t_idx.tile[0]

	get_group_id(0)

	Block dim

	blockDim.x

	hipBlockDim_x

	t_ext.tile_dim[0]

	t_idx.tile_dim0

	get_local_size(0)

	Grid-dim

	gridDim.x

	hipGridDim_x

	t_ext[0]

	t_ext[0]

	get_global_size(0)

	
	
	
	
	
	

	Device Function

	__device__

	__device__

	[[hc]] (detected
automatically in
many case)

	restrict(amp)

	Implied in device
Compilation

	Host Function

	
	__host_
	(default)

	__host_ (default)

	[[cpu]] (default)

	strict(cpu) (default)

	Implied in host
Compilation

	Host +
Device
Function

	__host__
__device__

	
__host_

__device__

	[[hc]] [[cpu]]

	restrict(amp,cpu)

	No equivalent

	Kernel Launch

	<<< >>>

	
	hipLaunchKernel
	GGL

	hc::
parallel_for_each

	concurrency::
parallel_for_each

	clEnqueueND-
RangeKernel

	
	
	
	
	
	

	Global Memory

	__global__

	__global__

	Unnecessary/
Implied

	Unnecessary/Implied

	__global

	Group Memory

	__shared__

	__shared__

	tile_static

	tile_static

	__local

	Constant

	__constant__

	__constant__

	Unnecessary/
Implied

	Unnecessary / Implied

	__constant

	
	
	
	
	
	

	
	__syncthreads

	__syncthreads

	tile_static.barrier()

	t_idx.barrier()

	barrier(CLK_LOCAL_MEMFENCE)

	Atomic Builtins

	atomicAdd

	atomicAdd

	hc::atomic_fetch_add

	concurrency::
atomic_fetch_add

	atomic_add

	Precise Math

	cos(f)

	cos(f)

	hc::
precise_math::cos(f)

	concurrency::
precise_math::cos(f)

	cos(f)

	Fast Math

	__cos(f)

	__cos(f)

	hc::fast_math::cos(f)

	concurrency::
fast_math::cos(f)

	native_cos(f)

	Vector

	float4

	float4

	hc::
short_vector::float4

	concurrency::
graphics::float_4

	float4

Notes

	For HC and C++AMP, assume a captured tiled_ext named “t_ext” and captured extent named “ext”. These languages use captured variables to pass information to the kernel rather than using special built-in functions so the exact variable name may vary.

	The indexing functions (starting with thread-index) show the terminology for a 1D grid. Some APIs use reverse order of xyz / 012 indexing for 3D grids.

	HC allows tile dimensions to be specified at runtime while C++AMP requires that tile dimensions be specified at compile-time.Thus hc syntax for tile dims is t_ext.tile_dim[0] while C++AMP is t_ext.tile_dim0.

HIP Debugging

Refer to the latest version of the HIP Programming Guide for more detailed information about HIP Debugging at,

https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_Programming_Guide_v4.3.pdf

Table of Contents

	Using HIP_DB

	Using ltrace

	Chicken bits

	Debugging HIP Applications

	General Debugging Tips

	Print env var state

Using HIP_DB

This flag is primarily targeted to assist HIP development team in the development of the HIP runtime, but in some situations may be useful to HIP application developers as well. The HIP debug information is designed to print important information during the execution of a HIP API. HIP provides different color-coded levels of debug information:

	api : Print the beginning and end of each HIP API, including the arguments and return codes. This is equivalent to setting HIP_TRACE_API=1.

	sync : Print multi-thread and other synchronization debug information.

	copy : Print which engine is doing the copy, which copy flavor is selected, information on source and destination memory.

	mem : Print information about memory allocation - which pointers are allocated, where they are allocated, peer mappings, and more.

HIP_DB format is flags separated by ‘+’ sign, or a hex code for the bitmask. Generally the + format is preferred.

For example:

$ HIP_DB=api+copy+mem my-application
$ HIP_DB=0xF my-application

Using ltrace

ltrace is a standard linux tool which provides a message to stderr on every dynamic library call. Since ROCr and the ROCt (the ROC thunk, which is the thin user-space interface to the ROC kernel driver) are both dynamic libraries, this provides an easy way to trace the activity in these libraries. Tracing can be a powerful way to quickly observe the flow of the application before diving into the details with a command-line debugger. The trace can also show performance issues related to accidental calls to expensive API calls on the critical path.

ltrace can be easily combined with the HIP_DB switches to visualize the runtime behavior of the entire ROCm software stack. Here’s a sample command-line and output:

$ HIP_DB=api ltrace -C -e 'hsa*' <applicationName> <applicationArguments>

...

<<hip-api tid:1.17 hipMemcpy (0x7f7776d3e010, 0x503d1d000, 4194304, hipMemcpyDeviceToHost)
libmcwamp_hsa.so->hsa_signal_store_relaxed(0x1804000, 0, 0, 0x400000) = 0
libmcwamp_hsa.so->hsa_signal_store_relaxed(0x1816000, 0, 0x7f777f85f2a0, 0x400000) = 0
libmcwamp_hsa.so->hsa_amd_memory_lock(0x7f7776d3e010, 0x400000, 0x1213b70, 1 <unfinished ...>
libhsa-runtime64.so.1->hsaKmtRegisterMemoryToNodes(0x7f7776d3e010, 0x400000, 1, 0x1220c10) = 0
libhsa-runtime64.so.1->hsaKmtMapMemoryToGPUNodes(0x7f7776d3e010, 0x400000, 0x7ffc32865400, 64) = 0
<... hsa_amd_memory_lock resumed>) = 0
libmcwamp_hsa.so->hsa_signal_store_relaxed(0x1804000, 1, 0x7f777e95a770, 0x12205b0) = 0
libmcwamp_hsa.so->hsa_amd_memory_async_copy(0x50411d010, 0x11e70d0, 0x503d1d000, 0x11e70d0) = 0
libmcwamp_hsa.so->hsa_signal_wait_acquire(0x1804000, 2, 1, -1) = 0
libmcwamp_hsa.so->hsa_amd_memory_unlock(0x7f7776d3e010, 0x1213c6c, 0x12c3c600000000, 0x1804000 <unfinished ...>
libhsa-runtime64.so.1->hsaKmtUnmapMemoryToGPU(0x7f7776d3e010, 0x7f7776d3e010, 0x12c3c600000000, 0x1804000) = 0
libhsa-runtime64.so.1->hsaKmtDeregisterMemory(0x7f7776d3e010, 0x7f7776d3e010, 0x7f777f60f9e8, 0x1220580) = 0
<... hsa_amd_memory_unlock resumed>) = 0
hip-api tid:1.17 hipMemcpy
ret= 0 (hipSuccess)>>

Some key information from the trace above.

	Thy trace snippet shows the execution of a hipMemcpy API, bracketed by the first and last message in the trace output. The messages show the thread id and API sequence number (1.17). ltrace output intermixes messages from all threads, so the HIP debug information can be useful to determine which threads are executing.

	The code flows through HIP APIs into ROCr (HSA) APIs (hsa*) and into the thunk (hsaKmt*) calls.

	The HCC runtime is “libmcwamp_hsa.so” and the HSA/ROCr runtime is “libhsa-runtime64.so”.

	In this particular case, the memory copy is for unpinned memory, and the selected copy algorithm is to pin the host memory “in-place” before performing the copy. The signaling APIs and calls to pin (“lock”, “register”) the memory are readily apparent in the trace output.

Chicken bits

Chicken bits are environment variables which cause the HIP, HCC, or HSA driver to disable some feature or optimization. These are not intended for production but can be useful diagnose synchronization problems in the application (or driver).

Some of the most useful chicken bits are described here. These bits are supported on the ROCm path:

HIP provides 3 environment variables in the HIP_*_BLOCKING family. These introduce additional synchronization and can be useful to isolate synchronization problems. Specifically, if the code works with this flag set, then it indicates the kernels are executing correctly, and any failures likely are causes by improper or missing synchronization. These flags will have performance impact and are not intended for production use.

	HIP_LAUNCH_BLOCKING=1 : Waits on the host after each kernel launch. Equivalent to setting CUDA_LAUNCH_BLOCKING.

	HIP_LAUNCH_BLOCKING_KERNELS: A comma-separated list of kernel names. The HIP runtime will wait on the host after one of the named kernels executes. This provides a more targeted version of HIP_LAUNCH_BLOCKING and may be useful to isolate exactly which kernel needs further analysis if HIP_LAUNCH_BLOCKING=1 improves functionality. There is no indication if kernel names are spelled incorrectly. One mechanism to verify that the blocking is working is to run with HIP_DB=api+sync and search for debug messages with “LAUNCH_BLOCKING”.

	HIP_API_BLOCKING : Forces hipMemcpyAsync and hipMemsetAsync to be host-synchronous, meaning they will wait for the requested operation to complete before returning to the caller.

These options cause HCC to serialize. Useful if you have libraries or code which is calling HCC kernels directly rather than using HIP.

	HCC_SERIALZIE_KERNELS : 0x1=pre-serialize before each kernel launch, 0x2=post-serialize after each kernel launch., 0x3= pre- and post- serialize.

	HCC_SERIALIZE_COPY : 0x1=pre-serialize before each async copy, 0x2=post-serialize after each async copy., 0x3= pre- and post- serialize.

	HSA_ENABLE_SDMA=0 : Causes host-to-device and device-to-host copies to use compute shader blit kernels rather than the dedicated DMA copy engines. Compute shader copies have low latency (typically < 5us) and can achieve approximately 80% of the bandwidth of the DMA copy engine. This flag is useful to isolate issues with the hardware copy engines.

	HSA_ENABLE_INTERRUPT=0 : Causes completion signals to be detected with memory-based polling rather than interrupts. Can be useful to diagnose interrupt storm issues in the driver.

	HSA_DISABLE_CACHE=1 : Disables the GPU L2 data cache.

Debugging HIP Applications

	The variable “tls_tidInfo” contains the API sequence number (_apiSeqNum)- a monotonically increasing count of the HIP APIs called from this thread. This can be useful for setting conditional breakpoints. Also, each new HIP thread is mapped to monotonically increasing shortTid ID. Both of these fields are displayed in the HIP debug info.

(gdb) p tls_tidInfo
$32 = {_shortTid = 1, _apiSeqNum = 803}

	HCC tracks all of the application memory allocations, including those from HIP and HC’s “am_alloc”. If the HCC runtime is built with debug information (HCC_RUNTIME_DEBUG=ON when building HCC), then calling the function ‘hc::am_memtracker_print()’ will show all memory allocations. An optional argument specifies a void * targetPointer - the print routine will mark the allocation which contains the specified pointer with “–>” in the printed output. This example shows a sample GDB session where we print the memory allocated by this process and mark a specified address by using the gdb “call” function.. The gdb syntax also supports using the variable name (in this case ‘dst’):

(gdb) p dst
$33 = (void *) 0x5ec7e9000
(gdb) call hc::am_memtracker_print(dst)
TargetAddress:0x5ec7e9000
 0x504cfc000-0x504cfc00f:: allocSeqNum:1 hostPointer:0x504cfc000 devicePointer:0x504cfc000 sizeBytes:16 isInDeviceMem:0 isAmManaged:1 appId:0 appAllocFlags:0 appPtr:(nil)
...
-->0x5ec7e9000-0x5f7e28fff:: allocSeqNum:488 hostPointer:(nil) devicePointer:0x5ec7e9000 sizeBytes:191102976 isInDeviceMem:1 isAmManaged:1 appId:0 appAllocFlags:0 appPtr:(nil)

To debug an explicit address, cast the address to (void*)

(gdb) call hc::am_memtracker_print((void*)0x508c7f000)

	Debugging GPUVM fault. For example:

Memory access fault by GPU node-1 on address 0x5924000. Reason: Page not present or supervisor privilege.

Program received signal SIGABRT, Aborted.
[Switching to Thread 0x7fffdffb5700 (LWP 14893)]
0x00007ffff2057c37 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
56 ../nptl/sysdeps/unix/sysv/linux/raise.c: No such file or directory.
(gdb) bt
#0 0x00007ffff2057c37 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
#1 0x00007ffff205b028 in __GI_abort () at abort.c:89
#2 0x00007ffff6f960eb in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#3 0x00007ffff6f99ea5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#4 0x00007ffff6f78107 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#5 0x00007ffff744f184 in start_thread (arg=0x7fffdffb5700) at pthread_create.c:312
#6 0x00007ffff211b37d in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:111
(gdb) info threads
 Id Target Id Frame
 4 Thread 0x7fffdd521700 (LWP 14895) "caffe" pthread_cond_wait@@GLIBC_2.3.2 () at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
 3 Thread 0x7fffddd22700 (LWP 14894) "caffe" pthread_cond_wait@@GLIBC_2.3.2 () at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
* 2 Thread 0x7fffdffb5700 (LWP 14893) "caffe" 0x00007ffff2057c37 in __GI_raise (sig=sig@entry=6) at ../nptl/sysdeps/unix/sysv/linux/raise.c:56
 1 Thread 0x7ffff7fa6ac0 (LWP 14892) "caffe" 0x00007ffff6f934d5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
(gdb) thread 1
[Switching to thread 1 (Thread 0x7ffff7fa6ac0 (LWP 14892))]
#0 0x00007ffff6f934d5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
(gdb) bt
#0 0x00007ffff6f934d5 in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#1 0x00007ffff6f929ba in ?? () from /opt/rocm/hsa/lib/libhsa-runtime64.so.1
#2 0x00007fffe080beca in HSADispatch::waitComplete() () from /opt/rocm/hcc/lib/libmcwamp_hsa.so
#3 0x00007fffe080415f in HSADispatch::dispatchKernelAsync(Kalmar::HSAQueue*, void const*, int, bool) () from /opt/rocm/hcc/lib/libmcwamp_hsa.so
#4 0x00007fffe080238e in Kalmar::HSAQueue::dispatch_hsa_kernel(hsa_kernel_dispatch_packet_s const*, void const*, unsigned long, hc::completion_future*) () from /opt/rocm/hcc/lib/libmcwamp_hsa.so
#5 0x00007ffff7bb7559 in hipModuleLaunchKernel () from /opt/rocm/hip/lib/libhip_hcc.so
#6 0x00007ffff2e6cd2c in mlopen::HIPOCKernel::run (this=0x7fffffffb5a8, args=0x7fffffffb2a8, size=80) at /root/MIOpen/src/hipoc/hipoc_kernel.cpp:15
...

General Debugging Tips

	The fault will be caught by the runtime but was actually generated by an asynchronous command running on the GPU. So, the GDB backtrace will show a path in the runtime, ie inside “GI_Raise” as shown in the example above.

	To determine the true location of the fault, force the kernels to execute synchronously by seeing the environment variables HCC_SERIALIZE_KERNEL=3 HCC_SERIALIZE_COPY=3. This will force HCC to wait for the kernel to finish executing before returning. If the fault occurs during the execution of a kernel, you can see the code which launched the kernel inside the backtrace. A bit of guesswork is required to determine which thread is actually causing the issue - typically it will the thread which is waiting inside the libhsa-runtime64.so.

	
	VM faults inside kernels can be caused byi:
	
	incorrect code (ie a for loop which extends past array boundaries), i

	memory issues - kernel arguments which are invalid (null pointers, unregistered host pointers, bad pointers).

	synchronization issues

	compiler issues (incorrect code generation from the compiler)

	runtime issues

– General debug tips:

	‘gdb –args’ can be used to conveniently pass the executable and arguments to gdb.

	From inside GDB, you can set environment variables “set env”. Note the command does not use an ‘=’ sign:

(gdb) set env HIP_DB 1

Print env var state

Setting HIP_PRINT_ENV=1 and then running a HIP application will print the HIP environment variables, their current values, and usage info. Setting HCC_PRINT_ENV=1 and then running a HCC application will print the HCC environment variables, their current values, and usage info.

Kernel Language

Index

	Introduction

	Function-Type-Qualifiers

	Calling __global__ Functions

	Kernel-Launch Example

	Variable-Type Qualifiers

	Built-In Variables

	
	Coordinate Built-Ins
	
	warpSize

	Vector Types

	
	Vector Types
	
	Short Vector Types

	dim3

	Memory-Fence Instructions

	Synchronization Functions

	
	Math Functions
	
	Single Precision Mathematical Functions

	Double Precision Mathematical Functions

	Integer Intrinsics

	Floating-point Intrinsics

	Texture Functions

	Surface Functions

	Timer Functions

	
	Atomic Functions
	
	Caveats and Features Under-Development

	
	Warp Cross-Lane Functions
	
	Warp Vote and Ballot Functions

	Warp Shuffle Functions

	Cooperative Groups Functions

	Warp Matrix Functions

	Independent Thread Scheduling

	Profiler Counter Function

	Assert

	Printf

	Device-Side Dynamic Global Memory Allocation

	
	__launch_bounds__
	
	Compiler Impact

	CU and EU Definitions

	Porting from CUDA __launch_bounds

	maxrregcount

	Register Keyword

	Pragma Unroll

	In-Line-Assembly

	C++ Support

	Kernel Compilation

Introduction

HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in compute kernels, including classes, namespaces, operator overloading, templates and more. Additionally, it defines other language features designed specifically to target accelerators, such as the following:

	A kernel-launch syntax that uses standard C++, resembles a function call and is portable to all HIP targets

	Short-vector headers that can serve on a host or a device

	Math functions resembling those in the “math.h” header included with standard C++ compilers

	Built-in functions for accessing specific GPU hardware capabilities

This section describes the built-in variables and functions accessible from the HIP kernel. It’s intended for readers who are familiar with Cuda kernel syntax and want to understand how HIP is different.

Features are marked with one of the following keywords:

	Supported —HIP supports the feature with a Cuda-equivalent function

	Not supported —HIP does not support the feature

	Under development —the feature is under development but not yet available

Function-Type-Qualifiers

__device__

Supported __device__ functions are

	Executed on the device

	Called from the device only

The __device__ keyword can combine with the host keyword (see host [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#host]).

__global__

Supported __global__ functions are

	Executed on the device

	Called (“launched”) from the host

HIP __global__ functions must have a void return type. See Kernel-Launch Example [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#kernel-launch-example] .

HIP lacks dynamic-parallelism support, so __global__ functions cannot be called from the device.

__host__

Supported __host__ functions are

	Executed on the host

	Called from the host

__host__ can combine with __device__ , in which case the function compiles for both the host and device. These functions cannot use the HIP grid coordinate functions (for example, “hipThreadIdx_x”). A possible workaround is to pass the necessary coordinate info as an argument to the function.

__host__ cannot combine with __global__.

HIP parses the __noinline__ and __forceinline__ keywords and converts them to the appropriate Clang attributes. The hcc compiler, however, currently in-lines all device functions, so they are effectively ignored.

Calling __global__ Functions

__global__ functions are often referred to as kernels, and calling one is termed launching the kernel. These functions require the caller to specify an “execution configuration” that includes the grid and block dimensions. The execution configuration can also include other information for the launch, such as the amount of additional shared memory to allocate and the stream where the kernel should execute. HIP introduces a standard C++ calling convention to pass the execution configuration to the kernel (this convention replaces the Cuda <<< >>> syntax). In HIP,

	Kernels launch with the “hipLaunchKernelGGL” function

	
	The first five parameters to hipLaunchKernelGGL are the following:
	
	symbol kernelName: the name of the kernel to launch. To support template kernels which contains “,” use the HIP_KERNEL_NAME macro. The hipify tools insert this automatically.

	dim3 gridDim: 3D-grid dimensions specifying the number of blocks to launch.

	dim3 blockDim: 3D-block dimensions specifying the number of threads in each block.

	size_t dynamicShared: amount of additional shared memory to allocate when launching the kernel (see shared [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#__shared__])

	hipStream_t: stream where the kernel should execute. A value of 0 corresponds to the NULL stream (see Synchronization Functions [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#synchronization-functions]).

	Kernel arguments follow these first five parameters

// Example pseudo code introducing hipLaunchKernelGGL:
__global__ MyKernel(float *A, float *B, float *C, size_t N)
{
...
}

// Replace MyKernel<<<dim3(gridDim), dim3(gridDim), 0, 0>>> (a,b,c,n);

hipLaunchKernelGGL(MyKernel, dim3(gridDim), dim3(groupDim), 0/*dynamicShared*/, 0/*stream), a, b, c, n);

The hipLaunchKernelGGL macro always starts with the five parameters specified above, followed by the kernel arguments. The Hipify script automatically converts Cuda launch syntax to hipLaunchKernelGGL, including conversion of optional arguments in <<< >>> to the five required hipLaunchKernelGGL parameters. The dim3 constructor accepts zero to three arguments and will by default initialize unspecified dimensions to 1. See dim3 [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#dim3]. The kernel uses the coordinate built-ins (hipThread*, hipBlock*, hipGrid*) to determine coordinate index and coordinate bounds of the work item that’s currently executing. See Coordinate Built-Ins [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_kernel_language.md#coordinate-built-ins].

Kernel-Launch Example

// Example showing device function, __device__ __host__
// <- compile for both device and host
float PlusOne(float x)
{
 return x + 1.0;
}

__global__
void
MyKernel (const float *a, const float *b, float *c, unsigned N)
{
 unsigned gid = hipThreadIdx_x; // <- coordinate index function
 if (gid < N) {
 c[gid] = a[gid] + PlusOne(b[gid]);
 }
}
void callMyKernel()
{
 float *a, *b, *c; // initialization not shown...
 unsigned N = 1000000;
 const unsigned blockSize = 256;

 hipLaunchKernelGGL(MyKernel, dim3(N/blockSize), dim3(blockSize), 0, 0, a,b,c,N);
}

Variable-Type Qualifiers

__constant__

The __constant__ keyword is supported. The host writes constant memory before launching the kernel; from the GPU, this memory is read-only during kernel execution. The functions for accessing constant memory (hipGetSymbolAddress(), hipGetSymbolSize(), hipMemcpyToSymbol(), hipMemcpyToSymbolAsync, hipMemcpyFromSymbol, hipMemcpyFromSymbolAsync) are available.

__shared__

The __shared__ keyword is supported.

extern __shared__ allows the host to dynamically allocate shared memory and is specified as a launch parameter. HIP uses an alternate syntax based on the HIP_DYNAMIC_SHARED macro.

__managed__

Managed memory, including the __managed__ keyword, are not supported in HIP.

__restrict__

The __restrict__ keyword tells the compiler that the associated memory pointer will not alias with any other pointer in the kernel or function. This feature can help the compiler generate better code. In most cases, all pointer arguments must use this keyword to realize the benefit.

Built-In Variables

Coordinate Built-Ins

These built-ins determine the coordinate of the active work item in the execution grid. They are defined in hip_runtime.h (rather than being implicitly defined by the compiler).

	HIP Syntax

	Cuda Syntax

	hipThreadIdx_x

	threadIdx.x

	hipThreadIdx_y

	threadIdx.y

	hipThreadIdx_z

	threadIdx.z

	hipBlockIdx_x

	blockIdx.x

	hipBlockIdx_y

	blockIdx.y

	hipBlockIdx_z

	blockIdx.z

	hipBlockDim_x

	blockDim.x

	hipBlockDim_y

	blockDim.y

	hipBlockDim_z

	blockDim.z

	hipGridDim_x

	gridDim.x

	hipGridDim_y

	gridDim.y

	hipGridDim_z

	gridDim.z

warpSize

The warpSize variable is of type int and contains the warp size (in threads) for the target device. Note that all current Nvidia devices return 32 for this variable, and all current AMD devices return 64. Device code should use the warpSize built-in to develop portable wave-aware code.

Vector Types

Note that these types are defined in hip_runtime.h and are not automatically provided by the compiler.

Short Vector Types

Short vector types derive from the basic integer and floating-point types. They are structures defined in hip_vector_types.h. The first, second, third and fourth components of the vector are accessible through the x, y, z and w fields, respectively. All the short vector types support a constructor function of the form make_<type_name>().
For example, float4 make_float4(float x, float y, float z, float w) creates a vector of type float4 and value (x,y,z,w).

HIP supports the following short vector formats:

	Signed Integers:

	char1, char2, char3, char4

	short1, short2, short3, short4

	int1, int2, int3, int4

	long1, long2, long3, long4

	longlong1, longlong2, longlong3, longlong4

	Unsigned Integers:

	uchar1, uchar2, uchar3, uchar4

	ushort1, ushort2, ushort3, ushort4

	uint1, uint2, uint3, uint4

	ulong1, ulong2, ulong3, ulong4

	ulonglong1, ulonglong2, ulonglong3, ulonglong4

	Floating Points

	float1, float2, float3, float4

	double1, double2, double3, double4

dim3

dim3 is a three-dimensional integer vector type commonly used to specify grid and group dimensions. Unspecified dimensions are initialized to 1.

typedef struct dim3 {
 uint32_t x;
 uint32_t y;
 uint32_t z;

 dim3(uint32_t _x=1, uint32_t _y=1, uint32_t _z=1) : x(_x), y(_y), z(_z) {};
 };

Memory-Fence Instructions

HIP supports __threadfence() and __threadfence_block().

HIP provides workaround for threadfence_system() under HCC path. To enable the workaround, HIP should be built with environment variable HIP_COHERENT_HOST_ALLOC enabled. In addition,the kernels that use __threadfence_system() should be modified as follows:

	The kernel should only operate on finegrained system memory; which should be allocated with hipHostMalloc().

	Remove all memcpy for those allocated finegrained system memory regions.

Synchronization Functions

The __syncthreads() built-in function is supported in HIP. The __syncthreads_count(int), __syncthreads_and(int) and __syncthreads_or(int) functions are under development.

Math Functions

hcc supports a set of math operations callable from the device.

Single Precision Mathematical Functions

Following is the list of supported single precision mathematical functions.

	Function

	Supported on Host

	Supported on Device

	float acosf (float x)

Calculate the arc cosine of the input argument.

	✓

	✓

	float acoshf (float x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

	✓

	✓

	float asinf (float x)

Calculate the arc sine of the input argument.

	✓

	✓

	float asinhf (float x)

Calculate the arc hyperbolic sine of the input argument.

	✓

	✓

	float atan2f (float y, float x)

Calculate the arc tangent of the ratio of first and second input arguments.

	✓

	✓

	float atanf (float x)

Calculate the arc tangent of the input argument.

	✓

	✓

	float atanhf (float x)

Calculate the arc hyperbolic tangent of the input argument.

	✓

	✓

	float cbrtf (float x)

Calculate the cube root of the input argument.

	✓

	✓

	float ceilf (float x)

Calculate ceiling of the input argument.

	✓

	✓

	float copysignf (float x, float y)

Create value with given magnitude, copying sign of second value.

	✓

	✓

	float cosf (float x)

Calculate the cosine of the input argument.

	✓

	✓

	float coshf (float x)

Calculate the hyperbolic cosine of the input argument.

	✓

	✓

	float erfcf (float x)

Calculate the complementary error function of the input argument.

	✓

	✓

	float erff (float x)

Calculate the error function of the input argument.

	✓

	✓

	float exp10f (float x)

Calculate the base 10 exponential of the input argument.

	✓

	✓

	float exp2f (float x)

Calculate the base 2 exponential of the input argument.

	✓

	✓

	float expf (float x)

Calculate the base e exponential of the input argument.

	✓

	✓

	float expm1f (float x)

Calculate the base e exponential of the input argument, minus 1.

	✓

	✓

	float fabsf (float x)

Calculate the absolute value of its argument.

	✓

	✓

	float fdimf (float x, float y)

Compute the positive difference between x and y.

	✓

	✓

	float floorf (float x)

Calculate the largest integer less than or equal to x.

	✓

	✓

	float fmaf (float x, float y, float z)

Compute x × y + z as a single operation.

	✓

	✓

	float fmaxf (float x, float y)

Determine the maximum numeric value of the arguments.

	✓

	✓

	float fminf (float x, float y)

Determine the minimum numeric value of the arguments.

	✓

	✓

	float fmodf (float x, float y)

Calculate the floating-point remainder of x / y.

	✓

	✓

	float frexpf (float x, int* nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✗

	float hypotf (float x, float y)

Calculate the square root of the sum of squares of two arguments.

	✓

	✓

	int ilogbf (float x)

Compute the unbiased integer exponent of the argument.

	✓

	✓

	__RETURN_TYPE1 isfinite (float a)

Determine whether argument is finite.

	✓

	✓

	__RETURN_TYPE1 isinf (float a)

Determine whether argument is infinite.

	✓

	✓

	__RETURN_TYPE1 isnan (float a)

Determine whether argument is a NaN.

	✓

	✓

	float ldexpf (float x, int exp)

Calculate the value of x ⋅ 2exp.

	✓

	✓

	float log10f (float x)

Calculate the base 10 logarithm of the input argument.

	✓

	✓

	float log1pf (float x)

Calculate the value of loge(1 + x).

	✓

	✓

	float logbf (float x)

Calculate the floating point representation of the exponent of the input argument.

	✓

	✓

	float log2f (float x)

Calculate the base 2 logarithm of the input argument.

	✓

	✓

	float logf (float x)

Calculate the natural logarithm of the input argument.

	✓

	✓

	float modff (float x, float* iptr)

Break down the input argument into fractional and integral parts.

	✓

	✗

	float nanf (const char* tagp)

Returns “Not a Number”” value.”

	✗

	✓

	float nearbyintf (float x)

Round the input argument to the nearest integer.

	✓

	✓

	float powf (float x, float y)

Calculate the value of first argument to the power of second argument.

	✓

	✓

	float remainderf (float x, float y)

Compute single-precision floating-point remainder.

	✓

	✓

	float remquof (float x, float y, int* quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✗

	float roundf (float x)

Round to nearest integer value in floating-point.

	✓

	✓

	float scalbnf (float x, int n)

Scale floating-point input by integer power of two.

	✓

	✓

	__RETURN_TYPE1 signbit (float a)

Return the sign bit of the input.

	✓

	✓

	void sincosf (float x, float* sptr, float* cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✗

	float sinf (float x)

Calculate the sine of the input argument.

	✓

	✓

	float sinhf (float x)

Calculate the hyperbolic sine of the input argument.

	✓

	✓

	float sqrtf (float x)

Calculate the square root of the input argument.

	✓

	✓

	float tanf (float x)

Calculate the tangent of the input argument.

	✓

	✓

	float tanhf (float x)

Calculate the hyperbolic tangent of the input argument.

	✓

	✓

	float truncf (float x)

Truncate input argument to the integral part.

	✓

	✓

	float tgammaf (float x)

Calculate the gamma function of the input argument.

	✓

	✓

	float erfcinvf (float y)

Calculate the inverse complementary function of the input argument.

	✓

	✓

	float erfcxf (float x)

Calculate the scaled complementary error function of the input argument.

	✓

	✓

	float erfinvf (float y)

Calculate the inverse error function of the input argument.

	✓

	✓

	float fdividef (float x, float y)

Divide two floating point values.

	✓

	✓

	float frexpf (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✓

	float j0f (float x)

Calculate the value of the Bessel function of the first kind of order 0 for the input argument.

	✓

	✓

	float j1f (float x)

Calculate the value of the Bessel function of the first kind of order 1 for the input argument.

	✓

	✓

	float jnf (int n, float x)

Calculate the value of the Bessel function of the first kind of order n for the input argument.

	✓

	✓

	float lgammaf (float x)

Calculate the natural logarithm of the absolute value of the gamma function of the input argument.

	✓

	✓

	long long int llrintf (float x)

Round input to nearest integer value.

	✓

	✓

	long long int llroundf (float x)

Round to nearest integer value.

	✓

	✓

	long int lrintf (float x)

Round input to nearest integer value.

	✓

	✓

	long int lroundf (float x)

Round to nearest integer value.

	✓

	✓

	float modff (float x, float *iptr)

Break down the input argument into fractional and integral parts.

	✓

	✓

	float nextafterf (float x, float y)

Returns next representable single-precision floating-point value after argument.

	✓

	✓

	float norm3df (float a, float b, float c)

Calculate the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float norm4df (float a, float b, float c, float d)

Calculate the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	float normcdff (float y)

Calculate the standard normal cumulative distribution function.

	✓

	✓

	float normcdfinvf (float y)

Calculate the inverse of the standard normal cumulative distribution function.

	✓

	✓

	float normf (int dim, const float *a)

Calculate the square root of the sum of squares of any number of coordinates.

	✓

	✓

	float rcbrtf (float x)

Calculate the reciprocal cube root function.

	✓

	✓

	float remquof (float x, float y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✓

	float rhypotf (float x, float y)

Calculate one over the square root of the sum of squares of two arguments.

	✓

	✓

	float rintf (float x)

Round input to nearest integer value in floating-point.

	✓

	✓

	float rnorm3df (float a, float b, float c)

Calculate one over the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float rnorm4df (float a, float b, float c, float d)

Calculate one over the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	float rnormf (int dim, const float *a)

Calculate the reciprocal of square root of the sum of squares of any number of coordinates.

	✓

	✓

	float scalblnf (float x, long int n)

Scale floating-point input by integer power of two.

	✓

	✓

	void sincosf (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✓

	void sincospif (float x, float *sptr, float *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

	✓

	✓

	float y0f (float x)

Calculate the value of the Bessel function of the second kind of order 0 for the input argument.

	✓

	✓

	float y1f (float x)

Calculate the value of the Bessel function of the second kind of order 1 for the input argument.

	✓

	✓

	float ynf (int n, float x)

Calculate the value of the Bessel function of the second kind of order n for the input argument.

	✓

	✓

[1] __RETURN_TYPE is dependent on compiler. It is usually ‘int’ for C compilers and ‘bool’ for C++ compilers.

Double Precision Mathematical Functions

Following is the list of supported double precision mathematical functions.

	Function

	Supported on Host

	Supported on Device

	double acos (double x)

Calculate the arc cosine of the input argument.

	✓

	✓

	double acosh (double x)

Calculate the nonnegative arc hyperbolic cosine of the input argument.

	✓

	✓

	double asin (double x)

Calculate the arc sine of the input argument.

	✓

	✓

	double asinh (double x)

Calculate the arc hyperbolic sine of the input argument.

	✓

	✓

	double atan (double x)

Calculate the arc tangent of the input argument.

	✓

	✓

	double atan2 (double y, double x)

Calculate the arc tangent of the ratio of first and second input arguments.

	✓

	✓

	double atanh (double x)

Calculate the arc hyperbolic tangent of the input argument.

	✓

	✓

	double cbrt (double x)

Calculate the cube root of the input argument.

	✓

	✓

	double ceil (double x)

Calculate ceiling of the input argument.

	✓

	✓

	double copysign (double x, double y)

Create value with given magnitude, copying sign of second value.

	✓

	✓

	double cos (double x)

Calculate the cosine of the input argument.

	✓

	✓

	double cosh (double x)

Calculate the hyperbolic cosine of the input argument.

	✓

	✓

	double erf (double x)

Calculate the error function of the input argument.

	✓

	✓

	double erfc (double x)

Calculate the complementary error function of the input argument.

	✓

	✓

	double exp (double x)

Calculate the base e exponential of the input argument.

	✓

	✓

	double exp10 (double x)

Calculate the base 10 exponential of the input argument.

	✓

	✓

	double exp2 (double x)

Calculate the base 2 exponential of the input argument.

	✓

	✓

	double expm1 (double x)

Calculate the base e exponential of the input argument, minus 1.

	✓

	✓

	double fabs (double x)

Calculate the absolute value of the input argument.

	✓

	✓

	double fdim (double x, double y)

Compute the positive difference between x and y.

	✓

	✓

	double floor (double x)

Calculate the largest integer less than or equal to x.

	✓

	✓

	double fma (double x, double y, double z)

Compute x × y + z as a single operation.

	✓

	✓

	double fmax (double , double)

Determine the maximum numeric value of the arguments.

	✓

	✓

	double fmin (double x, double y)

Determine the minimum numeric value of the arguments.

	✓

	✓

	double fmod (double x, double y)

Calculate the floating-point remainder of x / y.

	✓

	✓

	double frexp (double x, int* nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✗

	double hypot (double x, double y)

Calculate the square root of the sum of squares of two arguments.

	✓

	✓

	int ilogb (double x)

Compute the unbiased integer exponent of the argument.

	✓

	✓

	__RETURN_TYPE1 isfinite (double a)

Determine whether argument is finite.

	✓

	✓

	__RETURN_TYPE1 isinf (double a)

Determine whether argument is infinite.

	✓

	✓

	__RETURN_TYPE1 isnan (double a)

Determine whether argument is a NaN.

	✓

	✓

	double ldexp (double x, int exp)

Calculate the value of x ⋅ 2exp.

	✓

	✓

	double log (double x)

Calculate the base e logarithm of the input argument.

	✓

	✓

	double log10 (double x)

Calculate the base 10 logarithm of the input argument.

	✓

	✓

	double log1p (double x)

Calculate the value of loge(1 + x).

	✓

	✓

	double log2 (double x)

Calculate the base 2 logarithm of the input argument.

	✓

	✓

	double logb (double x)

Calculate the floating point representation of the exponent of the input argument.

	✓

	✓

	double modf (double x, double* iptr)

Break down the input argument into fractional and integral parts.

	✓

	✗

	double nan (const char* tagp)

Returns “Not a Number”” value.”

	✗

	✓

	double nearbyint (double x)

Round the input argument to the nearest integer.

	✓

	✓

	double pow (double x, double y)

Calculate the value of first argument to the power of second argument.

	✓

	✓

	double remainder (double x, double y)

Compute double-precision floating-point remainder.

	✓

	✓

	double remquo (double x, double y, int* quo)

Compute double-precision floating-point remainder and part of quotient.

	✓

	✗

	double round (double x)

Round to nearest integer value in floating-point.

	✓

	✓

	double scalbn (double x, int n)

Scale floating-point input by integer power of two.

	✓

	✓

	__RETURN_TYPE1 signbit (double a)

Return the sign bit of the input.

	✓

	✓

	double sin (double x)

Calculate the sine of the input argument.

	✓

	✓

	void sincos (double x, double* sptr, double* cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✗

	double sinh (double x)

Calculate the hyperbolic sine of the input argument.

	✓

	✓

	double sqrt (double x)

Calculate the square root of the input argument.

	✓

	✓

	double tan (double x)

Calculate the tangent of the input argument.

	✓

	✓

	double tanh (double x)

Calculate the hyperbolic tangent of the input argument.

	✓

	✓

	double tgamma (double x)

Calculate the gamma function of the input argument.

	✓

	✓

	double trunc (double x)

Truncate input argument to the integral part.

	✓

	✓

	double erfcinv (double y)

Calculate the inverse complementary function of the input argument.

	✓

	✓

	double erfcx (double x)

Calculate the scaled complementary error function of the input argument.

	✓

	✓

	double erfinv (double y)

Calculate the inverse error function of the input argument.

	✓

	✓

	double frexp (float x, int *nptr)

Extract mantissa and exponent of a floating-point value.

	✓

	✓

	double j0 (double x)

Calculate the value of the Bessel function of the first kind of order 0 for the input argument.

	✓

	✓

	double j1 (double x)

Calculate the value of the Bessel function of the first kind of order 1 for the input argument.

	✓

	✓

	double jn (int n, double x)

Calculate the value of the Bessel function of the first kind of order n for the input argument.

	✓

	✓

	double lgamma (double x)

Calculate the natural logarithm of the absolute value of the gamma function of the input argument.

	✓

	✓

	long long int llrint (double x)

Round input to nearest integer value.

	✓

	✓

	long long int llround (double x)

Round to nearest integer value.

	✓

	✓

	long int lrint (double x)

Round input to nearest integer value.

	✓

	✓

	long int lround (double x)

Round to nearest integer value.

	✓

	✓

	double modf (double x, double *iptr)

Break down the input argument into fractional and integral parts.

	✓

	✓

	double nextafter (double x, double y)

Returns next representable single-precision floating-point value after argument.

	✓

	✓

	double norm3d (double a, double b, double c)

Calculate the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	float norm4d (double a, double b, double c, double d)

Calculate the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	double normcdf (double y)

Calculate the standard normal cumulative distribution function.

	✓

	✓

	double normcdfinv (double y)

Calculate the inverse of the standard normal cumulative distribution function.

	✓

	✓

	double rcbrt (double x)

Calculate the reciprocal cube root function.

	✓

	✓

	double remquo (double x, double y, int *quo)

Compute single-precision floating-point remainder and part of quotient.

	✓

	✓

	double rhypot (double x, double y)

Calculate one over the square root of the sum of squares of two arguments.

	✓

	✓

	double rint (double x)

Round input to nearest integer value in floating-point.

	✓

	✓

	double rnorm3d (double a, double b, double c)

Calculate one over the square root of the sum of squares of three coordinates of the argument.

	✓

	✓

	double rnorm4d (double a, double b, double c, double d)

Calculate one over the square root of the sum of squares of four coordinates of the argument.

	✓

	✓

	double rnorm (int dim, const double *a)

Calculate the reciprocal of square root of the sum of squares of any number of coordinates.

	✓

	✓

	double scalbln (double x, long int n)

Scale floating-point input by integer power of two.

	✓

	✓

	void sincos (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument.

	✓

	✓

	void sincospi (double x, double *sptr, double *cptr)

Calculate the sine and cosine of the first input argument multiplied by PI.

	✓

	✓

	double y0f (double x)

Calculate the value of the Bessel function of the second kind of order 0 for the input argument.

	✓

	✓

	double y1 (double x)

Calculate the value of the Bessel function of the second kind of order 1 for the input argument.

	✓

	✓

	double yn (int n, double x)

Calculate the value of the Bessel function of the second kind of order n for the input argument.

	✓

	✓

[1] __RETURN_TYPE is dependent on compiler. It is usually ‘int’ for C compilers and ‘bool’ for C++ compilers.

Integer Intrinsics

Following is the list of supported integer intrinsics. Note that intrinsics are supported on device only.

	Function

	unsigned int __brev (unsigned int x)

Reverse the bit order of a 32 bit unsigned integer.

	unsigned long long int __brevll (unsigned long long int x)

Reverse the bit order of a 64 bit unsigned integer.

	int __clz (int x)

Return the number of consecutive high-order zero bits in a 32 bit integer.

	unsigned int __clz(unsigned int x)

Return the number of consecutive high-order zero bits in 32 bit unsigned integer.

	int __clzll (long long int x)

Count the number of consecutive high-order zero bits in a 64 bit integer.

	unsigned int __clzll(long long int x)

Return the number of consecutive high-order zero bits in 64 bit signed integer.

	unsigned int __ffs(unsigned int x)

	unsigned int __ffs(int x)

Find the position of least significant bit set to 1 in a 32 bit signed integer.

	unsigned int __ffsll(unsigned long long int x)

Find the position of least significant bit set to 1 in a 64 bit unsigned integer.1

	unsigned int __ffsll(long long int x)

Find the position of least significant bit set to 1 in a 64 bit signed integer.

	unsigned int __popc (unsigned int x)

Count the number of bits that are set to 1 in a 32 bit integer.

	int __popcll (unsigned long long int x)

Count the number of bits that are set to 1 in a 64 bit integer.

	int __mul24 (int x int y)

Multiply two 24bit integers.

	unsigned int __umul24 (unsigned int x unsigned int y)

Multiply two 24bit unsigned integers.

	[1]

	The hcc implementation of __ffs() and __ffsll() contains code to add a constant +1 to produce the ffs result format.

	For the cases where this overhead is not acceptable and programmer is willing to specialize for the platform

	hcc provides hc::__lastbit_u32_u32(unsigned int input) and hc::__lastbit_u32_u64(unsigned long long int input).

	The index returned by _lastbit instructions starts at -1 while for ffs the index starts at 0.

Floating-point Intrinsics

Following is the list of supported floating-point intrinsics. Note that intrinsics are supported on device only.

	Function

	float __cosf (float x)

Calculate the fast approximate cosine of the input argument.

	float __expf (float x)

Calculate the fast approximate base e exponential of the input argument.

	float __frsqrt_rn (float x)

Compute 1/√x in round-to-nearest-even mode.

	float __fsqrt_rd (float x)

Compute √x in round-down mode.

	float __fsqrt_rn (float x)

Compute √x in round-to-nearest-even mode.

	float __fsqrt_ru (float x)

Compute √x in round-up mode.

	float __fsqrt_rz (float x)

Compute √x in round-towards-zero mode.

	float __log10f (float x)

Calculate the fast approximate base 10 logarithm of the input argument.

	float __log2f (float x)

Calculate the fast approximate base 2 logarithm of the input argument.

	float __logf (float x)

Calculate the fast approximate base e logarithm of the input argument.

	float __powf (float x float y)

Calculate the fast approximate of xy.

	float __sinf (float x)

Calculate the fast approximate sine of the input argument.

	float __tanf (float x)

Calculate the fast approximate tangent of the input argument.

	double __dsqrt_rd (double x)

Compute √x in round-down mode.

	double __dsqrt_rn (double x)

Compute √x in round-to-nearest-even mode.

	double __dsqrt_ru (double x)

Compute √x in round-up mode.

	double __dsqrt_rz (double x)

Compute √x in round-towards-zero mode.

Texture Functions

	hipError_t hipBindTexture(
	size_t* offset,
const textureReference* tex,
const void* devPtr,
const hipChannelFormatDesc* desc,
size_t size __dparm(UINT_MAX));

	hipError_t hipBindTexture2D(
	size_t* offset,
const textureReference* tex,
const void* devPtr,
const hipChannelFormatDesc* desc,
size_t width,
size_t height,
size_t pitch);

	hipError_t hipBindTextureToArray(
	const textureReference* tex,
hipArray_const_t array,
const hipChannelFormatDesc* desc);

	hipError_t hipGetTextureReference(
	const textureReference** texref,
const void* symbol);

hipError_t hipUnbindTexture(const textureReference* tex);

	hipError_t hipCreateTextureObject(
	hipTextureObject_t* pTexObject,
const hipResourceDesc* pResDesc,
const hipTextureDesc* pTexDesc,
const struct hipResourceViewDesc* pResViewDesc);

hipError_t hipDestroyTextureObject(hipTextureObject_t textureObject);

	hipError_t hipGetChannelDesc(
	hipChannelFormatDesc* desc,
hipArray_const_t array);

	hipError_t hipGetTextureObjectResourceDesc(
	hipResourceDesc* pResDesc,
hipTextureObject_t textureObject);

	hipError_t hipGetTextureObjectResourceViewDesc(
	struct hipResourceViewDesc* pResViewDesc,
hipTextureObject_t textureObject);

	hipError_t hipGetTextureObjectTextureDesc(
	hipTextureDesc* pTexDesc,
hipTextureObject_t textureObject);

	hipError_t hipTexRefGetAddress(
	hipDeviceptr_t* dev_ptr,
const textureReference* texRef);

	hipError_t hipTexRefGetAddressMode(
	enum hipTextureAddressMode* pam,
const textureReference* texRef,
int dim);

	hipError_t hipTexRefGetFilterMode(
	enum hipTextureFilterMode* pfm,
const textureReference* texRef);

	hipError_t hipTexRefGetFlags(
	unsigned int* pFlags,
const textureReference* texRef);

	hipError_t hipTexRefGetFormat(
	hipArray_Format* pFormat,
int* pNumChannels,
const textureReference* texRef);

	hipError_t hipTexRefSetAddress(
	size_t* ByteOffset,
textureReference* texRef,
hipDeviceptr_t dptr,
size_t bytes);

	hipError_t hipTexRefSetAddress2D(
	textureReference* texRef,
const HIP_ARRAY_DESCRIPTOR* desc,
hipDeviceptr_t dptr,
size_t Pitch);

	hipError_t hipTexRefSetAddressMode(
	textureReference* texRef,
int dim,
enum hipTextureAddressMode am);

	hipError_t hipTexRefSetArray(
	textureReference* tex,
hipArray_const_t array,
unsigned int flags);

	hipError_t hipTexRefSetFilterMode(
	textureReference* texRef,
enum hipTextureFilterMode fm);

	hipError_t hipTexRefSetFlags(
	textureReference* texRef,
unsigned int Flags);

	hipError_t hipTexRefSetFormat(
	textureReference* texRef,
hipArray_Format fmt,
int NumPackedComponents);

	hipError_t hipTexObjectCreate(
	hipTextureObject_t* pTexObject,
const HIP_RESOURCE_DESC* pResDesc,
const HIP_TEXTURE_DESC* pTexDesc,
const HIP_RESOURCE_VIEW_DESC* pResViewDesc);

	hipError_t hipTexObjectDestroy(
	hipTextureObject_t texObject);

	hipError_t hipTexObjectGetResourceDesc(
	HIP_RESOURCE_DESC* pResDesc,
hipTextureObject_t texObject);

	hipError_t hipTexObjectGetResourceViewDesc(
	HIP_RESOURCE_VIEW_DESC* pResViewDesc,
hipTextureObject_t texObject);

	hipError_t hipTexObjectGetTextureDesc(
	HIP_TEXTURE_DESC* pTexDesc,
hipTextureObject_t texObject);

Surface Functions

	Function

	hipError_t hipCreateSurfaceObject(hipSurfaceObject_t* pSurfObject, const hipResourceDesc* pResDesc);

	hipError_t hipDestroySurfaceObject(hipSurfaceObject_t surfaceObject);

Timer Functions

HIP provides the following built-in functions for reading a high-resolution timer from the device.

clock_t clock()
long long int clock64()

Returns the value of counter that is incremented every clock cycle on device. Difference in values returned provides the cycles used.

Atomic Functions

Atomic functions execute as read-modify-write operations residing in global or shared memory. No other device or thread can observe or modify the memory location during an atomic operation. If multiple instructions from different devices or threads target the same memory location, the instructions are serialized in an undefined order.

HIP supports the following atomic operations.

	Function

	Supported in HIP

	Supported in CUDA

	int atomicAdd(int* address, int val)

	✓

	✓

	unsigned int atomicAdd(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicAdd(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	float atomicAdd(float* address, float val)

	✓

	✓

	int atomicSub(int* address, int val)

	✓

	✓

	unsigned int atomicSub(unsigned int* address,unsigned int val)

	✓

	✓

	int atomicExch(int* address, int val)

	✓

	✓

	unsigned int atomicExch(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicExch(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	float atomicExch(float* address, float val)

	✓

	✓

	int atomicMin(int* address, int val)

	✓

	✓

	unsigned int atomicMin(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicMin(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicMax(int* address, int val)

	✓

	✓

	unsigned int atomicMax(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicMax(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	unsigned int atomicInc(unsigned int* address)

	✗

	✓

	unsigned int atomicDec(unsigned int* address)

	✗

	✓

	int atomicCAS(int* address, int compare, int val)

	✓

	✓

	unsigned int atomicCAS(unsigned int* address,unsigned int compare,unsigned int val)

	✓

	✓

	unsigned long long int atomicCAS(unsigned long long int* address,unsigned long long int compare,unsigned long long int val)

	✓

	✓

	int atomicAnd(int* address, int val)

	✓

	✓

	unsigned int atomicAnd(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicAnd(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicOr(int* address, int val)

	✓

	✓

	unsigned int atomicOr(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicOr(unsigned long long int* address,unsigned long long int val)

	✓

	✓

	int atomicXor(int* address, int val)

	✓

	✓

	unsigned int atomicXor(unsigned int* address,unsigned int val)

	✓

	✓

	unsigned long long int atomicXor(unsigned long long int* address,unsigned long long int val))

	✓

	✓

Caveats and Features Under-Development

	HIP enables atomic operations on 32-bit integers. Additionally, it supports an atomic float add. AMD hardware, however, implements the float add using a CAS loop, so this function may not perform efficiently.

Warp Cross-Lane Functions

Warp cross-lane functions operate across all lanes in a warp. The hardware guarantees that all warp lanes will execute in lockstep, so additional synchronization is unnecessary, and the instructions use no shared memory.

Note that Nvidia and AMD devices have different warp sizes, so portable code should use the warpSize built-ins to query the warp size. Hipified code from the Cuda path requires careful review to ensure it doesn’t assume a waveSize of 32. “Wave-aware” code that assumes a waveSize of 32 will run on a wave-64 machine, but it will utilize only half of the machine resources. In addition to the warpSize device function, host code can obtain the warpSize from the device properties:

 cudaDeviceProp props;
 cudaGetDeviceProperties(&props, deviceID);
int w = props.warpSize;
// implement portable algorithm based on w (rather than assume 32 or 64)

Warp Vote and Ballot Functions

int __all(int predicate)
int __any(int predicate)
uint64_t __ballot(int predicate)

Threads in a warp are referred to as lanes and are numbered from 0 to warpSize – 1. For these functions, each warp lane contributes 1 – the bit value (the predicate), which is efficiently broadcast to all lanes in the warp. The 32-bit int predicate from each lane reduces to a 1-bit value: 0 (predicate = 0) or 1 (predicate != 0). __any and __all provide a summary view of the predicates that the other warp lanes contribute:

	__any() returns 1 if any warp lane contributes a nonzero predicate, or 0 otherwise

	__all() returns 1 if all other warp lanes contribute nonzero predicates, or 0 otherwise

Applications can test whether the target platform supports the any/all instruction using the hasWarpVote device property or the HIP_ARCH_HAS_WARP_VOTE compiler define.

__ballot provides a bit mask containing the 1-bit predicate value from each lane. The nth bit of the result contains the 1 bit contributed by the nth warp lane. Note that HIP’s __ballot function supports a 64-bit return value (compared with Cuda’s 32 bits). Code ported from Cuda should support the larger warp sizes that the HIP version of this instruction supports. Applications can test whether the target platform supports the ballot instruction using the hasWarpBallot device property or the HIP_ARCH_HAS_WARP_BALLOT compiler define.

Warp Shuffle Functions

Half-float shuffles are not supported. The default width is warpSize—

See Warp Cross-Lane Functions. Note, applications should not assume the warpSize is 32 or 64.

	Function

	int __shfl(int var, int src_lane, int width = warpSize)

	unsigned int __shfl(unsigned int var, int src_lane, int width = warpSize)

	float __shfl(float var, int src_lane, int width = warpSize)

	double __shfl(double var, int src_lane, int width = warpSize)

	long __shfl(long var, int src_lane, int width = warpSize)

	long long __shfl(long long var, int src_lane, int width = warpSize)

	int __shfl_up(int var, unsigned int lane_delta, int width = warpSize)

	unsigned int __shfl_up(unsigned int var, unsigned int lane_delta, int width = warpSize)

	float __shfl_up(float var, unsigned int lane_delta, int width = warpSize)

	double __shfl_up(double var, unsigned int lane_delta, int width = warpSize)

	long __shfl_up(long var, unsigned int lane_delta, int width = warpSize)

	long long __shfl_up(long long var, unsigned int lane_delta, int width = warpSize)

	int __shfl_down(int var, unsigned int lane_delta, int width = warpSize)

	unsigned int __shfl_down(unsigned int var, unsigned int lane_delta, int width = warpSize)

	float __shfl_down(float var, unsigned int lane_delta, int width = warpSize)

	double __shfl_down(double var, unsigned int lane_delta, int width = warpSize)

	long __shfl_down(long var, unsigned int lane_delta, int width = warpSize)

	long long __shfl_down(long long var, unsigned int lane_delta, int width = warpSize)

	int __shfl_xor(int var, int lane_mask, int width = warpSize)

	unsigned int __shfl_xor(unsigned int var, int lane_mask, int width = warpSize)

	float __shfl_xor(float var, int lane_mask, int width = warpSize)

	double __shfl_xor(double var, int lane_mask, int width = warpSize)

	long __shfl_xor(long var, int lane_mask, int width = warpSize)

	long long __shfl_xor(long long var, int lane_mask, int width = warpSize)

Cooperative Groups Functions

Cooperative groups is a mechanism for forming and communicating between groups of threads at
a granularity different than the block. This feature was introduced in Cuda 9.

HIP does not support any of the kernel language cooperative groups
types or functions.

	Function

	Supported in HIP

	Supported in CUDA

	void thread_group.sync()

	
	y

	unsigned thread_group.size()

	
	y

	unsigned thread_group.thread_rank()

	
	y

	bool thread_group.is_valid()

	
	y

	thread_group tiled_partiti0on(thread_group, size)

	
	y

	thread_block_tile<N> tiled_partition<N>(thread_group)

	
	y

	thread_block this_thread_block()

	
	y

	T thread_block_tile.shfl()

	
	y

	T thread_block_tile.shfl_down()

	
	y

	T thread_block_tile.shfl_up()

	
	y

	T thread_block_tile.shfl_xor()

	
	y

	T thread_block_tile.any()

	
	y

	T thread_block_tile.all()

	
	y

	T thread_block_tile.ballot()

	
	y

	T thread_block_tile.match_any()

	
	y

	T thread_block_tile.match_all()

	
	y

	coalesced_group coalesced_threads()

	
	y

	grid_group this_grid()

	
	y

	void grid_group.sync()

	
	y

	unsigned grid_group.size()

	
	y

	unsigned grid_group.thread_rank()

	
	y

	bool grid_group.is_valid()

	
	y

	multi_grid_group this_multi_grid()

	
	y

	void multi_grid_group.sync()

	
	y

	unsigned multi_grid_group.size()

	
	y

	unsigned multi_grid_group.thread_rank()

	
	y

	bool multi_grid_group.is_valid()

	
	y

Warp Matrix Functions

Warp matrix functions allow a warp to cooperatively operate on small matrices whose elements are spread over the lanes in an unspecified manner. This feature was introduced in Cuda 9.

HIP does not support any of the kernel language warp matrix types or functions.

Independent Thread Scheduling

The hardware support for independent thread scheduling introduced in certain architectures supporting Cuda allows threads to progress independently of each other and enables intra-warp synchronizations that were previously not allowed.

HIP does not support this type of scheduling.

Profiler Counter Function

The Cuda __prof_trigger() instruction is not supported.

Assert

The assert function is under development. HIP does support an “abort” call which will terminate the process execution from inside the kernel.

Printf

The printf function is under development.

Device-Side Dynamic Global Memory Allocation

Device-side dynamic global memory allocation is under development. HIP now includes a preliminary implementation of malloc and free that can be called from device functions.

__launch_bounds__

GPU multiprocessors have a fixed pool of resources (primarily registers and shared memory) which are shared by the actively running warps. Using more resources can increase IPC of the kernel but reduces the resources available for other warps and limits the number of warps that can be simulaneously running. Thus GPUs have a complex relationship between resource usage and performance.

hip_launch_bounds allows the application to provide usage hints that influence the resources (primarily registers) used by the generated code. hip_launch_bounds is a function attribute that must be attached to a global function:

__global__ void `__launch_bounds__`(MAX_THREADS_PER_BLOCK, MIN_WARPS_PER_EU) MyKernel(...) ...
MyKernel(hipGridLaunch lp, ...)
...

launch_bounds supports two parameters:

	MAX_THREADS_PER_BLOCK - The programmers guarantees that kernel will be launched with threads less than
MAX_THREADS_PER_BLOCK. (On NVCC this maps to the .maxntid PTX directive). If no launch_bounds is specified,
MAX_THREADS_PER_BLOCK is the maximum block size supported by the device (typically 1024 or larger). Specifying
MAX_THREADS_PER_BLOCK less than the maximum effectively allows the compiler to use more resources than a default unconstrained compilation that supports all possible block sizes at launch time. The threads-per-block is the product of (hipBlockDim_x * hipBlockDim_y * hipBlockDim_z).

	MIN_WARPS_PER_EU - directs the compiler to minimize resource usage so that the requested number of warps can be simultaneously active on a multi-processor. Since active warps compete for the same fixed pool of resources, the compiler must reduce resources required by each warp(primarily registers). MIN_WARPS_PER_EU is optional and defaults to 1 if not specified. Specifying a MIN_WARPS_PER_EU greater than the default 1 effectively constrains the compiler’s resource usage.

Compiler Impact

The compiler uses these parameters as follows:

	The compiler uses the hints only to manage register usage, and does not automatically reduce shared memory or other resources.

	Compilation fails if compiler cannot generate a kernel which meets the requirements of the specified launch bounds.

	From MAX_THREADS_PER_BLOCK, the compiler derives the maximum number of warps/block that can be used at launch time. Values of MAX_THREADS_PER_BLOCK less than the default allows the compiler to use a larger pool of registers : each warp uses registers, and this hint constains the launch to a warps/block size which is less than maximum.

	From MIN_WARPS_PER_EU, the compiler derives a maximum number of registers that can be used by the kernel (to meet the required #simultaneous active blocks). If MIN_WARPS_PER_EU is 1, then the kernel can use all registers supported by the multiprocessor.

	The compiler ensures that the registers used in the kernel is less than both allowed maximums, typically by spilling registers (to shared or global memory), or by using more instructions.

	The compiler may use hueristics to increase register usage, or may simply be able to avoid spilling. The MAX_THREADS_PER_BLOCK is particularly useful in this cases, since it allows the compiler to use more registers and avoid situations where the compiler constrains the register usage (potentially spilling) to meet the requirements of a large block size that is never used at launch time.

CU and EU Definitions

A compute unit (CU) is responsible for executing the waves of a work-group. It is composed of one or more execution units (EU) which are responsible for executing waves. An EU can have enough resources to maintain the state of more than one executing wave. This allows an EU to hide latency by switching between waves in a similar way to symmetric multithreading on a CPU. In order to allow the state for multiple waves to fit on an EU, the resources used by a single wave have to be limited. Limiting such resources can allow greater latency hiding, but can result in having to spill some register state to memory. This attribute allows an advanced developer to tune the number of waves that are capable of fitting within the resources of an EU. It can be used to ensure at least a certain number will fit to help hide latency, and can also be used to ensure no more than a certain number will fit to limit cache thrashing.

Porting from CUDA __launch_bounds

CUDA defines a __launch_bounds which is also designed to control occupancy:

__launch_bounds(MAX_THREADS_PER_BLOCK, MIN_BLOCKS_PER_MULTIPROCESSOR)

	The second parameter __launch_bounds parameters must be converted to the format used __hip_launch_bounds, which uses warps and execution-units rather than blocks and multi-processors (This conversion is performed automatically by the clang hipify tools.)

MIN_WARPS_PER_EXECUTION_UNIT = (MIN_BLOCKS_PER_MULTIPROCESSOR * MAX_THREADS_PER_BLOCK)/32

The key differences in the interface are:

	Warps (rather than blocks): The developer is trying to tell the compiler to control resource utilization to guarantee some amount of active Warps/EU for latency hiding. Specifying active warps in terms of blocks appears to hide the micro-architectural details of the warp size, but makes the interface more confusing since the developer ultimately needs to compute the number of warps to obtain the desired level of control.

	Execution Units (rather than multiProcessor): The use of execution units rather than multiprocessors provides support for architectures with multiple execution units/multi-processor. For example, the AMD GCN architecture has 4 execution units per multiProcessor. The hipDeviceProps has a field executionUnitsPerMultiprocessor. Platform-specific coding techniques such as #ifdef can be used to specify different launch_bounds for NVCC and HCC platforms, if desired.

maxrregcount

Unlike nvcc, hcc does not support the “–maxrregcount” option. Instead, users are encouraged to use the hip_launch_bounds directive since the parameters are more intuitive and portable than micro-architecture details like registers, and also the directive allows per-kernel control rather than an entire file. hip_launch_bounds works on both hcc and nvcc targets.

Register Keyword

The register keyword is deprecated in C++, and is silently ignored by both nvcc and hcc. To see warnings, you can pass the option -Wdeprecated-register to hcc.

Pragma Unroll

Unroll with a bounds that is known at compile-time is supported. For example:

#pragma unroll 16 /* hint to compiler to unroll next loop by 16 */
for (int i=0; i<16; i++) ...

#pragma unroll 1 /* tell compiler to never unroll the loop */
for (int i=0; i<16; i++) ...

#pragma unroll /* hint to compiler to completely unroll next loop. */
for (int i=0; i<16; i++) ...

In-Line-Assembly

GCN ISA In-line assembly, is supported. For example:

asm volatile ("v_mac_f32_e32 %0, %2, %3" : "=v" (out[i]) : "0"(out[i]), "v" (a), "v" (in[i]));

We insert the GCN isa into the kernel using asm() Assembler statement. volatile keyword is used so that the optimizers must not change the number of volatile operations or change their order of execution relative to other volatile operations. v_mac_f32_e32 is the GCN instruction, for more information please refer - AMD GCN3 ISA architecture manual [http://gpuopen.com/compute-product/amd-gcn3-isa-architecture-manual/] Index for the respective operand in the ordered fashion is provided by % followed by position in the list of operands “v” is the constraint code (for target-specific AMDGPU) for 32-bit VGPR register, for more info please refer - Supported Constraint Code List for AMDGPU [https://llvm.org/docs/LangRef.html#supported-constraint-code-list] Output Constraints are specified by an "=" prefix as shown above (“=v”). This indicate that assemby will write to this operand, and the operand will then be made available as a return value of the asm expression. Input constraints do not have a prefix - just the constraint code. The constraint string of “0” says to use the assigned register for output as an input as well (it being the 0’th constraint).

C++ Support

The following C++ features are not supported:

	Run-time-type information (RTTI)

	Virtual functions

	Try / catch

Kernel Compilation

hipcc now supports compiling C++/HIP kernels to binary code objects. The user can specify the target for which the binary can be generated. HIP/HCC does not yet support fat binaries so only a single target may be specified. The file format for binary is .co which means Code Object. The following command builds the code object using hipcc.

hipcc --genco --target-isa=[TARGET GPU] [INPUT FILE] -o [OUTPUT FILE]

[INPUT FILE] = Name of the file containing kernels
[OUTPUT FILE] = Name of the generated code object file```

Note that one important fact to remember when using binary code objects is that the number of arguments to the kernel are different on HCC and NVCC path. Refer to the sample in samples/0_Intro/module_api for differences in the arguments to be passed to the kernel.

ROCm Languages

ROCm, Lingua Franca, C++, OpenCL and Python

The open-source ROCm stack offers multiple programming-language choices. The goal is to give you a range of tools to help solve the
problem at hand. Here, we describe some of the options and how to choose among them.

HCC: Heterogeneous Compute Compiler

What is the Heterogeneous Compute (HC) API? It’s a C++ dialect with extensions to launch kernels and manage accelerator memory. It closely tracks the evolution of C++ and will incorporate parallelism and concurrency features as the C++ standard does. For example, HC includes early support for the C++17 Parallel STL. At the recent ISO C++ meetings in Kona and Jacksonville, the committee was excited about enabling the language to express all forms of parallelism, including multicore CPU, SIMD and GPU. We’ll be following these developments closely, and you’ll see HC move quickly to include standard C++ capabilities.

The Heterogeneous Compute Compiler (HCC) provides two important benefits:

Ease of development

	A full C++ API for managing devices, queues and events

	C++ data containers that provide type safety, multidimensional-array indexing and automatic data management

	C++ kernel-launch syntax using parallel_for_each plus C++11 lambda functions

	A single-source C++ programming environment—the host and source code can be in the same source file and use the same C++ language;templates and classes work naturally across the host/device boundary

	HCC generates both host and device code from the same compiler, so it benefits from a consistent view of the source code using the
same Clang-based language parser

Full control over the machine

	Access AMD scratchpad memories (“LDS”)

	Fully control data movement, prefetch and discard

	Fully control asynchronous kernel launch and completion

	Get device-side dependency resolution for kernel and data commands (without host involvement)

	Obtain HSA agents, queues and signals for low-level control of the architecture using the HSA Runtime API

	Use direct-to-ISA [https://github.com/RadeonOpenCompute/HCC-Native-GCN-ISA] compilation

When to Use HC

Use HC when you’re targeting the AMD ROCm platform: it delivers a single-source, easy-to-program C++ environment without compromising
performance or control of the machine.

HIP: Heterogeneous-Computing Interface for Portability

What is Heterogeneous-Computing Interface for Portability (HIP)? It’s a C++ dialect designed to ease conversion of Cuda applications to portable C++ code. It provides a C-style API and a C++ kernel language. The C++ interface can use templates and classes across the
host/kernel boundary.

The Hipify tool automates much of the conversion work by performing a source-to-source transformation from Cuda to HIP. HIP code can run on AMD hardware (through the HCC compiler) or Nvidia hardware (through the NVCC compiler) with no performance loss compared with the original Cuda code.

Programmers familiar with other GPGPU languages will find HIP very easy to learn and use. AMD platforms implement this language using the HC dialect described above, providing similar low-level control over the machine.

When to Use HIP

Use HIP when converting Cuda applications to portable C++ and for new projects that require portability between AMD and Nvidia. HIP provides a C++ development language and access to the best development tools on both platforms.

OpenCL™: Open Compute Language

What is OpenCL? It’s a framework for developing programs that can execute across a wide variety of heterogeneous platforms. AMD, Intel
and Nvidia GPUs support version 1.2 of the specification, as do x86 CPUs and other devices (including FPGAs and DSPs). OpenCL provides a C run-time API and C99-based kernel language.

When to Use OpenCL

Use OpenCL when you have existing code in that language and when you need portability to multiple platforms and devices. It runs on
Windows, Linux and Mac OS, as well as a wide variety of hardware platforms (described above).

Anaconda Python With Numba

What is Anaconda? It’s a modern open-source analytics platform powered by Python. Continuum Analytics, a ROCm platform partner, is the driving force behind it. Anaconda delivers high-performance capabilities including acceleration of HSA APUs, as well as
ROCm-enabled discrete GPUs via Numba. It gives superpowers to the people who are changing the world.

Numba

Numba gives you the power to speed up your applications with high-performance functions written directly in Python. Through a few
annotations, you can just-in-time compile array-oriented and math-heavy Python code to native machine instructions—offering
performance similar to that of C, C++ and Fortran—without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, run time or statically
(through the included Pycc tool). It supports Python compilation to run on either CPU or GPU hardware and is designed to integrate with Python scientific software stacks, such as NumPy.

When to Use Anaconda

Use Anaconda when you’re handling large-scale data-analytics,
scientific and engineering problems that require you to manipulate
large data arrays.

Wrap-Up

From a high-level perspective, ROCm delivers a rich set of tools that
allow you to choose the best language for your application.

	HCC (Heterogeneous Compute Compiler) supports HC dialects

	HIP is a run-time library that layers on top of HCC (for AMD ROCm platforms; for Nvidia, it uses the NVCC compiler)

	
	The following will soon offer native compiler support for the GCN ISA:
	
	OpenCL 1.2+

	Anaconda (Python) with Numba

All are open-source projects, so you can employ a fully open stack from the language down to the metal. AMD is committed to providing an open ecosystem that gives developers the ability to choose; we are excited about innovating quickly using open source and about
interacting closely with our developer community. More to come soon!

Table Comparing Syntax for Different Compute APIs

	Term

	CUDA

	HIP

	HC

	C++AMP

	OpenCL

	Device

	int deviceId

	int deviceId

	hc::accelerator

	concurrency::
accelerator

	cl_device

	Queue

	cudaStream_t

	hipStream_t

	hc::
accelerator_view

	concurrency::
accelerator_view

	cl_command_queue

	Event

	cudaEvent_t

	hipEvent_t

	hc::
completion_future

	concurrency::
completion_future

	cl_event

	Memory

	void *

	void *

	
	void *; hc::array;
	hc::array_view

	
concurrency::array;

concurrency::array_view

	cl_mem

	
	
	
	
	
	

	
	
grid

block

thread

warp

	
grid

block

thread

warp

	
extent

tile

thread

wavefront

	
extent

tile

thread

N/A

	
NDRange

work-group

work-item

sub-group

	Thread index

	threadIdx.x

	hipThreadIdx_x

	t_idx.local[0]

	t_idx.local[0]

	get_local_id(0)

	Block index

	blockIdx.x

	hipBlockIdx_x

	t_idx.tile[0]

	t_idx.tile[0]

	get_group_id(0)

	Block dim

	blockDim.x

	hipBlockDim_x

	t_ext.tile_dim[0]

	t_idx.tile_dim0

	get_local_size(0)

	Grid-dim

	gridDim.x

	hipGridDim_x

	t_ext[0]

	t_ext[0]

	get_global_size(0)

	
	
	
	
	
	

	Device Function

	__device__

	__device__

	
	[[hc]] (detected
	
	automatically in
	many case)

	restrict(amp)

	Implied in device
Compilation

	Host Function

	
	__host_
	(default)

	__host_ (default)

	[[cpu]] (default)

	strict(cpu) (default)

	Implied in host
Compilation

	Host +
Device
Function

	__host__
__device__

	
__host_

__device__

	[[hc]] [[cpu]]

	restrict(amp,cpu)

	No equivalent

	Kernel Launch

	<<< >>>

	
	hipLaunchKernel
	GGL

	hc::
parallel_for_each

	concurrency::
parallel_for_each

	clEnqueueND-
RangeKernel

	
	
	
	
	
	

	Global Memory

	__global__

	__global__

	Unnecessary/
Implied

	Unnecessary/Implied

	__global

	Group Memory

	__shared__

	__shared__

	tile_static

	tile_static

	__local

	Constant

	__constant__

	__constant__

	Unnecessary/
Implied

	Unnecessary / Implied

	__constant

	
	
	
	
	
	

	
	__syncthreads

	__syncthreads

	tile_static.barrier()

	t_idx.barrier()

	barrier(CLK_LOCAL_MEMFENCE)

	Atomic Builtins

	atomicAdd

	atomicAdd

	hc::atomic_fetch_add

	concurrency::
atomic_fetch_add

	atomic_add

	Precise Math

	cos(f)

	cos(f)

	hc::
precise_math::cos(f)

	concurrency::
precise_math::cos(f)

	cos(f)

	Fast Math

	__cos(f)

	__cos(f)

	hc::fast_math::cos(f)

	concurrency::
fast_math::cos(f)

	native_cos(f)

	Vector

	float4

	float4

	hc::
short_vector::float4

	concurrency::
graphics::float_4

	float4

Notes

	For HC and C++AMP, assume a captured _tiled_ext_ named “t_ext” and captured _extent_ named “ext”. These languages use captured variables to pass information to the kernel rather than using special built-in functions so the exact variable name may vary.

	The indexing functions (starting with thread-index) show the terminology for a 1D grid. Some APIs use reverse order of xyz / 012 indexing for 3D grids.

	HC allows tile dimensions to be specified at runtime while C++AMP requires that tile dimensions be specified at compile-time. Thus hc syntax for tile dims is t_ext.tile_dim[0] while C++AMP is t_ext.tile_dim0.

	From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

OpenCL Architecture and AMD Accelerated Parallel Processing Technology

OPENCL Optimization

Note

Re-Write in Progress to move this to Vega and FIJI/Polaris optimization guide

Chapter 1 OpenCL Performance and Optimization

This chapter discusses performance and optimization when programming for AMD heterogeneous compute GPU compute devices, as well as CPUs and multiple devices. Details specific to the GCN family (Southern Islands, Sea Islands, and Volcanic Islands series) of GPUs are at the end of the chapter.

1.1 AMD CodeXL

AMD’s CodeXL is an OpenCL kernel debugging and memory and performance analysis tool that gathers data from the OpenCL run-time and OpenCL devices during the execution of an OpenCL application. This information is used to discover bottlenecks in the application and find ways to optimize the application’s performance for AMD platforms.

CodeXL 1.7, the latest version as of this writing, is available as an extension to Microsoft® Visual Studio®, a stand-alone version for Windows, and a stand-alone version for Linux.

For a high-level summary of CodeXL features, see Chapter 4 in the AMD OpenCL User Guide. For information about how to use CodeXL to gather performance data about your OpenCL application, such as application traces and timeline views, see the CodeXL home page [https://gpuopen.com/compute-product/codexl/?webSyncID=aa83689b-1c51-8139-08ba-c72c235854a7&sessionGUID=ab8d35ae-1db8-2ec6-4d4a-290691c91072].

The Timeline View can be useful for debugging your OpenCL application. Examples are given below.

	The Timeline View lets you easily confirm that the high-level structure of your application is correct by verifying that the number of queues and contexts created match your expectations for the application.

	You can confirm that synchronization has been performed properly in the application. For example, if kernel A execution is dependent on a buffer operation and outputs from kernel B execution, then kernel A execution must appear after the completion of the buffer execution and kernel B execution in the time grid. It can be hard to find this type of synchronization error using traditional debugging techniques.

	You can confirm that the application has been using the hardware efficiently.

For example, the timeline should show that non-dependent kernel executions and data transfer operations occurred simultaneously.

CodeXL also provides information about GPU kernel performance counters. This information can be used to find possible bottlenecks in the kernel execution. You can find the list of performance counters supported by AMD Radeon™ GPUs in the CodeXL documentation. Once the trace data has been used to discover which kernel is most in need of optimization, you can collect the GPU performance counters to drill down into the kernel execution on a GPU device.

The Analyze Mode in CodeXL provides the Statistics View, which can be used to gather useful statistics regarding the GPU usage of kernels.

1.2 Estimating Performance

1.2.1 Measuring Execution Time

The OpenCL runtime provides a built-in mechanism for timing the execution of kernels by setting the CL_QUEUE_PROFILING_ENABLE flag when the queue is created. Once profiling is enabled, the OpenCL runtime automatically records timestamp information for every kernel and memory operation submitted to the queue.

OpenCL provides four timestamps:

	CL_PROFILING_COMMAND_QUEUED - Indicates when the command is enqueued into a command-queue on the host. This is set by the OpenCL runtime when the user calls an clEnqueue* function.

	CL_PROFILING_COMMAND_SUBMIT - Indicates when the command is submitted to the device. For AMD GPU devices, this time is only approximately defined and is not detailed in this section.

	CL_PROFILING_COMMAND_START - Indicates when the command starts execution on the requested device.

	CL_PROFILING_COMMAND_END - Indicates when the command finishes execution on the requested device.

The sample code below shows how to compute the kernel execution time (End- Start):

cl_event myEvent;
cl_ulong startTime, endTime;

clCreateCommandQueue (..., CL_QUEUE_PROFILING_ENABLE, NULL);
clEnqueueNDRangeKernel(..., &myEvent);
``clFinish`` (myCommandQ); // wait for all events to finish

clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &startTime, NULL);
clGetEventProfilingInfo(myEvent, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &endTimeNs, NULL);
cl_ulong kernelExecTimeNs = endTime-startTime;

The CodeXL GPU Profiler also can record the execution time for a kernel automatically. The Kernel Time metric reported in the Profiler output uses the built-in OpenCL timing capability and reports the same result as the
kernelExecTimeNs calculation shown above.

Another interesting metric to track is the kernel launch time (Start - Queue). The kernel launch time includes both the time spent in the user application (after enqueuing the command, but before it is submitted to the device), as well as the time spent in the runtime to launch the kernel. For CPU devices, the kernel launch time is fast (tens of 1’s), but for discrete GPU devices it can be several hundred Î¼s. Enabling profiling on a command queue adds approximately 10 Î¼s to 40 Î¼s overhead to all clEnqueue calls. Much of the profiling overhead affects the start time; thus, it is visible in the launch time. Be careful when interpreting this metric. To reduce the launch overhead, the AMD OpenCL runtime combines several command submissions into a batch. Commands submitted as batch report similar start times and the same end time.

Measure performance of your test with CPU counters. Do not use OCL profiling. To determine if an application is executed asynchonically, build a dependent execution with OCL events. This is a “generic” solution; however, there is an exception when you can enable profiling and have overlap transfers. DRMDMA engines do not support timestamps (“GPU counters”). To get OCL profiling data, the runtime must synchronize the main command processor (CP) with the DMA engine; this disables overlap. Note, however, that Southern Islands has two independent main CPs and runtime pairs them with DMA engines. So, the application can still execute kernels on one CP, while another is synced with a DRM engine for profiling; this lets you profile it with APP or OCL profiling.

1.2.2 Using the OpenCL timer with Other System Timers

The resolution of the timer, given in ns, can be obtained from:

clGetDeviceInfo(...,CL_DEVICE_PROFILING_TIMER_RESOLUTION...);

AMD CPUs and GPUs report a timer resolution of 1 ns. AMD OpenCL devices are required to correctly track time across changes in frequency and power states. Also, the AMD APP SDK uses the same time-domain for all devices in the platform; thus, the profiling timestamps can be directly compared across the CPU and GPU devices.

The sample code below can be used to read the current value of the OpenCL timer clock. The clock is the same routine used by the AMD OpenCL runtime to generate the profiling timestamps. This function is useful for correlating other program events with the OpenCL profiling timestamps.

uint64_t timeNanos()
{
#ifdef linux
 struct timespec tp;
 clock_gettime(CLOCK_MONOTONIC, &tp);
 return (unsigned long long) tp.tv_sec * (1000ULL * 1000ULL * 1000ULL) +(unsigned long long) tp.tv_nsec;

#else
 LARGE_INTEGER current; QueryPerformanceCounter(¤t);
 return (unsigned long long)((double)current.QuadPart / m_ticksPerSec * 1e9);
#endif
}

Normal CPU time-of-day routines can provide a rough measure of the elapsed time of a GPU kernel. GPU kernel execution is non-blocking, that is, calls to enqueue*Kernel return to the CPU before the work on the GPU is finished. For an accurate time value, ensure that the GPU is finished. In OpenCL, you can force the CPU to wait for the GPU to become idle by inserting calls to clFinish() before and after the sequence you want to time; this increases the timing accuracy of the CPU routines. The routine clFinish() blocks the CPU until all previously enqueued OpenCL commands have finished.

For more information, see section 5.9, “Profiling Operations on Memory Objects and Kernels,”of the OpenCL 1.0 Specification.

1.2.3 Estimating Memory Bandwidth

The memory bandwidth required by a kernel is perhaps the most important performance consideration. To calculate this:

Effective Bandwidth = (Br + Bw)/T

where:

Br = total number of bytes read from global memory. Bw = total number of bytes written to global memory.
T = time required to run kernel, specified in nanoseconds.

If Br and Bw are specified in bytes, and T in ns, the resulting effective bandwidth is measured in GB/s, which is appropriate for current CPUs and GPUs for which the peak bandwidth range is 20-260 GB/s. Computing Br and Bw requires a
thorough understanding of the kernel algorithm; it also can be a highly effective
way to optimize performance. For illustration purposes, consider a simple matrix addition: each element in the two source arrays is read once, added together, then stored to a third array. The effective bandwidth for a 1024x1024 matrix addition is calculated as:

Br = 2 x (1024 x 1024 x 4 bytes) = 8388608 bytes ;; 2 arrays, 1024x1024, each element 4-byte float

Bw = 1 x (1024 x 1024 x 4 bytes) = 4194304 bytes ;; 1 array, 1024x1024, each element 4-byte float.

If the elapsed time for this copy as reported by the profiling timers is 1000000 ns
(1 million ns, or .001 sec), the effective bandwidth is: (Br+Bw)/T = (8388608+4194304)/1000000 = 12.6GB/s

The CodeXL GPU Profiler can report the number of dynamic instructions per thread that access global memory through the FetchInsts and WriteInsts counters. The Fetch and Write reports average the per-thread counts; these can be fractions if the threads diverge. The Profiler also reports the dimensions of the global NDRange for the kernel in the GlobalWorkSize field. The total number of threads can be determined by multiplying together the three components of the range. If all (or most) global accesses are the same size, the counts from the Profiler and the approximate size can be used to estimate Br and Bw:

Br = Fetch * GlobalWorkitems * Size

Bw = Write * GlobalWorkitems * Element Size where GlobalWorkitems is the dispatch size.
An example Profiler output and bandwidth calculation:

	Method

	GlobalWorkSize

	Time

	Fetch

	Write

	runKernel_Cypress

	{192; 144; 1}

	0.9522

	70.8

	0.5

WaveFrontSize = 192*144*1 = 27648 global work items.

In this example, assume we know that all accesses in the kernel are four bytes;
then, the bandwidth can be calculated as: Br = 70.8 * 27648 * 4 = 7829914 bytes Bw = 0.5 * 27648 * 4 = 55296 bytes
The bandwidth then can be calculated as:

	(Br + Bw)/T = (7829914 bytes + 55296 bytes) / .9522 ms / 1000000
	= 8.2 GB/s

Note

The performance model assumes zero cache utilization. If the kernel is reading the same data over and over again, it will be cached in the GPU L1/L2 memory and will not affect global memory bandwidth.

1.3 OpenCL Memory Objects

This section explains the AMD OpenCL runtime policy for memory objects. It also recommends best practices for best performance.

OpenCL uses memory objects to pass data to kernels. These can be either buffers or images. Space for these is managed by the runtime, which uses several types of memory, each with different performance characteristics. Each type of memory is suitable for a different usage pattern. The following subsections describe:

	the memory types used by the runtime;

	how to control which memory kind is used for a memory object;

	how the runtime maps memory objects for host access;

	how the runtime performs memory object reading, writing and copying;

	how best to use command queues; and

	some recommended usage patterns.

1.3.1 Types of Memory Used by the Runtime

Memory is used to store memory objects that are accessed by kernels executing on the device, as well as to hold memory object data when they are mapped for access by the host application. This section describes the different memory kinds used by the runtime. Table 1.1 lists the performance of each memory type given
a PCIe3-capable platform and a high-end AMD Radeon™ 7XXX discrete GPU. In Table 1.1, when host memory is accessed by the GPU shader, it is of type CL_MEM_ALLOC_HOST_PTR. When GPU memory is accessed by the CPU, it is of type CL_MEM_PERSISTENT_MEM_AMD.

Table 1.1 Memory Bandwidth in GB/s (R = read, W = write) in GB/s

Table 2:

	
	CPU R

	GPU W

	GPU Shader R

	GPU Shader W

	GPU DMA R

	GPU DMA W

	Host Memory

	10 - 20

	10 - 20

	9 - 10

	2.5

	11 - 12

	11 - 12

	GPU Memory

	.01

	9 - 10

	230

	120 -150

	n/a

	n/a

Host memory and device memory in the above table consists of one of the subtypes given below.

1.3.1.1 Unpinned Host Memory

This regular CPU memory can be accessed by the CPU at full memory bandwidth; however, it is not directly accessible by the GPU. For the GPU to transfer host memory to device memory (for example, as a parameter to clEnqueueReadBuffer or clEnqueueWriteBuffer), it first must be pinned (see section 1.3.1.2). Pinning takes time, so avoid incurring pinning costs where CPU overhead must be avoided.

When unpinned host memory is copied to device memory, the OpenCL runtime uses the following transfer methods.

	<=32 kB: For transfers from the host to device, the data is copied by the CPU to a runtime pinned host memory buffer, and the DMA engine transfers the data to device memory. The opposite is done for transfers from the device to the host.

	>32 kB and <=16 MB: The host memory physical pages containing the data are pinned, the GPU DMA engine is used, and the pages then are unpinned.

	>16 MB: Runtime pins host memory in stages of 16 MB blocks and transfers data to the device using the GPU DMA engine. Double buffering for pinning is used to overlap the pinning cost of each 16 MB block with the DMA transfer.

Due to the cost of copying to staging buffers, or pinning/unpinning host memory, host memory does not offer the best transfer performance.

1.3.1.2 Pinned Host Memory

This is host memory that the operating system has bound to a fixed physical address and that the operating system ensures is resident. The CPU can access pinned host memory at full memory bandwidth. The runtime limits the total amount of pinned host memory that can be used for memory objects. (See Section 1.3.2, “Placement” , for information about pinning memory.

If the runtime knows the data is in pinned host memory, it can be transferred to, and from, device memory without requiring staging buffers or having to perform pinning/unpinning on each transfer. This offers improved transfer performance.

Currently, the runtime recognizes only data that is in pinned host memory for operation arguments that are memory objects it has allocated in pinned host memory. For example, the buffer argument of clEnqueueReadBuffer/clEnqueueWriteBuffer and image argument of clEnqueueReadImage/clEnqueueWriteImage. It does not detect that the ptr arguments of these operations addresses pinned host memory, even if they are the result of clEnqueueMapBuffer/clEnqueueMapImage on a memory object that is in pinned host memory.

The runtime can make pinned host memory directly accessible from the GPU. Like regular host memory, the CPU uses caching when accessing pinned host memory. For discrete devices, the GPU access to this memory is through the PCIe bus, which also limits bandwidth. For APU devices that do not have the PCIe overhead, GPU access is significantly slower than accessing device-visible host memory (see section 1.3.1.3), which does not use the cache coherency protocol.

1.3.1.3 Device-Visible Host Memory

The runtime allocates a limited amount of pinned host memory that is accessible by the GPU without using the CPU cache coherency protocol. This allows the GPU to access the memory at a higher bandwidth than regular pinned host memory.

A portion of this memory is also configured to be accessible by the CPU as uncached memory. Thus, reads by the CPU are significantly slower than those from regular host memory. However, these pages are also configured to use the memory system write combining buffers. A user allocated buffer is internally partitioned by the chip-set to write combine regions. The size and alignment of these regions are chip-set dependent. Typically, the regions are 64 bytes in size, each aligned to start on a 64-byte memory address.

These allow writes to adjacent memory locations to be combined into a single memory access. This allows CPU streaming writes to perform reasonably well. Scattered writes that do not fill the write combining buffers before they have to be flushed do not perform as well.

APU devices have no device memory and use device-visible host memory for their global device memory.

1.3.1.4 Device Memory

Discrete GPU devices have their own dedicated memory, which provides the highest bandwidth for GPU access. The CPU cannot directly access device memory on a discrete GPU (except for the host-visible device memory portion described in section 1.3.1.5).

On an APU, the system memory is shared between the GPU and the CPU; it is visible by either the CPU or the GPU at any given time. A significant benefit of this is that buffers can be zero copied between the devices by using map/unmap operations to logically move the buffer between the CPU and the GPU address space. (Note that in the system BIOS at boot time, it is possible to allocate the size of the frame buffer. This section of memory is divided into two parts, one of which is invisible to the CPU. Thus, not all system memory supports zero copy. See Table 1.1, specifically the Default row.) See Section 1.3.4, “Mapping”, for more information on zero copy.

1.3.1.5 Host-Visible Device Memory

A limited portion of discrete GPU device memory is configured to be directly accessible by the CPU. It can be accessed by the GPU at full bandwidth, but CPU access is over the PCIe bus; thus, it is much slower than host memory bandwidth. The memory is mapped into the CPU address space as uncached, but using the memory system write combining buffers. This results in slow CPU reads and scattered writes, but streaming CPU writes perform much better because they reduce PCIe overhead.

1.3.2 Placement

Every OpenCL memory object has a location that is defined by the flags passed to clCreateBuffer/clCreateImage. A memory object can be located either on a device, or it can be located on the host and accessed directly by all the devices. The Location column of Table 1.1 gives the memory type used for each of the allocation flag values for different kinds of devices. When a device kernel is executed, it accesses the contents of memory objects from this location. The performance of these accesses is determined by the kind of memory used.

An OpenCL context can have multiple devices, and a memory object that is located on a device has a location on each device. To avoid over-allocating device memory for memory objects that are never used on that device, space is not allocated until first used on a device-by-device basis. For this reason, the first use of a memory object after it is created can be slower than subsequent uses.

Table 1.1 OpenCL Memory Object Properties

Table 2:

	clCreateBuffer/
clCreateImage FlagsArgument

	Device Type

	Location

	clEnqueueMapBuffer/
clEnqueueMapImage/
clEnqueueUnmapMemObject

	MapMode

	Map Location

	Default(none of the following flags)

	DiscreteGPU

	Device memory

	Copy

	Host memory(different memoryarea can be used oneach map)

	APU

	Device-visible hostmemory

	CPU

	Use Map Locationdirectly

	Zero copy

	CL_MEM_ALLOC_HOST_PTR,
CL_MEM_USE_HOST_PTR
(clCreateBuffer when VM isenabled)

	DiscreteGPU

	Pinned hostmemory shared byall devices incontext (unlessonly device incontext is CPU;then, hostmemory)

	Zero copy

	Use Location directly(same memory areais used on eachmap).

	APU

	CPU

	CL_MEM_ALLOC_HOST_PTR,
CL_MEM_USE_HOST_PTR
(for clCreateImage andclCreateBuffer without VM)

	DiscreteGPU

	Device memory

	copy

	Pinned host memory,unless only device incontext is CPU; then,host memory (samememory area is usedon each map)

	APU

	Device-visiblememory

	CPU

	
	Zerocopy

	CL_MEM_USE_PERSISTENT_MEM_AMD
(when VM is enabled)

	DiscreteGPU

	Host-visible devicememory

	Zerocopy

	Use Location directly(different memoryarea can be used oneach map).

	APU

	Host-visible devicememory

	CPU

	Host memory

	CL_MEM_USE_PERSISTENT_MEM_AMD
(when VM is not enabled)

	Same as default.

1.3.3 Memory Allocation

1.3.3.1 Using the CPU

Create memory objects with CL_MEM_ALLOC_HOST_PTR, and use map/unmap; do not use read/write. The reason for this is that if the object is created with CL_MEM_USE_HOST_PTR the CPU is running the kernel on the buffer provided by the application (a hack that all vendors use). This results in zero copy between the CPU and the application buffer; the kernel updates the application buffer, and in this case a map/unmap is actually a no-op. Also, when allocating the buffer on the host, ensure that it is created with the correct alignment. For example, a buffer to be used as float4* must be 128-bit aligned.

1.3.3.2 Using Both CPU and GPU Devices, or using APU an Device

When creating memory objects, create them with CL_MEM_USE_PERSISTENT_MEM_AMD. This enables the zero copy feature, as explained in Section 1.3.3.1, “Using the CPU”.

1.3.3.3 Buffers vs Images

Unlike GPUs, CPUs do not contain dedicated hardware (samplers) for accessing images. Instead, image access is emulated in software. Thus, a developer may prefer using buffers instead of images if no sampling operation is needed.

1.3.3.4 Choosing Execution Dimensions

Note the following guidelines.

	Make the number of work-groups a multiple of the number of logical CPU cores (device compute units) for maximum use.

	When work-groups number exceed the number of CPU cores, the CPU cores execute the work-groups sequentially.

1.3.4 Mapping

The host application can use clEnqueueMapBuffer/clEnqueueMapImage to obtain a pointer that can be used to access the memory object data. When finished accessing, clEnqueueUnmapMemObject must be used to make the data available to device kernel access. When a memory object is located on a device, the data either can be transferred to, and from, the host, or be accessed directly from the host. Memory objects that are located on the host, or located on the device but accessed directly by the host, are termed zero copy memory objects. The data is never transferred, but is accessed directly by both the host and device. Memory objects that are located on the device and transferred to, and from, the device when mapped and unmapped are termed copy memory objects. The Map Mode column of Table 1.1 specifies the transfer mode used for each kind of memory object, and the Map Location column indicates the kind of memory referenced by the pointer returned by the map operations.

1.3.4.1 Zero Copy Memory Objects

CL_MEM_USE_PERSISTENT_MEM_AMD, CL_MEM_USE_HOST_PTR, and CL_MEM_ALLOC_HOST_PTR support zero copy memory objects. The first provides device-resident zero copy memory objects, the other two provide host-resident zero copy memory objects.

Zero copy memory objects can be used by an application to optimize data movement. When clEnqueueMapBuffer / clEnqueueMapImage / clEnqueueUnmapMemObject are used, no runtime transfers are performed, and the operations are very fast; however, the runtime can return a different pointer value each time a zero copy memory object is mapped. Note that only images created with CL_MEM_USE_PERSISTENT_MEM_AMD can be zero copy.

From Southern Island on, devices support zero copy memory objects under Linux; however, only images created with CL_MEM_USE_PERSISTENT_MEM_AMD can be zero copy.

Zero copy host resident memory objects can boost performance when host memory is accessed by the device in a sparse manner or when a large host memory buffer is shared between multiple devices and the copies are too expensive. When choosing this, the cost of the transfer must be greater than the extra cost of the slower accesses.

Streaming writes by the host to zero copy device resident memory objects are about as fast as the transfer rates, so this can be a good choice when the host does not read the memory object to avoid the host having to make a copy of the data to transfer. Memory objects requiring partial updates between kernel executions can also benefit. If the contents of the memory object must be read by the host, use clEnqueueCopyBuffer to transfer the data to a separate CL_MEM_ALLOC_HOST_PTR buffer.

1.3.4.2 Copy Memory Objects

For memory objects with copy map mode, the memory object location is on the device, and it is transferred to, and from, the host when clEnqueueMapBuffer / clEnqueueMapImage / clEnqueueUnmapMemObject are called. Table 1.1 shows how the map_flags argument affects transfers. The runtime transfers only the portion of the memory object requested in the offset and cb arguments. When accessing only a portion of a memory object, only map that portion for improved performance.

Table 1.1 Transfer policy on clEnqueueMapBuffer / clEnqueueMapImage / clEnqueueUnmapMemObject for Copy Memory Objects

Table 2:

	clEnqueueMapBuffer /clEnqueueMapImage map_flags argument

	Transfer on clEnqueueMapBuffer /clEnqueueMapImage

	Transfer on clEnqueueUnmapMemObject

	CL_MAP_READ

	Device to host, if map location is not current.

	None.

	CL_MAP_WRITE

	Device to host, if map location is not current.

	Host to device.

	CL_MAP_READ CL_MAP_WRITE

	Device to host if map location is not current.

	Host to device.

	CL_MAP_WRITE_INVALIDATE_REGION

	None.

	Host to device.

For default memory objects, the pointer returned by clEnqueueMapBuffer / clEnqueueMapImage may not be to the same memory area each time because different runtime buffers may be used.

For CL_MEM_USE_HOST_PTR and CL_MEM_ALLOC_HOST_PTR the same map location is used for all maps; thus, the pointer returned is always in the same memory area. For other copy memory objects, the pointer returned may not always be to the same memory region.

For CL_MEM_USE_HOST_PTR and the CL_MEM_ALLOC_HOST_PTR cases that use copy map mode, the runtime tracks if the map location contains an up-to-date copy of the memory object contents and avoids doing a transfer from the device when mapping as CL_MAP_READ. This determination is based on whether an operation such as clEnqueueWriteBuffer/clEnqueueCopyBuffer or a kernel execution has modified the memory object. If a memory object is created with CL_MEM_READ_ONLY, then a kernel execution with the memory object as an argument is not considered as modifying the memory object. Default memory objects cannot be tracked because the map location changes between map calls; thus, they are always transferred on the map.

For CL_MEM_USE_HOST_PTR, clCreateBuffer/clCreateImage pins the host memory passed to the host_ptr argument. It is unpinned when the memory object is deleted. To minimize pinning costs, align the memory to 4KiB. This avoids the runtime having to pin/unpin on every map/unmap transfer, but does add to the total amount of pinned memory.

For CL_MEM_USE_HOST_PTR, the host memory passed as the ptr argument of clCreateBuffer/clCreateImage is used as the map location. As mentioned earlier, host memory transfers incur considerable cost in pinning/unpinning on every transfer. If used, ensure the memory aligned to the data type size used in the kernels. If host memory that is updated once is required, use CL_MEM_ALLOC_HOST_PTR with the CL_MEM_COPY_HOST_PTR flag instead. If device memory is needed, use CL_MEM_USE_PERSISTENT_MEM_AMD and clEnqueueWriteBuffer.

If CL_MEM_COPY_HOST_PTR is specified with CL_MEM_ALLOC_HOST_PTR when creating a memory object, the memory is allocated in pinned host memory and initialized with the passed data. For other kinds of memory objects, the deferred allocation means the memory is not yet allocated on a device, so the runtime has to copy the data into a temporary runtime buffer. The memory is allocated on the device when the device first accesses the resource. At that time, any data that must be transferred to the resource is copied. For example, this would apply when a buffer was allocated with the flag CL_MEM_COPY_HOST_PTR. Using CL_MEM_COPY_HOST_PTR for these buffers is not recommended because of the extra copy. Instead, create the buffer without CL_MEM_COPY_HOST_PTR, and initialize with clEnqueueWriteBuffer/clEnqueueWriteImage.

When images are transferred, additional costs are involved because the image must be converted to, and from, linear address mode for host access. The runtime does this by executing kernels on the device.

1.3.5 Reading, Writing, and Copying

There are numerous OpenCL commands to read, write, and copy buffers and images. The runtime performs transfers depending on the memory kind of the source and destination. When transferring between host memory and device memory the methods described in section Section 1.3.1.1, “Unpinned Host Memory”, are used. Memcpy is used to transferring between the various kinds of host memory, this may be slow if reading from device visible host memory, as described in section Section 1.3.1.3, “Device-Visible Host Memory”. Finally, device kernels are used to copy between device memory. For images, device kernels are used to convert to and from the linear address mode when necessary.

1.3.6 Command Queue

It is best to use non-blocking commands to allow multiple commands to be queued before the command queue is flushed to the GPU. This sends larger batches of commands, which amortizes the cost of preparing and submitting work to the GPU. Use event tracking to specify the dependence between operations. It is recommended to queue operations that do not depend of the results of previous copy and map operations. This can help keep the GPU busy with kernel execution and DMA transfers. Command execution begins as soon as there are commands in the queue for execution.

For Southern Islands and later, devices support at least two hardware compute queues. That allows an application to increase the throughput of small dispatches with two command queues for asynchronous submission and possibly concurrent execution.

An OpenCL queue is assigned to a hardware queue on creation time. The hardware compute queues are selected according to the creation order within an OpenCL context. If the hardware supports K concurrent hardware queues, the Nth created OpenCL queue within a specific OpenCL context will be assigned to the (N mod K) hardware queue. The number of compute queues can be limited by specifying the GPU_NUM_COMPUTE_RINGS environment variable.

Devices in the Sea Islands and Volcanic Islands families contain between four and eight ACEs, and are multi-threaded (thereby supporting more hardware queues), so they offer more performance. For example, the AMD Radeon™ R9290X devices, in the VI family contain 8 ACEs and 44 CUs.

1.3.6.1 A note on hardware queues

A hardware queue can be thought of as a GPU entry point. The GPU can process kernels from several compute queues concurrently. All hardware queues ultimately share the same compute cores. The use of multiple hardware queues is beneficial when launching small kernels that do not fully saturate the GPU. For example, the AMD Radeon™ HD 290X compute device can execute up to 112,640 threads concurrently. The GPU can execute two kernels each spawning 56320 threads (assuming fully occupancy) twice as fast if launched concurrently through two hardware queues than serially through a single hardware queue.

1.4 OpenCL Data Transfer Optimization

The AMD OpenCL implementation offers several optimized paths for data transfer to, and from, the device. The following chapters describe buffer and image paths, as well as how they map to common application scenarios. To find out where the application’s buffers are stored (and understand how the data transfer behaves), use the CodeXL GPU Profiler API Trace View, and look at the tool tips of the clEnqueueMapBuffer calls.

1.4.1 Definitions

	Deferred allocation - The CL runtime attempts to minimize resource consumption by delaying buffer allocation until first use. As a side effect, the first accesses to a buffer may be more expensive than subsequent accesses.

	Peak interconnect bandwidth - As used in the text below, this is the transfer bandwidth between host and device that is available under optimal conditions at the application level. It is dependent on the type of interconnect, the chipset, and the graphics chip. As an example, a high-performance PC with a PCIe 3.0 16x bus and a GCN architecture (AMD Radeon™ HD 7XXX series) graphics card has a nominal interconnect bandwidth of 16 GB/s.

	Pinning - When a range of host memory is prepared for transfer to the GPU, its pages are locked into system memory. This operation is called pinning; it can impose a high cost, proportional to the size of the memory range. One of the goals of optimizing data transfer is to use pre-pinned buffers whenever possible. However, if pre-pinned buffers are used excessively, it can reduce the available system memory and result in excessive swapping. Host side zero copy buffers provide easy access to pre- pinned memory.

	WC - Write Combine is a feature of the CPU write path to a select region of the address space. Multiple adjacent writes are combined into cache lines (for example, 64 bytes) before being sent to the external bus. This path typically provides fast streamed writes, but slower scattered writes. Depending on the chip set, scattered writes across a graphics interconnect can be very slow. Also, some platforms require multi-core CPU writes to saturate the WC path over an interconnect.

	Uncached accesses - Host memory and I/O regions can be configured as uncached. CPU read accesses are typically very slow; for example: uncached CPU reads of graphics memory over an interconnect.

	USWC - Host memory from the Uncached Speculative Write Combine heap can be accessed by the GPU without causing CPU cache coherency traffic. Due to the uncached WC access path, CPU streamed writes are fast, while CPU reads are very slow. On APU devices, this memory provides the fastest possible route for CPU writes followed by GPU reads.

1.4.2 Buffers

OpenCL buffers currently offer the widest variety of specialized buffer types and optimized paths, as well as slightly higher transfer performance.

1.4.2.1 Regular Device Buffers

Buffers allocated using the flags CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, or CL_MEM_READ_WRITE are placed on the GPU device. These buffers can be accessed by a GPU kernel at very high bandwidths. For example, on a high-end graphics card, the OpenCL kernel read/write performance is significantly higher than 100 GB/s. When device buffers are accessed by the host through any of the OpenCL read/write/copy and map/unmap API calls, the result is an explicit transfer across the hardware interconnect.

1.4.2.2 Zero Copy Buffers

If a buffer is of the zero copy type, the runtime tries to leave its content in place, unless the application explicitly triggers a transfer (for example, through clEnqueueCopyBuffer()). Depending on its type, a zero copy buffer resides on the host or the device. Independent of its location, it can be accessed directly by the host CPU or a GPU device kernel, at a bandwidth determined by the capabilities of the hardware interconnect.

Calling clEnqueueMapBuffer() and clEnqueueUnmapMemObject() on a zero copy buffer is typically a low-cost operation.

Since not all possible read and write paths perform equally, check the application scenarios below for recommended usage. To assess performance on a given platform, use the BufferBandwidth sample.

If a given platform supports the zero copy feature, the following buffer types are available:

	The CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR buffers are:

	zero copy buffers that resides on the host.

	directly accessible by the host at host memory bandwidth.

	directly accessible by the device across the interconnect.

	a pre-pinned sources or destinations for CL read, write, and copy commands into device memory at peak interconnect bandwidth.

Note that buffers created with the flag CL_MEM_ALLOC_HOST_PTR together with CL_MEM_READ_ONLY may reside in uncached write-combined memory. As a result, CPU can have high streamed write bandwidth, but low read and potentially low write scatter bandwidth, due to the uncached WC path.

	The CL_MEM_USE_PERSISTENT_MEM_AMD buffer is

	a zero copy buffer that resides on the GPU device.

	directly accessible by the GPU device at GPU memory bandwidth.

	directly accessible by the host across the interconnect (typically with high streamed write bandwidth, but low read and potentially low write scatter bandwidth, due to the uncached WC path).

	copyable to, and from, the device at peak interconnect bandwidth using CL read, write, and copy commands.

There is a limit on the maximum size per buffer, as well as on the total size of all buffers. This is platform-dependent, limited in size for each buffer, and also for the total size of all buffers of that type (a good working assumption is 64 MB for the per-buffer limit, and 128 MB for the total).

Note: The CL_MEM_USE_PERSISTENT_MEM_AMD buffer is very small. It must be used only for cases that can directly benefit by having the application directly update the contents of a resource on the device.

Zero copy buffers work well on APU devices. SDK 2.5 introduced an optimization that is of particular benefit on APUs. The runtime uses USWC memory for buffers allocated as CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY. On APU systems, this type of zero copy buffer can be written to by the CPU at very high data rates, then handed over to the GPU at minimal cost for equally high GPU read-data rates over the Radeon memory bus. This path provides the highest data transfer rate for the CPU-to-GPU path. The use of multiple CPU cores may be necessary to achieve peak write performance.

	buffer = clCreateBuffer(CL_MEM_ALLOC_HOST_PTR | CL_MEM_READ_ONLY)

	address = clMapBuffer(buffer).

	memset (address) or memcpy (address) (if possible, using multiple CPU cores)

	clEnqueueUnmapMemObject (buffer)

	clEnqueueNDRangeKernel (buffer)

As this memory is not cacheable, CPU read operations are very slow. This type of buffer also exists on discrete platforms, but transfer performance typically is limited by PCIe bandwidth.

Zero copy buffers can provide low latency for small transfers, depending on the transfer path. For small buffers, the combined latency of map/CPU memory access/unmap can be smaller than the corresponding DMA latency.

1.4.2.3 Pre-pinned Buffers

Buffers of type CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR are pinned at creation time. These buffers can be used directly as a source or destination for clEnqueueCopyBuffer to achieve peak interconnect bandwidth. Mapped buffers also can be used as a source or destination for clEnqueueRead/WriteBuffer calls, again achieving peak interconnect bandwidth. Note that using CL_MEM_USE_HOST_PTR permits turning an existing user memory region into pre- pinned memory. However, in order to stay on the fast path, that memory must be aligned to 256 bytes. Buffers of type CL_MEM_USE_HOST_PTR remain pre-pinned as long as they are used only for data transfer, but not as kernel arguments. If the buffer is used in a kernel, the runtime creates a cached copy on the device, and subsequent copies are not on the fast path. The same restriction applies to CL_MEM_ALLOC_HOST_PTR allocations under Linux.

	See usage examples described for various options below. The pre-pinned path is supported for the following calls.
	
	clEnqueueRead/WriteBuffer

	clEnqueueRead/WriteImage

	clEnqueueRead/WriteBufferRect

Offsets into mapped buffer addresses are supported, too.

Note that the CL image calls must use pre-pinned mapped buffers on the host side, and not pre-pinned images.

1.4.2.4 Application Scenarios and Recommended OpenCL Paths

The following section describes various application scenarios, and the corresponding paths in the OpenCL API that are known to work well on AMD platforms. The various cases are listed, ordered from generic to more specialized.

From an application point of view, two fundamental use cases exist, and they can be linked to the various options, described below.

	An application wants to transfer a buffer that was already allocated through malloc() or mmap(). In this case, options 2), 3) and 4) below always consist of a memcpy() plus a device transfer. Option 1) does not require a memcpy().

	If an application is able to let OpenCL allocate the buffer, options 2) and 4) below can be used to avoid the extra memcpy(). In the case of option 5), memcpy() and transfer are identical.

Note that the OpenCL runtime uses deferred allocation to maximize memory resources. This means that a complete roundtrip chain, including data transfer and kernel compute, might take one or two iterations to reach peak performance.

A code sample named BufferBandwidth can be used to investigate and benchmark the various transfer options in combination with different buffer types.

	Option 1 - clEnqueueWriteBuffer() and clEnqueueReadBuffer().
	This option is the easiest to use on the application side. CL_MEM_USE_HOST_PTR is an ideal choice if the application wants to transfer a buffer that has already been allocated through malloc() or mmap().
There are two ways to use this option. The first uses clEnqueueRead/WriteBuffer on a pre-pinned, mapped host-side buffer:

	pinnedBuffer = clCreateBuffer (CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR)

	deviceBuffer = clCreateBuffer()

	void *pinnedMemory = clEnqueueMapBuffer (pinnedBuffer)

	clEnqueueRead/WriteBuffer (deviceBuffer, pinnedMemory)

	clEnqueueUnmapMemObject (pinnedBuffer, pinnedMemory)

The pinning cost is incurred at step c. Step d does not incur any pinning cost. Typically, an application performs steps a, b, c, and e once. It then repeatedly reads or modifies the data in pinnedMemory, followed by step d.

For the second way to use this option, clEnqueueRead/WriteBuffer is used directly on a user memory buffer. The standard clEnqueueRead/Write calls require to pin (lock in memory) memory pages before they can be copied (by the DMA engine). This creates a performance penalty that is proportional to the buffer size. The performance of this path is currently about two-thirds of peak interconnect bandwidth.

Option 2 - clEnqueueCopyBuffer() on a pre-pinned host buffer (requires pre-pinned buffer support)

This is analogous to Option 1. Performing a CL copy of a pre-pinned buffer to a device buffer (or vice versa) runs at peak interconnect bandwidth.

	pinnedBuffer = clCreateBuffer(CL_MEM_ALLOC_HOST_PTR or CL_MEM_USE_HOST_PTR)

	deviceBuffer = clCreateBuffer() This is followed either by :

	void *memory = clEnqueueMapBuffer (pinnedBuffer)

	Application writes or modifies memory.

	clEnqueueUnmapMemObject (pinnedBuffer, memory)

	clEnqueueCopyBuffer (pinnedBuffer, deviceBuffer) or by:

	clEnqueueCopyBuffer (deviceBuffer, pinnedBuffer)

	void *memory = clEnqueueMapBuffer (pinnedBuffer)

	Application reads memory.

	clEnqueueUnmapMemObject (pinnedBuffer, memory)

Since the pinnedBuffer resides in host memory, the clMap() and clUnmap() calls do not result in data transfers, and they are of very low latency. Sparse or dense memory operations by the application take place at host memory bandwidth.

Option 3 - clEnqueueMapBuffer() and clEnqueueUnmapMemObject() of a Device Buffer

This is a good choice if the application fills in the data on the fly, or requires a pointer for calls to other library functions (such as fread() or fwrite()). An optimized path exists for regular device buffers; this path provides peak interconnect bandwidth at map/unmap time.

For buffers already allocated through malloc() or mmap(), the total transfer cost includes a memcpy() into the mapped device buffer, in addition to the interconnect transfer. Typically, this is slower than option 1), above.

The transfer sequence is as follows:

	Data transfer from host to device buffer.

	ptr = clEnqueueMapBuffer(.., buf, .., CL_MAP_WRITE, ..) Since the buffer is mapped write-only, no data is transferred from device buffer to host. The map operation is very low cost. A pointer to a pinned host buffer is returned.

	The application fills in the host buffer through memset(ptr), memcpy (ptr, srcptr), fread(ptr), or direct CPU writes. This happens at host memory bandwidth.

	clEnqueueUnmapMemObject(.., buf, ptr, ..) The pre-pinned buffer is transferred to the GPU device, at peak interconnect bandwidth.

	Data transfer from device buffer to host.

1. ptr = clEnqueueMapBuffer(.., buf, .., CL_MAP_READ, ..)
This command triggers a transfer from the device to host memory, into a pre-pinned temporary buffer, at peak interconnect bandwidth. A pointer to the pinned memory is returned.
2. The application reads and processes the data, or executes a memcpy(dstptr, ptr), fwrite (ptr),
or similar function. Since the buffer resides in host memory, this happens at host memory bandwidth.
3. clEnqueueUnmapMemObject(.., buf, ptr, ..)

Since the buffer was mapped as read-only, no transfer takes place, and the unmap operation is very low cost.

Option 4 - Direct host access to a zero copy device buffer (requires zero copy support)

This option allows overlapping of data transfers and GPU compute. It is also useful for sparse write updates under certain constraints.

	
	A zero copy buffer on the device is created using the following command: buf = clCreateBuffer (.., CL_MEM_USE_PERSISTENT_MEM_AMD, ..)
	This buffer can be directly accessed by the host CPU, using the uncached WC path. This can take place at the same time the GPU executes a compute kernel. A common double buffering scheme has the kernel process data from one buffer while the CPU fills a second buffer. See the TransferOverlap code sample.
A zero copy device buffer can also be used to for sparse updates, such as assembling sub-rows of a larger matrix into a smaller, contiguous block for GPU processing. Due to the WC path, it is a good design choice to try to align writes to the cache line size, and to pick the write block size as large as possible.

	Transfer from the host to the device.

1.ptr = clEnqueueMapBuffer(.., buf, .., CL_MAP_WRITE, ..)

This operation is low cost because the zero copy device buffer is directly mapped into the host address space.

	2.The application transfers data via memset(ptr), memcpy(ptr, srcptr), or direct CPU writes.
	The CPU writes directly across the interconnect into the zero copy device buffer. Depending on the chipset, the bandwidth can be of the same order of magnitude as the interconnect bandwidth, although it typically is lower than peak.

3.clEnqueueUnmapMemObject (.., buf, ptr, ..)

As with the preceding map, this operation is low cost because the buffer continues to reside on the device.

	If the buffer content must be read back later, use clEnqueueReadBuffer(.., buf, ..) or clEnqueueCopyBuffer(.., buf, zero copy host buffer, ..)

This bypasses slow host reads through the uncached path.

Option 5 - Direct GPU access to a zero copy host buffer (requires zero copy support)

This option allows direct reads or writes of host memory by the GPU. A GPU kernel can import data from the host without explicit transfer, and write data directly back to host memory. An ideal use is to perform small I/Os straight from the kernel, or to integrate the transfer latency directly into the kernel execution time.

	The application creates a zero copy host buffer.
buf = clCreateBuffer(.., CL_MEM_ALLOC_HOST_PTR, ..)

	Next the application modifies or reads the zero copy host buffer.

	ptr = clEnqueueMapBuffer(.., buf, .., CL_MAP_READ | CL_MAP_WRITE, ..)
This operation is very low cost because it is a map of a buffer already residing in host memory.

	The application modifies the data through memset(ptr), memcpy (in either direction), sparse or dense CPU reads or writes. Since the application is modifying a host buffer, these operations take place at host memory bandwidth.

	clEnqueueUnmapMemObject(.., buf, ptr, ..)

As with the preceding map, this operation is very low cost because the buffer continues to reside in host memory.

	The application runs clEnqueueNDRangeKernel(), using buffers of this type as input or output. GPU kernel reads and writes go across the interconnect to host memory, and the data transfer becomes part of the kernel execution.
The achievable bandwidth depends on the platform and chipset, but can be of the same order of magnitude as the peak interconnect bandwidth. For discrete graphics cards, it is important to note that resulting GPU kernel bandwidth is an order of magnitude lower compared to a kernel accessing a regular device buffer located on the device.

	Following kernel execution, the application can access data in the host buffer in the same manner as described above.

1.5 Using Multiple OpenCL Devices

The AMD OpenCL runtime supports both CPU and GPU devices. This section introduces techniques for appropriately partitioning the workload and balancing it across the devices in the system.

1.5.1 CPU and GPU Devices

Table 1.1 lists some key performance characteristics of two exemplary CPU and GPU devices: a quad-core AMD Phenom II X4 processor running at 2.8 GHz, and a mid-range AMD Radeon™ HD 7770 GPU running at 1 GHz. The “best” device in each characteristic is highlighted, and the ratio of the best/other device is shown in the final column.

The GPU excels at high-throughput: the peak execution rate (measured in FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher than the CPU. The GPU also consumes approximately 65% the power of the CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher. While power efficiency can vary significantly with different devices, GPUs generally provide greater power efficiency (flops/watt) than CPUs because they optimize for throughput and eliminate hardware designed to hide latency.

Table 1.1 CPU and GPU Performance Characteristics

	
	CPU

	GPU

	Winner Ratio

	Example Device

	AMD Phenom™ II X4

	AMD Radeon™ HD 7770

	

	Core Frequency

	2800 MHz

	1 GHz

	3 X

	Compute Units

	4

	10

	2.5 X

	Approx. Power1

	95 W

	80 W

	1.2 X

	Approx. Power/Compute Unit

	19 W

	8 W

	2.4 X

	Peak Single-Precision

	
	
	

	Billion Floating-Point Ops/Sec

	90

	1280

	14 X

	Approx GFLOPS/Watt

	0.9

	16

	18 X

	Max In-flight HW Threads

	4

	25600

	6400 X

	Simultaneous Executing Threads

	4

	640

	160 X

	Memory Bandwidth

	26 GB/s

	72 GB/s

	2.8 X

	Int Add latency

	0.4 ns

	4 ns

	10 X

	FP Add Latency

	1.4 ns

	4 ns

	2.9 X

	Approx DRAM Latency

	50 ns

	270 ns

	5.4 X

	L2+L3 (GPU only L2) cache capacity

	8192 KB

	128 kB

	64 X

	
	
	
	

	Approx Kernel Launch Latency

	25 μs

	50 μs

	2 X

	1

	For the power specifications of the AMD Phenom™ II x4, see http://www.amd.com/us/products/desktop/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx .

Table 4.5 provides a comparison of the CPU and GPU performance charac- teristics in an AMD A8-4555M “Trinity” APU (19 W, 21 GB/s memory bandwidth).

Table 1.2 CPU and GPU Performance Characteristics on APU

	
	CPU

	GPU

	Winner Ratio

	Core Frequency

	2400 MHz

	424 MHz

	5.7 x

	Compute Units

	4

	6

	1.5 x

	Peak Single Precision Floating-Point Ops/s

	77 GFLOPs

	326 GFLOPs

	4.2 x

	Approx. GFLOPs/W

	4.0

	17.1

	4.2 x

	Max Inflight HW Threads

	4

	15872

	3968 x

	Simultaneous Executing Threads

	4

	96

	24 x

	Int Add Latency

	0.4 ns

	18.9 ns

	45.3 x

	FP Add Latency

	1.7 ns

	9.4 ns

	5.7 x

	Approx. DRAM Latency

	50 ns

	270 ns

	5.4 x

	L2 + L3 Cache Capacity

	4192 kB

	256 kB

	16.4 x

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add is 10X faster on the CPU than on the GPU. This is a product of both the CPUs higher clock rate (2800 MHz vs 1000 MHz for this comparison), as well as the operation latency; the CPU is optimized to perform an integer add in just one cycle, while the GPU requires four cycles. The CPU also has a latency-optimized path to DRAM, while the GPU optimizes for bandwidth and relies on many in- flight threads to hide the latency. The AMD Radeon™ HD 7770 GPU, for example, supports more than 25,000 in-flight work-items and can switch to a new wavefront (containing up to 64 work-items) in a single cycle. The CPU supports only four hardware threads, and thread-switching requires saving and restoring the CPU registers from memory. The GPU requires many active threads to both keep the execution resources busy, as well as provide enough threads to hide the long latency of cache misses.

Each GPU wavefront has its own register state, which enables the fast single- cycle switching between threads. Also, GPUs can be very efficient at gather/scatter operations: each work-item can load from any arbitrary address, and the registers are completely decoupled from the other threads. This is substantially more flexible and higher-performing than a classic Vector ALU-style architecture (such as SSE on the CPU), which typically requires that data be accessed from contiguous and aligned memory locations. SSE supports instructions that write parts of a register (for example, MOVLPS and MOVHPS, which write the upper and lower halves, respectively, of an SSE register), but these instructions generate additional microarchitecture dependencies and frequently require additional pack instructions to format the data correctly.

In contrast, each GPU thread shares the same program counter with 63 other threads in a wavefront. Divergent control-flow on a GPU can be quite expensive and can lead to significant under-utilization of the GPU device. When control flow substantially narrows the number of valid work-items in a wave-front, it can be faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this example, the CPU device contains 512 kB L2 cache/core plus a 6 MB L3 cache that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU device contains only 128 kB cache shared by the five compute units. The larger CPU cache serves both to reduce the average memory latency and to reduce memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 2X difference in kernel launch latency. The GPU launch time includes both the latency through the software stack, as well as the time to transfer the compiled kernel and associated arguments across the PCI- express bus to the discrete GPU. Notably, the launch time does not include the time to compile the kernel. The CPU can be the device-of-choice for small, quick- running problems when the overhead to launch the work on the GPU outweighs the potential speedup. Often, the work size is data-dependent, and the choice of device can be data-dependent as well. For example, an image-processing algorithm may run faster on the GPU if the images are large, but faster on the CPU when the images are small.

The differences in performance characteristics present interesting optimization opportunities. Workloads that are large and data parallel can run orders of magnitude faster on the GPU, and at higher power efficiency. Serial or small parallel workloads (too small to efficiently use the GPU resources) often run significantly faster on the CPU devices. In some cases, the same algorithm can exhibit both types of workload. A simple example is a reduction operation such as a sum of all the elements in a large array. The beginning phases of the operation can be performed in parallel and run much faster on the GPU. The end of the operation requires summing together the partial sums that were computed in parallel; eventually, the width becomes small enough so that the overhead to parallelize outweighs the computation cost, and it makes sense to perform a serial add. For these serial operations, the CPU can be significantly faster than the GPU.

1.5.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run substantially faster and at better energy efficiency compared to a CPU device. Also, once an algorithm has been coded in the data-parallel task style for OpenCL, the same code typically can scale to run on GPUs with increasing compute capability (that is more compute units) or even multiple GPUs (with a little more work).

For some algorithms, the advantages of the GPU (high computation throughput, latency hiding) are offset by the advantages of the CPU (low latency, caches, fast launch time), so that the performance on either devices is similar. This case is more common for mid-range GPUs and when running more mainstream algorithms. If the CPU and the GPU deliver similar performance, the user can get the benefit of either improved power efficiency (by running on the GPU) or higher peak performance (use both devices).

Usually, when the data size is small, it is faster to use the CPU because the start- up time is quicker than on the GPU due to a smaller driver overhead and avoiding the need to copy buffers from the host to the device.

1.5.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single OpenCL device. Thus, using multiple devices requires the developer to create a separate queue for each device, then partition the work between the available command queues.

A simple scheme for partitioning work between devices would be to statically determine the relative performance of each device, partition the work so that faster devices received more work, launch all the kernels, and then wait for them to complete. In practice, however, this rarely yields optimal performance. The relative performance of devices can be difficult to determine, in particular for kernels whose performance depends on the data input. Further, the device performance can be affected by dynamic frequency scaling, OS thread scheduling decisions, or contention for shared resources, such as shared caches and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong” at the beginning can result in significantly lower performance, since some devices finish and become idle while the whole system waits for the single, unexpectedly slow device.

For these reasons, a dynamic scheduling algorithm is recommended. In this approach, the workload is partitioned into smaller parts that are periodically scheduled onto the hardware. As each device completes a part of the workload, it requests a new part to execute from the pool of remaining work. Faster devices, or devices which work on easier parts of the workload, request new input faster, resulting in a natural workload balancing across the system. The approach creates some additional scheduling and kernel submission overhead, but dynamic scheduling generally helps avoid the performance cliff from a single bad initial scheduling decision, as well as higher performance in real-world system environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling algorithms for multi-core CPUs, and it is natural to consider extending these scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new aspects to the scheduling process:

	Heterogeneous Compute Devices
Most existing multi-core schedulers target only homogenous computing devices. When scheduling across both CPU and GPU devices, the scheduler must be aware that the devices can have very different performance characteristics (10X or more) for some algorithms. To some extent, dynamic scheduling is already designed to deal with heterogeneous workloads (based on data input the same algorithm can have very different performance, even when run on the same device), but a system with heterogeneous devices makes these cases more common and more extreme. Here are some suggestions for these situations.

	The scheduler should support sending different workload sizes to different devices. GPUs typically prefer larger grain sizes, and higher- performing GPUs prefer still larger grain sizes.

	The scheduler should be conservative about allocating work until after it has examined how the work is being executed. In particular, it is important to avoid the performance cliff that occurs when a slow device is assigned an important long-running task. One technique is to use small grain allocations at the beginning of the algorithm, then switch to larger grain allocations when the device characteristics are well-known.

	As a special case of the above rule, when the devices are substantially different in performance (perhaps 10X), load-balancing has only a small potential performance upside, and the overhead of scheduling the load probably eliminates the advantage. In the case where one device is far faster than everything else in the system, use only the fast device.

	The scheduler must balance small-grain-size (which increase the adaptiveness of the schedule and can efficiently use heterogeneous devices) with larger grain sizes (which reduce scheduling overhead). Note that the grain size must be large enough to efficiently use the GPU.

	Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a command-queue. The host application can enqueue multiple kernels, flush the kernels so they begin executing on the device, then use the host core for other work. The AMD OpenCL implementation uses a separate thread for each command-queue, so work can be transparently scheduled to the GPU in the background.

Avoid starving the high-performance GPU devices. This can occur if the physical CPU core, which must re-fill the device queue, is itself being used as a device. A simple approach to this problem is to dedicate a physical CPU core for scheduling chores. The device fission extension (see the Extensions appendix in the AMD OpenCL User Guide) can be used to reserve a core for scheduling. For example, on a quad-core device, device fission can be used to create an OpenCL device with only three cores.

Another approach is to schedule enough work to the device so that it can tolerate latency in additional scheduling. Here, the scheduler maintains a watermark of uncompleted work that has been sent to the device, and refills the queue when it drops below the watermark. This effectively increase the grain size, but can be very effective at reducing or eliminating device starvation. Developers cannot directly query the list of commands in the OpenCL command queues; however, it is possible to pass an event to each clEnqueue call that can be queried, in order to determine the execution status (in particular the command completion time); developers also can maintain their own queue of outstanding requests.

For many algorithms, this technique can be effective enough at hiding latency so that a core does not need to be reserved for scheduling. In particular, algorithms where the work-load is largely known up-front often work well with a deep queue and watermark. Algorithms in which work is dynamically created may require a dedicated thread to provide low-latency scheduling.

	Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a separate address space. Moving data between the device address space and the host requires time-consuming transfers over a relatively slow PCI- Express bus. Schedulers should be aware of this cost and, for example, attempt to schedule work that consumes the result on the same device producing it.

CPU and GPU devices share the same memory bandwidth, which results in additional interactions of kernel executions.

1.5.4 Synchronization Caveats

Enqueuing several commands before flushing can enable the host CPU to batch together the command submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to complete execution of each command before the next command begins. This synchronization guarantee can often be leveraged to avoid explicit clWaitForEvents() calls between command submissions. Using clWaitForEvents() requires intervention by the host CPU and additional

synchronization cost between the host and the GPU; by leveraging the in-order queue property, back-to-back kernel executions can be efficiently handled directly on the GPU hardware.

AMD Southern Islands GPUs can execute multiple kernels simultaneously when there are no dependencies.

The AMD OpenCL implementation spawns a new thread to manage each command queue. Thus, the OpenCL host code is free to manage multiple devices from a single host thread. Note that clFinish is a blocking operation; the thread that calls clFinish blocks until all commands in the specified command-queue have been processed and completed. If the host thread is managing multiple devices, it is important to call clFlush for each command- queue before calling clFinish, so that the commands are flushed and execute in parallel on the devices. Otherwise, the first call to clFinish blocks, the commands on the other devices are not flushed, and the devices appear to execute serially rather than in parallel.

For low-latency CPU response, it can be more efficient to use a dedicated spin loop and not call clFinish() Calling clFinish() indicates that the application wants to wait for the GPU, putting the thread to sleep. For low latency, the application should use clFlush(), followed by a loop to wait for the event to complete. This is also true for blocking maps. The application should use non- blocking maps followed by a loop waiting on the event. The following provides sample code for this.

if (sleep)

{
// this puts host thread to sleep, useful if power is a consideration or overhead is not a concern

``clFinish`` (cmd_queue_);

}

else

{

// this keeps the host thread awake, useful if latency is a concern

clFlush(cmd_queue_);

error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &eventStatus, NULL);

while (eventStatus > 0)

{

error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS,
sizeof(cl_int), &eventStatus, NULL);

to find

Sleep(0); // be nice to other threads, allow scheduler

other work if possible

// Choose your favorite way to yield, SwitchToThread()
for example,
in place of Sleep(0)

}

}

1.5.5 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on any device, peak performance for each device is typically obtained by tuning the OpenCL kernel for the target device.

Code optimized for the Tahiti device (the AMD Radeon™ HD 7970 GPU) typically runs well across other members of the Southern Islands family.

CPUs and GPUs have very different performance characteristics, and some of these impact how one writes an optimal kernel. Notable differences include:

	The Vector ALU floating point resources in a CPU (SSE/AVX) require the use of vectorized types (such as float4) to enable packed SSE code generation and extract good performance from the Vector ALU hardware. The GPU Vector ALU hardware is more flexible and can efficiently use the floating- point hardware; however, code that can use float4 often generates hi-quality code for both the CPU and the AMD GPUs.

	The AMD OpenCL CPU implementation runs work-items from the same work-group back-to-back on the same physical CPU core. For optimally coalesced memory patterns, a common access pattern for GPU-optimized algorithms is for work-items in the same wavefront to access memory locations from the same cache line. On a GPU, these work-items execute in parallel and generate a coalesced access pattern. On a CPU, the first work- item runs to completion (or until hitting a barrier) before switching to the next. Generally, if the working set for the data used by a work-group fits in the CPU caches, this access pattern can work efficiently: the first work-item brings a line into the cache hierarchy, which the other work-items later hit. For large working-sets that exceed the capacity of the cache hierarchy, this access pattern does not work as efficiently; each work-item refetches cache lines that were already brought in by earlier work-items but were evicted from the cache hierarchy before being used. Note that AMD CPUs typically provide 512 kB to 2 MB of L2+L3 cache for each compute unit.

	CPUs do not contain any hardware resources specifically designed to accelerate local memory accesses. On a CPU, local memory is mapped to the same cacheable DRAM used for global memory, and there is no performance benefit from using the __local qualifier. The additional memory operations to write to LDS, and the associated barrier operations can reduce performance. One notable exception is when local memory is used to pack values to avoid non-coalesced memory patterns.

	CPU devices only support a small number of hardware threads, typically two to eight. Small numbers of active work-group sizes reduce the CPU switching overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers are encouraged to write the algorithm using float4 vectorization. The GPU is more sensitive to algorithm tuning; it also has higher peak performance potential. Thus, one strategy is to target optimizations to the GPU and aim for reasonable performance on the CPU. For peak performance on all devices, developers can choose to use conditional compilation for key code loops in the kernel, or in some cases even provide two separate kernels. Even with device-specific kernel optimizations, the surrounding host code for allocating memory, launching kernels, and interfacing with the rest of the program generally only needs to be written once.

Another approach is to leverage a CPU-targeted routine written in a standard high-level language, such as C++. In some cases, this code path may already exist for platforms that do not support an OpenCL device. The program uses OpenCL for GPU devices, and the standard routine for CPU devices. Load- balancing between devices can still leverage the techniques described in Section 1.5.3, “Partitioning Work for Multiple Devices,”.

1.5.6 Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can contain multiple devices. Thus, developers must choose whether to place all devices in the same context or create a new context for each device. Generally, it is easier to extend a context to support additional devices rather than duplicating the context for each device: buffers are allocated at the context level (and automatically across all devices), programs are associated with the context, and kernel compilation (via clBuildProgram) can easily be done for all devices in a context. However, with current OpenCL implementations, creating a separate context for each device provides more flexibility, especially in that buffer allocations can be targeted to occur on specific devices. Generally, placing the devices in the same context is the preferred solution.

Chapter 2 OpenCL Performance and Optimiza- tion for GCN Devices

This chapter discusses performance and optimization when programming for AMD GPU compute devices that are based on the Graphic Core Next (GCN) architecture (such as the Southern Islands, Sea Islands, and Volcanic Islands devices and Kabini APUs), as well as CPUs and multiple devices. Details specific to the Evergreen and Northern Islands families of GPUs are provided in Chapter 3, “OpenCL Performance and Optimization for Evergreen and Northern Islands Devices.”

2.1 Global Memory Optimization

The GPU consists of multiple compute units. Each compute unit (CU) contains local (on-chip) memory, L1 cache, registers, and four SIMDs. Each SIMD consists of 16 processing element (PEs). Individual work-items execute on a single processing element; one or more work-groups execute on a single compute unit. On a GPU, hardware schedules groups of work-items, called wavefronts, onto compute units; thus, work-items within a wavefront execute in lock-step; the same instruction is executed on different data.

Each compute unit contains 64 kB local memory, 16 kB of read/write L1 cache, four vector units, and one scalar unit. The maximum local memory allocation is 32 kB per work-group. Each vector unit contains 512 scalar registers (SGPRs) for handling branching, constants, and other data constant across a wavefront. Vector units also contain 256 vector registers (VGPRs). VGPRs actually are scalar registers, but they are replicated across the whole wavefront. Vector units contain 16 processing elements (PEs). Each PE is scalar.

Since the L1 cache is 16 kB per compute unit, the total L1 cache size is 16 kB * (# of compute units). For the AMD Radeon™ HD 7970, this means a total of 512 kB L1 cache. L1 bandwidth can be computed as:
L1 peak bandwidth = Compute Units * (4 threads/clock) * (128 bits per thread) * (1 byte / 8 bits) * Engine Clock
For the AMD Radeon™ HD 7970, this is ~1.9 TB/s.

If two memory access requests are directed to the same controller, the hardware serializes the access. This is called a channel conflict. Similarly, if two memory access requests go to the same memory bank, hardware serializes the access. This is called a bank conflict. From a developer’s point of view, there is not much difference between channel and bank conflicts. Often, a large power of two stride results in a channel conflict. The size of the power of two stride that causes a specific type of conflict depends on the chip. A stride that results in a channel conflict on a machine with eight channels might result in a bank conflict on a machine with four.

In this document, the term bank conflict is used to refer to either kind of conflict.

Typically, reads and writes go through L1 and L2. As reads and writes go through L2 in addition to through L1, there is no complete path or fast path to worry about unlike in pre-GCN devices.

2.1.1 Channel Conflicts

The important concept is memory stride: the increment in memory address, measured in elements, between successive elements fetched or stored by consecutive work-items in a kernel. Many important kernels do not exclusively use simple stride one accessing patterns; instead, they feature large non-unit strides. For instance, many codes perform similar operations on each dimension of a two- or three-dimensional array. Performing computations on the low dimension can often be done with unit stride, but the strides of the computations in the other dimensions are typically large values. This can result in significantly degraded performance when the codes are ported unchanged to GPU systems. A CPU with caches presents the same problem, large power-of-two strides force data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the kernels. This allows all computations to be done at unit stride. Ensure that the time required for the transposition is relatively small compared to the time to perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write adjacent memory addresses. This is one way to avoid channel conflicts.

When the application has complete control of the access pattern and address generation, the developer must arrange the data structures to minimize bank conflicts. Accesses that differ in the lower bits can run in parallel; those that differ only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
R0 = *ptr;

where the lower bits are all the same, the memory requests all access the same bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of 2 (and larger than the channel interleave), the loop above only accesses one channel of memory.

The hardware byte address bits are :

	31:x

	bank

	channel

	7:0 address

	On all AMD Radeon™ HD 79XX-series GPUs, there are 12 channels. A crossbar distributes the load to the appropriate memory channel. Each memory channel has a read/write global L2 cache, with 64 kB per channel. The cache line size is 64 bytes.

Because 12 channels are not a part of the power of two memory and bank channel addressing, this is not straightforward for the AMD Radeon™ HD 79XX series. The memory channels are grouped in four quadrants, each which consisting of three channels. Bits 8, 9, and 10 of the address select a “virtual pipe.” The top two bits of this pipe select the quadrant; then, the channel within the quadrant is selected using the low bit of the pipe and the row and bank address modulo three, according to the following conditional equation.

If (({ row, bank} %3) == 1)
channel_within_quadrant = 1
else
channel_within_quadrant = 2 * pipe[0]

Figure 2.1 illustrates the memory channel mapping.

[image: ../_images/2.1.png]
Figure 2.1 Channel Remapping/Interleaving

Note that an increase of the address by 2048 results in a 1/3 probability the same channel is hit; increasing the address by 256 results in a 1/6 probability the same channel is hit, etc.

On AMD Radeon™ HD 78XX GPUs, the channel selection are bits 10:8 of the byte address. For the AMD Radeon™ HD 77XX, the channel selection are bits 9:8 of the byte address. This means a linear burst switches channels every 256 bytes. Since the wavefront size is 64, channel conflicts are avoided if each work- item in a wave reads a different address from a 64-word region. All AMD Radeon™ HD 7XXX series GPUs have the same layout: channel ends at bit 8, and the memory bank is to the left of the channel.

For AMD Radeon HD 77XX and 78XX GPUs, a burst of 2 kB (# of channels *
256 bytes) cycles through all the channels.

For AMD Radeon™ HD 77XX and 78XX GPUs, when calculating an address as y*width+x, but reading a burst on a column (incrementing y), only one memory channel of the system is used, since the width is likely a multiple of 256 words = 2048 bytes. If the width is an odd multiple of 256B, then it cycles through all channels.

If every work-item in a work-group references consecutive memory addresses and the address of work-item 0 is aligned to 256 bytes and each work-item fetches 32 bits, the entire wavefront accesses one channel. Although this seems slow, it actually is a fast pattern because it is necessary to consider the memory access over the entire device, not just a single wavefront.

One or more work-groups execute on each compute unit. On the AMD Radeon™ HD 7000-series GPUs, work-groups are dispatched in a linear order, with x changing most rapidly.
For a single dimension, this is:

DispatchOrder = get_group_id(0)

For two dimensions, this is:

DispatchOrder = get_group_id(0) + get_group_id(1) * get_num_groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute units are in use, additional work-groups are assigned to compute units as needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single wavefront. In memory intensive kernels, it is likely that the instruction is a
memory access. Since there are 12 channels on the AMD Radeon™ HD 7970
GPU, at most 12 of the compute units can issue a memory access operation in one cycle. It is most efficient if the accesses from 12 wavefronts go to different channels. One way to achieve this is for each wavefront to access consecutive groups of 256 = 64 * 4 bytes. Note, as shown in Figure 2.1, fetching 256 * 12 bytes in a row does not always cycle through all channels.

An inefficient access pattern is if each wavefront accesses all the channels. This is likely to happen if consecutive work-items access data that has a large power of two strides.

In the next example of a kernel for copying, the input and output buffers are interpreted as though they were 2D, and the work-group size is organized as 2D.

The kernel code is:

#define WIDTH 1024
#define DATA_TYPE float
#define A(y , x) A[(y) * WIDTH + (x)]
#define C(y , x) C[(y) * WIDTH+(x)]
kernel void copy_float (global const
DATA_TYPE * A,
 global DATA_TYPE* C)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
C(idy, idx) = A(idy, idx);
}

By changing the width, the data type and the work-group dimensions, we get a set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit address. Given a 1x64 work-group size, each work-item reads a value separated by the width in a power of two bytes.

To avoid power of two strides:

	Add an extra column to the data matrix.

	Change the work-group size so that it is not a power of 21.

	It is best to use a width that causes a rotation through all of the memory channels, instead of using the same one repeatedly.

	Change the kernel to access the matrix with a staggered offset.

2.1.1.1 Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data is processed in a different order. Unlike adding a column, this technique does not use extra space. It is also relatively simple to add to existing code.

Figure 2.2 illustrates the transformation to staggered offsets.

Figure 2.2 Transformation to Staggered Offsets

[image: ../_images/2.2.png]

	1

	Generally, it is not a good idea to make the work-group size something other than an integer multiple of the wavefront size, but that usually is less important than avoiding channel conflicts.

The global ID values reflect the order that the hardware initiates work-groups. The values of get group ID are in ascending launch order.

global_id(0) = get_group_id(0) * get_local_size(0) + get_local_id(0)
global_id(1) = get_group_id(1) * get_local_size(1) + get_local_id(1)

The hardware launch order is fixed, but it is possible to change the launch order, as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D matrix of size 2n x 2m in row-major order. If each work-group must process a block in column-order, the launch order does not work out correctly: consecutive work-groups execute down the columns, and the columns are a large power-of- two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid channel conflicts. Since we are executing 2D work-groups, each work group is identified by four numbers.

	get_group_id(0) - the x coordinate or the block within the column of the matrix.

	get_group_id(1) - the y coordinate or the block within the row of the matrix.

	get_global_id(0) - the x coordinate or the column of the matrix.

	get_global_id(1) - the y coordinate or the row of the matrix.

To transform the code, add the following four lines to the top of the kernel.

get_group_id_0 = get_group_id(0);
get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void copy_float (
__global const DATA_TYPE * A,
__global DATA_TYPE * C)
{
size_t get_group_id_0 = get_group_id(0);
size_t get_group_id_1 = (get_group_id(0) + get_group_id(1)) %
get_local_size(0);

size_t get_global_id_0 = get_group_id_0 * get_local_size(0) +
get_local_id(0);
size_t get_global_id_1 = get_group_id_1 * get_local_size(1) +
get_local_id(1);

int idx = get_global_id_0; //changed to staggered form int idy = get_global_id_1; //changed to staggered form

C(idy , idx) = A(idy , idx);
}

2.1.1.2 Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that reading from the same address is a conflict, even on the FastPath.

This does not happen on the read-only memories, such as constant buffers, textures, or shader resource view (SRV); but it is possible on the read/write UAV memory or OpenCL global memory.

From a hardware standpoint, reads from a fixed address have the same upper bits, so they collide and are serialized. To read in a single value, read the value in a single work-item, place it in local memory, and then use that location:

Avoid:

temp = input[3] // if input is from global space

Use:

 if (get_local_id(0) == 0) {
 local = input[3]

 }
 barrier(CLK_LOCAL_MEM_FENCE);
temp = local

2.1.2 Coalesced Writes

Southern Island devices do not support coalesced writes; however, continuous addresses within work-groups provide maximum performance.

Each compute unit accesses the memory system in quarter-wavefront units. The compute unit transfers a 32-bit address and one element-sized piece of data for each work-item. This results in a total of 16 elements + 16 addresses per quarter-wavefront. On GCN-based devices, processing quarter-wavefront requires two cycles before the data is transferred to the memory controller.

2.2 Local Memory (LDS) Optimization

AMD GCN-family GPUs include a Local Data Store (LDS) cache, which accelerates local memory accesses. LDS provides high-bandwidth access (more than 10X higher than global memory), efficient data transfers between work-items in a work-group, and high-performance atomic support. LDS is much faster than L1 cache access as it has twice the peak bandwidth and far lower latency. Additionally, using LDS memory can reduce global memory bandwidth usage. Local memory offers significant advantages when the data is re-used; for example, subsequent accesses can read from local memory, thus reducing global memory bandwidth. Another advantage is that local memory does not require coalescing.

To determine local memory size: clGetDeviceInfo(…, CL_DEVICE_LOCAL_MEM_SIZE, ….);

All AMD Southern Islands, Sea Islands, and Volcanic Islands GPUs (collectively referred to as GCN devices) contain a 64 kB LDS for each compute unit; although only 32 kB can be allocated per work-group. The LDS contains 32- banks, each bank is four bytes wide and 256 bytes deep; the bank address is determined by bits 6:2 in the address. As shown below, programmers must carefully control the bank bits to avoid bank conflicts as much as possible. Bank conflicts are determined by what addresses are accessed on each half wavefront boundary. Threads 0 through 31 are checked for conflicts as are threads 32 through 63 within a wavefront.

In a single cycle, local memory can service a request for each bank (up to 32 accesses each cycle on the AMD Radeon™ HD 7970 GPU). For an AMD Radeon™ HD 7970 GPU, this delivers a memory bandwidth of over 100 GB/s for each compute unit, and more than 3.5 TB/s for the whole chip. This is more than 14X the global memory bandwidth. However, accesses that map to the same bank are serialized and serviced on consecutive cycles. LDS operations do not stall; however, the compiler inserts wait operations prior to issuing operations that depend on the results. A wavefront that generated bank conflicts does not stall implicitly, but may stall explicitly in the kernel if the compiler has inserted a wait command for the outstanding memory access. The GPU reprocesses the wavefront on subsequent cycles, enabling only the lanes receiving data, until all the conflicting accesses complete. The bank with the most conflicting accesses determines the latency for the wavefront to complete the local memory operation. The worst case occurs when all 64 work-items map to the same bank, since each access then is serviced at a rate of one per clock cycle; this case takes 64 cycles to complete the local memory access for the wavefront. A program with a large number of bank conflicts (as measured by the LDSBankConflict performance counter in the CodeXL GPU Profiler statistics) might benefit from using the constant or image memory rather than LDS.

Thus, the key to effectively using the LDS is to control the access pattern, so that accesses generated on the same cycle map to different banks in the LDS. One notable exception is that accesses to the same address (even though they have the same bits 6:2) can be broadcast to all requestors and do not generate a bank conflict. The LDS hardware examines the requests generated over two cycles (32 work-items of execution) for bank conflicts. Ensure, as much as possible, that the memory requests generated from a quarter-wavefront avoid bank conflicts by using unique address bits 6:2. A simple sequential address pattern, where each work-item reads a float2 value from LDS, generates a conflict-free access pattern on the AMD Radeon™ HD 7XXX GPU. Note that a sequential access pattern, where each work-item reads a float4 value from LDS, uses only half the banks on each cycle on the AMD Radeon™ HD 7XXX GPU and delivers half the performance of the float access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle. Byte and short reads consume four bytes of LDS bandwidth. Developers can use the large register file: each compute unit has 256 kB of register space available (8X the LDS size) and can provide up to twelve 4-byte values/cycle (6X the LDS bandwidth). Registers do not offer the same indexing flexibility as does the LDS, but for some algorithms this can be overcome with loop unrolling and explicit addressing.

LDS reads require one ALU operation to initiate them. Each operation can initiate two loads of up to four bytes each.

The CodeXL GPU Profiler provides the following performance counter to help optimize local memory usage:

LDSBankConflict: The percentage of time accesses to the LDS are stalled due to bank conflicts relative to GPU Time. In the ideal case, there are no bank conflicts in the local memory access, and this number is zero.

Local memory is software-controlled “scratchpad” memory. In contrast, caches typically used on CPUs monitor the access stream and automatically capture recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly load items into the memory; they exist in local memory until the kernel replaces them, or until the work-group ends. To declare a block of local memory, use the ___local keyword;
for example:

__local float localBuffer[64]

These declarations can be either in the parameters to the kernel call or in the body of the kernel. The local syntax allocates a single block of memory, which is shared across all work-items in the workgroup.

To write data into local memory, write it into an array allocated with __local.

For example: localBuffer[i] = 5.0;

A typical access pattern is for each work-item to collaboratively write to the local memory: each work-item writes a subsection, and as the work-items execute in parallel they write the entire array. Combined with proper consideration for the access pattern and bank alignment, these collaborative write approaches can lead to highly efficient memory accessing.

The following example is a simple kernel section that collaboratively writes, then reads from, local memory:

__kernel void localMemoryExample (global float *In, __global float *Out) {
__local float localBuffer[64];
uint tx = get_local_id(0);
uint gx = get_global_id(0);

// Initialize local memory:
// Copy from this work-group's section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE);

// Toy computation to compute a partial factorial, shows re-use from local float f = localBuffer[tx];
for (uint i=tx+1; i<64; i++) {
f *= localBuffer[i];
}
Out[gx] = f;
}

Note the host code cannot read from, or write to, local memory. Only the kernel can access local memory.

Local memory is consistent across work-items only at a work-group barrier; thus, before reading the values written collaboratively, the kernel must include a barrier() instruction. An important optimization is the case where the local work-group size is less than, or equal to, the wavefront size. Because the wavefront executes as an atomic unit, the explicit barrier operation is not required. The compiler automatically removes these barriers if the kernel specifies a reqd_work_group_size (see section 5.8 of the OpenCL Specification) that is less than the wavefront size. Developers are strongly encouraged to include the barriers where appropriate, and rely on the compiler to remove the barriers when possible, rather than manually removing the barriers(). This technique results in more portable code, including the ability to run kernels on CPU devices.

2.3 Constant Memory Optimization

Constants (data from read-only buffers shared by a wavefront) are loaded to SGPRs from memory through the L1 (and L2) cache using scalar memory read instructions. The scalar instructions can use up to two SGPR sources per cycle; vector instructions can use one SGPR source per cycle. (There are 512 SGPRs per SIMD, 4 SIMDs per CU; so a 32 CU configuration like Tahiti has 256 kB of SGPRs.)

GCN hardware supports specific inline literal constants. These constants are
“free” in that they do not increase code size:

 0
 integers 1..64
 integers -1..-16
 0.5 single or double floats
-0.5
 1.0
-1.0
 2.0
-2.0
 4.0
-4.0

Any other literal constant increases the code size by at least 32 bits.

The AMD implementation of OpenCL provides three levels of performance for the “constant” memory type.

	1.Simple Direct-Addressing Patterns
	Very high bandwidth can be attained when the compiler has available the constant address at compile time and can embed the constant address into the instruction. Each processing element can load up to 4x4-byte direct- addressed constant values each cycle. Typically, these cases are limited to simple non-array constants and function parameters. The executing kernel loads the constants into scalar registers and concurrently populates the constant cache. The constant cache is a tagged cache. Typically each 16 8k cache is shared among four compute units. If the constant data is already present in the constant cache, the load is serviced by the cache and does not require any global memory bandwidth. The constant cache size varies from 4k to 48k per GPU.

	2.Same Index
	Hardware acceleration also takes place when all work-items in a wavefront reference the same constant address. In this case, the data is loaded from memory one time, stored in the L1 cache, and then broadcast to all wave- fronts. This can reduce significantly the required memory bandwidth.

	3.Varying Index
	More sophisticated addressing patterns, including the case where each work- item accesses different indices, are not hardware accelerated and deliver the same performance as a global memory read with the potential for cache hits.

To further improve the performance of the AMD OpenCL stack, two methods allow users to take advantage of hardware constant buffers. These are:

	Globally scoped constant arrays. These arrays are initialized, globally scoped, and in the constant address space (as specified in section 6.5.3 of the OpenCL specification). If the size of an array is below 64 kB, it is placed in hardware constant buffers; otherwise, it uses global memory. An example of this is a lookup table for math functions.

	Per-pointer attribute specifying the maximum pointer size. This is specified using the max_constant_size(N) attribute. The attribute form conforms to section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to top-level kernel function arguments in the constant address space. This restriction prevents a pointer of one size from being passed as an argument to a function that declares a different size. It informs the compiler that indices into the pointer remain inside this range and it is safe to allocate a constant buffer in hardware, if it fits. Using a constant pointer that goes outside of this range results in undefined behavior. All allocations are aligned on the 16-byte boundary. For example:

kernel void mykernel(global int* a,
constant int* b attribute__((max_constant_size (65536)))
)
{
size_t idx = get_global_id(0);
a[idx] = b[idx & 0x3FFF];
}

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to query the device for the maximum number of constant buffers the kernel can support. This value might differ from the maximum number of hardware constant buffers available. In this case, if the number of hardware constant buffers is less than the CL_DEVICE_MAX_CONSTANT_ARGS, the compiler allocates the largest constant buffers in hardware first and allocates the rest of the constant buffers in global memory. As an optimization, if a constant pointer A uses n bytes of memory, where n is less than 64 kB, and constant pointer B uses m bytes of memory, where m is less than (64 kB - n) bytes of memory, the compiler can allocate the constant buffer pointers in a single hardware constant buffer. This optimization can be applied recursively by treating the resulting allocation as a single allocation and finding the next smallest constant pointer that fits within the space left in the constant buffer.

2.4 OpenCL Memory Resources: Capacity and Performance

Table 2.1 summarizes the hardware capacity and associated performance for the structures associated with the five OpenCL Memory Types. This information specific to the AMD Radeon™ HD 7970 GPUs with 3 GB video memory.

Table 2.1 Hardware Performance Parameters

	OpenCL Memory Type

	Hardware Resource

	Size/CU

	Size/GPU

	Peak Read Bandwidth/
Stream Core

	Private

	GPRs

	256k

	8192k

	12 bytes/cycle

	Local

	LDS

	64k

	2048k

	8 bytes/cycle

	Constant

	Direct-addressed constant

	
	48k

	4 bytes/cycle

	Same-indexed constant

	
	
	4 bytes/cycle

	Varying-indexed constant

	
	
	~0.14 bytes/cycle

	Images

	L1 Cache

	16k

	512k¹

	1 bytes/cycle

	L2 Cache

	
	768k²

	~0.4 bytes/cycle

	Global Memory

	
	3G

	~0.14 bytes/cycle

	1

	¹ Applies to images and buffers.

	2

	² Applies to images and buffers.

The compiler tries to map private memory allocations to the pool of GPRs in the GPU. In the event GPRs are not available, private memory is mapped to the “scratch” region, which has the same performance as global memory. Section 2.6.2, “Resource Limits on Active Wavefronts,”, has more information on register allocation and identifying when the compiler uses the scratch region. GPRs provide the highest-bandwidth access of any hardware resource. In addition to reading up to 12 bytes/cycle per processing element from the register file, the hardware can access results produced in the previous cycle without consuming any register file bandwidth.

Same-indexed constants can be cached in the L1 and L2 cache. Note that “same-indexed” refers to the case where all work-items in the wavefront reference the same constant index on the same cycle. The performance shown assumes an L1 cache hit.

Varying-indexed constants, which are cached only in L2, use the same path as global memory access and are subject to the same bank and alignment constraints described in Section 2.1, “Global Memory Optimization,”.

The L1 and L2 read/write caches are constantly enabled. Read only buffers can be cached in L1 and L2.

The L1 cache can service up to four address requests per cycle, each delivering up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes; smaller access sizes/requests result in a lower peak bandwidth for the L1 cache. Using float4 with images increases the request size and can deliver higher L1 cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to 64 bytes/cycle. The AMD Radeon™ HD 7970 GPU has 12 memory channels; thus, it can deliver up to 768 bytes/cycle; divided among 2048 stream cores, this provides up to ~0.4 bytes/cycle for each stream core.

Global Memory bandwidth is limited by external pins, not internal bus bandwidth. The AMD Radeon™ HD 7970 GPU supports up to 264 GB/s of memory bandwidth which is an average of 0.14 bytes/cycle for each stream core.

Note that Table 2.1 shows the performance for the AMD Radeon™ HD 7970 GPU. The “Size/Compute Unit” column and many of the bandwidths/processing element apply to all Southern Islands-class GPUs; however, the “Size/GPU” column and the bandwidths for varying-indexed constant, L2, and global memory vary across different GPU devices.

2.5 Using LDS or L1 Cache

There are a number of considerations when deciding between LDS and L1 cache for a given algorithm.

LDS supports read/modify/write operations, as well as atomics. It is well-suited for code that requires fast read/write, read/modify/write, or scatter operations that otherwise are directed to global memory. On current AMD hardware, L1 is part of the read path; hence, it is suited to cache-read-sensitive algorithms, such as matrix multiplication or convolution.

LDS is typically larger than L1 (for example: 64 kB vs 16 kB on Southern Islands devices). If it is not possible to obtain a high L1 cache hit rate for an algorithm, the larger LDS size can help. On the AMD Radeon™ HD 7970 device, the theoretical LDS peak bandwidth is 3.8 TB/s, compared to L1 at 1.9 TB/sec.

The native data type for L1 is a four-vector of 32-bit words. On L1, fill and read addressing are linked. It is important that L1 is initially filled from global memory with a coalesced access pattern; once filled, random accesses come at no extra processing cost.

Currently, the native format of LDS is a 32-bit word. The theoretical LDS peak bandwidth is achieved when each thread operates on a two-vector of 32-bit words (16 threads per clock operate on 32 banks). If an algorithm requires coalesced 32-bit quantities, it maps well to LDS. The use of four-vectors or larger can lead to bank conflicts, although the compiler can mitigate some of these.

From an application point of view, filling LDS from global memory, and reading from it, are independent operations that can use independent addressing. Thus, LDS can be used to explicitly convert a scattered access pattern to a coalesced pattern for read and write to global memory. Or, by taking advantage of the LDS read broadcast feature, LDS can be filled with a coalesced pattern from global memory, followed by all threads iterating through the same LDS words simultaneously.

LDS reuses the data already pulled into cache by other wavefronts. Sharing across work-groups is not possible because OpenCL does not guarantee that LDS is in a particular state at the beginning of work-group execution. L1 content, on the other hand, is independent of work-group execution, so that successive work-groups can share the content in the L1 cache of a given Vector ALU. However, it currently is not possible to explicitly control L1 sharing across work- groups.

The use of LDS is linked to GPR usage and wavefront-per-Vector ALU count. Better sharing efficiency requires a larger work-group, so that more work-items share the same LDS. Compiling kernels for larger work-groups typically results in increased register use, so that fewer wavefronts can be scheduled simultaneously per Vector ALU. This, in turn, reduces memory latency hiding. Requesting larger amounts of LDS per work-group results in fewer wavefronts per Vector ALU, with the same effect.

LDS typically involves the use of barriers, with a potential performance impact. This is true even for read-only use cases, as LDS must be explicitly filled in from global memory (after which a barrier is required before reads can commence).

2.6 NDRange and Execution Range Optimization

Probably the most effective way to exploit the potential performance of the GPU is to provide enough threads to keep the device completely busy. The programmer specifies a three-dimensional NDRange over which to execute the kernel; bigger problems with larger NDRanges certainly help to more effectively use the machine. The programmer also controls how the global NDRange is divided into local ranges, as well as how much work is done in each work-item, and which resources (registers and local memory) are used by the kernel. All of these can play a role in how the work is balanced across the machine and how well it is used. This section introduces the concept of latency hiding, how many wavefronts are required to hide latency on AMD GPUs, how the resource usage in the kernel can impact the active wavefronts, and how to choose appropriate global and local work-group dimensions.

2.6.1 Hiding Memory Latency with ALU Operations

The read-after-write latency for most arithmetic operations (a floating-point add, for example) is only four cycles. For most Southern Island devices, each CU can execute 64 vector ALU instructions per cycle, 16 per wavefront. Also, a wavefront can issue a scalar ALU instruction every four cycles. To achieve peak ALU power, a minimum of four wavefronts must be scheduled for each CU.

Global memory reads generate a reference to the off-chip memory and experience a latency of 300 to 600 cycles. The wavefront that generates the global memory access is made idle until the memory request completes. During this time, the compute unit can process other independent wavefronts, if they are available.

Kernel execution time also plays a role in hiding memory latency: longer chains of ALU instructions keep the functional units busy and effectively hide more latency. To better understand this concept, consider a global memory access which takes 400 cycles to execute. Assume the compute unit contains many other wavefronts, each of which performs five ALU instructions before generating another global memory reference. As discussed previously, the hardware executes each instruction in the wavefront in four cycles; thus, all five instructions occupy the ALU for 20 cycles. Note the compute unit interleaves two of these wavefronts and executes the five instructions from both wavefronts (10 total instructions) in 40 cycles. To fully hide the 400 cycles of latency, the compute unit requires (400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront contains 10 instructions rather than 5, the wavefront pair would consume 80 cycles of latency, and only 10 wavefronts would be required to hide the 400 cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the available wavefronts, and thus it is not useful to try to predict exactly which ALU block executes when trying to hide latency. Instead, consider the overall ratio of ALU operations to fetch operations - this metric is reported by the CodeXL GPU Profiler in the ALUFetchRatio counter. Each ALU operation keeps the compute unit busy for four cycles, so you can roughly divide 500 cycles of latency by `` (4*ALUFetchRatio)`` to determine how many wavefronts must be in-flight to hide that latency. Additionally, a low value for the ALUBusy performance counter can indicate that the compute unit is not providing enough wavefronts to keep the execution resources in full use. (This counter also can be low if the kernel exhausts the available DRAM bandwidth. In this case, generating more wavefronts does not improve performance; it can reduce performance by creating more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve performance once the GPU has enough wavefronts to hide latency, additional active wavefronts provide little or no performance benefit. A closely related metric to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active wavefronts to the maximum number of possible wavefronts supported by the hardware. Many of the important optimization targets and resource limits are expressed in wavefronts/compute units, so this section uses this metric rather than the related “occupancy” term.

2.6.2 Resource Limits on Active Wavefronts

AMD GPUs have two important global resource constraints that limit the number of in-flight wavefronts:

	Southern Islands devices support a maximum of 16 work-groups per CU if a work-group is larger than one wavefront.

	The maximum number of wavefronts that can be scheduled to a CU is 40, or 10 per Vector Unit.

These limits are largely properties of the hardware and, thus, difficult for developers to control directly. Fortunately, these are relatively generous limits. Frequently, the register and LDS usage in the kernel determines the limit on the number of active wavefronts/compute unit, and these can be controlled by the developer.

2.6.2.1 GPU Registers

Southern Islands registers are scalar, so each is 32-bits. Each wavefront can have at most 256 registers (VGPRs). To compute the number of wavefronts per CU, take (256/# registers)*4.

For example, a kernel that uses 120 registers (120x32-bit values) can run with eight active wavefronts on each compute unit. Because of the global limits described earlier, each compute unit is limited to 40 wavefronts; thus, kernels can use up to 25 registers (25x32-bit values) without affecting the number of wavefronts/compute unit.

AMD provides the following tools to examine the number of general-purpose registers (GPRs) used by the kernel.

	The CodeXL GPU Profiler displays the number of GPRs used by the kernel.

	Alternatively, the CodeXL GPU Profiler generates the ISA dump , which then can be searched for the string :NUM_GPRS.

	The AMD CodeXL Analysis Mode shows the GPR used by the kernel, across a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it cannot fit all the live values into registers. Spill code uses long-latency global memory and can have a large impact on performance. Spilled registers can be cached in Southern Island devices, thus reducing the impact on performance. The CodeXL GPU Profiler reports the static number of register spills in the ScratchReg field. Generally, it is a good idea to re-write the algorithm to use fewer GPRs, or tune the work-group dimensions specified at launch time to expose more registers/kernel to the compiler, in order to reduce the scratch register usage to 0.

2.6.2.2 Specifying the Default Work-Group Size at Compile-Time

The number of registers used by a work-item is determined by the compiler on compile time. The user later specifies the size of the work-group. Ideally, the OpenCL compiler knows the size of the work-group at compile-time, so it can make optimal register allocation decisions. Without knowing the work-group size, the compiler must assume an upper-bound size to avoid allocating more registers in the work-item than the hardware actually contains.

OpenCL provides a mechanism to specify a work-group size that the compiler can use to optimize the register allocation. In particular, specifying a smaller work-group size at compile time allows the compiler to allocate more registers for each kernel, which can avoid spill code and improve performance. The kernel
attribute syntax is:

__attribute ((reqd_work_group_size(X, Y, Z)))

Section 6.7.2 of the OpenCL specification explains the attribute in more detail.

2.6.2.3 Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active wavefronts/compute unit. Each compute unit has 64 kB of LDS, which is shared among all active work-groups. Note that the maximum allocation size is 32 kB. LDS is allocated on a per-work-group granularity, so it is possible (and useful) for multiple wavefronts to share the same local memory allocation. However, large LDS allocations eventually limits the number of workgroups that can be active. Table 2.2 provides more details about how LDS usage can impact the wavefronts/compute unit.

Table 2.2 Effect of LDS Usage on Wavefronts/CU1

	Local Memory/Work-Group

	LDS-Limited Wavefronts/Compute-Unit (Assume 4Wavefronts/ Work-Group)

	LDS-Limited Wavefronts/ Compute-Unit (Assume 3 Wavefronts/ Work-Group)

	LDS-Limited Wavefronts/ Compute-Unit (Assume 2 Wavefronts/ Work-Group)

	LDS-Limited Wavefronts / Compute Unit (Assume 1 Wavefront / Work-Group)

	<=4K

	40

	40

	32

	16

	4.0K-4.2K

	40

	40

	30

	15

	4.2K-4.5K

	40

	40

	28

	14

	4.5K-4.9K

	40

	39

	26

	13

	4.9K-5.3K

	40

	36

	24

	12

	5.3K-5.8K

	40

	33

	22

	11

	5.8K-6.4K

	40

	30

	20

	10

	6.4K-7.1K

	36

	27

	18

	9

	7.1K-8.0K

	32

	24

	16

	8

	8.0K-9.1K

	28

	21

	14

	7

	9.1K-10.6K

	24

	18

	12

	6

	10.6K-12.8K

	20

	15

	10

	5

	12.8K-16.0K

	16

	12

	8

	4

	16.0K-21.3K

	12

	9

	6

	3

	21.3K-32.0K

	8

	6

	4

	2

	1

	Assumes each work-group uses four wavefronts (the maximum supported by the AMD OpenCL SDK).

AMD provides the following tools to examine the amount of LDS used by the kernel:

	The CodeXL GPU Profiler displays the LDS usage. See the LocalMem counter.

	Alternatively, use the CodeXL GPU Profiler to generate the ISA dump, then search for the string SQ_LDS_ALLOC:SIZE in the ISA dump. Note that the value is shown in hexadecimal format.

2.6.3 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global NDRange. The partition of the NDRange can have a significant impact on performance; thus, it is recommended that the developer explicitly specify the global `` (#work-groups)`` and local `` (#work-items/work-group)`` dimensions, rather than rely on OpenCL to set these automatically (by setting local_work_size to NULL in clEnqueueNDRangeKernel). This section explains the guidelines for partitioning at the global, local, and work/kernel levels.

2.6.3.1 Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted with a clEnqueueNDRangeKernel command. The hardware limits the available in- flight threads, but the OpenCL SDK automatically partitions a large number of work-groups into smaller pieces that the hardware can process. For some large workloads, the amount of memory available to the GPU can be a limitation; the problem might require so much memory capacity that the GPU cannot hold it all. In these cases, the programmer must partition the workload into multiple clEnqueueNDRangeKernel commands. The available device memory can be obtained by querying clDeviceInfo.

At a minimum, ensure that the workload contains at least as many work-groups as the number of compute units in the hardware. Work-groups cannot be split across multiple compute units, so if the number of work-groups is less than the available compute units, some units are idle. Use clGetDeviceInfo(…CL_DEVICE_MAX_COMPUTE_UNITS) to determine the value dynamically.

2.6.3.2 Local Work Size (#Work-Items per Work-Group)

OpenCL limits the number of work-items in each group. Call clDeviceInfo with the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of work-groups supported by the hardware. The latest generation AMD GPUs support a maximum of 256 work-items per work-group. Note the number of work- items is the product of all work-group dimensions; for example, a work-group with dimensions 32x16 requires 512 work-items, which is not allowed with the current AMD OpenCL runtime.

The fundamental unit of work on AMD GPUs is called a wavefront. Each wavefront consists of 64 work-items; thus, the optimal local work size is an integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work- group.

Work-items in the same work-group can share data through LDS memory and also use high-speed local atomic operations. Thus, larger work-groups enable more work-items to efficiently share data, which can reduce the amount of slower global communication. However, larger work-groups reduce the number of global work-groups, which, for small workloads, could result in idle compute units. Generally, larger work-groups are better as long as the global range is big enough to provide 1-2 Work-Groups for each compute unit in the system; for small workloads it generally works best to reduce the work-group size in order to avoid idle compute units. Note that it is possible to make the decision dynamically, when the kernel is launched, based on the launch dimensions and the target device characteristics.

2.6.3.3 Work-Group Dimensions vs Size

The local NDRange can contain up to three dimensions, here labeled X, Y, and Z. The X dimension is returned by get_local_id(0), Y is returned by get_local_id(1), and Z is returned by get_local_id(2). The GPU hardware schedules the kernels so that the X dimension moves fastest as the work-items are packed into wavefronts. For example, the 128 threads in a 2D work-group of dimension 32x4 (X=32 and Y=4) are packed into two wavefronts as follows (notation shown in X,Y order).

	WaveFront0

	0,0

	1,0

	2,0

	3,0

	4,0

	5,0

	6,0

	7,0

	8,0

	9,0

	10,0

	11,0

	12,0

	13,0

	14,0

	15,0

	16,0

	17,0

	18,0

	19,0

	20,0

	21,0

	22,0

	23,0

	24,0

	25,0

	26,0

	27,0

	28,0

	29,0

	30,0

	31,0

	0,1

	1,1

	2,1

	3,1

	4,1

	5,1

	6,1

	7,1

	8,1

	9,1

	10,1

	11,1

	12,1

	13,1

	14,1

	15,1

	16,1

	17,1

	18,1

	19,1

	20,1

	21,1

	22,1

	23,1

	24,1

	25,1

	26,1

	27,1

	28,1

	29,1

	30,1

	31,1

	WaveFront1

	0,2

	1,2

	2,2

	3,2

	4,2

	5,2

	6,2

	7,2

	8,2

	9,2

	10,2

	11,2

	12,2

	13,2

	14,2

	15,2

	16,2

	17,2

	18,2

	19,2

	20,2

	21,2

	22,2

	23,2

	24,2

	25,2

	26,2

	27,2

	28,2

	29,2

	30,2

	31,2

	0,3

	1,3

	2,3

	3,3

	4,3

	5,3

	6,3

	7,3

	8,3

	9,3

	10,3

	11,3

	12,3

	13,3

	14,3

	15,3

	16,3

	17,3

	18,3

	19,3

	20,3

	21,3

	22,3

	23,3

	24,3

	25,3

	26,3

	27,3

	28,3

	29,3

	30,3

	31,3

The total number of work-items in the work-group is typically the most important parameter to consider, in particular when optimizing to hide latency by increasing wavefronts/compute unit. However, the choice of XYZ dimensions for the same overall work-group size can have the following second-order effects.

	Work-items in the same quarter-wavefront execute on the same cycle in the processing engine. Thus, global memory coalescing and local memory bank conflicts can be impacted by dimension, particularly if the fast-moving X dimension is small. Typically, it is best to choose an X dimension of at least 16, then optimize the memory patterns for a block of 16 work-items which differ by 1 in the X dimension.

	Work-items in the same wavefront have the same program counter and execute the same instruction on each cycle. The packing order can be important if the kernel contains divergent branches. If possible, pack together work-items that are likely to follow the same direction when control-flow is encountered. For example, consider an image-processing kernel where each work-item processes one pixel, and the control-flow depends on the color of the pixel. It might be more likely that a square of 8x8 pixels is the same color than a 64x1 strip; thus, the 8x8 would see less divergence and higher performance.

	When in doubt, a square 16x16 work-group size is a good start.

2.6.4 Summary of NDRange Optimizations

	As shown above, execution range optimization is a complex topic with many interacting variables and which frequently requires some experimentation to determine the optimal values. Some general guidelines are:
	
	Select the work-group size to be a multiple of 64, so that the wavefronts are fully populated.

	Schedule at least four wavefronts per compute unit.

	Latency hiding depends on both the number of wavefronts/compute unit, as well as the execution time for each kernel. Generally, 8 to 32 wavefronts/compute unit is desirable, but this can vary significantly, depending on the complexity of the kernel and the available memory bandwidth. The CodeXL GPU Profiler and associated performance counters can help to select an optimal value.

2.7 Instruction Selection Optimizations

2.7.1 Instruction Bandwidths

Table 2.3 Instruction Throughput (Operations/Cycle for Each Processing Element (ALU))

	
	
	Rate (Operations/Cycle) for each Processing Element (ALU)

	
	Instruction

	
	One Quarter-Double- | One Half-Double- | Double-Precision-
	
	Precision-Speed Devices | Precision-Speed Devices | Speed-Devices
	
(e.g. Tahiti, Cayman, Cypress) | (e.g. AMD FirePro 9100)

	Single Precision FP Rates

	SPFP FMA

	1/16

	1

	1

	SPFP MAD

	1

	1

	1

	ADD

	1

	1

	1

	MUL

	1

	1

	1

	INV

	1/4

	1/4

	1/2

	RQSRT

	1/4

	1/4

	1/2

	LOG

	1/4

	1/4

	1/2

	Double Precision FP Rates

	FMA

	1/16

	1/4

	1/2

	MAD

	1/16

	1/4

	1/4

	ADD

	1/8

	1/2

	1

	MUL

	1/16

	1/4

	1/2

	INV (approx.)

	1/16

	1/4

	1/2

	RQSRT (approx.)

	1/16

	1/4

	1/2

	Integer Instruction Rates

	MAD

	1/4

	1/4

	1/4

	ADD

	1

	1

	1

	MUL

	1/4

	1/4

	1/2

	Bit-shift

	1

	1

	1

	Bitwise XOR

	1

	1

	1

	Conversion

	Float-to-Int

	1/4

	1/4

	1/2

	Int-to-Float

	1/4

	1/4

	1/2

	24-Bit Integer Inst Rates

	MAD

	1

	1

	1

	ADD

	1

	1

	1

	MUL

	1

	1

	1

Double-precision is supported on all GCN family devices at varying rates. The use of single-precision calculation is encouraged, if that precision is acceptable. Single-precision data is also half the size of double-precision, which requires less chip bandwidth and is not as demanding on the cache structures.

Generally, the throughput and latency for 32-bit integer operations is the same as for single-precision floating point operations.

24-bit integer MULs and MADs have four times the throughput of 32-bit integer multiplies. 24-bit signed and unsigned integers are natively supported on the GCN family of devices. The use of OpenCL built-in functions for mul24 and mad24 is encouraged. Note that mul24 can be useful for array indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases where it is known that no overflow will occur, some algorithms may be able to effectively pack 2 to 4 values into the 32-bit registers natively supported by the hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE- compliant add; it has the same accuracy as two separate MUL/ADD operations. No special compiler flags are required for the compiler to convert separate MUL/ADD operations to use the MAD instruction.

Table 2.3 shows the throughput for each processing element. To obtain the peak throughput for the whole device, multiply the value in the table with the number of processing elements and the engine clock. For example, according to Table 2.3, an AMD Tahiti device can perform one double-precision ADD operations/2 cycles in each processing element. An AMD Radeon™ HD 7970 GPU has 2048 processing elements and an engine clock of 925 MHz, so the entire GPU has a throughput rate of (.5*2048*925 MHz) = 947 GFlops for double- precision adds.

Similarly, double-precision MADs on AMD Tahiti (including the AMD HD 79XX and the AMD R9 280 products) run at 1/4 rate. Double-precision MADs on AMD Hawaii have two rates: 1/2 rate for the AMD FirePro 9100 devices, and 1/8th rate for the non-FirePro AMD devices (AMD R9 290 for example). Double-precision MADs on the other GCN devices typically run at 1/16 rate.

In general, the rate for double-precision ADD operations is double the rate for double-precision MAD or FMA operations.

For information about the device parameters for some Southern Islands devices, see 2.10, “Device Parameters for Southern Islands Devices”.

2.7.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing. Notably, the sum-of-absolute differences (SAD) operation is widely used in motion estimation algorithms. For the Southern Islands family of devices, new media instructions have been added; these are available under the cl_amd_media_ops2 extensions.

2.7.3 Math Libraries

The GCN environment contains new instructions for increasing the previous performance of floating point division, trigonometric range reduction, certain type conversions with double-precision values, floating-point classification, and frexp/ldexp.

OpenCL supports two types of math library operation: native_function() and function(). Native_functions are generally supported in hardware and can run substantially faster, although at somewhat lower accuracy. The accuracy for the non-native functions is specified in section 7.4 of the OpenCL Specification. The accuracy for the native functions is implementation-defined. Developers are encouraged to use the native functions when performance is more important than accuracy.

Compared to previous families of GPUs, the accuracy of certain native functions is increased in the Southern Islands family. We recommend retesting applications where native function accuracy was insufficient on previous GPU devices.

2.7.4 ompiler Optimizations

The OpenCL compiler currently recognizes a few patterns and transforms them into a single instruction. By following these patterns, a developer can generate highly efficient code. The currently accepted patterns are:

	Bitfield extract on signed/unsigned integers.
|(A >> B) & C ==> [u]bit_extract

where

B and C are compile time constants,

A is a 8/16/32bit integer type, and

C is a mask.

	Bitfield insert on signed/unsigned integers
| ((A & B) << C) | ((D & E) << F ==> ubit_insert

where

B and E have no conflicting bits (B^E == 0),

B, C, E, and F are compile-time constants, and

B and E are masks.

The first bit set in B is greater than the number of bits in E plus the first bit set in E, or the first bit set in E is greater than the number of bits in B plus the first bit set in B.

If B, C, E, or F are equivalent to the value 0, this optimization is also supported.

2.8 Additional Performance Guidance

This section is a collection of performance tips for GPU compute and AMD-specific optimizations.

2.8.1 Loop Unroll pragma

The compiler directive #pragma unroll <unroll-factor> can be placed immediately prior to a loop as a hint to the compiler to unroll a loop. <unroll- factor> must be a positive integer, 1 or greater. When <unroll-factor> is 1, loop unrolling is disabled. When <unroll-factor> is 2 or greater, the compiler uses this as a hint for the number of times the loop is to be unrolled.

Examples for using this loop follow.

No unrolling example::

 #pragma unroll 1
 for (int i = 0; i < n; i++) {
 ...
 }
Partial unrolling example::
 #pragma unroll 4
 for (int i = 0; i < 128; i++) {
 ...
 }

Currently, the unroll pragma requires that the loop boundaries can be determined at compile time. Both loop bounds must be known at compile time. If n is not given, it is equivalent to the number of iterations of the loop when both loop bounds are known. If the unroll-factor is not specified, and the compiler can determine the loop count, the compiler fully unrolls the loop. If the unroll-factor is not specified, and the compiler cannot determine the loop count, the compiler does no unrolling.

2.8.2 Memory Tiling

There are many possible physical memory layouts for images. AMD devices can access memory in a tiled or in a linear arrangement.
* Linear - A linear layout format arranges the data linearly in memory such that element addresses are sequential. This is the layout that is familiar to CPU programmers. This format must be used for OpenCL buffers; it can be used for images.
* Tiled - A tiled layout format has a pre-defined sequence of element blocks arranged in sequential memory addresses (see Figure 2.3 for a conceptual illustration). A microtile consists of ABIJ; a macrotile consists of the top-left 16 squares for which the arrows are red. Only images can use this format. Translating from user address space to the tiled arrangement is transparent to the user. Tiled memory layouts provide an optimized memory access pattern to make more efficient use of the RAM attached to the GPU compute device. This can contribute to lower latency.

[image: ../_images/2.3.png]
Figure 2.3 One Example of a Tiled Layout Format

Memory Access Pattern -

Memory access patterns in compute kernels are usually different from those in the pixel shaders. Whereas the access pattern for pixel shaders is in a hierarchical, space-filling curve pattern and is tuned for tiled memory performance (generally for textures), the access pattern for a compute kernel is linear across each row before moving to the next row in the global id space. This has an effect on performance, since pixel shaders have implicit blocking, and compute kernels do not. If accessing a tiled image, best performance is achieved if the application tries to use workgroups with 16x16 (or 8x8) work-items.

2.8.3 General Tips

	Using dynamic pointer assignment in kernels that are executed on the GPU cause inefficient code generation.

	Many OpenCL specification compiler options that are accepted by the AMD OpenCL compiler are not implemented. The implemented options are -D , -I, w, Werror, -clsingle-precision-constant, -cl-opt-disable, and -cl-fp32-correctly-rounded-divide-sqrt.

	Avoid declaring global arrays on the kernel’s stack frame as these typically cannot be allocated in registers and require expensive global memory operations.

	Use predication rather than control-flow. The predication allows the GPU to execute both paths of execution in parallel, which can be faster than attempting to minimize the work through clever control-flow. The reason for this is that if no memory operation exists in a ?: operator (also called a ternary operator), this operation is translated into a single cmov_logical instruction, which is executed in a single cycle. An example of this is :

If (A>B) { C += D;
} else { C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;
C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of conditional code, each taking ~8 cycles. If divergent, this code executes in ~36 clocks; otherwise, in ~28 clocks. A branch not taken costs four cycles (one instruction slot); a branch taken adds four slots of latency to fetch instructions from the instruction cache, for a total of 16 clocks. Since the execution mask is saved, then modified, then restored for the branch, ~12 clocks are added when divergent, ~8 clocks when not.

In the second block of code, the ?: operator executes in the vector units, so no extra CF instructions are generated. Since the instructions are sequentially dependent, this block of code executes in 12 cycles, for a 1.3x speed improvement. To see this, the first cycle is the (A>B) comparison, the result of which is input to the second cycle, which is the cmov_logical factor, bool, 1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio between conditional code and ALU instructions is low, this is a good pattern to remove the control flow.

	Loop Unrolling

	OpenCL kernels typically are high instruction-per-clock applications. Thus, the overhead to evaluate control-flow and execute branch instructions can consume a significant part of resource that otherwise can be used for high-throughput compute operations.

	The AMD OpenCL compiler performs simple loop unrolling optimizations; however, for more complex loop unrolling, it may be beneficial to do this manually.

	If possible, create a reduced-size version of your data set for easier debugging and faster turn-around on performance experimentation. GPUs do not have automatic caching mechanisms and typically scale well as resources are added. In many cases, performance optimization for the reduced-size data implementation also benefits the full-size algorithm.

	When tuning an algorithm, it is often beneficial to code a simple but accurate algorithm that is retained and used for functional comparison. GPU tuning can be an iterative process, so success requires frequent experimentation, verification, and performance measurement.

	The profiling and analysis tools report statistics on a per-kernel granularity. To narrow the problem further, it might be useful to remove or comment-out sections of code, then re-run the timing and profiling tool.

	Avoid writing code with dynamic pointer assignment on the GPU. For example:

kernel void dyn_assign(global int* a, global int* b, global int* c)
{
global int* d;
size_t idx = get_global_id(0);
if (idx & 1) {
d = b;
} else {
d = c;
}
a[idx] = d[idx];
}

This is inefficient because the GPU compiler must know the base pointer that every load comes from and in this situation, the compiler cannot determine what â€˜d’ points to. So, both B and C are assigned to the same GPU resource, removing the ability to do certain optimizations.

*If the algorithm allows changing the work-group size, it is possible to get better performance by using larger work-groups (more work-items in each work-group) because the workgroup creation overhead is reduced. On the other hand, the OpenCL CPU runtime uses a task-stealing algorithm at the work-group level, so when the kernel execution time differs because it contains conditions and/or loops of varying number of iterations, it might be better to increase the number of work-groups. This gives the runtime more flexibility in scheduling work-groups to idle CPU cores. Experimentation might be needed to reach optimal work-group size.
*Since the AMD OpenCL runtime supports only in-order queuing, using clFinish() on a queue and queuing a blocking command gives the same result. The latter saves the overhead of another API command.

For example:

clEnqueueWriteBuffer(myCQ, buff, **CL_FALSE**, 0, buffSize, input, 0, NULL, NULL);
clFinish(myCQ);

is equivalent, for the AMD OpenCL runtime, to:

clEnqueueWriteBuffer(myCQ, buff, **CL_TRUE**, 0, buffSize, input, 0, NULL, NULL);

	GPU ISA: GCN-based GPUs have 32KB of dedicated L1 instruction cache. A single instruction cache instance serves up to 4 CUs (depending upon the architecture family and device), with each CU holding up to 40 wavefronts. As each wavefront includes its own program counter, a single instruction cache unit may serve up to 160 wavefronts with each executing a different instruction in the program.

Note

If the program is larger than 32KB, the L1-L2 cache trashing can inhibit performance. The size of the ISA can be determined by using the CodeXL analysis mode, under the Statistics tab. For information about how to use CodeXL, see Chapter 4.

2.8.4 Guidance for CUDA Programmers Using OpenCL

	Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors have documents describing how to do this, including AMD:http://developer.amd.com/documentation/articles/pages/OpenCL-and-the-ATI-Stream-v2.0-Beta.aspx#four

	Some specific performance recommendations which differ from other GPU architectures:

	Use a workgroup size that is a multiple of 64. CUDA code can use a workgroup size of 32; this uses only half the available compute resources on an AMD Radeon™ HD 7970 GPU.

	AMD GPUs have a very high single-precision flops capability (3.788 teraflops in a single AMD Radeon™ HD 7970 GPU). Algorithms that benefit from such throughput can deliver excellent performance on AMD hardware.

2.8.5 Guidance for CPU Programmers Using OpenCL to Program GPUs

OpenCL is the industry-standard toolchain for programming GPUs and parallel devices from many vendors. It is expected that many programmers skilled in CPU programming will program GPUs for the first time using OpenCL. This section provides some guidance for experienced programmers who are programming a GPU for the first time. It specifically highlights the key differences in optimization strategy.

	Study the local memory (LDS) optimizations. These greatly affect the GPU performance. Note the difference in the organization of local memory on the GPU as compared to the CPU cache. Local memory is shared by many work-items (64 on Tahiti). This contrasts with a CPU cache that normally is dedicated to a single work-item. GPU kernels run well when they collaboratively load the shared memory.

	GPUs have a large amount of raw compute horsepower, compared to memory bandwidth and to “control flow” bandwidth. This leads to some high- level differences in GPU programming strategy.

	A CPU-optimized algorithm may test branching conditions to minimize the workload. On a GPU, it is frequently faster simply to execute the workload.

	A CPU-optimized version can use memory to store and later load pre- computed values. On a GPU, it frequently is faster to recompute values rather than saving them in registers. Per-thread registers are a scarce resource on the CPU; in contrast, GPUs have many available per-thread register resources.

	Use float4 and the OpenCL built-ins for vector types (vload, vstore, etc.). These enable the AMD OpenCL implementation to generate efficient, packed SSE instructions when running on the CPU. Vectorization is an optimization that benefits both the AMD CPU and GPU.

2.8.6 Optimizing Kernel Code

2.8.6.1 Using Vector Data Types

The CPU contains a vector unit, which can be efficiently used if the developer is writing the code using vector data types.

For architectures before Bulldozer, the instruction set is called SSE, and the vector width is 128 bits. For Bulldozer, there the instruction set is called AVX, for which the vector width is increased to 256 bits.

Using four-wide vector types (int4, float4, etc.) is preferred, even with Bulldozer.

2.8.6.2 Local Memory

The CPU does not benefit much from local memory; sometimes it is detrimental to performance. As local memory is emulated on the CPU by using the caches, accessing local memory and global memory are the same speed, assuming the information from the global memory is in the cache.

2.8.6.3 Using Special CPU Instructions

The Bulldozer family of CPUs FMA4 supports instructions, exchanging instructions of the form a*b+c with fma(a,b,c) or mad(a,b,c) allows for the use of the special hardware instructions for multiplying and adding.

There also is hardware support for OpenCL functions that give the new hardware implementation of rotating.

For example:

sum.x += tempA0.x * tempB0.x + tempA0.y * tempB1.x + tempA0.z * tempB2.x + tempA0.w * tempB3.x;

can be written as a composition of mad instructions which use fused multiple add
(FMA):

sum.x += mad(tempA0.x, tempB0.x, mad(tempA0.y, tempB1.x, mad(tempA0.z, tempB2.x, tempA0.w*tempB3.x)));

2.8.6.4 Avoid Barriers When Possible

Using barriers in a kernel on the CPU causes a significant performance penalty compared to the same kernel without barriers. Use a barrier only if the kernel requires it for correctness, and consider changing the algorithm to reduce barriers usage.

2.8.7 Optimizing Kernels for Southern Island GPUs

2.8.7.1 Remove Conditional Assignments

A conditional of the form “if-then-else” generates branching. Use the select() function to replace these structures with conditional assignments that do not cause branching. For example:

if(x==1) r=0.5;
if(x==2) r=1.0;

becomes

r = select(r, 0.5, x==1);
r = select(r, 1.0, x==2);

Note that if the body of the if statement contains an I/O, the if statement cannot be eliminated.

2.8.7.2 Bypass Short-Circuiting

A conditional expression with many terms can compile into nested conditional code due to the C-language requirement that expressions must short circuit. To prevent this, move the expression out of the control flow statement. For example:

if(a&&b&&c&&d){...}

becomes

bool cond = a&&b&&c&&d;
if(cond){...}

The same applies to conditional expressions used in loop constructs (do, while, for).

2.8.7.3 Unroll Small Loops

If the loop bounds are known, and the loop is small (less than 16 or 32 instructions), unrolling the loop usually increases performance.

2.8.7.4 Avoid Nested ifs

Because the GPU is a Vector ALU architecture, there is a cost to executing an if-then-else block because both sides of the branch are evaluated, then one result is retained while the other is discarded. When if blocks are nested, the results are twice as bad; in general, if blocks are nested k levels deep, 2^k nested conditional structures are generated. In this situation, restructure the code to eliminate nesting.

2.8.7.5 Experiment With do/while/for Loops

for loops can generate more conditional code than equivalent do or while loops. Experiment with these different loop types to find the one with best performance.

2.9 Specific Guidelines for GCN family GPUs

The AMD Southern Islands (SI), Sea Islands (CI), and Volcanic Islands (VI) families of products are quite different from previous generations. These families are based on what is publicly called Graphics Core Next (GCN) and are collectively referred to as GCN chips.

The compute units in GCN devices are much different from those of previous chips. With previous generations, a compute unit (Vector ALU) was VLIW in nature, so four (Cayman GPUs) or five (all other Evergreen/Northern Islands GPUs) instructions could be packed into a single ALU instruction slot (called a bundle). It was not always easy to schedule instructions to fill all of these slots, so achieving peak ALU utilization was a challenge.

With GCN GPUs, the compute units are now scalar; however, there now are four Vector ALUs per compute unit. Each Vector ALU requires at least one wavefront scheduled to it to achieve peak ALU utilization.

Along with the four Vector ALUs within a compute unit, there is also a scalar unit. The scalar unit is used to handle branching instructions, constant cache accesses, and other operations that occur per wavefront. The advantage to having a scalar unit for each compute unit is that there are no longer large penalties for branching, aside from thread divergence.

The instruction set for SI is scalar, as are GPRs. Also, the instruction set is no longer clause-based. There are two types of GPRs: scalar GPRs (SGPRs) and vector GPRs (VGPRs). Each Vector ALU has its own SGPR and VGPR pool. There are 512 SGPRs and 256 VGPRs per Vector ALU. VGPRs handle all vector instructions (any instruction that is handled per thread, such as v_add_f32, a floating point add). SGPRs are used for scalar instructions: any instruction that is executed once per wavefront, such as a branch, a scalar ALU instruction, and constant cache fetches. (SGPRs are also used for constants, all buffer/texture definitions, and sampler definitions; some kernel arguments are stored, at least temporarily, in SGPRs.) SGPR allocation is in increments of eight, and VGPR allocation is in increments of four. These increments also represent the minimum allocation size of these resources.

Typical scalar instructions execute in four cycles. The scalar engine can accept one instruction per SIMD every four cycles. The latency of a scalar instruction is typically four clocks.

Typical vector instructions execute in four cycles. SIMDs within a compute unit can overlap vector instruction execution; each SIMD unit is offset by one cycle from the previous one. This allows each SIMD unit to execute one Vector ALU instruction and one scalar ALU instruction every four clocks.

All GCN GPUs have double-precision support. For Tahiti (AMD Radeon™ HD 79XX series), double precision adds run at one-half the single precision add rate. Double-precision multiplies and MAD instructions run at one-quarter the floating- point rate.

The double-precision rate of Pitcairn (AMD Radeon™ HD 78XX series) and Cape Verde (AMD Radeon™ HD 77XX series) is one quarter that of Tahiti. This also affects the performance of single-precision fused multiple add (FMA).

Similar to previous generations local data share (LDS) is a shared resource within a compute unit. The maximum LDS allocation size for a work-group is still 32 kB, however each compute unit has a total of 64 kB of LDS. On SI GPUs, LDS memory has 32 banks; thus, it is important to be aware of LDS bank conflicts on half-wavefront boundaries. The allocation granularity for LDS is 256 bytes; the minimum size is 0 bytes. It is much easier to achieve high LDS bandwidth use on SI hardware.

L1 cache is still shared within a compute unit. The size has now increased to 16 kB per compute unit for all SI GPUs. The caches now are read/write, so sharing data between work-items in a work-group (for example, when LDS does not suffice) is much faster.

It is possible to schedule a maximum of 10 wavefronts per vector unit, assuming there are no limitations by other resources, such as registers or local memory; but there is a limit of 16 work-groups per compute unit if the work-groups are larger than a single wavefront. If the dispatch is larger than what can fit at once on the GPU, the GPU schedules new work-groups as others finish.

Since there are no more clauses in the instruction set architecture (ISA) for GCN devices, the compiler inserts “wait” commands to indicate that the compute unit needs the results of a memory operation before proceeding. If the scalar unit determines that a wait is required (the data is not yet ready), the Vector ALU can switch to another wavefront. There are different types of wait commands, depending on the memory access.

Notes -

	Vectorization is no longer needed, nor desirable; in fact, it can affect performance because it requires a greater number of VGPRs for storage. I is recommended not to combine work-items.

	Register spilling is no greater a problem with four wavefronts per work-group than it is with one wavefront per work-group. This is because each wavefront has the same number of SGPRs and VGPRs available in either case.

	Read coalescing does not work for 64-bit data sizes. This means reads for float2, int2, and double might be slower than expected.

	Work-groups with 256 work-items can be used to ensure that each compute unit is being used. Barriers now are much faster.

	The engine is wider than previous generations; this means larger dispatches are required to keep the all the compute units busy.

	A single wavefront can take twice as long to execute compared to previous generations (assuming ALU bound). This is because GPUs with VLIW-4 could execute the four instructions in a VLIW bundle in eight clocks (typical), and SI GPUs can execute one vector instruction in four clocks (typical).

	Execution of kernel dispatches can overlap if there are no dependencies between them and if there are resources available in the GPU. This is critical when writing benchmarks it is important that the measurements are accurate and that “false dependencies” do not cause unnecessary slowdowns.An example of false dependency is:

	Application creates a kernel “foo”.

	Application creates input and output buffers.

	Application binds input and output buffers to kernel “foo”.

	Application repeatedly dispatches “foo” with the same parameters.

If the output data is the same each time, then this is a false dependency because there is no reason to stall concurrent execution of dispatches. To avoid stalls, use multiple output buffers. The number of buffers required to get peak performance depends on the kernel.

Table 2.4 compares the resource limits for Northern Islands and Southern Islands
GPUs.

Table 2.4 Resource Limits for Northern Islands and Southern Islands

	
	VLIW Width

	VGPRs

	SGPRs

	LDS Size

	LDS Max Alloc

	L1$/CU

	L2$/Channel

	Northern Islands

	4

	256 (128-bit)

	
	

	32 kB

	32 kB

	8 kB

	64 kB

	Southern Islands

	1

	256(32-bit)

	512

	64 kB

	32 kB

	16 kB

	64 kB

Table 2.4 provides a simplified picture showing the Northern Island compute unit arrangement.

[image: ../_images/2.4.png]
Figure 2.4 Northern Islands Compute Unit Arrangement

Table 2.5 provides a simplified picture showing the Southern Island compute unit arrangement.

[image: ../_images/2.5.png]
Figure 2.5 Southern Island Compute Unit Arrangement

2.10 Device Parameters for Southern Islands Devices

The following table provides device-specific information for some AMD Southern Islands GPUs.

Table 2.5 Parameters for AMD 7xxx Devices

	
	Verde PRO

	Verde XT

	Pitcairn PRO

	Pitcairn XT

	Tahiti PRO

	Tahiti XT

	Product Name (AMD Radeon™ HD)

	7750

	7770

	7850

	7870

	7950

	7970

	Engine Speed (MHz)

	800

	1000

	860

	1000

	800

	925

	Compute Resources

	Compute Units

	8

	10

	16

	20

	28

	32

	Processing Elements

	512

	640

	1024

	1280

	1792

	2048

	Peak Gflops

	819

	1280

	1761

	2560

	2867

	3789

	Cache and Register Sizes

	# of 32b Vector Registers/CU

	65536

	65536

	65536

	65536

	65536

	65536

	Size of Vector Registers/CU

	256 kB

	256 kB

	256 kB

	256 kB

	256 kB

	256 kB

	LDS Size/ CU

	64 kB

	64 kB

	64 kB

	64 kB

	64 kB

	64 kB

	LDS Banks / CU

	32

	32

	32

	32

	32

	32

	Constant Cache / GPU

	64 kB

	64 kB

	128 kB

	128 kB

	128 kB

	128 kB

	Max Constants / 4 CUs

	16 kB

	16 kB

	16 kB

	16 kB

	16 kB

	16 kB

	L1 Cache Size / CU

	16 kB

	16 kB

	16 kB

	16 kB

	16 kB

	16 kB

	L2 Cache Size / GPU

	512 kB

	512 kB

	512 kB

	512 kB

	768 kB

	768 kB

	Peak GPU Bandwidths

	Register Read (GB/s)

	4915

	7680

	10568

	15360

	17203

	22733

	LDS Read (GB/s)

	819

	1280

	1761

	2560

	2867

	3789

	Constant Cache Read (GB/s)

	102

	160

	220

	320

	358

	474

	L1 Read (GB/s)

	410

	640

	881

	1280

	1434

	1894

	L2 Read (GB/s)

	205

	256

	440

	512

	614

	710

	Global Memory (GB/s)

	72

	72

	154

	154

	240

	264

	Global Limits

	Max Wavefronts / GPU

	320

	400

	640

	800

	1120

	1280

	Max Wavefronts / CU (avg)

	40

	40

	40

	40

	40

	40

	Max Work-Items / GPU

	20480

	25600

	40960

	51200

	71680

	81920

	Memory

	Memory Channels

	4

	4

	8

	8

	12

	12

	Memory Bus Width (bits)

	128

	128

	256

	256

	384

	384

	Memory Type and

	GDDR5

	GDDR5

	GDDR5

	GDDR5

	GDDR5

	GDDR5

	Speed (MHZ)

	1125

	1125

	1200

	1200

	1250

	1375

	Frame Buffer

	1GB

	1GB

	2GB

	1GB or 2GB

	3GB

	3GB

Chapter 3 OpenCL Performance and Optimization for Evergreen and Northern Islands Devices

This chapter discusses performance and optimization when programming for AMD GPU compute devices that are part of the Southern Islands family, as well as CPUs and multiple devices. Details specific to the Evergreen and Northern Islands families of GPUs are provided in Chapter 2, “OpenCL Performance and Optimization for GCN Devices.”

3.1 Global Memory Optimization

Figure 3.1 is a block diagram of the GPU memory system. The up arrows are read paths, the down arrows are write paths. WC is the write combine cache.

The GPU consists of multiple compute units. Each compute unit contains 32 kB local (on-chip) memory, L1 cache, registers, and 16 processing element (PE). Each processing element contains a five-way (or four-way, depending on the GPU type) VLIW processor. Individual work-items execute on a single processing element; one or more work-groups execute on a single compute unit. On a GPU, hardware schedules the work-items. On the ATI Radeon™ HD 5000 series of GPUs, hardware schedules groups of work-items, called wavefronts, onto stream cores; thus, work-items within a wavefront execute in lock-step; the same instruction is executed on different data.

The L1 cache is 8 kB per compute unit. (For the ATI Radeon™ HD 5870 GPU, this means 160 kB for the 20 compute units.) The L1 cache bandwidth on the ATI Radeon™ HD 5870 GPU is one terabyte per second:

L1 Bandwidth = Compute Units * Wavefront Size/Compute Unit * EngineClock

Multiple compute units share L2 caches.
The L2 cache size on the ATI Radeon™ HD 5870 GPUs is 512 kB:L2 Cache Size = Number or channels * L2 per Channel
The bandwidth between L1 caches and the shared L2 cache is 435 GB/s:

L2 Bandwidth = Number of channels * Wavefront Size * Engine Clock

[image: ../_images/3.1.png]
Figure 3.1 Memory System

The ATI Radeon™ HD 5870 GPU has eight memory controllers (“Memory Channel” in Figure 3.1). The memory controllers are connected to multiple banks of memory. The memory is GDDR5, with a clock speed of 1200 MHz and a data rate of 4800 Mb/pin. Each channel is 32-bits wide, so the peak bandwidth for the ATI Radeon™ HD 5870 GPU is: (8 memory controllers) * (4800 Mb/pin) * (32 bits) * (1 B/8b) = 154 GB/s

If two memory access requests are directed to the same controller, the hardware serializes the access. This is called a channel conflict. Similarly, if two memory access requests go to the same memory bank, hardware serializes the access. This is called a bank conflict. From a developer’s point of view, there is not much difference between channel and bank conflicts. A large power of two stride results in a channel conflict; a larger power of two stride results in a bank conflict. The size of the power of two stride that causes a specific type of conflict depends on the chip. A stride that results in a channel conflict on a machine with eight channels might result in a bank conflict on a machine with four.

In this document, the term bank conflict is used to refer to either kind of conflict.

3.1.1 Two Memory Paths

ATI Radeon™ HD 5000 series graphics processors have two, independent memory paths between the compute units and the memory:

	FastPath performs only basic operations, such as loads and stores (data sizes must be a multiple of 32 bits). This often is faster and preferred when there are no advanced operations.

	CompletePath, supports additional advanced operations, including atomics and sub-32-bit (byte/short) data transfers.

3.1.1.1 Performance Impact of FastPath and CompletePath

There is a large difference in performance on ATI Radeon™ HD 5000 series hardware between FastPath and CompletePath. Figure 3.2 shows two kernels (one FastPath, the other CompletePath) and the delivered DRAM bandwidth for each kernel on the ATI Radeon™ HD 5870 GPU. Note that an atomic add forces CompletePath.

[image: ../_images/3.2.png]
Figure 3.2 FastPath (blue) vs CompletePath (red) Using float1

	1

	UAVs allow compute shaders to store results in (or write results to) a buffer at any arbitrary location.On DX11 hardware, UAVs can be created from buffers and textures. On DX10 hardware, UAVs can- not be created from typed resources (textures). This is the same as a random access target (RAT).

The kernel code follows. Note that the atomic extension must be enabled under OpenCL 1.0.

__kernel void
CopyFastPath(global const float * input,
 global float * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return ;
}
 kernel void
CopyComplete(global const float * input, global float* output)
{
int gid = get_global_id(0);
if (gid <0){
atom_add((global int *) output,1);
}
output[gid] = input[gid];
return ;
}

Table 3.1 lists the effective bandwidth and ratio to maximum bandwidth.

Table 3.1 Bandwidths for 1D Copies

	Kernel

	EffectiveBandwidth

	Ratio to PeakBandwidth

	copy 32-bit 1D FP

	96 GB/s

	3%

	copy 32-bit 1D CP

	18 GB/s

	12%

The difference in performance between FastPath and CompletePath is significant. If your kernel uses CompletePath, consider if there is another way to approach the problem that uses FastPath. OpenCL read-only images always use FastPath.

3.1.1.2 Determining The Used Path

Since the path selection is done automatically by the OpenCL compiler, your kernel may be assigned to CompletePath. This section explains the strategy the compiler uses, and how to find out what path was used.

The compiler is conservative when it selects memory paths. The compiler often maps all user data into a single unordered access view (UAV),[1] so a single atomic operation (even one that is not executed) may force all loads and stores to use CompletePath.

The effective bandwidth listing above shows two OpenCL kernels and the associated performance. The first kernel uses the FastPath while the second uses the CompletePath. The second kernel is forced to CompletePath because in CopyComplete, the compiler noticed the use of an atomic.

There are two ways to find out which path is used. The first method uses the CodeXL GPU Profiler, which provides the following three performance counters for this purpose:

	FastPath counter: The total bytes written through the FastPath (no atomics,32-bit types only).

	CompletePath counter: The total bytes read and written through the CompletePath (supports atomics and non-32-bit types).

	PathUtilization counter: The percentage of bytes read and written through the FastPath or CompletePath compared to the total number of bytes transferred over the bus.

The second method is static and lets you determine the path by looking at a machine-level ISA listing (using the AMD CodeXL Static Kernel Analyzer in OpenCL).

MEM_RAT_CACHELESS -> FastPath
MEM_RAT -> CompPath
MEM_RAT_NOP_RTN -> Comp_load

FastPath operations appear in the listing as:

...
TEX: ...
... VFETCH ...
... MEM_RAT_CACHELESS_STORE_RAW: ...
...

The vfetch` Instruction is a load type that in graphics terms is called vertex a fetch (the group control TEX indicates that the load uses the L1 cache.)
The instruction ``MEM_RAT_CACHELESS indicates that FastPath operations are used. Loads in CompletePath are a split-phase operation. In the first phase, hardware copies the old value of a memory location into a special buffer. This is done by performing atomic operations on the memory location. After the value has reached the buffer, a normal load is used to read the value. Note that RAT stands for random access target, which is the same as an unordered access view (UAV); it allows, on DX11 hardware, writes to, and reads from, any arbitrary location in a buffer.

The listing shows:

.. MEM_RAT_NOP_RTN_ACK: RAT(1)
.. WAIT_ACK: Outstanding_acks <= 0
.. TEX: ADDR(64) CNT(1)
.. VFETCH ...

The instruction sequence means the following:

MEM_RAT - Read into a buffer using CompletePath, do no operation on the memory location, and send an ACK when done.

WAIT_ACK - Suspend execution of the wavefront until the ACK is received. If there is other work pending this might be free, but if there is no other work to be done this could take 100’s of cycles.

TEX - Use the L1 cache for the next instruction.

VFETCH - Do a load instruction to (finally) get the value.

Stores appear as:

.. MEM_RAT_STORE_RAW: RAT(1)

The instruction MEM_RAT_STORE is the store along the CompletePath. MEM_RAT means CompletePath; MEM_RAT_CACHELESS means FastPath.

3.1.2 Channel Conflicts

The important concept is memory stride: the increment in memory address, measured in elements, between successive elements fetched or stored by consecutive work-items in a kernel. Many important kernels do not exclusively use simple stride one accessing patterns; instead, they feature large non-unit strides. For instance, many codes perform similar operations on each dimension of a two- or three-dimensional array. Performing computations on the low dimension can often be done with unit stride, but the strides of the computations in the other dimensions are typically large values. This can result in significantly degraded performance when the codes are ported unchanged to GPU systems. A CPU with caches presents the same problem, large power-of-two strides force data into only a few cache lines.

One solution is to rewrite the code to employ array transpositions between the kernels. This allows all computations to be done at unit stride. Ensure that the time required for the transposition is relatively small compared to the time to perform the kernel calculation.

For many kernels, the reduction in performance is sufficiently large that it is worthwhile to try to understand and solve this problem.

In GPU programming, it is best to have adjacent work-items read or write adjacent memory addresses. This is one way to avoid channel conflicts.

When the application has complete control of the access pattern and address generation, the developer must arrange the data structures to minimize bank conflicts. Accesses that differ in the lower bits can run in parallel; those that differ only in the upper bits can be serialized.

In this example:

for (ptr=base; ptr<max; ptr += 16KB)
 R0 = *ptr ;

where the lower bits are all the same, the memory requests all access the same bank on the same channel and are processed serially.

This is a low-performance pattern to be avoided. When the stride is a power of 2 (and larger than the channel interleave), the loop above only accesses one channel of memory.

The hardware byte address bits are:

	31:x

	bank

	channel

	7:0 address

	On all ATI Radeon™ HD 5000-series GPUs, the lower eight bits select an element within a channel.

	The next set of bits select the channel. The number of channel bits varies, since the number of channels is not the same on all parts. With eight channels, three bits are used to select the channel; with two channels, a single bit is used.

	The next set of bits selects the memory bank. The number of bits used depends on the number of memory banks.

	The remaining bits are the rest of the address.

On the ATI Radeon™ HD 5870 GPU, the channel selection are bits 10:8 of the byte address. This means a linear burst switches channels every 256 bytes. Since the wavefront size is 64, channel conflicts are avoided if each work-item in a wave reads a different address from a 64-word region. All ATI Radeon™ HD 5000 series GPUs have the same layout: channel ends at bit 8, and the memory bank is to the left of the channel.

A burst of 2kB (8 * 256 bytes) cycles through all the channels.

When calculating an address as y*width+x, but reading a burst on a column (incrementing y), only one memory channel of the system is used, since the width is likely a multiple of 256 words = 2048 bytes. If the width is an odd multiple of 256B, then it cycles through all channels.

Similarly, the bank selection bits on the ATI Radeon™ HD 5870 GPU are bits 14:11, so the bank switches every 2 kB. A linear burst of 32 kB cycles through all banks and channels of the system. If accessing a 2D surface along a column, with a y*width+x calculation, and the width is some multiple of 2 kB dwords (32 kB), then only 1 bank and 1 channel are accessed of the 16 banks and 8 channels available on this GPU.

All ATI Radeon™ HD 5000-series GPUs have an interleave of 256 bytes (64 dwords).

If every work-item in a work-group references consecutive memory addresses and the address of work-item 0 is aligned to 256 bytes and each work-item fetches 32 bits, the entire wavefront accesses one channel. Although this seems slow, it actually is a fast pattern because it is necessary to consider the memory access over the entire device, not just a single wavefront.

One or more work-groups execute on each compute unit. On the ATI Radeon™ HD 5000-series GPUs, work-groups are dispatched in a linear order, with x changing most rapidly. For a single dimension, this is:

DispatchOrder = get_group_id(0)

For two dimensions, this is:

DispatchOrder = get_group_id(0) + get_group_id(1) * get_num_groups(0)

This is row-major-ordering of the blocks in the index space. Once all compute units are in use, additional work-groups are assigned to compute units as needed. Work-groups retire in order, so active work-groups are contiguous.

At any time, each compute unit is executing an instruction from a single wavefront. In memory intensive kernels, it is likely that the instruction is a memory access. Since there are eight channels on the ATI Radeon™ HD 5870 GPU, at most eight of the compute units can issue a memory access operation in one cycle. It is most efficient if the accesses from eight wavefronts go to different channels. One way to achieve this is for each wavefront to access consecutive groups of 256 = 64 * 4 bytes.

An inefficient access pattern is if each wavefront accesses all the channels. This is likely to happen if consecutive work-items access data that has a large power of two strides.

In the next example of a kernel for copying, the input and output buffers are interpreted as though they were 2D, and the work-group size is organized as 2D.

The kernel code is:

#define WIDTH 1024
#define DATA_TYPE float
#define A(y , x) A[(y) * WIDTH + (x)]
#define C(y , x) C[(y) * WIDTH+(x)]
kernel void copy_float (global const
DATA_TYPE * A,
 global DATA_TYPE* C)
{
int idx = get_global_id(0);
int idy = get_global_id(1);
C(idy, idx) = A(idy, idx);
}

By changing the width, the data type and the work-group dimensions, we get a set of kernels out of this code.

Given a 64x1 work-group size, each work-item reads a consecutive 32-bit address. Given a 1x64 work-group size, each work-item reads a value separated by the width in a power of two bytes.

Table 3.2 shows how much the launch dimension can affect performance. It lists each kernel’s effective bandwidth and ratio to maximum bandwidth.

Table 3.2 Bandwidths for Different Launch Dimensions

	Kernel

	Effective Bandwidth

	Ratio to Peak Bandwidth

	copy 32-bit 1D FP

	96 GB/s

	63%

	copy 32-bit 1D CP

	18 GB/s

	12%

	copy 32-bit 2D

	.3 - 93 GB/s

	0 - 60%

	copy 128-bit 2D

	7 - 122 GB/s

	5 - 80%

To avoid power of two strides:

	Add an extra column to the data matrix.

	Change the work-group size so that it is not a power of 21.

	It is best to use a width that causes a rotation through all of the memory channels, instead of using the same one repeatedly.

	Change the kernel to access the matrix with a staggered offset.

3.1.2.1 Staggered Offsets

Staggered offsets apply a coordinate transformation to the kernel so that the data is processed in a different order. Unlike adding a column, this technique does not use extra space. It is also relatively simple to add to existing code.

Figure 3.3 illustrates the transformation to staggered offsets.

[image: ../_images/3.3.png]
Figure 3.3 Transformation to Staggered Offsets

	1

	Generally, it is not a good idea to make the work-group size something other than an integer multiple of the wavefront size, but that usually is less important than avoiding channel conflicts.

The global ID values reflect the order that the hardware initiates work-groups. The values of get group ID are in ascending launch order.

global_id(0) = get_group_id(0) * get_local_size(0) + get_local_id(0)
global_id(1) = get_group_id(1) * get_local_size(1) + get_local_id(1)

The hardware launch order is fixed, but it is possible to change the launch order, as shown in the following example.

Assume a work-group size of k x k, where k is a power of two, and a large 2D matrix of size 2n x 2m in row-major order. If each work-group must process a block in column-order, the launch order does not work out correctly: consecutive work-groups execute down the columns, and the columns are a large power-of- two apart; so, consecutive work-groups access the same channel.

By introducing a transformation, it is possible to stagger the work-groups to avoid channel conflicts. Since we are executing 2D work-groups, each work group is identified by four numbers.
1.``get_group_id(0)`` - the x coordinate or the block within the column of the matrix.
2.``get_group_id(1)`` - the y coordinate or the block within the row of the matrix.
3.``get_global_id(0)`` - the x coordinate or the column of the matrix.
4.``get_global_id(1)`` - the y coordinate or the row of the matrix.

To transform the code, add the following four lines to the top of the kernel.

get_group_id_0 = get_group_id(0);
get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);

Then, change the global IDs and group IDs to the staggered form. The result is:

__kernel void
copy_float (
 __global const DATA_TYPE * A,
 __global DATA_TYPE * C)
{
 size_t get_group_id_0 = get_group_id(0);
 size_t get_group_id_1 = (get_group_id(0) + get_group_id(1)) % get_local_size(0);
 size_t get_global_id_0 = get_group_id_0 * get_local_size(0) + get_local_id(0);
 size_t get_global_id_1 = get_group_id_1 * get_local_size(1) + get_local_id(1);
 int idx = get_global_id_0; //changed to staggered form int idy = get_global_id_1; //changed to staggered form

 C(idy , idx) = A(idy , idx);

}

3.1.2.2 Reads Of The Same Address

Under certain conditions, one unexpected case of a channel conflict is that reading from the same address is a conflict, even on the FastPath.

This does not happen on the read-only memories, such as constant buffers, textures, or shader resource view (SRV); but it is possible on the read/write UAV memory or OpenCL global memory.

From a hardware standpoint, reads from a fixed address have the same upper bits, so they collide and are serialized. To read in a single value, read the value
in a single work-item, place it in local memory, and then use that location:

	Avoid:
	temp = input[3] // if input is from global space

	Use:
	
if (get_local_id(0) == 0)
{
local = input[3]
}

barrier(CLK_LOCAL_MEM_FENCE);
temp = local

3.1.3 Float4 Or Float1

The internal memory paths on ATI Radeon™ HD 5000-series devices support 128-bit transfers. This allows for greater bandwidth when transferring data in float4 format. In certain cases (when the data size is a multiple of four), float4 operations are faster.

The performance of these kernels can be seen in Figure 3.4. Change to float4 after eliminating the conflicts.

[image: ../_images/3.4.png]
Figure 3.4 Two Kernels: One Using float4 (blue), the Other float1 (red)

The following code example has two kernels, both of which can do a simple copy, but Copy4 uses float4 data types.

 kernel void
Copy4(global const float4 * input,
 global float4 * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;
}
 kernel void
Copy1(global const float * input,
 global float * output)
{
int gid = get_global_id(0);
output[gid] = input[gid];
return;
}

Copying data as float4 gives the best result: 84% of absolute peak. It also speeds up the 2D versions of the copy (see Table 3.3).

Table 3.3 Bandwidths Including float1 and float4

	Kernel

	Effective Bandwidth

	Ratio to Peak Bandwidth

	copy 32-bit 1D FP

	96 GB/s

	63%

	copy 32-bit 1D CP

	18 GB/s

	12%

	copy 32-bit 2D

	.3 - 93 GB/s

	0 - 61%

	copy 128-bit 2D

	7 - 122 GB/s

	5 - 80%

	copy4 float4 1D FP

	127 GB/s

	83%

3.1.4 Coalesced Writes

On some other vendor devices, it is important to reorder your data to use coalesced writes. The ATI Radeon™ HD 5000-series devices also support coalesced writes, but this optimization is less important than other considerations, such as avoiding bank conflicts.

In non-coalesced writes, each compute unit accesses the memory system in quarter-wavefront units. The compute unit transfers a 32-bit address and one element-sized piece of data for each work-item. This results in a total of 16 elements + 16 addresses per quarter-wavefront. On ATI Radeon™ HD 5000-series devices, processing quarter-wavefront requires two cycles before the data is transferred to the memory controller.

In coalesced writes, the compute unit transfers one 32-bit address and 16 element-sized pieces of data for each quarter-wavefront, for a total of 16 elements +1 address per quarter-wavefront. For coalesced writes, processing quarter-wavefront takes one cycle instead of two. While this is twice as fast, the times are small compared to the rate the memory controller can handle the data. See Figure 3.5.

On ATI Radeon™ HD 5000-series devices, the coalescing is only done on the FastPath because it supports only 32-bit access.

If a work-item does not write, coalesce detection ignores it.

The first kernel Copy1 maximizes coalesced writes: work-item k writes to address k. The second kernel writes a shifted pattern: In each quarter-wavefront of 16 work-items, work-item k writes to address k-1, except the first work-item in each quarter-wavefront writes to address k+16. There is not enough order here to coalesce on some other vendor machines. Finally, the third kernel has work-item k write to address k when k is even, and write address 63-k when k is odd. This pattern never coalesces.

[image: ../_images/3.5.png]
Figure 3.5 Effect of Varying Degrees of Coalescing - Coal (blue), NoCoal red), Split (green)

Write coalescing can be an important factor for AMD GPUs.

The following are sample kernels with different coalescing patterns.

// best access pattern
 kernel void
Copy1(global const float * input, global float * output)
{
uint gid = get_global_id(0); output[gid] = input[gid]; return;
}

 kernel void NoCoal (global const float * input,
 global float * output)
// (shift by 16)
{
int gid = get_global_id(0)-1;
if((get_local_id(0) & 0xf) == 0)
{
gid = gid +16;
}
output[gid] = input[gid];
return;
}
 kernel void
// inefficient pattern
Split (global const float * input, global float * output)
{
int gid = get_global_id(0);
if((gid & 0x1) == 0) {
gid = (gid & (Ëœ63)) +62 - get_local_id(0);
}
output[gid] = input[gid];
return;
}

Table 3.4 lists the effective bandwidth and ratio to maximum bandwidth for each kernel type.

Table 3.4 Bandwidths Including Coalesced Writes

	Kernel

	Effective Bandwidth

	Ratio to Peak Bandwidth

	copy 32-bit 1D FP

	96 GB/s

	63%

	copy 32-bit 1D CP

	18 GB/s

	12%

	copy 32-bit 2D

	.3 - 93 GB/s

	0 - 61%

	copy 128-bit 2D

	7 - 122 GB/s

	5 - 80%

	copy4 float4 1D FP

	127 GB/s

	83%

	Coal 32-bit

	97 GB/s

	63%

	NoCoal 32-bit

	93 GB/s

	61%

	Split 32-bit

	90 GB/s

	59%

There is not much performance difference, although the coalesced version is slightly faster.

3.1.5 Alignment

The program in Figure 3.6 shows how the performance of a simple, unaligned access (float1) of this kernel varies as the size of offset varies. Each transfer was large (16 MB). The performance gain by adjusting alignment is small, so generally this is not an important consideration on AMD GPUs.

[image: ../_images/3.6.png]
Figure 3.6 Unaligned Access Using float1

	::
	
__kernel void
CopyAdd(global const float * input,
__global float * output,

const int offset)
{
int gid = get_global_id(0)+ offset;
output[gid] = input[gid];
return;
}

Table 3.5 lists the effective bandwidth and ratio to maximum bandwidth for each kernel type.

Table 3.5 Bandwidths Including Unaligned Access

	Kernel

	Effective Bandwidth

	Ratio to Peak Bandwidth

	copy 32-bit 1D FP

	96 GB/s

	63%

	copy 32-bit 1D CP

	18 GB/s

	12%

	copy 32-bit 2D

	.3 - 93 GB/s

	0 - 61%

	copy 128-bit 2D

	7 - 122 GB/s

	5 - 80%

	copy4 float4 1D FP

	127 GB/s

	83%

	Coal

	97

	63%

	NoCoal 32-bit

	90 GB/s

	59%

	Split 32-bit

	90 GB/s

	59%

	CopyAdd 32-bit

	92 GB/s

	60%

3.1.6 Summary of Copy Performance

The performance of a copy can vary greatly, depending on how the code is written. The measured bandwidth for these copies varies from a low of 0.3 GB/s, to a high of 127 GB/s.

The recommended order of steps to improve performance is:

	Examine the code to ensure you are using FastPath, not CompletePath, everywhere possible. Check carefully to see if you are minimizing the number of kernels that use CompletePath operations. You might be able to use textures, image-objects, or constant buffers to help.

	Examine the data-set sizes and launch dimensions to see if you can eliminate bank conflicts.

	Try to use float4 instead of float1.

	Try to change the access pattern to allow write coalescing. This is important on some hardware platforms, but only of limited importance for AMD GPU devices.

	Finally, look at changing the access pattern to allow data alignment.

3.2 Local Memory (LDS) Optimization

AMD Evergreen GPUs include a Local Data Store (LDS) cache, which accelerates local memory accesses. LDS is not supported in OpenCL on AMD R700-family GPUs. LDS provides high-bandwidth access (more than 10X higher than global memory), efficient data transfers between work-items in a work- group, and high-performance atomic support. Local memory offers significant advantages when the data is re-used; for example, subsequent accesses can read from local memory, thus reducing global memory bandwidth. Another advantage is that local memory does not require coalescing.

To determine local memory size:

clGetDeviceInfo(..., CL_DEVICE_LOCAL_MEM_SIZE, ...);

All AMD Evergreen GPUs contain a 32K LDS for each compute unit. On high- end GPUs, the LDS contains 32-banks, each bank is four bytes wide and 256 bytes deep; the bank address is determined by bits 6:2 in the address. On lower- end GPUs, the LDS contains 16 banks, each bank is still 4 bytes in size, and the bank used is determined by bits 5:2 in the address. As shown below, programmers should carefully control the bank bits to avoid bank conflicts as much as possible.

In a single cycle, local memory can service a request for each bank (up to 32 accesses each cycle on the ATI Radeon™ HD 5870 GPU). For an ATI Radeon™ HD 5870 GPU, this delivers a memory bandwidth of over 100 GB/s for each compute unit, and more than 2 TB/s for the whole chip. This is more than 14X the global memory bandwidth. However, accesses that map to the same bank are serialized and serviced on consecutive cycles. A wavefront that generates bank conflicts stalls on the compute unit until all LDS accesses have completed. The GPU reprocesses the wavefront on subsequent cycles, enabling only the lanes receiving data, until all the conflicting accesses complete. The bank with the most conflicting accesses determines the latency for the wavefront to complete the local memory operation. The worst case occurs when all 64 work- items map to the same bank, since each access then is serviced at a rate of one per clock cycle; this case takes 64 cycles to complete the local memory access for the wavefront. A program with a large number of bank conflicts (as measured by the LDSBankConflict performance counter) might benefit from using the constant or image memory rather than LDS.

Thus, the key to effectively using the local cache memory is to control the access pattern so that accesses generated on the same cycle map to different banks in the local memory. One notable exception is that accesses to the same address (even though they have the same bits 6:2) can be broadcast to all requestors and do not generate a bank conflict. The LDS hardware examines the requests generated over two cycles (32 work-items of execution) for bank conflicts. Ensure, as much as possible, that the memory requests generated from a quarter-wavefront avoid bank conflicts by using unique address bits 6:2. A simple sequential address pattern, where each work-item reads a float2 value from LDS, generates a conflict-free access pattern on the ATI Radeon™ HD 5870 GPU. Note that a sequential access pattern, where each work-item reads a float4 value from LDS, uses only half the banks on each cycle on the ATI Radeon™ HD 5870 GPU and delivers half the performance of the float access pattern.

Each stream processor can generate up to two 4-byte LDS requests per cycle. Byte and short reads consume four bytes of LDS bandwidth. Since each stream processor can execute five operations (or four, depending on the GPU type) in the VLIW each cycle (typically requiring 10-15 input operands), two local memory requests might not provide enough bandwidth to service the entire instruction. Developers can use the large register file: each compute unit has 256 kB of register space available (8X the LDS size) and can provide up to twelve 4-byte values/cycle (6X the LDS bandwidth). Registers do not offer the same indexing flexibility as does the LDS, but for some algorithms this can be overcome with loop unrolling and explicit addressing.

LDS reads require one ALU operation to initiate them. Each operation can initiate two loads of up to four bytes each.

	The CodeXL GPU Profiler provides the following performance counter to help optimize local memory usage:
	LDSBankConflict : The percentage of time accesses to the LDS are stalled due to bank conflicts relative to GPU Time. In the ideal case, there are no bank conflicts in the local memory access, and this number is zero.

Local memory is software-controlled “scratchpad” memory. In contrast, caches typically used on CPUs monitor the access stream and automatically capture recent accesses in a tagged cache. The scratchpad allows the kernel to explicitly load items into the memory; they exist in local memory until the kernel replaces them, or until the work-group ends. To declare a block of local memory, use the __local keyword; for example: __local float localBuffer[64]

These declarations can be either in the parameters to the kernel call or in the body of the kernel. The __local syntax allocates a single block of memory, which is shared across all work-items in the workgroup.

To write data into local memory, write it into an array allocated with __local. For example: localBuffer[i] = 5.0;

A typical access pattern is for each work-item to collaboratively write to the local memory: each work-item writes a subsection, and as the work-items execute in parallel they write the entire array. Combined with proper consideration for the access pattern and bank alignment, these collaborative write approaches can lead to highly efficient memory accessing. Local memory is consistent across work-items only at a work-group barrier; thus, before reading the values written collaboratively, the kernel must include a barrier() instruction.

The following example is a simple kernel section that collaboratively writes, then reads from, local memory:

__kernel void localMemoryExample (global float *In, global float *Out) {
__local float localBuffer[64];
uint tx = get_local_id(0);
uint gx = get_global_id(0);

// Initialize local memory:
// Copy from this work-group's section of global memory to local:
// Each work-item writes one element; together they write it all
localBuffer[tx] = In[gx];

// Ensure writes have completed:
barrier(CLK_LOCAL_MEM_FENCE);

// Toy computation to compute a partial factorial, shows re-use from local float f = localBuffer[tx];
for (uint i=tx+1; i<64; i++) {
f *= localBuffer[i];
}
Out[gx] = f;
}

Note

the host code cannot read from, or write to, local memory. Only the kernel can access local memory.

Local memory is consistent across work-items only at a work-group barrier; thus, before reading the values written collaboratively, the kernel must include a barrier() instruction. An important optimization is the case where the local work-group size is less than, or equal to, the wavefront size. Because the wavefront executes as an atomic unit, the explicit barrier operation is not required. The compiler automatically removes these barriers if the kernel specifies a reqd_work_group_size

(see section 5.8 of the OpenCL Specification) that is less than the wavefront size. Developers are strongly encouraged to include the barriers where appropriate, and rely on the compiler to remove the barriers when possible, rather than manually removing the barriers(). This technique results in more portable code, including the ability to run kernels on CPU devices.

3.3 Constant Memory Optimization

The AMD implementation of OpenCL provides three levels of performance for the “constant” memory type.

	Simple Direct-Addressing Patterns

Very high bandwidth can be attained when the compiler has available the constant address at compile time and can embed the constant address into the instruction. Each processing element can load up to 4x4-byte direct- addressed constant values each cycle. Typically, these cases are limited to simple non-array constants and function parameters. The GPU loads the constants into a hardware cache at the beginning of the clause that uses the constants. The cache is a tagged cache, typically each 8k blocks is shared among four compute units. If the constant data is already present in the constant cache, the load is serviced by the cache and does not require any global memory bandwidth. The constant cache size for each device varies from 4k to 48k per GPU.

	Same Index

Hardware acceleration also takes place when all work-items in a wavefront reference the same constant address. In this case, the data is loaded from memory one time, stored in the L1 cache, and then broadcast to all wave- fronts. This can reduce significantly the required memory bandwidth.

	Varying Index

More sophisticated addressing patterns, including the case where each work- item accesses different indices, are not hardware accelerated and deliver the same performance as a global memory read with the potential for cache hits.

To further improve the performance of the AMD OpenCL stack, two methods allow users to take advantage of hardware constant buffers. These are:

	Globally scoped constant arrays. These arrays are initialized, globally scoped, and in the constant address space (as specified in section 6.5.3 of the OpenCL specification). If the size of an array is below 64 kB, it is placed in hardware constant buffers; otherwise, it uses global memory. An example of this is a lookup table for math functions.

	Per-pointer attribute specifying the maximum pointer size. This is specified using the max_constant_size(N) attribute. The attribute form conforms to section 6.10 of the OpenCL 1.0 specification. This attribute is restricted to top-level kernel function arguments in the constant address space. This restriction prevents a pointer of one size from being passed as an argument to a function that declares a different size. It informs the compiler that indices into the pointer remain inside this range and it is safe to allocate a constant buffer in hardware, if it fits. Using a constant pointer that goes outside of this range results in undefined behavior. All allocations are aligned on the 16-byte boundary.

For example:

kernel void mykernel(global int* a,
constant int* b attribute__((max_constant_size (65536)))
)
{
size_t idx = get_global_id(0);
a[idx] = b[idx & 0x3FFF];
}

A kernel that uses constant buffers must use CL_DEVICE_MAX_CONSTANT_ARGS to query the device for the maximum number of constant buffers the kernel can support. This value might differ from the maximum number of hardware constant buffers available. In this case, if the number of hardware constant buffers is less than the CL_DEVICE_MAX_CONSTANT_ARGS, the compiler allocates the largest constant buffers in hardware first and allocates the rest of the constant buffers in global memory. As an optimization, if a constant pointer A uses n bytes of memory, where n is less than 64 kB, and constant pointer B uses m bytes of memory, where m is less than (64 kB - n) bytes of memory, the compiler can allocate the constant buffer pointers in a single hardware constant buffer. This optimization can be applied recursively by treating the resulting allocation as a single allocation and finding the next smallest constant pointer that fits within the space left in the constant buffer.

3.4 OpenCL Memory Resources: Capacity and Performance

Table 3.6 summarizes the hardware capacity and associated performance for the structures associated with the five OpenCL Memory Types. This information
specific to the ATI Radeon™ HD5870 GPUs with 1 GB video memory.

Table 3.6 Hardware Performance Parameters

	OpenCL Memory Type

	Hardware Resource

	Size/CU

	Size/GPU

	Peak Read Bandwidth/ Stream Core

	Private

	GPRs

	256k

	5120k

	48 bytes/cycle

	Local

	LDS

	32k

	640k

	8 bytes/cycle

	Constant

	Direct-addressed constant

	
	48k

	16 bytes/cycle

	Same-indexed constant

	
	4 bytes/cycle

	Varying-indexed constant

	
	~0.6 bytes/cycle

	Images

	L1 Cache

	8k

	160k

	4 bytes/cycle

	L2 Cache

	
	512k

	~1.6 bytes/cycle

	Global

	Global Memory

	
	1G

	~0.6 bytes/cycle

The compiler tries to map private memory allocations to the pool of GPRs in the GPU. In the event GPRs are not available, private memory is mapped to the “scratch” region, which has the same performance as global memory. Section 3.6.2, “Resource Limits on Active Wavefronts”, has more information on register allocation and identifying when the compiler uses the scratch region. GPRs provide the highest-bandwidth access of any hardware resource. In addition to reading up to 48 bytes/cycle from the register file, the hardware can access results produced in the previous cycle (through the Previous Vector/Previous Scalar register) without consuming any register file bandwidth. GPRs have some restrictions about which register ports can be read on each cycle; but generally, these are not exposed to the OpenCL programmer.

Same-indexed constants can be cached in the L1 and L2 cache. Note that “same-indexed” refers to the case where all work-items in the wavefront reference the same constant index on the same cycle. The performance shown assumes an L1 cache hit.

Varying-indexed constants use the same path as global memory access and are subject to the same bank and alignment constraints described in Section 3.1, “Global Memory Optimization”.

The L1 and L2 caches are currently only enabled for images and same-indexed constants. Read only buffers can be cached in L1 and L2. To enable this, the developer must indicate to the compiler that the buffer is read only and does not alias with other buffers. For example, use:

kernel void mykernel(global int const * restrict mypointerName)

The const indicates to the compiler that mypointerName is read only from the kernel, and the restrict attribute indicates to the compiler that no other pointer aliases with mypointerName.

The L1 cache can service up to four address request per cycle, each delivering up to 16 bytes. The bandwidth shown assumes an access size of 16 bytes; smaller access sizes/requests result in a lower peak bandwidth for the L1 cache. Using float4 with images increases the request size and can deliver higher L1 cache bandwidth.

Each memory channel on the GPU contains an L2 cache that can deliver up to 64 bytes/cycle. The ATI Radeon™ HD 5870 GPU has eight memory channels; thus, it can deliver up to 512bytes/cycle; divided among 320 stream cores, this provides up to ~1.6 bytes/cycle for each stream core.

Global Memory bandwidth is limited by external pins, not internal bus bandwidth. The ATI Radeon™ HD 5870 GPU supports up to 153 GB/s of memory bandwidth which is an average of 0.6 bytes/cycle for each stream core.

Note that Table 3.6 shows the performance for the ATI Radeon™ HD 5870 GPU. The “Size/Compute Unit” column and many of the bandwidths/processing element apply to all Evergreen-class GPUs; however, the “Size/GPU” column and the bandwidths for varying-indexed constant, L2, and global memory vary across different GPU devices.

3.5 Using LDS or L1 Cache

There are a number of considerations when deciding between LDS and L1 cache for a given algorithm.

LDS supports read/modify/write operations, as well as atomics. It is well-suited for code that requires fast read/write, read/modify/write, or scatter operations that otherwise are directed to global memory. On current AMD hardware, L1 is part of the read path; hence, it is suited to cache-read-sensitive algorithms, such as matrix multiplication or convolution.

LDS is typically larger than L1 (for example: 32 kB vs 8 kB on Cypress). If it is not possible to obtain a high L1 cache hit rate for an algorithm, the larger LDS size can help. The theoretical LDS peak bandwidth is 2 TB/s, compared to L1 at 1 TB/sec. Currently, OpenCL is limited to 1 TB/sec LDS bandwidth.

The native data type for L1 is a four-vector of 32-bit words. On L1, fill and read addressing are linked. It is important that L1 is initially filled from global memory with a coalesced access pattern; once filled, random accesses come at no extra processing cost.

Currently, the native format of LDS is a 32-bit word. The theoretical LDS peak bandwidth is achieved when each thread operates on a two-vector of 32-bit words (16 threads per clock operate on 32 banks). If an algorithm requires coalesced 32-bit quantities, it maps well to LDS. The use of four-vectors or larger can lead to bank conflicts.

From an application point of view, filling LDS from global memory, and reading from it, are independent operations that can use independent addressing. Thus, LDS can be used to explicitly convert a scattered access pattern to a coalesced pattern for read and write to global memory. Or, by taking advantage of the LDS read broadcast feature, LDS can be filled with a coalesced pattern from global memory, followed by all threads iterating through the same LDS words simultaneously.

LDS is shared between the work-items in a work-group. Sharing across work- groups is not possible because OpenCL does not guarantee that LDS is in a particular state at the beginning of work-group execution. L1 content, on the other hand, is independent of work-group execution, so that successive work-groups can share the content in the L1 cache of a given Vector ALU. However, it currently is not possible to explicitly control L1 sharing across work-groups.

The use of LDS is linked to GPR usage and wavefront-per-Vector ALU count. Better sharing efficiency requires a larger work-group, so that more work items share the same LDS. Compiling kernels for larger work groups typically results in increased register use, so that fewer wavefronts can be scheduled simultaneously per Vector ALU. This, in turn, reduces memory latency hiding. Requesting larger amounts of LDS per work-group results in fewer wavefronts per Vector ALU, with the same effect.

LDS typically involves the use of barriers, with a potential performance impact. This is true even for read-only use cases, as LDS must be explicitly filled in from global memory (after which a barrier is required before reads can commence).

3.6 NDRange and Execution Range Optimization

Probably the most effective way to exploit the potential performance of the GPU is to provide enough threads to keep the device completely busy. The programmer specifies a three-dimensional NDRange over which to execute the kernel; bigger problems with larger NDRanges certainly help to more effectively use the machine. The programmer also controls how the global NDRange is divided into local ranges, as well as how much work is done in each work-item, and which resources (registers and local memory) are used by the kernel. All of these can play a role in how the work is balanced across the machine and how well it is used. This section introduces the concept of latency hiding, how many wavefronts are required to hide latency on AMD GPUs, how the resource usage in the kernel can impact the active wavefronts, and how to choose appropriate global and local work-group dimensions.

3.6.1 Hiding ALU and Memory Latency

The read-after-write latency for most arithmetic operations (a floating-point add, for example) is only eight cycles. For most AMD GPUs, each compute unit can execute 16 VLIW instructions on each cycle. Each wavefront consists of 64 work- items; each compute unit executes a quarter-wavefront on each cycle, and the entire wavefront is executed in four consecutive cycles. Thus, to hide eight cycles of latency, the program must schedule two wavefronts. The compute unit executes the first wavefront on four consecutive cycles; it then immediately switches and executes the other wavefront for four cycles. Eight cycles have elapsed, and the ALU result from the first wavefront is ready, so the compute unit can switch back to the first wavefront and continue execution. Compute units running two wavefronts (128 threads) completely hide the ALU pipeline latency.

Global memory reads generate a reference to the off-chip memory and experience a latency of 300 to 600 cycles. The wavefront that generates the global memory access is made idle until the memory request completes. During this time, the compute unit can process other independent wavefronts, if they are available.

Kernel execution time also plays a role in hiding memory latency: longer kernels keep the functional units busy and effectively hide more latency. To better understand this concept, consider a global memory access which takes 400 cycles to execute. Assume the compute unit contains many other wavefronts, each of which performs five ALU instructions before generating another global memory reference. As discussed previously, the hardware executes each instruction in the wavefront in four cycles; thus, all five instructions occupy the ALU for 20 cycles. Note the compute unit interleaves two of these wavefronts and executes the five instructions from both wavefronts (10 total instructions) in 40 cycles. To fully hide the 400 cycles of latency, the compute unit requires (400/40) = 10 pairs of wavefronts, or 20 total wavefronts. If the wavefront contains 10 instructions rather than 5, the wavefront pair would consume 80 cycles of latency, and only 10 wavefronts would be required to hide the 400 cycles of latency.

Generally, it is not possible to predict how the compute unit schedules the available wavefronts, and thus it is not useful to try to predict exactly which ALU block executes when trying to hide latency. Instead, consider the overall ratio of ALU operations to fetch operations - this metric is reported by the CodeXL GPU Profiler in the ALUFetchRatio counter. Each ALU operation keeps the compute unit busy for four cycles, so you can roughly divide 500 cycles of latency by `` (4*ALUFetchRatio)`` to determine how many wavefronts must be in-flight to hide that latency. Additionally, a low value for the ALUBusy performance counter can indicate that the compute unit is not providing enough wavefronts to keep the execution resources in full use. (This counter also can be low if the kernel exhausts the available DRAM bandwidth. In this case, generating more wavefronts does not improve performance; it can reduce performance by creating more contention.)

Increasing the wavefronts/compute unit does not indefinitely improve performance; once the GPU has enough wavefronts to hide latency, additional active wavefronts provide little or no performance benefit. A closely related metric to wavefronts/compute unit is “occupancy,” which is defined as the ratio of active wavefronts to the maximum number of possible wavefronts supported by the hardware. Many of the important optimization targets and resource limits are expressed in wavefronts/compute units, so this section uses this metric rather than the related “occupancy” term.

3.6.2 Resource Limits on Active Wavefronts

AMD GPUs have two important global resource constraints that limit the number of in-flight wavefronts:

	Each compute unit supports a maximum of eight work-groups. Recall that AMD OpenCL supports up to 256 work-items (four wavefronts) per work- group; effectively, this means each compute unit can support up to 32 wavefronts.

	Each GPU has a global (across all compute units) limit on the number of active wavefronts. The GPU hardware is generally effective at balancing the load across available compute units. Thus, it is useful to convert this global limit into an average wavefront/compute unit so that it can be compared to the other limits discussed in this section. For example, the ATI Radeon™ HD 5870 GPU has a global limit of 496 wavefronts, shared among 20 compute units. Thus, it supports an average of 24.8 wavefronts/compute unit. Some AMD GPUs support up to 96 wavefronts/compute unit.

These limits are largely properties of the hardware and, thus, difficult for developers to control directly. Fortunately, these are relatively generous limits. Frequently, the register and LDS usage in the kernel determines the limit on the

number of active wavefronts/compute unit, and these can be controlled by the developer.

3.6.2.1 GPU Registers

Each compute unit provides 16384 GP registers, and each register contains 4x32-bit values (either single-precision floating point or a 32-bit integer). The total register size is 256 kB of storage per compute unit. These registers are shared among all active wavefronts on the compute unit; each kernel allocates only the registers it needs from the shared pool. This is unlike a CPU, where each thread is assigned a fixed set of architectural registers. However, using many registers in a kernel depletes the shared pool and eventually causes the hardware to throttle the maximum number of active wavefronts.

Table 3.7 shows how the registers used in the kernel impacts the register-limited wavefronts/compute unit.

For example, a kernel that uses 30 registers (120x32-bit values) can run with eight active wavefronts on each compute unit. Because of the global limits described earlier, each compute unit is limited to 32 wavefronts; thus, kernels can use up to seven registers (28 values) without affecting the number of wavefronts/compute unit. Finally, note that in addition to the GPRs shown in the table, each kernel has access to four clause temporary registers.

Table 3.7 Impact of Register Type on Wavefronts/CU

	GP Registers used by Kernel

	Register-Limited
Wavefronts/Compute-Unit

	0-1

	248

	2

	124

	3

	82

	4

	62

	5

	49

	6

	41

	7

	35

	8

	31

	9

	27

	10

	24

	11

	22

	12

	20

	13

	19

	14

	17

	15

	16

	16

	15

	17

	14

	18-19

	13

	19-20

	12

	21-22

	11

	23-24

	10

	25-27

	9

	28-31

	8

	32-35

	7

	36-41

	6

	42-49

	5

	50-62

	4

	63-82

	3

	83-124

	2

AMD provides the following tools to examine the number of general-purpose registers (GPRs) used by the kernel.

	The CodeXL GPU Profiler displays the number of GPRs used by the kernel.

	Alternatively, the CodeXL GPU Profiler generates the ISA dump , which then can be searched for the string :NUM_GPRS.

	The AMD CodeXL Static Kernel Analyzer also shows the GPR used by the kernel, across a wide variety of GPU compilation targets.

The compiler generates spill code (shuffling values to, and from, memory) if it cannot fit all the live values into registers. Spill code uses long-latency global memory and can have a large impact on performance. The CodeXL GPU Profiler reports the static number of register spills in the ScratchReg field. Generally, it is a good idea to re-write the algorithm to use fewer GPRs, or tune the work- group dimensions specified at launch time to expose more registers/kernel to the compiler, in order to reduce the scratch register usage to 0.

3.6.2.2 Specifying the Default Work-Group Size at Compile-Time

The number of registers used by a work-item is determined when the kernel is compiled. The user later specifies the size of the work-group. Ideally, the OpenCL compiler knows the size of the work-group at compile-time, so it can make optimal register allocation decisions. Without knowing the work-group size, the compiler must assume an upper-bound size to avoid allocating more registers in the work-item than the hardware actually contains.

For example, if the compiler allocates 70 registers for the work-item, Table 3.7 shows that only three wavefronts (192 work-items) are supported. If the user later launches the kernel with a work-group size of four wavefronts (256 work-items), the launch fails because the work-group requires 70*256=17920 registers, which is more than the hardware allows. To prevent this from happening, the compiler performs the register allocation with the conservative assumption that the kernel is launched with the largest work-group size (256 work-items). The compiler guarantees that the kernel does not use more than 62 registers (the maximum number of registers which supports a work-group with four wave-fronts), and generates low-performing register spill code, if necessary.

Fortunately, OpenCL provides a mechanism to specify a work-group size that the compiler can use to optimize the register allocation. In particular, specifying a smaller work-group size at compile time allows the compiler to allocate more registers for each kernel, which can avoid spill code and improve performance.

The kernel attribute syntax is:

__attribute ((reqd_work_group_size(X, Y, Z)))

Section 6.7.2 of the OpenCL specification explains the attribute in more detail.

3.6.2.3 Local Memory (LDS) Size

In addition to registers, shared memory can also serve to limit the active wavefronts/compute unit. Each compute unit has 32k of LDS, which is shared among all active work-groups. LDS is allocated on a per-work-group granularity, so it is possible (and useful) for multiple wavefronts to share the same local memory allocation. However, large LDS allocations eventually limits the number of workgroups that can be active. Table 3.8 provides more details about how LDS usage can impact the wavefronts/compute unit.

Table 3.8 Effect of LDS Usage on Wavefronts/CU

	Local Memory/Work-Group

	LDS-Limited Wavefronts/Compute-Unit (Assume 4 Wavefronts/Work-Group)

	LDS-Limited Wavefronts/Compute-Unit (Assume 3 Wavefronts/Work-Group)

	LDS-Limited Wavefronts/Compute-Unit (Assume 2 Wavefronts/Work-Group)

	LDS-Limited Work-Groups (Assume 1 Wavefront/Work-Group)

	<=4K

	32

	24

	16

	8

	4.0K-4.6K

	28

	21

	14

	7

	4.6K-5.3K

	24

	18

	12

	6

	5.3K-6.4K

	20

	15

	10

	5

	6.4K-8.0K

	16

	12

	8

	4

	8.0K-10.7K

	12

	9

	6

	3

	10.7K-16.0K

	8

	6

	4

	2

	16.0K-32.0K

	4

	3

	2

	1

1.Assumes each work-group uses four wavefronts (the maximum supported by the AMD OpenCL SDK).

AMD provides the following tools to examine the amount of LDS used by the kernel:

	The CodeXL GPU Profiler displays the LDS usage. See the LocalMem counter.

	Alternatively, use the CodeXL GPU Profiler to generate the ISA dump , then search for the string SQ_LDS_ALLOC:SIZE in the ISA dump. Note that the value is shown in hexadecimal format.

3.6.3 Partitioning the Work

In OpenCL, each kernel executes on an index point that exists in a global NDRange. The partition of the NDRange can have a significant impact on performance; thus, it is recommended that the developer explicitly specify the global (#work-groups) and local (#work-items/work-group) dimensions, rather than rely on OpenCL to set these automatically (by setting local_work_size to NULL in clEnqueueNDRangeKernel). This section explains the guidelines for partitioning at the global, local, and work/kernel levels.

3.6.3.1 Global Work Size

OpenCL does not explicitly limit the number of work-groups that can be submitted with a clEnqueueNDRangeKernel command. The hardware limits the available in- flight threads, but the OpenCL SDK automatically partitions a large number of work-groups into smaller pieces that the hardware can process. For some large workloads, the amount of memory available to the GPU can be a limitation; the problem might require so much memory capacity that the GPU cannot hold it all. In these cases, the programmer must partition the workload into multiple clEnqueueNDRangeKernel commands. The available device memory can be obtained by querying clDeviceInfo.

At a minimum, ensure that the workload contains at least as many work-groups as the number of compute units in the hardware. Work-groups cannot be split across multiple compute units, so if the number of work-groups is less than the available compute units, some units are idle. Evergreen and Northern Islands GPUs have 2-24 compute units. (Use clGetDeviceInfo(…CL_DEVICE_MAX_COMPUTE_UNITS) to determine the value dynamically).

3.6.3.2 Local Work Size (#Work-Items per Work-Group)

OpenCL limits the number of work-items in each group. Call clDeviceInfo with the CL_DEVICE_MAX_WORK_GROUP_SIZE to determine the maximum number of work-groups supported by the hardware. The latest generation AMD GPUs support a maximum of 256 work-items per work-group. Note the number of work-items is the product of all work-group dimensions; for example, a work-group with dimensions 32x16 requires 512 work-items, which is not allowed with the current AMD OpenCL runtime.

The fundamental unit of work on AMD GPUs is called a wavefront. Each wavefront consists of 64 work-items; thus, the optimal local work size is an integer multiple of 64 (specifically 64, 128, 192, or 256) work-items per work- group.

Work-items in the same work-group can share data through LDS memory and also use high-speed local atomic operations. Thus, larger work-groups enable more work-items to efficiently share data, which can reduce the amount of slower global communication. However, larger work-groups reduce the number of global work-groups, which, for small workloads, could result in idle compute units. Generally, larger work-groups are better as long as the global range is big enough to provide 1-2 Work-Groups for each compute unit in the system; for small workloads it generally works best to reduce the work-group size in order to avoid idle compute units. Note that it is possible to make the decision dynamically, when the kernel is launched, based on the launch dimensions and the target device characteristics.

3.6.3.3 Moving Work to the Kernel

Often, work can be moved from the work-group into the kernel. For example, a matrix multiply where each work-item computes a single element in the output array can be written so that each work-item generates multiple elements. This technique can be important for effectively using the processing elements available in the five-wide (or four-wide, depending on the GPU type) VLIW processing engine (see the ALUPacking performance counter reported by the CodeXL GPU Profiler). The mechanics of this technique often is as simple as adding a for loop around the kernel, so that the kernel body is run multiple times inside this loop, then adjusting the global work size to reduce the work-items. Typically, the local work-group is unchanged, and the net effect of moving work into the kernel is that each work-group does more effective processing, and fewer global work-groups are required. When moving work to the kernel, often it is best to combine work-items that are separated by 16 in the NDRange index space, rather than combining adjacent work-items. Combining the work-items in this fashion preserves the memory access patterns optimal for global and local memory accesses. For example, consider a kernel where each kernel accesses one four-byte element in array A.
The resulting access pattern is:

	Work-item

	0

	1

	2

	3

	

	Cycle0

	A+0

	A+1

	A+2

	A+3

If we naively combine four adjacent work-items to increase the work processed per kernel, so that the first work-item accesses array elements A+0 to A+3 on
successive cycles, the overall access pattern is:

	Work-item

	0

	1

	2

	3

	4

	5

	

	Cycle0

	A+0

	A+4

	A+8

	A+12

	A+16

	A+20

	Cycle1

	A+1

	A+5

	A+9

	A+13

	A+17

	A+21

	Cycle2

	A+2

	A+6

	A+10

	A+14

	A+18

	A+22

	Cycle3

	A+3

	A+7

	A+11

	A+15

	A+19

	A+23

This pattern shows that on the first cycle the access pattern contains “holes.” Also, this pattern results in bank conflicts on the LDS. A better access pattern is to combine four work-items so that the first work-item accesses array elements
A+0, A+16, A+32, and A+48. The resulting access pattern is:

	Work-item

	0

	1

	2

	3

	4

	5

	Cycle0

	A+0

	A+1

	A+2

	A+3

	A+4

	A+5

	Cycle1

	A+16

	A+17

	A+18

	A+19

	A+20

	A+21

	Cycle2

	A+32

	A+33

	A+34

	A+35

	A+36

	A+37

	Cycle3

	A+48

	A+49

	A+50

	A+51

	A+52

	A+53

Note that this access patterns preserves the sequentially-increasing addressing of the original kernel and generates efficient global and LDS memory references.

Increasing the processing done by the kernels can allow more processing to be done on the fixed pool of local memory available to work-groups. For example, consider a case where an algorithm requires 32x32 elements of shared memory. If each work-item processes only one element, it requires 1024 work-items/work- group, which exceeds the maximum limit. Instead, each kernel can be written to process four elements, and a work-group of 16x16 work-items could be launched to process the entire array. A related example is a blocked algorithm, such as a matrix multiply; the performance often scales with the size of the array that can be cached and used to block the algorithm. By moving processing tasks into the kernel, the kernel can use the available local memory rather than being limited by the work-items/work-group.

3.6.3.4 Work-Group Dimensions vs Size

The local NDRange can contain up to three dimensions, here labeled X, Y, and Z. The X dimension is returned by get_local_id(0), Y is returned by get_local_id(1), and Z is returned by get_local_id(2). The GPU hardware schedules the kernels so that the X dimensions moves fastest as the work-items are packed into wavefronts. For example, the 128 threads in a 2D work-group of dimension 32x4 (X=32 and Y=4) would be packed into two wavefronts as follows (notation shown in X,Y order):

	WaveFront0

	0,0

	1,0

	2,0

	3,0

	4,0

	5,0

	6,0

	7,0

	8,0

	9,0

	10,0

	11,0

	12,0

	13,0

	14,0

	15,0

	16,0

	17,0

	18,0

	19,0

	20,0

	21,0

	22,0

	23,0

	24,0

	25,0

	26,0

	27,0

	28,0

	29,0

	30,0

	31,0

	0,1

	1,1

	2,1

	3,1

	4,1

	5,1

	6,1

	7,1

	8,1

	9,1

	10,1

	11,1

	12,1

	13,1

	14,1

	15,1

	16,1

	17,1

	18,1

	19,1

	20,1

	21,1

	22,1

	23,1

	24,1

	25,1

	26,1

	27,1

	28,1

	29,1

	30,1

	31,1

	WaveFront1

	0,2

	1,2

	2,2

	3,2

	4,2

	5,2

	6,2

	7,2

	8,2

	9,2

	10,2

	11,2

	12,2

	13,2

	14,2

	15,2

	16,2

	17,2

	18,2

	19,2

	20,2

	21,2

	22,2

	23,2

	24,2

	25,2

	26,2

	27,2

	28,2

	29,2

	30,2

	31,2

	0,3

	1,3

	2,3

	3,3

	4,3

	5,3

	6,3

	7,3

	8,3

	9,3

	10,3

	11,3

	12,3

	13,3

	14,3

	15,3

	16,3

	17,3

	18,3

	19,3

	20,3

	21,3

	22,3

	23,3

	24,3

	25,3

	26,3

	27,3

	28,3

	29,3

	30,3

	31,3

The total number of work-items in the work-group is typically the most important parameter to consider, in particular when optimizing to hide latency by increasing wavefronts/compute unit. However, the choice of XYZ dimensions for the same overall work-group size can have the following second-order effects.

	Work-items in the same quarter-wavefront execute on the same cycle in the processing engine. Thus, global memory coalescing and local memory bank conflicts can be impacted by dimension, particularly if the fast-moving X dimension is small. Typically, it is best to choose an X dimension of at least 16, then optimize the memory patterns for a block of 16 work-items which differ by 1 in the X dimension.

	Work-items in the same wavefront have the same program counter and execute the same instruction on each cycle. The packing order can be important if the kernel contains divergent branches. If possible, pack together work-items that are likely to follow the same direction when control-flow is encountered. For example, consider an image-processing kernel where each work-item processes one pixel, and the control-flow depends on the color of the pixel. It might be more likely that a square of 8x8 pixels is the same color than a 64x1 strip; thus, the 8x8 would see less divergence and higher performance.

	When in doubt, a square 16x16 work-group size is a good start.

3.6.4 Optimizing for Cedar

To focus the discussion, this section has used specific hardware characteristics that apply to most of the Evergreen series. The value Evergreen part, referred to as Cedar and used in products such as the ATI Radeon™ HD 5450 GPU, has different architecture characteristics, as shown below.

	
	Evergreen Cypress, Juniper, Redwood

	Evergreen Cedar

	Work-items/Wavefront

	64

	32

	Stream Cores / CU

	16

	8

	GP Registers / CU

	16384

	8192

	Local Memory Size

	32K

	32K

	Maximum Work-Group Size

	256

	128

Note

the maximum workgroup size can be obtained with clGetDeviceInfo…(…,CL_DEVICE_MAX_WORK_GROUP_SIZE,…). Applications must ensure that the requested kernel launch dimensions that are fewer than the threshold reported by this API call.

The difference in total register size can impact the compiled code and cause register spill code for kernels that were tuned for other devices. One technique that can be useful is to specify the required work-group size as 128 (half the default of 256). In this case, the compiler has the same number of registers available as for other devices and uses the same number of registers. The developer must ensure that the kernel is launched with the reduced work size (128) on Cedar-class devices.

3.6.5 Summary of NDRange Optimizations

As shown above, execution range optimization is a complex topic with many interacting variables and which frequently requires some experimentation to determine the optimal values. Some general guidelines are:

	Select the work-group size to be a multiple of 64, so that the wavefronts are fully populated.

	Always provide at least two wavefronts (128 work-items) per compute unit. For a ATI Radeon™ HD 5870 GPU, this implies 40 wave-fronts or 2560 work- items. If necessary, reduce the work-group size (but not below 64 work- items) to provide work-groups for all compute units in the system.

	Latency hiding depends on both the number of wavefronts/compute unit, as well as the execution time for each kernel. Generally, two to eight wavefronts/compute unit is desirable, but this can vary significantly, depending on the complexity of the kernel and the available memory bandwidth. The CodeXL GPU Profiler and associated performance counters can help to select an optimal value.

3.7 Using Multiple OpenCL Devices

The AMD OpenCL runtime supports both CPU and GPU devices. This section introduces techniques for appropriately partitioning the workload and balancing it across the devices in the system.

3.7.1 CPU and GPU Devices

Table 3.9 lists some key performance characteristics of two exemplary CPU and GPU devices: a quad-core AMD Phenom II X4 processor running at 2.8 GHz, and a mid-range ATI Radeon™ 5670 GPU running at 750 MHz. The “best” device in each characteristic is highlighted, and the ratio of the best/other device is shown in the final column.

Table 3.9 CPU and GPU Performance Characteristics

	
	CPU

	GPU

	Winner Ratio

	Example Device

	AMD Phenom™ II X4

	ATI Radeon™ HD 5670

	

	Core Frequency

	2800 MHz

	750 MHz

	4 X

	Compute Units

	4

	5

	1.3 X

	Approx. Power1

	95 W

	64 W

	1.5 X

	Approx. Power/Compute Unit

	19 W

	13 W

	1.5 X

	Peak Single-Precision
Billion Floating-Point Ops/Sec

	90

	600

	7 X

	Approx GFLOPS/Watt

	0.9

	9.4

	10 X

	Max In-flight HW Threads

	4

	15872

	3968 X

	Simultaneous Executing Threads

	4

	80

	20 X

	Memory Bandwidth

	26 GB/s

	64 GB/s

	2.5 X

	Int Add latency

	0.4 ns

	10.7 ns

	30 X FP

	Add Latency

	1.4 ns

	10.7 ns

	7 X

	Approx DRAM Latency

	50 ns

	300 ns

	6 X

	L2+L3 cache capacity

	8192 KB

	128 kB

	64 X

	Approx Kernel Launch Latency

	25 μs

	225 μs

	9 X

	1

	For the power specifications of the AMD Phenom™ II x4, see http://www.amd.com/us/products/desk- top/processors/phenom-ii/Pages/phenom-ii-model-number-comparison.aspx. For the power specifications of the ATI Radeon™ HD 5670, see http://www.amd.com/us/products/desktop/graphics/ati-radeon- hd-5000/ati-radeon-hd-5670-overview/Pages/ati-radeon-hd-5670-specifications.aspx.

The GPU excels at high-throughput: the peak execution rate (measured in FLOPS) is 7X higher than the CPU, and the memory bandwidth is 2.5X higher than the CPU. The GPU also consumes approximately 65% the power of the CPU; thus, for this comparison, the power efficiency in flops/watt is 10X higher. While power efficiency can vary significantly with different devices, GPUs generally provide greater power efficiency (flops/watt) than CPUs because they optimize for throughput and eliminate hardware designed to hide latency.

Conversely, CPUs excel at latency-sensitive tasks. For example, an integer add is 30X faster on the CPU than on the GPU. This is a product of both the CPUs higher clock rate (2800 MHz vs 750 MHz for this comparison), as well as the operation latency; the CPU is optimized to perform an integer add in just one cycle, while the GPU requires eight cycles. The CPU also has a latency- optimized path to DRAM, while the GPU optimizes for bandwidth and relies on many in-flight threads to hide the latency. The ATI Radeon™ HD 5670 GPU, for example, supports more than 15,000 in-flight threads and can switch to a new thread in a single cycle. The CPU supports only four hardware threads, and thread-switching requires saving and restoring the CPU registers from memory. The GPU requires many active threads to both keep the execution resources busy, as well as provide enough threads to hide the long latency of cache misses.

Each GPU thread has its own register state, which enables the fast single-cycle switching between threads. Also, GPUs can be very efficient at gather/scatter operations: each thread can load from any arbitrary address, and the registers are completely decoupled from the other threads. This is substantially more flexible and higher-performing than a classic Vector ALU-style architecture (such as SSE on the CPU), which typically requires that data be accessed from contiguous and aligned memory locations. SSE supports instructions that write parts of a register (for example, MOVLPS and MOVHPS, which write the upper and lower halves, respectively, of an SSE register), but these instructions generate additional microarchitecture dependencies and frequently require additional pack instructions to format the data correctly.

In contrast, each GPU thread shares the same program counter with 63 other threads in a wavefront. Divergent control-flow on a GPU can be quite expensive and can lead to significant under-utilization of the GPU device. When control flow substantially narrows the number of valid work-items in a wave-front, it can be faster to use the CPU device.

CPUs also tend to provide significantly more on-chip cache than GPUs. In this example, the CPU device contains 512k L2 cache/core plus a 6 MB L3 cache that is shared among all cores, for a total of 8 MB of cache. In contrast, the GPU device contains only 128 k cache shared by the five compute units. The larger CPU cache serves both to reduce the average memory latency and to reduce memory bandwidth in cases where data can be re-used from the caches.

Finally, note the approximate 9X difference in kernel launch latency. The GPU launch time includes both the latency through the software stack, as well as the time to transfer the compiled kernel and associated arguments across the PCI- express bus to the discrete GPU. Notably, the launch time does not include the time to compile the kernel. The CPU can be the device-of-choice for small, quick- running problems when the overhead to launch the work on the GPU outweighs the potential speedup. Often, the work size is data-dependent, and the choice of device can be data-dependent as well. For example, an image-processing algorithm may run faster on the GPU if the images are large, but faster on the CPU when the images are small.

The differences in performance characteristics present interesting optimization opportunities. Workloads that are large and data parallel can run orders of magnitude faster on the GPU, and at higher power efficiency. Serial or small parallel workloads (too small to efficiently use the GPU resources) often run significantly faster on the CPU devices. In some cases, the same algorithm can exhibit both types of workload. A simple example is a reduction operation such as a sum of all the elements in a large array. The beginning phases of the operation can be performed in parallel and run much faster on the GPU. The end of the operation requires summing together the partial sums that were computed in parallel; eventually, the width becomes small enough so that the overhead to parallelize outweighs the computation cost, and it makes sense to perform a serial add. For these serial operations, the CPU can be significantly faster than the GPU.

3.7.2 When to Use Multiple Devices

One of the features of GPU computing is that some algorithms can run substantially faster and at better energy efficiency compared to a CPU device. Also, once an algorithm has been coded in the data-parallel task style for OpenCL, the same code typically can scale to run on GPUs with increasing compute capability (that is more compute units) or even multiple GPUs (with a little more work).

For some algorithms, the advantages of the GPU (high computation throughput, latency hiding) are offset by the advantages of the CPU (low latency, caches, fast launch time), so that the performance on either devices is similar. This case is more common for mid-range GPUs and when running more mainstream algorithms. If the CPU and the GPU deliver similar performance, the user can get the benefit of either improved power efficiency (by running on the GPU) or higher peak performance (use both devices).

Usually, when the data size is small, it is faster to use the CPU because the start- up time is quicker than on the GPU due to a smaller driver overhead and avoiding the need to copy buffers from the host to the device.

3.7.3 Partitioning Work for Multiple Devices

By design, each OpenCL command queue can only schedule work on a single OpenCL device. Thus, using multiple devices requires the developer to create a separate queue for each device, then partition the work between the available command queues.

A simple scheme for partitioning work between devices would be to statically determine the relative performance of each device, partition the work so that faster devices received more work, launch all the kernels, and then wait for them to complete. In practice, however, this rarely yields optimal performance. The relative performance of devices can be difficult to determine, in particular for kernels whose performance depends on the data input. Further, the device performance can be affected by dynamic frequency scaling, OS thread scheduling decisions, or contention for shared resources, such as shared caches and DRAM bandwidth. Simple static partitioning algorithms which “guess wrong” at the beginning can result in significantly lower performance, since some devices finish and become idle while the whole system waits for the single, unexpectedly slow device.

For these reasons, a dynamic scheduling algorithm is recommended. In this approach, the workload is partitioned into smaller parts that are periodically scheduled onto the hardware. As each device completes a part of the workload, it requests a new part to execute from the pool of remaining work. Faster devices, or devices which work on easier parts of the workload, request new input faster, resulting in a natural workload balancing across the system. The approach creates some additional scheduling and kernel submission overhead, but dynamic scheduling generally helps avoid the performance cliff from a single bad initial scheduling decision, as well as higher performance in real-world system environments (since it can adapt to system conditions as the algorithm runs).

Multi-core runtimes, such as Cilk, have already introduced dynamic scheduling algorithms for multi-core CPUs, and it is natural to consider extending these scheduling algorithms to GPUs as well as CPUs. A GPU introduces several new aspects to the scheduling process:

	Heterogeneous Compute Devices

Most existing multi-core schedulers target only homogenous computing devices. When scheduling across both CPU and GPU devices, the scheduler must be aware that the devices can have very different performance characteristics (10X or more) for some algorithms. To some extent, dynamic scheduling is already designed to deal with heterogeneous workloads (based on data input the same algorithm can have very different performance, even when run on the same device), but a system with heterogeneous devices makes these cases more common and more extreme. Here are some suggestions for these situations.
~ The scheduler should support sending different workload sizes to different devices. GPUs typically prefer larger grain sizes, and higher- performing GPUs prefer still larger grain sizes.
~ The scheduler should be conservative about allocating work until after it has examined how the work is being executed. In particular, it is important to avoid the performance cliff that occurs when a slow device is assigned an important long-running task. One technique is to use small grain allocations at the beginning of the algorithm, then switch to larger grain allocations when the device characteristics are well-known.
~ As a special case of the above rule, when the devices are substantially different in performance (perhaps 10X), load-balancing has only a small potential performance upside, and the overhead of scheduling the load probably eliminates the advantage. In the case where one device is far faster than everything else in the system, use only the fast device.
~ The scheduler must balance small-grain-size (which increase the adaptiveness of the schedule and can efficiently use heterogeneous devices) with larger grain sizes (which reduce scheduling overhead). Note that the grain size must be large enough to efficiently use the GPU.

	Asynchronous Launch

OpenCL devices are designed to be scheduled asynchronously from a command-queue. The host application can enqueue multiple kernels, flush the kernels so they begin executing on the device, then use the host core for other work. The AMD OpenCL implementation uses a separate thread for each command-queue, so work can be transparently scheduled to the GPU in the background.

One situation that should be avoided is starving the high-performance GPU devices. This can occur if the physical CPU core, which must re-fill the device queue, is itself being used as a device. A simple approach to this problem is to dedicate a physical CPU core for scheduling chores. The device fission extension (see the Extensions appendix of the AMD OpenCL User Guide) can be used to reserve a core for scheduling. For example, on a quad-core device, device fission can be used to create an OpenCL device with only three cores.

Another approach is to schedule enough work to the device so that it can tolerate latency in additional scheduling. Here, the scheduler maintains a watermark of uncompleted work that has been sent to the device, and refills the queue when it drops below the watermark. This effectively increase the grain size, but can be very effective at reducing or eliminating device starvation. Developers cannot directly query the list of commands in the OpenCL command queues; however, it is possible to pass an event to each clEnqueue call that can be queried, in order to determine the execution status (in particular the command completion time); developers also can maintain their own queue of outstanding requests. For many algorithms, this technique can be effective enough at hiding latency so that a core does not need to be reserved for scheduling. In particular, algorithms where the work-load is largely known up-front often work well with a deep queue and watermark. Algorithms in which work is dynamically created may require a dedicated thread to provide low-latency scheduling.

	Data Location

Discrete GPUs use dedicated high-bandwidth memory that exists in a separate address space. Moving data between the device address space and the host requires time-consuming transfers over a relatively slow PCI- Express bus. Schedulers should be aware of this cost and, for example, attempt to schedule work that consumes the result on the same device producing it.

CPU and GPU devices share the same memory bandwidth, which results in additional interactions of kernel executions.

3.7.4 Synchronization Caveats

The OpenCL functions that enqueue work (clEnqueueNDRangeKernel) merely enqueue the requested work in the command queue; they do not cause it to begin executing. Execution begins when the user executes a synchronizing command, such as clFlush or clWaitForEvents. Enqueuing several commands before flushing can enable the host CPU to batch together the command submission, which can reduce launch overhead.

Command-queues that are configured to execute in-order are guaranteed to complete execution of each command before the next command begins. This synchronization guarantee can often be leveraged to avoid explicit clWaitForEvents() calls between command submissions. Using clWaitForEvents() requires intervention by the host CPU and additional synchronization cost between the host and the GPU; by leveraging the in-order queue property, back-to-back kernel executions can be efficiently handled directly on the GPU hardware.

AMD Evergreen GPUs currently do not support the simultaneous execution of multiple kernels. For efficient execution, design a single kernel to use all the available execution resources on the GPU.

The AMD OpenCL implementation spawns a new thread to manage each command queue. Thus, the OpenCL host code is free to manage multiple devices from a single host thread. Note that clFinish is a blocking operation; the thread that calls clFinish blocks until all commands in the specified command-queue have been processed and completed. If the host thread is managing multiple devices, it is important to call clFlush for each command- queue before calling clFinish, so that the commands are flushed and execute in parallel on the devices. Otherwise, the first call to clFinish blocks, the commands on the other devices are not flushed, and the devices appear to execute serially rather than in parallel.

For low-latency CPU response, it can be more efficient to use a dedicated spin loop and not call clFinish() Calling clFinish() indicates that the application wants to wait for the GPU, putting the thread to sleep. For low latency, the application should use clFlush(), followed by a loop to wait for the event to complete. This is also true for blocking maps. The application should use non- blocking maps followed by a loop waiting on the event. The following provides sample code for this.

if (sleep)
 {
 // this puts host thread to sleep, useful if power is a consideration or overhead is not a concern
 ``clFinish`` (cmd_queue_);
 }
 else
 {
 // this keeps the host thread awake, useful if latency is a concern clFlush(cmd_queue_);
 error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS,
 sizeof(cl_int), &eventStatus, NULL);
 while (eventStatus > 0)
 {
 error_ = clGetEventInfo(event, CL_EVENT_COMMAND_EXECUTION_STATUS, sizeof(cl_int), &eventStatus, NULL);
 Sleep(0); // be nice to other threads, allow scheduler to find
 other work if possible
 // Choose your favorite way to yield, SwitchToThread() for example, in place of Sleep(0)
 }
 }

3.7.5 GPU and CPU Kernels

While OpenCL provides functional portability so that the same kernel can run on any device, peak performance for each device is typically obtained by tuning the OpenCL kernel for the target device.

Code optimized for the Cypress device (the ATI Radeon™ HD 5870 GPU) typically runs well across other members of the Evergreen family. There are some differences in cache size and LDS bandwidth that might impact some kernels. The Cedar ASIC has a smaller wavefront width and fewer registers (see Section 3.6.4, “Optimizing for Cedar”, for optimization information specific to this device).

As described in Section 3.9, “Clause Boundaries”, CPUs and GPUs have very different performance characteristics, and some of these impact how one writes an optimal kernel. Notable differences include:

	The Vector ALU floating point resources in a CPU (SSE) require the use of vectorized types (float4) to enable packed SSE code generation and extract good performance from the Vector ALU hardware. The GPU VLIW hardware is more flexible and can efficiently use the floating-point hardware even without the explicit use of float4. See Section 3.8.4, “VLIW and SSE Packing”, for more information and examples; however, code that can use float4 often generates hi-quality code for both the CPU and the AMD GPUs.

	The AMD OpenCL CPU implementation runs work-items from the same work-group back-to-back on the same physical CPU core. For optimally coalesced memory patterns, a common access pattern for GPU-optimized algorithms is for work-items in the same wavefront to access memory locations from the same cache line. On a GPU, these work-items execute in parallel and generate a coalesced access pattern. On a CPU, the first work- item runs to completion (or until hitting a barrier) before switching to the next. Generally, if the working set for the data used by a work-group fits in the CPU caches, this access pattern can work efficiently: the first work-item brings a line into the cache hierarchy, which the other work-items later hit. For large working-sets that exceed the capacity of the cache hierarchy, this access pattern does not work as efficiently; each work-item refetches cache lines that were already brought in by earlier work-items but were evicted from the cache hierarchy before being used. Note that AMD CPUs typically provide 512k to 2 MB of L2+L3 cache for each compute unit.

	CPUs do not contain any hardware resources specifically designed to accelerate local memory accesses. On a CPU, local memory is mapped to the same cacheable DRAM used for global memory, and there is no performance benefit from using the __local qualifier. The additional memory operations to write to LDS, and the associated barrier operations can reduce performance. One notable exception is when local memory is used to pack values to avoid non-coalesced memory patterns.

	CPU devices only support a small number of hardware threads, typically two to eight. Small numbers of active work-group sizes reduce the CPU switching overhead, although for larger kernels this is a second-order effect.

For a balanced solution that runs reasonably well on both devices, developers are encouraged to write the algorithm using float4 vectorization. The GPU is more sensitive to algorithm tuning; it also has higher peak performance potential. Thus, one strategy is to target optimizations to the GPU and aim for reasonable performance on the CPU. For peak performance on all devices, developers can choose to use conditional compilation for key code loops in the kernel, or in some cases even provide two separate kernels. Even with device-specific kernel optimizations, the surrounding host code for allocating memory, launching kernels, and interfacing with the rest of the program generally only needs to be written once.

Another approach is to leverage a CPU-targeted routine written in a standard high-level language, such as C++. In some cases, this code path may already exist for platforms that do not support an OpenCL device. The program uses OpenCL for GPU devices, and the standard routine for CPU devices. Load- balancing between devices can still leverage the techniques described in Section 3.7.3, “Partitioning Work for Multiple Devices”.

3.7.6 Contexts and Devices

The AMD OpenCL program creates at least one context, and each context can contain multiple devices. Thus, developers must choose whether to place all devices in the same context or create a new context for each device. Generally, it is easier to extend a context to support additional devices rather than duplicating the context for each device: buffers are allocated at the context level (and automatically across all devices), programs are associated with the context, and kernel compilation (via clBuildProgram) can easily be done for all devices in a context. However, with current OpenCL implementations, creating a separate context for each device provides more flexibility, especially in that buffer allocations can be targeted to occur on specific devices. Generally, placing the devices in the same context is the preferred solution.

3.8 Instruction Selection Optimizations

3.8.1 Instruction Bandwidths

Table 3.10 lists the throughput of instructions for GPUs.

Table 3.10 Instruction Throughput (Operations/Cycle for Each Stream Processor)

	

	Rate (Operations/Cycle) for each Stream Processor

	
	Instruction

	Non-Double-Precision- Capable
(Evergreen and later) Devices

	Double-Precision-Capable
Devices(Evergreen and later)

	Single Precision FP Rates

	SPFP FMA

	0

	4

	SPFP MAD

	5

	5

	ADD

	5

	5

	MUL

	5

	5

	INV

	1

	1

	RQSRT

	1

	1

	LOG

	1

	1

	Double PrecisionFP Rates

	FMA

	0

	1

	MAD

	0

	1

	ADD

	0

	2

	MUL

	0

	1

	INV (approx.)

	0

	1

	RQSRT (approx.)

	0

	1

	Integer Instruction Rates

	MAD

	1

	1

	ADD

	5

	5

	MUL

	1

	1

	Bit-shift

	5

	5

	Bitwise XOR

	5

	5

	Conversion

	Float-to-Int

	1

	1

	Int-to-Float

	1

	1

	24-Bit Integer Inst Rates

	MAD

	5

	5

	ADD

	5

	5

	MUL

	5

	5

Note that single precision MAD operations have five times the throughput of the double-precision rate, and that double-precision is only supported on the AMD Radeon™ HD69XX devices. The use of single-precision calculation is encouraged, if that precision is acceptable. Single-precision data is also half the size of double-precision, which requires less chip bandwidth and is not as demanding on the cache structures.

Generally, the throughput and latency for 32-bit integer operations is the same as for single-precision floating point operations.

24-bit integer MULs and MADs have five times the throughput of 32-bit integer multiplies. 24-bit unsigned integers are natively supported only on the Evergreen family of devices and later. Signed 24-bit integers are supported only on the Northern Island family of devices and later. The use of OpenCL built-in functions for mul24 and mad24 is encouraged. Note that mul24 can be useful for array indexing operations.

Packed 16-bit and 8-bit operations are not natively supported; however, in cases where it is known that no overflow will occur, some algorithms may be able to effectively pack 2 to 4 values into the 32-bit registers natively supported by the hardware.

The MAD instruction is an IEEE-compliant multiply followed by an IEEE- compliant add; it has the same accuracy as two separate MUL/ADD operations. No special compiler flags are required for the compiler to convert separate MUL/ADD operations to use the MAD instruction.

Table 3.10 shows the throughput for each stream processing core. To obtain the peak throughput for the whole device, multiply the number of stream cores and the engine clock. For example, according to Table 3.10, a Cypress device can perform two double-precision ADD operations/cycle in each stream core. An ATI Radeon™ HD 5870 GPU has 320 Stream Cores and an engine clock of 850 MHz, so the entire GPU has a throughput rate of (2*320*850 MHz) = 544 GFlops for double-precision adds.

3.8.2 AMD Media Instructions

AMD provides a set of media instructions for accelerating media processing. Notably, the sum-of-absolute differences (SAD) operation is widely used in motion estimation algorithms. For a brief listing and description of the AMD media operations, see the Extensions appendix of the AMD OpenCL User Guide.

3.8.3 Math Libraries

OpenCL supports two types of math library operation: native_function() and function(). Native_functions are generally supported in hardware and can run substantially faster, although at somewhat lower accuracy. The accuracy for the non-native functions is specified in section 7.4 of the OpenCL Specification. The accuracy for the native functions is implementation-defined. Developers are encouraged to use the native functions when performance is more important than precision. Table 3.11 lists the native speedup factor for certain functions.

Table 3.11 Native Speedup Factor

	Function

	Native Speedup Factor

	sin()

	27.1x

	cos()

	34.2x

	tan()

	13.4x

	exp()

	4.0x

	exp2()

	3.4x

	exp10()

	5.2x

	log()

	12.3x

	log2()

	11.3x

	log10()

	12.8x

	sqrt()

	1.8x

	rsqrt()

	6.4x

	powr()

	28.7x

	divide()

	4.4x

3.8.4 VLIW and SSE Packing

Each stream core in the AMD GPU is programmed with a five-wide (or four-wide, depending on the GPU type) VLIW instruction. Efficient use of the GPU hardware requires that the kernel contain enough parallelism to fill all five processing elements; serial dependency chains are scheduled into separate instructions. A classic technique for exposing more parallelism to the compiler is loop unrolling. To assist the compiler in disambiguating memory addresses so that loads can be combined, developers should cluster load and store operations. In particular, re- ordering the code to place stores in adjacent code lines can improve performance. Figure 3.7 shows an example of unrolling a loop and then
clustering the stores.

[image: ../_images/3.7.png]
Figure 3.7 Unmodified Loop

Figure 3.8 is the same loop unrolled 4x.

Figure 3.9 shows and example of an unrolled loop with clustered stores.

Unrolling the loop to expose the underlying parallelism typically allows the GPU compiler to pack the instructions into the slots in the VLIW word. For best results, unrolling by a factor of at least 5 (perhaps 8 to preserve power-of-two factors) may deliver best performance. Unrolling increases the number of required registers, so some experimentation may be required.

The CPU back-end requires the use of vector types (float4) to vectorize and generate packed SSE instructions. To vectorize the loop above, use float4 for the array arguments. Obviously, this transformation is only valid in the case where the array elements accessed on each loop iteration are adjacent in memory. The explicit use of float4 can also improve the GPU performance, since it clearly identifies contiguous 16-byte memory operations that can be more efficiently coalesced.

Figure 3.10 is an example of an unrolled kernel that uses float4 for vectorization.

3.8.5 Compiler Optimizations

The OpenCL compiler currently recognizes a few patterns and transforms them into a single instruction. By following these patterns, a developer can generate highly efficient code. The currently accepted patterns are:

	
	Bitfield extract on signed/unsigned integers.
	

(A >> B) & C ==> [u]bit_extract

where

B and C are compile time constants,

A is a 8/16/32bit integer type, and

C is a mask.

	
	Bitfield insert on signed/unsigned integers
	

((A & B) << C) | ((D & E) << F ==> ubit_insert

where

B and E have no conflicting bits (B^E == 0),

B, C, E, and F are compile-time constants, and

B and E are masks.

The first bit set in B is greater than the number of bits in E plus the first bit set in E, or the first bit set in E is greater than the number of bits in B plus the first bit set in B.

If B, C, E, or F are equivalent to the value 0, this optimization is also supported.

3.9 Clause Boundaries

AMD GPUs groups instructions into clauses. These are broken at control-flow boundaries when:

	the instruction type changes (for example, from FETCH to ALU), or

	if the clause contains the maximum amount of operations (the maximum size for an ALU clause is 128 operations).

ALU and LDS access instructions are placed in the same clause. FETCH, ALU/LDS, and STORE instructions are placed into separate clauses.

The GPU schedules a pair of wavefronts (referred to as the “even” and “odd” wavefront). The even wavefront executes for four cycles (each cycle executes a quarter-wavefront); then, the odd wavefront executes for four cycles. While the odd wavefront is executing, the even wavefront accesses the register file and prepares operands for execution. This fixed interleaving of two wavefronts allows the hardware to efficiently hide the eight-cycle register-read latencies.

With the exception of the special treatment for even/odd wavefronts, the GPU scheduler only switches wavefronts on clause boundaries. Latency within a clause results in stalls on the hardware. For example, a wavefront that generates an LDS bank conflict stalls on the compute unit until the LDS access completes; the hardware does not try to hide this stall by switching to another available wavefront.

ALU dependencies on memory operations are handled at the clause level. Specifically, an ALU clause can be marked as dependent on a FETCH clause. All FETCH operations in the clause must complete before the ALU clause begins execution.

Switching to another clause in the same wavefront requires approximately 40 cycles. The hardware immediately schedules another wavefront if one is available, so developers are encouraged to provide multiple wavefronts/compute unit. The cost to switch clauses is far less than the memory latency; typically, if the program is designed to hide memory latency, it hides the clause latency as well.

The address calculations for FETCH and STORE instructions execute on the same hardware in the compute unit as do the ALU clauses. The address calculations for memory operations consumes the same executions resources that are used for floating-point computations.

	The ISA dump shows the clause boundaries. See the example shown below. For more information on clauses, see the AMD Evergreen-Family ISA Microcode

And Instructions (v1.0b) and the AMD R600/R700/Evergreen Assembly Language Format documents.

The following is an example disassembly showing clauses. There are 13 clauses in the kernel. The first clause is an ALU clause and has 6 instructions.

00 ALU_PUSH_BEFORE: ADDR(32) CNT(13) KCACHE0(CB1:0-15) KCACHE1(CB0:0-15)
 0 x: MOV R3.x, KC0[0].x
 y: MOV R2.y, KC0[0].y
 z: MOV R2.z, KC0[0].z
 w: MOV R2.w, KC0[0].w
 1 x: MOV R4.x, KC0[2].x
 y: MOV R2.y, KC0[2].y
 z: MOV R2.z, KC0[2].z
 w: MOV R2.w, KC0[2].w
 t: SETGT_INT R5.x, PV0.x, 0.0f
 2 t: MULLO_INT __, R1.x, KC1[1].x
 3 y: ADD_INT __, R0.x, PS2
 4 x: ADD_INT R0.x, PV3.y, KC1[6].x
 5 x: PREDNE_INT __, R5.x, 0.0f UPDATE_EXEC_MASK UPDATE_PRED

01 JUMP POP_CNT(1) ADDR(12)
02 ALU: ADDR(45) CNT(5) KCACHE0(CB1:0-15)
 6 z: LSHL __, R0.x,
 7 y: ADD_INT __, KC0[1].x, PV6.z
 8 x: LSHR R1.x, PV7.y, (0x00000002, 2.802596929e-45f).x
03 LOOP_DX10 i0 FAIL_JUMP_ADDR(11)
04 ALU: ADDR(50) CNT(4)
 9 x: ADD_INT R3.x, -1, R3.x
 y: LSHR R0.y, R4.x, (0x00000002, 2.802596929e-45f).x
 t: ADD_INT R4.x, R4.x, (0x00000004, 5.605193857e-45f).y
05 WAIT_ACK: Outstanding_acks <= 0
06 TEX: ADDR(64) CNT(1)
 10 VFETCH R0.x__, R0.y, fc156 MEGA(4)
 FETCH_TYPE(NO_INDEX_OFFSET)
07 ALU: ADDR(54) CNT(3)
 11 x: MULADD_e R0.x, R0.x, (0x40C00000, 6.0f).y, (0x41880000, 17.0f).x
 t: SETE_INT R2.x, R3.x, 0.0f
08 MEM_RAT_CACHELESS_STORE_RAW_ACK: RAT(1)[R1].x__, R0, ARRAY_SIZE(4) MARK VPM
09 ALU_BREAK: ADDR(57) CNT(1)
 12 x: PREDE_INT __, R2.x, 0.0f UPDATE_EXEC_MASK UPDATE_PRED
10 ENDLOOP i0 PASS_JUMP_ADDR(4)
11 POP (1) ADDR(12)
12 NOP NO_BARRIER
END_OF_PROGRAM

3.10 Additional Performance Guidance

This section is a collection of performance tips for GPU compute and AMD- specific optimizations.

3.10.1 Loop Unroll pragma

The compiler directive #pragma unroll <unroll-factor> can be placed immediately prior to a loop as a hint to the compiler to unroll a loop. <unroll- factor> must be a positive integer, 1 or greater. When <unroll-factor> is 1, loop unrolling is disabled. When <unroll-factor> is 2 or greater, the compiler uses this as a hint for the number of times the loop is to be unrolled.

Examples for using this loop follow.

No unrolling example:

#pragma unroll 1
for (int i = 0; i < n; i++) {
...
}

Partial unrolling example:

#pragma unroll 4
for (int i = 0; i < 128; i++) {
...
}

Currently, the unroll pragma requires that the loop boundaries can be determined at compile time. Both loop bounds must be known at compile time. If n is not given, it is equivalent to the number of iterations of the loop when both loop bounds are known. If the unroll-factor is not specified, and the compiler can determine the loop count, the compiler fully unrolls the loop. If the unroll-factor is not specified, and the compiler cannot determine the loop count, the compiler does no unrolling.

3.10.2 Memory Tiling

There are many possible physical memory layouts for images. AMD devices can access memory in a tiled or in a linear arrangement.

	Linear - A linear layout format arranges the data linearly in memory such that element addresses are sequential. This is the layout that is familiar to CPU programmers. This format must be used for OpenCL buffers; it can be used for images.

	Tiled - A tiled layout format has a pre-defined sequence of element blocks arranged in sequential memory addresses (see Figure 3.11 for a conceptual illustration). A microtile consists of ABIJ; a macrotile consists of the top-left 16 squares for which the arrows are red. Only images can use this format. Translating from user address space to the tiled arrangement is transparent to the user. Tiled memory layouts provide an optimized memory access pattern to make more efficient use of the RAM attached to the GPU compute device. This can contribute to lower latency.

[image: ../_images/3.11.png]
Figure 3.11 One Example of a Tiled Layout Format

Memory Access Pattern -

Memory access patterns in compute kernels are usually different from those in the pixel shaders. Whereas the access pattern for pixel shaders is in a hierarchical, space-filling curve pattern and is tuned for tiled memory performance (generally for textures), the access pattern for a compute kernel is linear across each row before moving to the next row in the global id space. This has an effect on performance, since pixel shaders have implicit blocking, and compute kernels do not. If accessing a tiled image, best performance is achieved if the application tries to use workgroups as a simple blocking strategy.

3.10.3 General Tips

	Using dynamic pointer assignment in kernels that are executed on the GPU cause inefficient code generation.

	Many OpenCL specification compiler options that are accepted by the AMD OpenCL compiler are not implemented. The implemented options are -D, -I, w, Werror, -clsingle-precision-constant, -cl-opt-disable, and -cl-fp32-correctly-rounded-divide-sqrt.

	Avoid declaring global arrays on the kernel’s stack frame as these typically cannot be allocated in registers and require expensive global memory operations.

	Use predication rather than control-flow. The predication allows the GPU to execute both paths of execution in parallel, which can be faster than attempting to minimize the work through clever control-flow. The reason for this is that if no memory operation exists in a ?: operator (also called a ternary operator), this operation is translated into a single cmov_logical instruction, which is executed in a single cycle. An example of this is :

If (A>B) { C += D;
} else { C -= D;
}

Replace this with:

int factor = (A>B) ? 1:-1;
C += factor*D;

In the first block of code, this translates into an IF/ELSE/ENDIF sequence of CF clauses, each taking ~40 cycles. The math inside the control flow adds two cycles if the control flow is divergent, and one cycle if it is not. This code executes in ~120 cycles.

In the second block of code, the ?: operator executes in an ALU clause, so no extra CF instructions are generated. Since the instructions are sequentially dependent, this block of code executes in three cycles, for a ~40x speed improvement. To see this, the first cycle is the (A>B) comparison, the result of which is input to the second cycle, which is the cmov_logical factor, bool, 1, -1. The final cycle is a MAD instruction that: mad C, factor, D, C. If the ratio between CF clauses and ALU instructions is low, this is a good pattern to remove the control flow.

	
	Loop Unrolling
	
	OpenCL kernels typically are high instruction-per-clock applications. Thus, the overhead to evaluate control-flow and execute branch instructions can consume a significant part of resource that otherwise can be used for high-throughput compute operations.

	The AMD OpenCL compiler performs simple loop unrolling optimizations; however, for more complex loop unrolling, it may be beneficial to do this manually.

	If possible, create a reduced-size version of your data set for easier debugging and faster turn-around on performance experimentation. GPUs do not have automatic caching mechanisms and typically scale well as resources are added. In many cases, performance optimization for the reduced-size data implementation also benefits the full-size algorithm.

	When tuning an algorithm, it is often beneficial to code a simple but accurate algorithm that is retained and used for functional comparison. GPU tuning can be an iterative process, so success requires frequent experimentation, verification, and performance measurement.

	The profiler and analysis tools report statistics on a per-kernel granularity. To narrow the problem further, it might be useful to remove or comment-out sections of code, then re-run the timing and profiling tool.

	Writing code with dynamic pointer assignment should be avoided on the GPU. For example:

kernel void dyn_assign(global int* a, global int* b, global int* c)
{
global int* d;
size_t idx = get_global_id(0);
if (idx & 1) {
d = b;
} else {
d = c;
}
a[idx] = d[idx];
}

This is inefficient because the GPU compiler must know the base pointer that every load comes from and in this situation, the compiler cannot determine what â€˜d’ points to. So, both B and C are assigned to the same GPU resource, removing the ability to do certain optimizations.

	If the algorithm allows changing the work-group size, it is possible to get better performance by using larger work-groups (more work-items in each work-group) because the workgroup creation overhead is reduced. On the other hand, the OpenCL CPU runtime uses a task-stealing algorithm at the work-group level, so when the kernel execution time differs because it contains conditions and/or loops of varying number of iterations, it might be better to increase the number of work-groups. This gives the runtime more flexibility in scheduling work-groups to idle CPU cores. Experimentation might be needed to reach optimal work-group size.

	Since the AMD OpenCL runtime supports only in-order queuing, using clFinish () on a queue and queuing a blocking command gives the same result. The latter saves the overhead of another API command.
For example:

clEnqueueWriteBuffer(myCQ, buff, **CL_FALSE**, 0, buffSize, input, 0, NULL, NULL);``
clFinish(myCQ);

is equivalent, for the AMD OpenCL runtime, to:

clEnqueueWriteBuffer(myCQ, buff, **CL_TRUE**, 0, buffSize, input, 0, NULL, NULL);``

3.10.4 Guidance for CUDA Programmers Using OpenCL

	Porting from CUDA to OpenCL is relatively straightforward. Multiple vendors have documents describing how to do this, including AMD : http://developer.amd.com/tools-and-sdks/opencl-zone/

	Some specific performance recommendations which differ from other GPU architectures:

	Use a workgroup size that is a multiple of 64. CUDA code can use a workgroup size of 32; this uses only half the available compute resources on an ATI Radeon™ HD 5870 GPU.

	Vectorization can lead to substantially greater efficiency. The ALUPacking counter provided by the Profiler can track how well the kernel code is using the five-wide (or four-wide, depending on the GPU type) VLIW unit. Values below 70 percent may indicate that dependencies are preventing the full use of the processor. For some kernels, vectorization can be used to increase efficiency and improve kernel performance.

	AMD GPUs have a very high single-precision flops capability (2.72 teraflops in a single ATI Radeon™ HD 5870 GPU). Algorithms that benefit from such throughput can deliver excellent performance on AMD hardware.

3.10.5 Guidance for CPU Programmers Using OpenCL to Program GPUs

OpenCL is the industry-standard toolchain for programming GPUs and parallel devices from many vendors. It is expected that many programmers skilled in CPU programming will program GPUs for the first time using OpenCL. This section provides some guidance for experienced programmers who are programming a GPU for the first time. It specifically highlights the key differences in optimization strategy.

	Study the local memory (LDS) optimizations. These greatly affect the GPU performance. Note the difference in the organization of local memory on the GPU as compared to the CPU cache. Local memory is shared by many work-items (64 on Cypress). This contrasts with a CPU cache that normally is dedicated to a single work-item. GPU kernels run well when they collaboratively load the shared memory.

	GPUs have a large amount of raw compute horsepower, compared to memory bandwidth and to “control flow” bandwidth. This leads to some high- level differences in GPU programming strategy.

	A CPU-optimized algorithm may test branching conditions to minimize the workload. On a GPU, it is frequently faster simply to execute the workload.

	A CPU-optimized version can use memory to store and later load pre- computed values. On a GPU, it frequently is faster to recompute values rather than saving them in registers. Per-thread registers are a scarce resource on the CPU; in contrast, GPUs have many available per-thread register resources.

	Use float4 and the OpenCL built-ins for vector types `` (vload, vstore,`` etc.). These enable the AMD OpenCL implementation to generate efficient, packed SSE instructions when running on the CPU. Vectorization is an optimization that benefits both the AMD CPU and GPU.

3.10.6 Optimizing Kernel Code

3.10.6.1 Using Vector Data Types

The CPU contains a vector unit, which can be efficiently used if the developer is writing the code using vector data types.

For architectures before Bulldozer, the instruction set is called SSE, and the vector width is 128 bits. For Bulldozer, there the instruction set is called AVX, for which the vector width is increased to 256 bits.

Using four-wide vector types (int4, float4, etc.) is preferred, even with Bulldozer.

3.10.6.2 Local Memory

The CPU does not benefit much from local memory; sometimes it is detrimental to performance. As local memory is emulated on the CPU by using the caches, accessing local memory and global memory are the same speed, assuming the information from the global memory is in the cache.

3.10.6.3 Using Special CPU Instructions

The Bulldozer family of CPUs supports FMA4 instructions, exchanging instructions of the form a*b+c with fma(a,b,c) or mad(a,b,c) allows for the use of the special hardware instructions for multiplying and adding.

There also is hardware support for OpenCL functions that give the new hardware implementation of rotating.

For example:

sum.x += tempA0.x * tempB0.x + tempA0.y * tempB1.x + tempA0.z * tempB2.x + tempA0.w * tempB3.x;

can be written as a composition of mad instructions which use fused multiple add
(FMA):

sum.x += mad(tempA0.x, tempB0.x, mad(tempA0.y, tempB1.x, mad(tempA0.z, tempB2.x, tempA0.w*tempB3.x)));

3.10.6.4 Avoid Barriers When Possible

Using barriers in a kernel on the CPU causes a significant performance penalty compared to the same kernel without barriers. Use a barrier only if the kernel requires it for correctness, and consider changing the algorithm to reduce barriers usage.

3.10.7 Optimizing Kernels for Evergreen and 69XX-Series GPUs

3.10.7.1 Clauses

The architecture for the 69XX series of GPUs is clause-based. A clause is similar to a basic block, a sequence of instructions that execute without flow control or I/O. Processor efficiency is determined in large part by the number of instructions in a clause, which is determined by the frequency of branching and I/O at the source-code level. An efficient kernel averages at least 16 or 32 instructions per clause.

The AMD CodeXL Static Kernel Analyzer assembler listing lets you view clauses. Try the optimizations listed here from inside the AMD CodeXL Static Kernel Analyzer to see the improvements in performance.

3.10.7.2 Remove Conditional Assignments

A conditional of the form “if-then-else” generates branching and thus generates one or more clauses. Use the select() function to replace these structures with conditional assignments that do not cause branching. For example:

if(x==1) r=0.5;
if(x==2) r=1.0;

becomes

r = select(r, 0.5, x==1);
r = select(r, 1.0, x==2);

Note that if the body of the if statement contains an I/O, the if statement cannot be eliminated.

3.10.7.3 Bypass Short-Circuiting

A conditional expression with many terms can compile into a number of clauses due to the C-language requirement that expressions must short circuit. To prevent this, move the expression out of the control flow statement. For example:

if(a&&b&&c&&d){...}

becomes

bool cond = a&&b&&c&&d;
if(cond){...}

The same applies to conditional expressions used in loop constructs `` (do, while, for)``.

3.10.7.4 Unroll Small Loops

If the loop bounds are known, and the loop is small (less than 16 or 32 instructions), unrolling the loop usually increases performance.

3.10.7.5 Avoid Nested ifs

Because the GPU is a Vector ALU architecture, there is a cost to executing an if-then-else block because both sides of the branch are evaluated, then one result is retained while the other is discarded. When if blocks are nested, the results are twice as bad; in general, if blocks are nested k levels deep, there 2^k clauses are generated. In this situation, restructure the code to eliminate nesting.

3.10.7.6 Experiment With do/while/for Loops

for loops can generate more clauses than equivalent do or while loops. Experiment with these different loop types to find the one with best performance.

3.10.7.7 Do I/O With 4-Word Data

The native hardware I/O transaction size is four words (float4, int4 types). Avoid I/Os with smaller data, and rewrite the kernel to use the native size data. Kernel performance increases, and only 25% as many work items need to be dispatched.

OpenCL Programming Guide

	
	OpenCL Architecture
	
	Terminology

	OpenCL Overview

	Programming Model

	Synchronization

	Memory Architecture and Access

	Example Programs

	
	AMD Implementation
	
	The AMD ROCm Implementation of OpenCL

	Hardware Overview for GCN Devices

	Communication Between Host and the GPU Compute Device

	Wavefront Scheduling

	
	Building and Running OpenCL Programs
	
	Compiling the Host Program

	Compiling the device programs

	Supported Standard OpenCL Compiler Options

	AMD-Developed Supplemental Compiler Options

	Creating device-specific binaries

	Command execution flow

	Running the Program

	A note on thread safety

	Toolchain considerations

	
	Profiling OpenCL
	
	Downloading and installing CodeXL and Radeon Compute Profiler

	
	OpenCL Static C++ Programming Language
	
	Overview

	Additions and Changes to Section 5 - The OpenCL C Runtime

	Additions and Changes to Section 6 - The OpenCL 1.2 C Programming Language

	Examples

	
	OpenCL 2.0
	
	Introduction

	Shared Virtual Memory (SVM)

	Generic Address Space

	Device-side enqueue and workgroup/sub-group level functions

	Atomics and synchronization

	Pipes

	Program-scope global Variables

	Image Enhancements

	Non-uniform work group size

	Portability considerations

	OpenCL Optional Extensions

	The OpenCL Installable Client Driver (ICD)

	OpenCL Binary Image Format (BIF) v2.0

	Hardware overview of pre-GCN devices

	OpenCL-OpenGL Interoperability

	New built-in functions in OpenCL 2.0

OpenCL Architecture and AMD Accelerated Parallel Processing Technology

Terminology

compute kernel :

To define a compute kernel, it is first necessary to define a kernel. A kernel is a small unit of execution that performs a clearly defined function and that can be executed in parallel. Such a kernel can be executed on each element of an input stream (called an NDRange), or simply at each point in an arbitrary index space. A kernel is analogous and, on some devices identical, to what graphics programmers call a shader program. This kernel is not to be confused with an OS kernel, which controls hardware. The most basic form of an NDRange is simply mapped over input data and produces one output item for each input tuple. Subsequent extensions of the basic model provide random-access functionality, variable output counts, and reduction/accumulation operations. Kernels are specified using the kernel keyword.

A compute kernel is a specific type of kernel that is not part of the traditional graphics pipeline. The compute kernel type can be used for graphics, but its strength lies in using it for non-graphics fields such as physics, AI, modeling, HPC, and various other computationally intensive applications.

In a compute kernel, the work-item spawn order is sequential. This means that on a chip with N work-items per wavefront, the first N work- items go to wavefront 1, the second N work-items go to wavefront 2, etc. Thus, the work-item IDs for wavefront K are in the range (K•N) to ((K+1)•N)-1.

wavefronts and work-groups :

Wavefronts and work-groups are two concepts relating to compute kernels that provide data-parallel granularity. On most AMD GPUs, a wavefront has 64 work-items. A wavefront is the lowest level that flow control can affect. This means that if two work-items inside of a wavefront go divergent paths of flow control, all work-items in the wavefront go to both paths of flow control.

Grouping is a higher-level granularity of data parallelism that is enforced in software, not hardware. Synchronization points in a kernel guarantee that all work-items in a work-group reach that point (barrier) in the code before the next statement is executed.

Work-groups are composed of wavefronts. Best performance is attained when the group size is an integer multiple of the wavefront size.

local data store(LDS) :

The LDS is a high-speed, low-latency memory private to each compute unit. It is a full gather/scatter model: a work-group can write anywhere in its allocated space. This model is unchanged for the AMD Radeon™ HD 7XXX series. The constraints of the current LDS model are:

	The LDS size is allocated per work-group. Each work-group specifies how much of the LDS it requires. The hardware scheduler uses this information to determine which work groups can share a compute unit.

	Data can only be shared within work-items in a work-group.

	Memory accesses outside of the work-group result in undefined behavior.

OpenCL Overview

The OpenCL programming model consists of producing complicated task graphs from data-parallel execution nodes.

In a given data-parallel execution, commonly known as a kernel launch, a computation is defined in terms of a sequence of instructions that executes at each point in an N-dimensional index space. It is a common, though by not required, formulation of an algorithm that each computation index maps to an element in an input data set.

The OpenCL data-parallel programming model is hierarchical. The hierarchical subdivision can be specified in two ways:

	Explicitly - the developer defines the total number of work-items to execute in parallel, as well as the division of work-items into specific work-groups.

	Implicitly - the developer specifies the total number of work-items to execute in parallel, and OpenCL manages the division into work-groups.

OpenCL’s API also supports the concept of a task dispatch. This is equivalent to executing a kernel on a compute device with a work-group and NDRange containing a single work-item. Parallelism is expressed using vector data types implemented by the device, enqueuing multiple tasks, and/or enqueuing native kernels developed using a programming model orthogonal to OpenCL.

Programming Model

The OpenCL programming model is based on the notion of a host device, supported by an application API, and a number of devices connected through a bus. These are programmed using OpenCL C. The host API is divided into platform and runtime layers. OpenCL C is a C-like language with extensions for parallel programming such as memory fence operations and barriers. Figure illustrates this model with queues of commands, reading/writing data, and
executing kernels for specific devices.

[image: ../_images/img1.png]
The devices are capable of running data- and task-parallel work. A kernel can be executed as a function of multi-dimensional domains of indices. Each element is called a work-item; the total number of indices is defined as the global work-size. The global work-size can be divided into sub-domains, called work-groups, and individual work-items within a group can communicate through global or locally shared memory. Work-items are synchronized through barrier or fence operations. Figure 1.1 is a representation of the host/device architecture with a single platform, consisting of a GPU and a CPU.

An OpenCL application is built by first querying the runtime to determine which platforms are present. There can be any number of different OpenCL implementations installed on a single system. The desired OpenCL platform can be selected by matching the platform vendor string to the desired vendor name, such as “Advanced Micro Devices, Inc.” The next step is to create a context. As shown in Figure 1.1, an OpenCL context has associated with it a number of compute devices (for example, CPU or GPU devices),. Within a context, OpenCL guarantees a relaxed consistency between these devices. This means that memory objects, such as buffers or images, are allocated per context; but changes made by one device are only guaranteed to be visible by another device at well-defined synchronization points. For this, OpenCL provides events, with the ability to synchronize on a given event to enforce the correct order of execution.

Many operations are performed with respect to a given context; there also are many operations that are specific to a device. For example, program compilation and kernel execution are done on a per-device basis. Performing work with a device, such as executing kernels or moving data to and from the device’s local memory, is done using a corresponding command queue. A command queue is associated with a single device and a given context; all work for a specific device is done through this interface. Note that while a single command queue can be associated with only a single device, there is no limit to the number of command queues that can point to the same device. For example, it is possible to have one command queue for executing kernels and a command queue for managing data transfers between the host and the device.

Most OpenCL programs follow the same pattern. Given a specific platform, select a device or devices to create a context, allocate memory, create device-specific command queues, and perform data transfers and computations. Generally, the platform is the gateway to accessing specific devices, given these devices and a corresponding context, the application is independent of the platform. Given a context, the application can:

	Create one or more command queues.

	Create programs to run on one or more associated devices.

	Create kernels within those programs.

	Allocate memory buffers or images, either on the host or on the device(s). (Memory can be copied between the host and device.)

	Write data to the device.

	Submit the kernel (with appropriate arguments) to the command queue for execution.

	Read data back to the host from the device.

The relationship between context(s), device(s), buffer(s), program(s), kernel(s), and command queue(s) is best seen by looking at sample code. For an example, see the HelloWorld sample in the AMD Compute SDK.

Synchronization

The two domains of synchronization in OpenCL are work-items in a single work- group and command-queue(s) in a single context. Work-group barriers enable synchronization of work-items in a work-group. Each work-item in a work-group must first execute the barrier before executing any instruction beyond this barrier. Either all of, or none of, the work-items in a work-group must encounter the barrier. A barrier or mem_fence operation does not have global scope, but is relevant only to the local workgroup on which they operate.

There are two types of synchronization between commands in a command- queue:

	command-queue barrier - enforces ordering within a single queue. Any resulting changes to memory are available to the following commands in the queue.

	events - enforces ordering between, or within, queues. Enqueued commands in OpenCL return an event identifying the command as well as the memory object updated by it. This ensures that following commands waiting on that event see the updated memory objects before they execute.

OpenCL 2.0 provides additional synchronization options. For an overview, see “Atomics and synchronization.”.

Memory Architecture and Access

OpenCL has four memory domains: private, local, global, and constant; the AMD Compute Technology system also recognizes host (CPU) and PCI Express® (PCIe®) memory.

	Memory Type

	Description

	private

	Specific to a work-item; it is not visible to other work-items.

	local

	Specific to a work-group; accessible only by work-items belonging to that work-group.

	global

	Accessible to all work-items executing in a context, as well as to the host
(read, write, and map commands).

	constant

	Read-only region for host-allocated and -initialized objects that are not changed during kernel execution.

	host (CPU)

	Host-accessible region for an application’s data structures and program data.

	PCIe

	Part of host (CPU) memory accessible from, and modifiable by, the host program and the GPU compute device. Modifying this memory requires synchronization between the GPU compute device and the CPU.

Table: illustrates the interrelationship of the memories.

[image: ../_images/img2.png]
[image: ../_images/img3.png]
There are two ways to copy data from the host to the GPU compute device memory:

	Implicitly by using clEnqueueMapBuffer and clEnqueueUnMapMemObject.

	Explicitly through clEnqueueReadBuffer, clEnqueueWriteBuffer and (clEnqueueReadImage, clEnqueueWriteImage).

When using these interfaces, it is important to consider the amount of copying involved. There is a two-copy processes: between host and PCIe, and between PCIe and GPU compute device.

With proper memory transfer management and the use of system pinned memory (host/CPU memory remapped to the PCIe memory space), copying between host (CPU) memory and PCIe memory can be skipped.

Double copying lowers the overall system memory bandwidth. In GPU compute device programming, pipelining and other techniques help reduce these bottlenecks. See the AMD OpenCL Optimization Reference Guide for more specifics about optimization techniques.

Data Share Operations

Local data share (LDS) is a very low-latency, RAM scratchpad for temporary data located within each compute unit. The programmer explicitly controls all accesses to the LDS. The LDS can thus provide efficient memory access when used as a software cache for predictable re-use of data (such as holding parameters for pixel shader parameter interpolation), as a data exchange machine for the work-items of a work-group, or as a cooperative way to enable more efficient access to off-chip memory.

The high-speed write-to-read re-use of the memory space (full gather/read/load and scatter/write/store operations) is especially useful in pre-GCN devices with read-only caches. LDS offers at least one order of magnitude higher effective bandwidth than direct, uncached global memory.

Figure 1.4 shows the conceptual framework of the LDS is integration into the memory of AMD GPUs using OpenCL.

[image: ../_images/img4.png]
Physically located on-chip, directly next to the ALUs, the LDS is approximately one order of magnitude faster than global memory (assuming no bank conflicts).

GCN devices contain 64 kB memory per compute unit and allow up to a maximum of 32 kB per workgroup.

The high bandwidth of the LDS memory is achieved not only through its proximity to the ALUs, but also through simultaneous access to its memory banks. Thus, it is possible to concurrently execute 32 write or read instructions, each nominally
32-bits; extended instructions, read2/write2, can be 64-bits each. If, however, more than one access attempt is made to the same bank at the same time, a bank conflict occurs. In this case, for indexed and atomic operations, hardware prevents the attempted concurrent accesses to the same bank by turning them into serial accesses. This decreases the effective bandwidth of the LDS. For maximum throughput (optimal efficiency), therefore, it is important to avoid bank conflicts. A knowledge of request scheduling and address mapping is key to achieving this.

Dataflow in Memory Hierarchy

[image: ../_images/img5.png]
To load data into LDS from global memory, it is read from global memory and placed into the work-item’s registers; then, a store is performed to LDS. Similarly, to store data into global memory, data is read from LDS and placed into the work- item’s registers, then placed into global memory. To make effective use of the LDS, an algorithm must perform many operations on what is transferred between global memory and LDS. It also is possible to load data from a memory buffer directly into LDS, bypassing VGPRs.

LDS atomics are performed in the LDS hardware. (Thus, although ALUs are not directly used for these operations, latency is incurred by the LDS executing this function.) If the algorithm does not require write-to-read reuse (the data is read only), it usually is better to use the image dataflow (see right side of Figure 1.5) because of the cache hierarchy.

Actually, buffer reads may use L1 and L2. When caching is not used for a buffer, reads from that buffer bypass L2. After a buffer read, the line is invalidated; then, on the next read, it is read again (from the same wavefront or from a different clause). After a buffer write, the changed parts of the cache line are written to memory.

Buffers and images are written through the texture L2 cache, but this is flushed immediately after an image write.

In GCN devices, both reads and writes happen through L1 and L2.

The data in private memory is first placed in registers. If more private memory is used than can be placed in registers, or dynamic indexing is used on private arrays, the overflow data is placed (spilled) into scratch memory. Scratch memory is a private subset of global memory, so performance can be dramatically degraded if spilling occurs.

Global memory can be in the high-speed GPU memory (VRAM) or in the host memory, which is accessed by the PCIe bus. A work-item can access global memory either as a buffer or a memory object. Buffer objects are generally read and written directly by the work-items. Data is accessed through the L2 and L1 data caches on the GPU. This limited form of caching provides read coalescing among work-items in a wavefront. Similarly, writes are executed through the texture L2 cache.

Global atomic operations are executed through the texture L2 cache. Atomic instructions that return a value to the kernel are handled similarly to fetch instructions: the kernel must use S_WAITCNT to ensure the results have been written to the destination GPR before using the data.

Memory Access

Using local memory (known as local data store, or LDS, as shown in Figure 1.2) typically is an order of magnitude faster than accessing host memory through global memory (VRAM), which is one order of magnitude faster again than PCIe. However, stream cores do not directly access memory; instead, they issue memory requests through dedicated hardware units. When a work-item tries to access memory, the work-item is transferred to the appropriate fetch unit. The work-item then is deactivated until the access unit finishes accessing memory. Meanwhile, other work-items can be active within the compute unit, contributing to better performance. The data fetch units handle three basic types of memory operations: loads, stores, and streaming stores. GPU compute devices can store writes to random memory locations using global buffers.

Global Memory

The global memory lets applications read from, and write to, arbitrary locations in memory. When using global memory, such read and write operations from the stream kernel are done using regular GPU compute device instructions with the global memory used as the source or destination for the instruction. The programming interface is similar to load/store operations used with CPU programs, where the relative address in the read/write buffer is specified.

When using a global memory, each work-item can write to an arbitrary location within it. Global memory use a linear layout. If consecutive addresses are written, the compute unit issues a burst write for more efficient memory access. Only read-only buffers, such as constants, are cached.

Image Read/Write

Image reads are done by addressing the desired location in the input memory using the fetch unit. The fetch units can process either 1D or 2 D addresses. These addresses can be normalized or un-normalized. Normalized coordinates are between 0.0 and 1.0 (inclusive). For the fetch units to handle 2D addresses and normalized coordinates, pre-allocated memory segments must be bound to the fetch unit so that the correct memory address can be computed. For a single kernel invocation, up to 128 images can be bound at once for reading, and eight for writing. The maximum number of addresses is 8192x8192 for Evergreen and Northern Islands-based devices, 16384x16384 for SI-based products.

Image reads are cached through the texture system (corresponding to the L2 and
L1 caches).

Example Programs

The following subsections provide simple programming examples with explanatory comments.

First Example: Simple Buffer Write

This sample shows a minimalist OpenCL C program that sets a given buffer to some value. It illustrates the basic programming steps with a minimum amount of code. This sample contains no error checks and the code is not generalized. Yet, many simple test programs might look very similar. The entire code for this sample is provided at the end of this section.

	The host program must select a platform, which is an abstraction for a given OpenCL implementation. Implementations by multiple vendors can coexist on a host, and the sample uses the first one available.

	A device id for a GPU device is requested. A CPU device could be requested by using CL_DEVICE_TYPE_CPU instead. The device can be a physical device, such as a given GPU, or an abstracted device, such as the collection of all CPU cores on the host.

	On the selected device, an OpenCL context is created. A context ties together a device, memory buffers related to that device, OpenCL programs, and command queues. Note that buffers related to a device can reside on either the host or the device. Many OpenCL programs have only a single context, program, and command queue.

	Before an OpenCL kernel can be launched, its program source is compiled, and a handle to the kernel is created.

	A memory buffer is allocated in the context.

	The kernel is launched. While it is necessary to specify the global work size, OpenCL determines a good local work size for this device. Since the kernel was launch asynchronously, clFinish() is used to wait for completion.

	The data is mapped to the host for examination. Calling clEnqueueMapBuffer ensures the visibility of the buffer on the host, which in this case probably includes a physical transfer. Alternatively, we could use clEnqueueWriteBuffer(), which requires a pre-allocated host-side buffer.

Example Code 1

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

// A minimalist OpenCL program.

#include <CL/cl.h>
#include <stdio.h>

#define NWITEMS 512
// A simple memset kernel
const char *source =
"kernel void memset(global uint *dst) \n"
"{ \n"
" dst[get_global_id(0)] = get_global_id(0); \n"
"} \n";

int main(int argc, char ** argv)
{
 // 1. Get a platform.
 cl_platform_id platform;
 clGetPlatformIDs(1, &platform, NULL);

 // 2. Find a gpu device.
 cl_device_id device;
 clGetDeviceIDs(platform,
 CL_DEVICE_TYPE_GPU,
 1,
 &device, NULL);

 // 3. Create a context and command queue on that device.
 cl_context context = clCreateContext(NULL,
 1,
 &device,
 NULL, NULL, NULL);

 cl_command_queue queue = clCreateCommandQueue(context,
 device,
 0, NULL);

 // 4. Perform runtime source compilation, and obtain kernel entry point.
 cl_program program = clCreateProgramWithSource(context,
 1,
 &source,
 NULL, NULL);

 clBuildProgram(program, 1, &device, NULL, NULL, NULL);

 cl_kernel kernel = clCreateKernel(program, "memset", NULL);

 // 5. Create a data buffer.
 cl_mem buffer = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY,
 NWITEMS * sizeof(cl_uint),
 NULL, NULL);

 // 6. Launch the kernel. Let OpenCL pick the local work size.
 size_t global_work_size = NWITEMS;
 clSetKernelArg(kernel, 0, sizeof(buffer), (void*) &buffer);

 clEnqueueNDRangeKernel(queue,
 kernel,
 1,
 NULL,
 &global_work_size,
 NULL,
 0,
 NULL, NULL);

 clFinish(queue);

 // 7. Look at the results via synchronous buffer map.
 cl_uint *ptr;
 ptr = (cl_uint *) clEnqueueMapBuffer(queue,
 buffer,
 CL_TRUE,
 CL_MAP_READ,
 0,
 NWITEMS * sizeof(cl_uint),
 0, NULL, NULL, NULL);

 int i;

 for(i=0; i < NWITEMS; i++)
 printf("%d %d\n", i, ptr[i]);

 return 0;
}

Example: SAXPY Function

This section provides an introductory sample for beginner-level OpenCL
programmers using C++ bindings.

The sample implements the SAXPY function (Y = aX + Y, where X and Y are vectors, and a is a scalar). The full code is reproduced at the end of this section. It uses C++ bindings for OpenCL. These bindings are available in the CL/cl.hpp file in the AMD Compute SDK; they also are downloadable from the Khronos website: http://www.khronos.org/registry/cl

The following steps guide you through this example.

	Enable error checking through the exception handling mechanism in the C++
bindings by using the following define.

#define CL ENABLE_EXCEPTIONS

This removes the need to error check after each OpenCL call. If there is an error, the C++ bindings code throw an exception that is caught at the end of the try block, where we can clean up the host memory allocations. In this example, the C++ object representing OpenCL resources (cl::Context, cl::CommandQueue, etc.) are declared as automatic variables, so they do not need to be released. If an OpenCL call returns an error, the error code is defined in the CL/cl.h file.

	The kernel is very simple: each work-item, i, does the SAXPY calculation for its corresponding elements Y[i] = aX[i] + Y[i]. Both X and Y vectors are stored in global memory; X is read-only, Y is read-write.

kernel void saxpy(const __global float * X,
 __global float * Y,
 const float a)
{
 uint gid = get_global_id(0);
 Y[gid] = a* X[gid] + Y[gid];
}

	List all platforms on the machine, then select one.

cl::Platform::get(&platforms);

	Create an OpenCL context on that platform.

cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM, (cl_context_properties)(*iter)(), 0 };
context = cl::Context(CL_DEVICE_TYPE_GPU, cps);

	Get OpenCL devices from the context.

devices = context.getInfo<CL_CONTEXT_DEVICES>();

	Create an OpenCL command queue.

queue = cl::CommandQueue(context, devices[0]);

	Create two buffers, corresponding to the X and Y vectors. Ensure the host- side buffers, pX and pY, are allocated and initialized. The CL_MEM_COPY_HOST_PTR flag instructs the runtime to copy over the contents of the host pointer pX in order to initialize the buffer bufX. The bufX buffer uses the CL_MEM_READ_ONLY flag, while bufY requires the CL_MEM_READ_WRITE flag.

bufX = cl::Buffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof(cl_float) * length, pX);

	Create a program object from the kernel source string, build the program for our devices, and create a kernel object corresponding to the SAXPY kernel. (At this point, it is possible to create multiple kernel objects if there are more than one.)

cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(), kernelStr.length()));
program = cl::Program(context, sources);
program.build(devices);
kernel = cl::Kernel(program, "saxpy");

	Enqueue the kernel for execution on the device (GPU in our example).

Set each argument individually in separate kernel.setArg() calls. The arguments, do not need to be set again for subsequent kernelenqueue calls. Reset only those arguments that are to pass a new value to the kernel. Then, enqueue the kernel to the command queue with the appropriate global and local work sizes.

kernel.setArg(0,bufX); kernel.setArg(1,bufY); kernel.setArg(2,a);
queue.enqueueNDRangeKernel(kernel, cl::NDRange(), cl::NDRange(length), cl::NDRange(64));

	Read back the results from bufY to the host pointer pY. We will make this a blocking call (using the CL_TRUE argument) since we do not want to proceed before the kernel has finished execution and we have our results back.

queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length * sizeof(cl_float), pY);

	Clean up the host resources (pX and pY). OpenCL resources is cleaned up by the C++ bindings support code.

The catch(cl::Error err) block handles exceptions thrown by the C++ bindings code. If there is an OpenCL call error, it prints out the name of the call and the error code (codes are defined in CL/cl.h). If there is a kernel compilation error, the error code is CL_BUILD_PROGRAM_FAILURE, in which case it is necessary to print out the build log.

Example Code 2

#define __CL_ENABLE_EXCEPTIONS

#include <CL/cl.hpp>
#include <string>
#include <iostream>
#include <string>

using std::cout;
using std::cerr;
using std::endl;
using std::string;

///
// Helper function to print vector elements
///
void printVector(const std::string arrayName,
 const cl_float * arrayData,
 const unsigned int length)
{
 int numElementsToPrint = (256 < length) ? 256 : length;
 cout << endl << arrayName << ":" << endl;
 for(int i = 0; i < numElementsToPrint; ++i)
 cout << arrayData[i] << " ";
 cout << endl;
}

///
// Globals
///
int length = 256;
cl_float * pX = NULL;
cl_float * pY = NULL;
cl_float a = 2.f;

std::vector<cl::Platform> platforms;
cl::Context context;
std::vector<cl::Device> devices;
cl::CommandQueue queue;
cl::Program program;

cl::Kernel kernel;
cl::Buffer bufX;
cl::Buffer bufY;

///
// The saxpy kernel
///
string kernelStr =
 "__kernel void saxpy(const global float * x,\n"
 " __global float * y,\n"
 " const float a)\n"
 "{\n"
 " uint gid = get_global_id(0);\n"
 " y[gid] = a* x[gid] + y[gid];\n"
 "}\n";

///
// Allocate and initialize memory on the host
///
void initHost()
{
 size_t sizeInBytes = length * sizeof(cl_float);
 pX = (cl_float *) malloc(sizeInBytes);
 if(pX == NULL)
 throw(string("Error: Failed to allocate input memory on host\n"));

 pY = (cl_float *) malloc(sizeInBytes);
 if(pY == NULL)
 throw(string("Error: Failed to allocate input memory on host\n"));

 for(int i = 0; i < length; i++)
 {
 pX[i] = cl_float(i);
 pY[i] = cl_float(length-1-i);
 }

 printVector("X", pX, length);
 printVector("Y", pY, length);
}

///
// Release host memory
///
void cleanupHost()
{
 if(pX)
 {
 free(pX);
 pX = NULL;
 }
 if(pY != NULL)
 {
 free(pY);
 pY = NULL;
 }
}

int main(int argc, char * argv[])
{
 try
 {
 ///
 // Allocate and initialize memory on the host
 ///
 initHost();

 ///
 // Find the platform
 ///
 cl::Platform::get(&platforms);
 std::vector<cl::Platform>::iterator iter;
 for(iter = platforms.begin(); iter != platforms.end(); ++iter)
 {
 if(!strcmp((*iter).getInfo<CL_PLATFORM_VENDOR>().c_str(), "Advanced Micro Devices, Inc."))
 {
 break;
 }
 }

 ///
 // Create an OpenCL context
 ///
 cl_context_properties cps[3] = { CL_CONTEXT_PLATFORM,
 (cl_context_properties)(*iter)(), 0 };
 context = cl::Context(CL_DEVICE_TYPE_GPU, cps);

 ///
 // Detect OpenCL devices
 ///
 devices = context.getInfo<CL_CONTEXT_DEVICES>();

 ///
 // Create an OpenCL command queue
 ///
 queue = cl::CommandQueue(context, devices[0]);

 ///
 // Create OpenCL memory buffers
 ///
 bufX = cl::Buffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float) * length,
 pX);
 bufY = cl::Buffer(context,
 CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
 sizeof(cl_float) * length,
 pY);

 ///
 // Load CL file, build CL program object, create CL kernel object
 ///
 cl::Program::Sources sources(1, std::make_pair(kernelStr.c_str(),
 kernelStr.length()));
 program = cl::Program(context, sources);
 program.build(devices);
 kernel = cl::Kernel(program, "saxpy");

 ///
 // Set the arguments that will be used for kernel execution
 ///
 kernel.setArg(0, bufX);
 kernel.setArg(1, bufY);
 kernel.setArg(2, a);

 ///
 // Enqueue the kernel to the queue
 // with appropriate global and local work sizes
 ///
 queue.enqueueNDRangeKernel(kernel, cl::NDRange(),
 cl::NDRange(length), cl::NDRange(64));

 ///
 // Enqueue blocking call to read back buffer Y
 ///
 queue.enqueueReadBuffer(bufY, CL_TRUE, 0, length *
 sizeof(cl_float), pY);

 printVector("Y", pY, length);

 ///
 // Release host resources
 ///
 cleanupHost();
 }
 catch (cl::Error err)
 {
 ///
 // Catch OpenCL errors and print log if it is a build error
 ///
 cerr << "ERROR: " << err.what() << "(" << err.err() << ")" << endl;
 if (err.err() == CL_BUILD_PROGRAM_FAILURE)
 {
 string str = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
 cout << "Program Info: " << str << endl;
 }
 cleanupHost();
 }
 catch(string msg)
 {
 cerr << "Exception caught in main(): " << msg << endl;
 cleanupHost();
 }
}

Example: Parallel Min() Function

This medium-complexity sample shows how to implement an efficient parallel min() function.

The code is written so that it performs very well on either CPU or GPU. The number of threads launched depends on how many hardware processors are available. Each thread walks the source buffer, using a device-optimal access pattern selected at runtime. A multi-stage reduction using local and global atomics produces the single result value.

The sample includes a number of programming techniques useful for simple tests. Only minimal error checking and resource tear-down is used.

Runtime Code –

	The source memory buffer is allocated, and initialized with a random pattern.
Also, the actual min() value for this data set is serially computed, in order to later verify the parallel result.

	The compiler is instructed to dump the intermediate IL and ISA files for further analysis.

	The main section of the code, including device setup, CL data buffer creation, and code compilation, is executed for each device, in this case for CPU and GPU. Since the source memory buffer exists on the host, it is shared. All other resources are device specific.

	The global work size is computed for each device. A simple heuristic is used to ensure an optimal number of threads on each device. For the CPU, a given CL implementation can translate one work-item per CL compute unit into one thread per CPU core.

On the GPU, an initial multiple of the wavefront size is used, which is adjusted to ensure even divisibility of the input data over all threads. The value of 7 is a minimum value to keep all independent hardware units of the compute units busy, and to provide a minimum amount of memory latency hiding for a kernel with little ALU activity.

	After the kernels are built, the code prints errors that occurred during kernel compilation and linking.

	The main loop is set up so that the measured timing reflects the actual kernel performance. If a sufficiently large NLOOPS is chosen, effects from kernel launch time and delayed buffer copies to the device by the CL runtime are minimized. Note that while only a single clFinish() is executed at the end of the timing run, the two kernels are always linked using an event to ensure serial execution.

The bandwidth is expressed as “number of input bytes processed.” For high- end graphics cards, the bandwidth of this algorithm is about an order of magnitude higher than that of the CPU, due to the parallelized memory subsystem of the graphics card.

	The results then are checked against the comparison value. This also establishes that the result is the same on both CPU and GPU, which can serve as the first verification test for newly written kernel code.

	Note the use of the debug buffer to obtain some runtime variables. Debug buffers also can be used to create short execution traces for each thread, assuming the device has enough memory.

	You can use the Timer.cpp and Timer.h files from the TransferOverlap sample, which is in the SDK samples.

Kernel Code –

	The code uses four-component vectors (uint4) so the compiler can identify concurrent execution paths as often as possible. On the GPU, this can be used to further optimize memory accesses and distribution across ALUs. On the CPU, it can be used to enable SSE like execution.

	The kernel sets up a memory access pattern based on the device. For the CPU, the source buffer is chopped into continuous buffers: one per thread. Each CPU thread serially walks through its buffer portion, which results in good cache and prefetch behavior for each core.

On the GPU, each thread walks the source buffer using a stride of the total number of threads. As many threads are executed in parallel, the result is a maximally coalesced memory pattern requested from the memory back-end. For example, if each compute unit has 16 physical processors, 16 uint4 requests are produced in parallel, per clock, for a total of 256 bytes per clock.

	The kernel code uses a reduction consisting of three stages: global to private,private to local, which is flushed to global, and finally global to global. In the first loop, each thread walks global memory, and reduces all values into a min value in private memory (typically, a register). This is the bulk of the work, and is mainly bound by global memory bandwidth. The subsequent reduction stages are brief in comparison.

	Next, all per-thread minimum values inside the work-group are reduced to a
local value, using an atomic operation. Access to the local value is serialized; however, the number of these operations is very small compared to the work of the previous reduction stage. The threads within a work-group are synchronized through a local barrier(). The reduced min value is stored in global memory.

	After all work-groups are finished, a second kernel reduces all work-group values into a single value in global memory, using an atomic operation. This is a minor contributor to the overall runtime.

Example Code 3

//
// Copyright (c) 2010 Advanced Micro Devices, Inc. All rights reserved.
//

#include <CL/cl.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "Timer.h"

#define NDEVS 1

// A parallel min() kernel that works well on CPU and GPU

const char *kernel_source =
" \n"
"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable \n"
"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable \n"
" \n"
"// 9. The source buffer is accessed as 4-vectors. \n"
"__kernel void minp(__global uint4 *src, \n"
" __global uint *gmin, \n"
" __local uint *lmin, \n"
" __global uint *dbg, \n"
" int nitems, \n"
" uint dev) \n"
"{ \n"
" \n"
" // 10. Set up global memory access pattern. \n"
" \n"
" uint count = (nitems / 4) / get_global_size(0); \n"
" uint idx = (dev == 0) ? get_global_id(0) * count \n"
" : get_global_id(0); \n"
" uint stride = (dev == 0) ? 1 : get_global_size(0); \n"
" uint pmin = (uint) -1; \n"
" // 11. First, compute private min, for this work-item. \n"
" for(int n=0; n < count; n++, idx += stride) \n"
" { \n"
" pmin = min(pmin, src[idx].x); \n"
" pmin = min(pmin, src[idx].y); \n"
" pmin = min(pmin, src[idx].z); \n"
" pmin = min(pmin, src[idx].w); \n"
" } \n"
" \n"
" // 12. Reduce min values inside work-group. \n"
" if(get_local_id(0) == 0) \n"
" lmin[0] = (uint) -1; \n"
" barrier(CLK_LOCAL_MEM_FENCE); \n"
" (void) atom_min(lmin, pmin); \n"
" barrier(CLK_LOCAL_MEM_FENCE); \n"
" // Write out to __global. \n"
" if(get_local_id(0) == 0) \n"
" gmin[get_group_id(0)] = lmin[0]; \n"
" // Dump some debug information. \n"
" if(get_global_id(0) == 0) \n"
" { \n"
" dbg[0] = get_num_groups(0); \n"
" dbg[1] = get_global_size(0); \n"
" dbg[2] = count; \n"
" dbg[3] = stride; \n"
" } \n"
"} \n"
" \n"
"// 13. Reduce work-group min values from __global to __global. \n"
"kernel void reduce(__global uint4 *src, \n"
" __global uint *gmin) \n"
"{ \n"
" (void) atom_min(gmin, gmin[get_global_id(0)]); \n"
"}; \n";

int main(int argc, char ** argv)
{
 cl_platform_id platform;

 int dev, nw;
 cl_device_type devs[NDEVS] = { CL_DEVICE_TYPE_GPU };

 cl_uint *src_ptr;
 unsigned int num_src_items = 4096*4096;

 // 1. quick & dirty MWC random init of source buffer.
 // Random seed (portable).
 time_t ltime;
 time(<ime);

 src_ptr = (cl_uint *) malloc(num_src_items * sizeof(cl_uint));

 cl_uint a = (cl_uint) ltime, b = (cl_uint) ltime;
 cl_uint min = (cl_uint) -1;
 // Do serial computation of min() for result verification.
 for(int i=0; i < num_src_items; i++)
 {
 src_ptr[i] = (cl_uint) (b = (a * (b & 65535)) + (b >> 16));
 min = src_ptr[i] < min ? src_ptr[i] : min;
 }

 // Get a platform.
 clGetPlatformIDs(1, &platform, NULL);

 // 3. Iterate over devices.
 for(dev=0; dev < NDEVS; dev++)
 {
 cl_device_id device;
 cl_context context;
 cl_command_queue queue;
 cl_program program;
 cl_kernel minp;
 cl_kernel reduce;

 cl_mem src_buf;
 cl_mem dst_buf;
 cl_mem dbg_buf;

 cl_uint *dst_ptr,
 *dbg_ptr;

 printf("\n%s: ", dev == 0 ? "CPU" : "GPU");
 // Find the device.
 clGetDeviceIDs(platform,
 devs[dev],
 1,
 &device,
 NULL);

 // 4. Compute work sizes.
 cl_uint compute_units;
 size_t global_work_size;
 size_t local_work_size;
 size_t num_groups;

 clGetDeviceInfo(device,
 CL_DEVICE_MAX_COMPUTE_UNITS,
 sizeof(cl_uint),
 &compute_units,
 NULL);

 if(devs[dev] == CL_DEVICE_TYPE_CPU)
 {
 global_work_size = compute_units * 1; // 1 thread per core
 local_work_size = 1;
 }
 else
 {
 cl_uint ws = 64;
 global_work_size = compute_units * 7 * ws; // 7 wavefronts per SIMD
 while((num_src_items / 4) % global_work_size != 0)
 global_work_size += ws;
 local_work_size = ws;
 }
 num_groups = global_work_size / local_work_size;
 // Create a context and command queue on that device.
 context = clCreateContext(NULL,
 1,
 &device,
 NULL, NULL, NULL);

 queue = clCreateCommandQueue(context,
 device,
 0,
 NULL);
 // Minimal error check.
 if(queue == NULL)
 {
 printf("Compute device setup failed\n");
 return(-1);
 }

 // Perform runtime source compilation, and obtain kernel entry point.
 program = clCreateProgramWithSource(context,
 1,
 &kernel_source,
 NULL, NULL);

 //Tell compiler to dump intermediate .il and .isa GPU files.
 cl_int ret = clBuildProgram(program,
 1,
 &device,
 "-save-temps",
 NULL, NULL);

 // 5. Print compiler error messages
 if(ret != CL_SUCCESS)
 {
 printf("clBuildProgram failed: %d\n", ret);

 char buf[0x10000];

 clGetProgramBuildInfo(program,
 device,
 CL_PROGRAM_BUILD_LOG,
 0x10000,
 buf,
 NULL);
 printf("\n%s\n", buf);
 return(-1);
 }

 minp = clCreateKernel(program, "minp", NULL);
 reduce = clCreateKernel(program, "reduce", NULL);
 // Create input, output and debug buffers.
 src_buf = clCreateBuffer(context,
 CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 num_src_items * sizeof(cl_uint),
 src_ptr,
 NULL);

 dst_buf = clCreateBuffer(context,
 CL_MEM_READ_WRITE,
 num_groups * sizeof(cl_uint),
 NULL, NULL);

 dbg_buf = clCreateBuffer(context,
 CL_MEM_WRITE_ONLY,
 global_work_size * sizeof(cl_uint),
 NULL, NULL);

 clSetKernelArg(minp, 0, sizeof(void *), (void*) &src_buf);
 clSetKernelArg(minp, 1, sizeof(void *), (void*) &dst_buf);
 clSetKernelArg(minp, 2, 1*sizeof(cl_uint), (void*) NULL);
 clSetKernelArg(minp, 3, sizeof(void *), (void*) &dbg_buf);
 clSetKernelArg(minp, 4, sizeof(num_src_items), (void*) &num_src_items);
 clSetKernelArg(minp, 5, sizeof(dev), (void*) &dev);

 clSetKernelArg(reduce, 0, sizeof(void *), (void*) &src_buf);
 clSetKernelArg(reduce, 1, sizeof(void *), (void*) &dst_buf);

 CPerfCounter t;
 t.Reset();
 t.Start();

 // 6. Main timing loop.
 #define NLOOPS 500

 cl_event ev;
 int nloops = NLOOPS;

 while(nloops--)
 {
 clEnqueueNDRangeKernel(queue,
 minp,
 1,
 NULL,
 &global_work_size,
 &local_work_size,
 0,
 NULL,
 &ev);

 clEnqueueNDRangeKernel(queue,
 reduce,
 1,
 NULL,
 &num_groups,
 NULL,
 1,
 &ev,
 NULL);
 }

 clFinish(queue);
 t.Stop();

 printf("B/W %.2f GB/sec, ", ((float) num_src_items * sizeof(cl_uint) * NLOOPS) / t.GetElapsedTime() / 1e9);

 // 7. Look at the results via synchronous buffer map.
 dst_ptr = (cl_uint *) clEnqueueMapBuffer(queue,
 dst_buf,
 CL_TRUE,
 CL_MAP_READ,
 0,
 num_groups * sizeof(cl_uint),
 0,
 NULL, NULL, NULL);

 dbg_ptr = (cl_uint *) clEnqueueMapBuffer(queue,
 dbg_buf,
 CL_TRUE,
 CL_MAP_READ,
 0,
 global_work_size * sizeof(cl_uint),
 0,
 NULL, NULL, NULL);

 // 8. Print some debug info.
 printf("%d groups, %d threads, count %d, stride %d\n", dbg_ptr[0], dbg_ptr[1], dbg_ptr[2], dbg_ptr[3]);

 if(dst_ptr[0] == min)
 printf("result correct\n");
 else
 printf("result INcorrect\n");
 }

 printf("\n");
 return 0;
}

AMD Implementation

The AMD ROCm Implementation of OpenCL

ROCm OpenCL runtime harnesses the tremendous processing power of GPUs for high- performance, data-parallel computing in a wide range of applications. The AMD system includes a software stack, AMD GPUs, and AMD multicore CPUs.

Figure 2.1 illustrates the relationship of the ROCm OpenCL components.

[image: ../_images/2.11.png]
The AMD ROCm software stack provides end-users and developers with a complete, flexible suite of tools to leverage the processing power in AMD GPUs. AMD ROCm software embraces open-systems, open-platform standards. The AMD Accelerated Parallel Processing Technology open platform strategy enables AMD technology partners to develop and provide third-party development tools.

The software includes the following components:

	OpenCL compiler and runtime

	Debugging and Performance Profiling Tools – AMD CodeXL.

	Performance Libraries – clMath and other OpenCL accelerated libraries for optimized NDRange-specific algorithms.

The latest generations of AMD GPUs use unified shader architectures capable of running different kernel types interleaved on the same hardware.Programmable GPU compute devices execute various user-developed programs,known to graphics programmers as shaders and to compute programmers as kernels. These GPU compute devices can execute non-graphics functions using a data-parallel programming model that maps executions onto compute units. Each compute unit contains one (pre-GCN devices) or more (GCN devices) vector (SIMD) units. In this programming model, known as AMD Accelerated Parallel Processing Technology, arrays of input data elements stored in memory are accessed by a number of compute units.

Each instance of a kernel running on a compute unit is called a work-item. Work- items are mapped to an n-dimensional index space, called an NDRange.

The GPU schedules the range of work-items onto a group of processing elements, until all work-items have been processed. Subsequent kernels then can be executed, until the application completes. A simplified view of the AMD Accelerated Parallel Processing Technology programming model and the mapping of work-items to processing elements is shown in Figure 2.2.

[image: ../_images/2.21.png]
Work-groups are assigned to CUs. All work-items of a work-group can be processed only by the processing elements of a single CU. A processing element can process only one work-item at a time; however, a CU can process multiple work-groups.

Note that in OpenCL 2.0, the work-groups are not required to divide evenly into the NDRange.

OpenCL maps the total number of work-items to be launched onto an n- dimensional grid (ND-Range). The developer can specify how to divide these items into work-groups. AMD GPUs execute on wavefronts (groups of work-items executed in lock-step in a compute unit); there is an integer number of wavefronts in each work-group. Thus, as shown in Figure 2.3, hardware that schedules work-items for execution in the AMD Accelerated Parallel Processing Technology environment includes the intermediate step of specifying wavefronts within a work-group. This permits achieving maximum performance on AMD GPUs. For a more detailed discussion of wavefronts.

[image: ../_images/2.31.png]

Work-Item Processing

All processing elements within a vector unit execute the same instruction in each cycle. For a typical instruction, 16 processing elements execute one instruction for 64 work items over 4 cycles. The block of work-items that are executed together is called a wavefront. For example, on the AMD Radeon™ HD 290X

compute device, the 16 processing elements within each vector unit execute the same instruction for four cycles, which effectively appears as a 64-wide compute unit in execution width.

The size of wavefronts can differ on different GPU compute devices. For example, some of the low-end and older GPUs, such as the AMD Radeon™ HD 54XX series graphics cards, have a wavefront size of 32 work-items. Higher-end and newer AMD GPUs have a wavefront size of 64 work-items.

Compute units operate independently of each other, so it is possible for different compute units to execute different instructions. It is also possible for different vector units within a compute unit to execute different instructions.

Before discussing flow control, it is necessary to clarify the relationship of a wavefront to a work-group. If a user defines a work-group, it consists of one or more wavefronts. A wavefront is a hardware thread with its own program counter; it is capable of following control flow independently of other wavefronts. A wavefront consists of 64 or fewer work-items. The mapping is based on a linear work-item order. On a device with a wavefront size of 64, work-items 0-63 map to wavefront 0, work items 64-127 map to wavefront 1, etc. For optimum hardware usage, an integer multiple of 64 work-items is recommended.

work-Item Creation

For each work-group, the GPU compute device spawns the required number of wavefronts on a single compute unit. If there are non-active work-items within a wavefront, the processing elements that would have been mapped to those work- items are idle. An example is a work-group that is a non-multiple of a wavefront size.

Flow Control

Flow control, such as branching, is achieved by combining all necessary paths as a wavefront. If work-items within a wavefront diverge, all paths are executed serially. For example, if a work-item contains a branch with two paths, the wavefront first executes one path, then the second path. The total time to execute the branch is the sum of each path time. An important point is that even if only one work-item in a wavefront diverges, the rest of the work-items in the wavefront execute the branch. The number of work-items that must be executed during a branch is called the branch granularity. On AMD hardware, the branch granularity is the same as the number of work-items in a wavefront.

Masking of wavefronts is effected by constructs such as:

if(x)
{
. //items within these braces = A
.
.
}
else
{
. //items within these braces = B
.

.
}

The wavefront mask is set true for lanes (elements/items) in which x is true, then execute A. The mask then is inverted, and B is executed.

Example 1: If two branches, A and B, take the same amount of time t to execute over a wavefront, the total time of execution, if any work-item diverges, is 2t.

Loops execute in a similar fashion, where the wavefront occupies a compute unit as long as there is at least one work-item in the wavefront still being processed. Thus, the total execution time for the wavefront is determined by the work-item with the longest execution time.

Example 2: If t is the time it takes to execute a single iteration of a loop; and within a wavefront all work-items execute the loop one time, except for a single work-item that executes the loop 100 times, the time it takes to execute that entire wavefront is 100t.

Hardware Overview for GCN Devices

A general OpenCL device comprises compute units (CUs), each of which has sub-modules that ultimately have ALUs. A work-item (or SPMD kernel instance)
executes on an ALU, as shown in Figure 2.4).

[image: ../_images/2.41.png]
In GCN devices, each CU includes one Scalar Unit and four Vector (SIMD) units, each of which contains an array of 16 processing elements (PEs). Each PE contains one ALU. Each SIMD unit simultaneously executes a single operation across 16 work items, but each can be working on a separate wavefront.

For example, for the AMD Radeon™ HD 79XX devices each of the 32 CUs has one Scalar Unit and four Vector Units. Figure 2.5 shows only two compute engines/command processors of the array that comprises the compute device of
the AMD Radeon™ HD 79XX family.

[image: ../_images/2.51.png]
In Figure 2.5, there are two command processors, which can process two command queues concurrently. The Scalar Unit, Vector Unit, Level 1 data cache (L1), and Local Data Share (LDS) are the components of one compute unit, of which there are 32. The scalar (SC) cache is the scalar unit data cache, and the Level 2 cache consists of instructions and data.

On GCN devices, the instruction stream contains both scalar and vector instructions. On each cycle, it selects a scalar instruction and a vector instruction (as well as a memory operation and a branch operation, if available); it issues one to the scalar unit, the other to the vector unit; this takes four cycles to issue over the four vector cores (the same four cycles over which the 16 units execute 64 work-items).

The Asynchronous Compute Engines (ACEs) manage the CUs; a graphics command processor handles graphics shaders and fixed-function hardware.

Key differences between pre-GCN and GCN devices

In pre-GCN devices (for a hardware overview, see Appendix D, “Hardware overview of pre-GCN devices.”), each compute unit consists of a single vector unit, each containing up to 16 processing elements. Each processing element, which contains 4 or 5 ALUs, could execute bundles of 4 or 5 independent instructions co-issued in a VLIW (Very Long Instruction Word) format. All the processing elements within a vector unit execute a single wavefront (a group of
64 work items). If operations within a wavefront contain dependencies, they cannot be scheduled in the same clock cycle, leaving some ALUs un-utilized. In such cases, some processing elements (and hence, vector units) remain under- utilized.

In GCN devices, the CUs are arranged in four vector unit arrays consisting of 16 processing elements each. Each of these arrays executes a single instruction across each lane for each block of 16 work-items. That instruction is repeated over four cycles to make the 64-element vector called a wavefront.

Thus, in GCN devices, the four vector units within a CU can operate on four different wavefronts. If operations within a wavefront include dependencies, independent operations from different wavefronts can be selected to be assigned to a single vector unit to be executed in parallel every cycle.

GCN-based GPUs have 32KB of dedicated L1 instruction cache. A single instruction cache instance serves up to 4 CUs (depending upon the architecture family and device), with each CU holding up to 40 wavefronts. As each wavefront includes its own program counter, a single instruction cache unit may serve up to 160 wavefronts with each executing a different instruction in the program.

Note: If the program is larger than 32KB, the L1-L2 cache trashing can inhibit performance. The size of the ISA can be determined by using the CodeXL analysis mode, under the Statistics tab. For information about how to use CodeXL, see Chapter 4.

Key differences between Southern Islands, Sea Islands, and Volcanic Islands families

The number of Asynchronous Compute Engines (ACEs) and CUs in an AMD GCN family GPU, and the way they are structured, vary with the GCN device family, as well as with the device designations within the family.

The ACEs are responsible for managing the CUs and for scheduling and resource allocation of the compute tasks (but not of the graphics shader tasks). The ACEs operate independently; the greater the number of ACEs, the greater is the performance. Each ACE fetches commands from cache or memory, and

creates task queues to be scheduled for execution on the CUs depending on their priority and on the availability of resources.

Each ACE contains up to eight hardware queues and, together with the graphics command processor, allows up to nine independent vector instructions to be executed per clock cycle. Some of these queues are not available for use by OpenCL.

Devices in the Southern Islands families typically have two ACEs. The ACE engines on the Southern Islands families are single-threaded, which means that they contain two hardware queues.

Devices in the Sea Islands and Volcanic Islands families contain between four and eight ACEs, and are multi-threaded (thereby supporting more hardware queues) so they offer more performance. For example, the AMD Radeon™ R9
290X devices, in the VI family contain 8 ACEs and 44 CUs.

A note on hardware queues

A hardware queue can be thought of as a GPU entry point. The GPU can process kernels from several compute queues concurrently. All hardware queues ultimately share the same compute cores. The use of multiple hardware queues is beneficial when launching small kernels that do not fully saturate the GPU. For example, the AMD Radeon™ HD 290X compute device can execute up to
112,640 threads concurrently. The GPU can execute two kernels each spawning
56320 threads (assuming fully occupancy) twice as fast if launched concurrently through two hardware queues than serially through a single hardware queue.

An OpenCL queue is assigned to a hardware queue on creation time. The hardware queue is selected according to the creation order of the OpenCL queue within an OpenCL context. If the GPU supports K hardware queues, the Nth created OpenCL queue will be assigned to the (N mod K) hardware queue. The number of compute queues can be limited by specifying the GPU_NUM_COMPUTE_RINGS environment variable.

Communication Between Host and the GPU Compute Device

The following subsections discuss the communication between the host (CPU) and the GPU in a compute device. This includes an overview of the PCIe bus, processing API calls, and DMA transfers.

Communication and data transfers between the system and the GPU compute device occur on the PCIe channel. AMD graphics cards use PCIe 2.0 x16 (second generation, 16 lanes). Generation 1 x16 has a theoretical maximum
throughput of 4 GBps in each direction. Generation 2 x16 doubles the throughput to 8 GBps in each direction. Southern Islands AMD GPUs support PCIe 3.0 with a theoretical peak performance of 16 GBps. Actual transfer performance is CPU and chipset dependent.

Transfers from the system to the GPU compute device are done either by the
command processor or by the DMA engine. The GPU compute device also can

read and write system memory directly from the compute unit through kernel instructions over the PCIe bus.

Processing API Calls: The Command Processor

The host application does not interact with the GPU compute device directly. A driver layer translates and issues commands to the hardware on behalf of the application.

Most commands to the GPU compute device are buffered in a command queue on the host side. The queue of commands is sent to, and processed by, the GPU compute device. There is no guarantee as to when commands from the command queue are executed, only that they are executed in order.

Command queue elements include:

	Kernel execution calls

	Kernels

	Constants

	Transfers between device and host

DMA Transfers

Certain memory transfer calls use the DMA engine. To properly leverage the DMA engine, make the associated OpenCL data transfer calls. See the AMD OpenCL Optimization Reference Guide for more information.

Direct Memory Access (DMA) memory transfers can be executed separately from the command queue using the DMA engine on the GPU compute device. DMA calls are executed immediately; and the order of DMA calls and command queue flushes is guaranteed.

DMA transfers can occur asynchronously. This means that a DMA transfer is executed concurrently with other system or GPU compute operations when there are no dependencies. However, data is not guaranteed to be ready until the DMA engine signals that the event or transfer is completed. The application can use OpenCL to query the hardware for DMA event completion. If used carefully, DMA transfers are another source of parallelization.

All GCN devices have two DMA engines that can perform bidirectional transfers over the PCIe bus with multiple queues created in consecutive order, since each DMA engine is assigned to an odd or an even queue correspondingly.

Masking Visible Devices

By default, OpenCL applications are exposed to all GPUs installed in the system;
this allows applications to use multiple GPUs to run the compute task.

In some cases, the user might want to mask the visibility of the GPUs seen by the OpenCL application. One example is to dedicate one GPU for regular

graphics operations and the other three (in a four-GPU system) for Compute. To do that, set the GPU_DEVICE_ORDINAL environment parameter, which is a comma- separated list variable:

	Under Windows: set GPU_DEVICE_ORDINAL=1,2,3

	Under Linux: export GPU_DEVICE_ORDINAL=1,2,3

Another example is a system with eight GPUs, where two distinct OpenCL applications are running at the same time. The administrator might want to set GPU_DEVICE_ORDINAL to 0,1,2,3 for the first application, and 4,5,6,7 for the second application; thus, partitioning the available GPUs so that both applications can run at the same time.

Wavefront Scheduling

GPU compute devices are very efficient at parallelizing large numbers of work- items in a manner transparent to the application. Each GPU compute device uses the large number of wavefronts to hide memory access latencies by having the resource scheduler switch the active wavefront in a given compute unit whenever the current wavefront is waiting for a memory access to complete. Hiding memory access latencies requires that each work-item contain a large number of ALU operations per memory load/store.

Figure 2.6 shows the timing of a simplified execution of wavefronts in a single compute unit. At time 0, the wavefronts are queued and waiting for execution. In this example, only four wavefronts (T0…T3) are scheduled for the compute unit. The hardware limit for the number of active wavefront is dependent on the resource usage (such as the number of active registers used) of the program being executed. An optimally programmed GPU compute device typically has many of active wavefronts.

[image: ../_images/2.6.png]
At runtime, wavefront T0 executes until cycle 20; at this time, a stall occurs due to a memory fetch request. The scheduler then begins execution of the next wavefront, T1. Wavefront T1 executes until it stalls or completes. New wavefronts execute, and the process continues until the available number of active wavefronts is reached. The scheduler then returns to the first wavefront, T0.

If the data wavefront T0 is waiting for has returned from memory, T0 continues execution. In the example in Figure 2.6, the data is ready, so T0 continues. Since there were enough wavefronts and processing element operations to cover the long memory latencies, the compute unit does not idle. This method of memory latency hiding helps the GPU compute device achieve maximum performance.

If none of T0 – T3 are runnable, the compute unit waits (stalls) until one of T0 – T3 is ready to execute. In the example shown in Figure 2.7, T0 is the first to continue execution.

[image: ../_images/2.7.png]

Building and Running OpenCL Programs

An OpenCL application consists of a host program (C/C++) and an optional kernel program (.cl). To compile an OpenCL application, the host program must be compiled; this can be done using an off-the-shelf compiler such as g++ or MSVC++. The application kernels are compiled into device-specific binaries using the OpenCL compiler.

Compiling the Host Program

In order to compile the host program, users must install the OpenCL Compiler and language runtime on the ROCm, On Ubuntu is rocm-opencl-dev which provides all the necessary OpenCL runtime headers and libraries required by the host compiler. If wish to support application build with the historical APPS SDK sets an environmental variable named AMDAPPSDKROOT to the path of the directory in which the ROCm OpenCL is installed. It should be /opt/rocm/opencl. The runtime headers and libraries are placed in the install directory under the “include” and “lib” sub-folders, respectively.

While building the host program, these headers and libraries must be included in the project by choosing the appropriate options for the targeted operating system, IDE, and compiler.

Compiling on Linux

To compile OpenCL applications on Linux, gcc or the Intel C compiler must be installed. There are two major steps: compiling and linking.

	Compile all the C++ files (Template.cpp), and get the object files.

64-bit object files on 64-bit system:

g++ -o Template.o -c Template.cpp -I$ROCMOPENCL/include

	Link all the object files generated in the previous step to the OpenCL library and create an executable.

For linking to a 64-bit library:

g++ -o Template Template.o -lOpenCL -L$ROCMOPENCL/lib/x86_64

Compiling the device programs

OpenCL device programs that will be executed in parallel by each work-item are expressed in terms of kernel functions. The device programs may also include other helper functions (which cannot be invoked by the host) in addition to the kernels.

The device programs are written in the OpenCL C language. The device programs must be built for each target device before they can be executed on the OpenCL device. As a result, the same source program may have multiple device-specific binaries. To manage this conveniently, the OpenCL runtime provides a container-like object, called a program object, that contains the source code as well as the device-specific binaries of all the kernels and helper functions that are defined in a program scope. Compiling the application kernels requires first creating program objects.

Creating OpenCL program objects

In general, OpenCL program objects are created in two ways:

	From the OpenCL C source

	From a pre-built binary (either device-specific or device-agnostic)

Creating program objects from the OpenCL C source

In this method, the OpenCL C source is passed to the
clCreateProgramWithSource runtime API (for more details, see the OpenCL

specification) as a text buffer to create the program object. If the source code is in an external file, then it must be read and placed in a text buffer before passing the buffer to the API.

Note: Most of the examples in this chapter are shown using runtime C APIs. In order to use the C++ wrapper APIs, one must map (a trivial step) the C APIs to corresponding C++ wrapper APIs. For cleanness, error checking is not shown.

Example creation of program objects from an inline text string :

const char *source =
" kernel void myKernel(global uint *src, global uint *dst)\n"
"{ \n"
" uint gid = get_global_id(0); \n"
" dst[gid] = src[gid] * 10; \n"
"} \n";

cl_program program = clCreateProgramWithSource(context, 1,
&source, NULL, NULL);

Example creation of program objects from an external file :

std::ifstream f("my_kernel.cl");
std::stringstream st;
st << f.rdbuf();
std::string ss = st.str();
const char* source = ss.c_str();
const size_t length = ss.length();

cl_program program = clCreateProgramWithSource(context, 1, &source,
&length, NULL)

Creating program objects from a pre-built binary

OpenCL allows the creation of program object from binaries previously built for one or more specific device(s) or from intermediate device-agnostic binaries (using, for example, the Standard Portable Intermediate Representation (SPIR) format). Such binaries serve two useful purposes:

	Software vendors can protect their IP by supplying the OpenCL library as a collection of pre-built binary programs instead of as raw source code.

	The consumer of the OpenCL library can create new program objects using those binaries for use with their own applications.

In this method, the OpenCL binary is passed to the binaries argument of the clCreateProgramWithBinary runtime API (for more details, see the OpenCL specification). If the binary program code is in a file, the binary must be loaded from the file, the content of the file must be placed in a character buffer, and the resulting buffer must be passed to the clCreateProgramWithBinary API.

Building the program executable from the program objects

After the program object is created (from either sources or binaries), the program must be built for the targeted devices and the device executables must be generated. The executables are generated mainly in two ways:

	Building (compile and link) the program in a single step (using clBuildProgram)

	Compiling and linking the program separately (using clCompileProgram and clLinkProgram)

Building the program in a single step

The most common way of building program objects, this method uses a single API, clBuildProgram, for both compiling and linking the program. For additional details about this API, see the OpenCL specification.

Example(s):

	Suppose a program object has been created as follows:
	
cl_program program = clCreateProgramWithSource(context, 1, &source,&length, NULL);

Next, the program object can be built for all the devices in the context or for a list of selected devices.

	To build the program for all the devices, “NULL” must be passed against the target device list argument, as shown below:

clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

	To build for any particular GPU device or a list of devices :

int nDevices = 0;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 0, NULL, &nDevices);
cl_device_id * devices = malloc(nDevices * sizeof(cl_device_id));
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, nDevices * sizeof(cl_device_id), devices, NULL);

	To build for the nth GPU device in a list of devices:

clBuildProgram(program, 1, &devices[n], NULL, NULL, NULL);

	To build for the first n number of GPU devices

	::
	clBuildProgram(program, n, devices, NULL, NULL, NULL);

Build Options:

A list of options can be passed during program build to control each stage of the building process. The full list includes various categories of options, such as preprocessor, compiler, optimization, linker, and debugger. Some of them are standard (specified by Khronos); others are vendor-specific. For details about the standard options, see the clBuildProgram API’s description in the OpenCL specification.

For information about the frequently used standard build options, see “Supported Standard OpenCL Compiler Options”.

For information about AMD-developed supplemental options and environment variables, see “AMD-Developed Supplemental Compiler Options”.

Special note for building OpenCL 2.0 programs:

In order to build the program with OpenCL 2.0 support, the -cl-std=CL2.0 option must be specified; otherwise, the highest OpenCL C 1.x language version supported by each device is used when compiling the program for each device.

OpenCL 2.0 is backwards-compatible with OpenCL 1.X. Applications written on OpenCL 1.x should run on OpenCL 2.0 without requiring any changes to the application.

Special note for debugging:

OpenCL provides a way to check and query the compilation/linking errors that occur during program build. Various build parameters for each device in the program object can be queried by using the clGetProgramBuildInfo API. Retrieving the build, compile or link log by using the CL_PROGRAM_BUILD_LOG input parameter is a useful and frequently-used technique. For details, see the OpenCL specification.

Example:

cl_int err = clBuildProgram(program, 1, &device, NULL, NULL, NULL);
if (err != CL_SUCCESS)
{
 printf("clBuildProgram failed: %d\n", err);
 char log[0x10000];
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0x10000, log, NULL);
 printf("\n%s\n", log);
 return -1;
}

Compiling and linking the program separately

In this method, two separate steps are performed to generate the device executable. First, program objects are compiled by using the clCompileProgram API (for details, see the OpenCL specification); then the compiled programs are linked together to generate the final executable by using the clLinkProgram API (for details, see the OpenCL specification). This method is particularly useful– and is the only way–to link a previously-compiled program. By using this method, users can link their program objects with external program objects to build the final program object.

Both the APIs support similar options (depends on whether one is compiling or linking) as the options in clBuildProgram, to control the compiler and linker. For details about the options supported by each API, see the respective API description section in the OpenCL specification.

Compiling the program

The user must compile each program object separately. This step may be a little tedious if a source program depends on other header files. In that case, separate program objects corresponding each header file must be created first. Then, during compilation, those header programs must be passed as embedded headers along with the intended program object.

Example (derived from the OpenCL specification):

Consider the following program source:

#include <foo.h>
#include <mydir/myinc.h>
__kernel void image_filter (int n, int m, constant float *filter_weights,
 read_only image2d_t src_image, write_only image2d_t dst_image)
{
...
}

This kernel includes two headers, foo.h and mydir/myinc.h. So first create the program objects corresponding to each header as follows:

cl_program foo_pg = clCreateProgramWithSource(context, 1, &foo_header_src, NULL, &err);

cl_program myinc_pg = clCreateProgramWithSource(context, 1, &myinc_header_src, NULL, &err);

Suppose the program source described above is given by program_A and is loaded via clCreateProgramWithSource.

Now, these headers can be passed as embedded headers along with the program object

cl_program input_headers[2] = { foo_pg, myinc_pg };
char * input_header_names[2] = { “foo.h”, “mydir/myinc.h” };

clCompileProgram(program_A, 0, NULL, // num_devices & device_list
 NULL, // compile_options
 2, // num_input_headers
 input_headers,
 input_header_names,
 NULL, NULL); // pfn_notify & user_data

Linking the program

In this phase, multiple pre-compiled program objects are linked together to create a new program object that contains the final executable. The executable binary can be queried by using clGetProgramInfo and can be specified to clCreateProgramWithBinary, as shown earlier.

Example :

Assume there are two pre-compiled program objects, program_A and
program_B. These two can be linked together as follows:

cl_program program_list[] = { program_A, program_B};
cl_program program_final = clLinkProgram(context,
 0, NULL, // num_devices & device_list
 NULL, // compile_options
 2, // num_input_programs,
 program_list, // const cl_program
 *input_programs,

 user_data

 NULL, NULL, // pfn_notify &
 NULL); // errcode_ret

Supported Standard OpenCL Compiler Options

The frequently-used build options are:

	-I dir — Add the directory dir to the list of directories to be searched for header files. When parsing #include directives, the OpenCL compiler resolves relative paths using the current working directory of the application.

	-D name — Predefine name as a macro, with definition = 1. For -D name=definition, the contents of definition are tokenized and processed as if they appeared during the translation phase three in a #define directive. In particular, the definition is truncated by embedded newline characters.
-D options are processed in the order they are given in the options argument to clBuildProgram.

For additional build options, see the :ref:OpenCL specification.

AMD-Developed Supplemental Compiler Options

The following supported options are not part of the OpenCL specification:

	-g — This is an experimental feature that lets you use the GNU project debugger, GDB, to debug kernels on x86 CPUs running Linux or
cygwin/minGW under Windows. For more details, see Chapter 4, “Debugging and Profiling OpenCL.” This option does not affect the default optimization of the OpenCL code.

	-O0 — Specifies to the compiler not to optimize. This is equivalent to the OpenCL standard option -cl-opt-disable.

	-f[no-]bin-source — Does [not] generate OpenCL source in the .source section. For more information, see Appendix C, “OpenCL BinaryImage Format (BIF) v2.0.” by default, this option does NOT generate the source.

	-f[no-]bin-llvmir — Does [not] generate LLVM IR in the .llvmir section.
For more information, see Appendix C, “OpenCL Binary Image Format (BIF) v2.0.” By default, this option GENERATES the LLVM IR.

	-f[no-]bin-amdil — Does [not] generate AMD IL in the .amdil section. For more information, see Appendix C, “OpenCL Binary Image Format (BIF) v2.0.” By default, this option does NOT generate the AMD IL.

	-f[no-]bin-exe — Does [not] generate the executable (ISA) in the .text section. For more information, see Appendix C, “OpenCL Binary Image Format (BIF) v2.0.” By default, this option GENERATES the ISA.

	-f[no-]bin-hsail — Does [not] generate HSAIL/BRIG in the binary. By default, this option does NOT generate HSA IL/BRIG in the binary.

	-save-temps[=<prefix>] — This option dumps intermediate temporary files, such as IL and ISA code, for each OpenCL kernel. If <prefix> is not given, temporary files are saved in the default temporary directory (the current directory for Linux, C:Users <user>AppDataLocal for Windows). If <prefix> is given, those temporary files are saved with the given
<prefix>. If <prefix> is an absolute path prefix, such as
C:yourworkdirmydumpprefix, those temporaries are saved under C:yourworkdir, with mydumpprefix as prefix to all temporary names. For example,

-save-temps

under the default directory

_temp_nn_xxx_yyy.il, _temp_nn_xxx_yyy.isa

-save-temps=aaa

under the default directory

aaa_nn_xxx_yyy.il, aaa_nn_xxx_yyy.isa

-save-temps=C:youdirbbb

under C:youdir

bbb_nn_xxx_yyy.il, bbb_nn_xxx_yyy.isa

where xxx and yyy are the device name and kernel name for this build, respectively, and nn is an internal number to identify a build to avoid overriding temporary files. Note that this naming convention is subject to change.

To avoid source changes, there are two environment variables that can be used to change CL options during the runtime.

	AMD_OCL_BUILD_OPTIONS — Overrides the CL options specified in clBuildProgram().

	AMD_OCL_BUILD_OPTIONS_APPEND — Appends options to those specified in clBuildProgram().

Creating device-specific binaries

To generate pre-built device-specific binaries from the OpenCL C source or from other binaries (such as the SPIR binaries), certain add-on steps must be performed on the host side. The following is a typical sequence of steps if device- specific binaries are to be generated from the OpenCL C sources:

	Create the program object from OpenCL C source using clCreateProgramWithSource().

	Build (i.e. compile and link) the program object (for details, see the “Generating program executable” section).

	Read the device-specific binaries from the program object using clGetProgramInfo() as shown below:

//Get the number of devices attached with program object
cl_uint nDevices = 0;
clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES, sizeof(cl_uint), &nDevices, NULL);

//Get the Id of all the attached devices
cl_device_id *devices = new cl_device_id[nDevices]; clGetProgramInfo(program, CL_PROGRAM_DEVICES, sizeof(cl_device_id) * nDevices, devices, NULL);

// Get the sizes of all the binary objects
size_t *pgBinarySizes = new size_t[nDevices]; lGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t) * nDevices, pgBinarySizes, NULL);

// Allocate storage for each binary objects
unsigned char **pgBinaries = new unsigned char*[nDevices];
for (cl_uint i = 0; i < nDevices; i++)
{
 pgBinaries[i] = new unsigned char[pgBinarySizes[i]];
}

// Get all the binary objects
clGetProgramInfo(program, CL_PROGRAM_BINARIES, sizeof(unsigned char*) * nDevices, pgBinaries, NULL);

Now, save these device specific binaries into the files for future use.

Command execution flow

The runtime system assigns the work in the command queues to the underlying devices. Commands are placed into the queue using the clEnqueue commands shown in the listing below.

	OpenCL API Function

	Description

	clCreateCommandQueueWith

	Create a command queue for a specific device

	Properties (in OpenCL 2.0)

	(CPU,GPU.)

	clCreateCommandQueue()

	

	(in OpenCL 1.x; deprecated

	

	in OpenCL 2.0)

	

	clCreateKernel()

	Creates a kernel object from the program object.

	clCreateBuffer()

	Creates a buffer object for use via OpenCL kernels.

	clSetKernelArg()

	Set the kernel arguments, and enqueue the kernel in a

	clEnqueueNDRangeKernel()

	command queue.

	clEnqueueReadBuffer(),

	Enqueue a command in a command queue to read from a

	clEnqueueWriteBuffer()

	buffer object to host memory, or write to the buffer
object from host memory

	clEnqueueWaitForEvents()

	Wait for the specified events to complete.

The commands can be broadly classified into three categories.

	Kernel commands (for example, clEnqueueNDRangeKernel(), etc.),

	Memory commands (for example, clEnqueueReadBuffer(), etc.), and

	Event commands (for example, clEnqueueWaitForEvents(), etc.

As illustrated in Figure 3.1, the application can create multiple command queues (some in libraries, for different components of the application, etc.). These queues are mixed into one queue per device type. The figure shows command queues 1 and 3 merged into one CPU device queue (blue arrows); command queue 2 (and possibly others) are merged into the GPU device queue (red arrow). The device queue then schedules work onto the multiple compute resources present in the device. Here, K = kernel commands, M = memory commands, and E = event commands.

[image: ../_images/3.12.png]

Running the Program

Creating Kernel Objects

After a program is created and built, the next step is to run the kernel code on the devices. Running the kernel code requires the creation of one or more kernel objects for each kernel function (declared as “ kernel” or “kernel”). Kernel objects are run-time objects that bind the specific kernel function with the argument values to be used while executing it.

The clCreateKernel API creates a kernel object from a program object by using the name of the kernel function passed with program object. The arguments to kernel objects are set by the following APIs:

clSetKernelArg: used to set all the kernel arguments except SVM pointers.

clSetKernelArgSVMPointer: introduced in OpenCL2.0 as a new API to set
SVM pointers as the argument value.

Example:

A sample kernel definition is shown below.

kernel void sample_kernel(global const uchar *normalPtr, global uchar *svmPtr)
{
 …
}

To create a kernel object for the above kernel, you must pass the program object corresponding to the kernel to the clCreateKernel function. Assuming that the program object containing the above kernel function has been created and built as program, a kernel object for the above kernel would be created as follows:

cl_kernel kernel = clCreateKernel(program, "sample_kernel", NULL);

Suppose a buffer object and an SVM array have been created as follows:

cl_mem buffer = clCreateBuffer(context, CL_MEM_READ_ONLY, length * sizeof(cl_uchar), NULL, NULL);

cl_uchar *svmPtr = clSVMAlloc(context, CL_MEM_READ_WRITE, length * sizeof(cl_uchar), 0);

Now, to set the kernel arguments for the kernel object, the buffer (or SVM array in OpenCL 2.0) and the corresponding index must be passed to the kernel as first and second argument, respectively:

clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *)&buffer);

clSetKernelArgSVMPointer(kernel, 1, (void *)(svmPtr));

Creating a command queue

In order to run kernels or any other commands in a device, the host must create a command queue associated with the device and then en-queue the commands to that command queue. A command queue is associated with only one device; however, a device can have one or more command queues. The device executes the commands in-order or out-of-order depending on the mode set during command creation.

A command queue (host or device) is created by using the clCreateCommandQueueWithProperties API (clCreateCommandQueue in OpenCL 1.x, deprecated in OpenCL 2.0) by specifying the device ID of the targeted device within the context; and the queue properties, which specify the type of the queue (host or device) and the mode of command execution (in-order or out-of-order). For details, see the clCreateCommandQueueWithProperties or clCreateCommandQueue API in the OpenCL specification.

Example: To create a default host-side command queue

cl_queue_properties *props = NULL; cl_command_queue commandQueue = clCreateCommandQueueWithProperties(context, deviceId, props, &status);

Example: To create a host-side out-of-order command queue with profiling enabled

cl_queue_properties prop[] = { CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_PROFILING_ENABLE, 0};
cl_command_queue commandQueue = clCreateCommandQueueWithProperties(context, deviceId, props, &status);

Example: To create a default device-side out-of-order command queue with a specific size

cl_queue_properties prop[] = { CL_QUEUE_PROPERTIES, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE | CL_QUEUE_ON_DEVICE | CL_QUEUE_ON_DEVICE_DEFAULT, CL_QUEUE_SIZE, maxQueueSize, 0 };

cl_command_queue commandQueue = clCreateCommandQueueWithProperties(context, deviceId, props, &status);

Running a Kernel (from the host)

After a command queue has been created, the queue can be used to en-queue the commands to the associated device. The clEnqueueNDRangeKernel API en-queues a command to execute a kernel to a device. During the kernel en- queue, one must specify the total number of kernel instances or work-items to be executed by the device and the size of each work-group or block. This information is set by the work_dim, global_work_size, local_work_size and global_work_offset arguments. Like any other command en-queuing API, the clEnqueueNDRangeKernel returns an event object that conveys information about the en-queued kernel and can be used to synchronization other commands dependent on this kernel. In this API, a list of events that need to complete before this particular command can be executed can be specified.

For example, suppose a kernel object and command queue, named “kernel” and “commandQueue” respectively, have already been created. Suppose you want to launch the kernel over a 2-D dimensional space having total work-items
{1024x1024} and each block/group size {16x16}. To do this, the kernel can be en-queued into the command queue as follows:

cl_uint workDim = 2;

size_t globalWorkSize[] = {1024, 1024};

size_t localWorkSize[] = {16, 16};

clEnqueueNDRangeKernel(commandQueue, kernel, workDim, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

A note on thread safety

As per the OpenCL specification, all OpenCL API calls except clSetKernelArg and clSetKernelArgSVMPointer, are thread safe. clSetKernelArg and clSetKernelArgSVMPointer are safe to call from any host thread. As long as concurrent calls operate on different cl_kernel objects, clSetKernelArg and clSetKernelArgSVMPointer are also safe to call re-entrantly. However, if clSetKernelArg or clSetKernelArgSVMPointer are called from multiple host threads on the same cl_kernel object at the same time, the behavior of the cl_kernel object is undefined.

For information about additional limitations, see the OpenCL specification.

Toolchain considerations

The compiler tool-chain provides a common framework for both CPUs and GPUs, sharing the front-end and some high-level compiler transformations. The back-ends are optimized for the device type (CPU or GPU). The kernels are compiled by the OpenCL compiler to either CPU binaries or GPU binaries, depending on the target device.

For CPU processing, the OpenCL runtime uses the LLVM AS to generate x86 binaries. The OpenCL runtime automatically determines the number of processing elements, or cores, present in the CPU and distributes the OpenCL kernel between them.

For GPU processing, the OpenCL compiler generates an intermediate representation, called AMDIL or HSAIL, depending on whether the OpenCL 1.2 or OpenCL 2.0 compile-with flag is specified. The OpenCL Runtime layer links the needed libraries and passes the complete IL to the Shader compiler for compilation to GPU-specific binaries.

Profiling OpenCL

This chapter discusses how to profile OpenCL programs running on AMD GPU and CPU compute devices. The preferred method is to debug with AMD CodeXL, as described in “AMD CodeXL GPU Debugger.” The second method, described in “Debugging CPU Kernels with GDB,” is to use experimental features provided by ROCm (GNU project debugger, GDB) to debug kernels on x86 CPUs running Linux.

Downloading and installing CodeXL and Radeon Compute Profiler

Download the latest version of CodeXL from the CodeXL home page:
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/

Radeon Compute Profiler is a performance analysis tool that gathers data from the API run-time and GPU for OpenCL™ and ROCm/HSA applications

RCP is installed when you you use rocm-dev upon instal of the driver. You can access the source code at https://github.com/GPUOpen-Tools/RCP

Installing CodeXL on Ubuntu and other Debian based Linux distributions

Either install the tar archive, or install the .deb package.

Tar archive:

	Download the AMD_CodeXL_Linux*.tar.gz 64-bit Linux tar package at https://github.com/GPUOpen-Tools/CodeXL/releases

	Run:
$ tar –xvzf CodeXL_Linux*.tar.gz

Debian package :

	Download the amdcodexl-*.deb 64-bit Linux Debian package.

	Run: ``$ sudo dpkg -i amdcodexl_x.x.x-1_amd64.deb ``

	Run: $ sudo apt-get -f install

Or build the project from source code https://github.com/GPUOpen-Tools/CodeXL

Using CodeXL for profiling

Two modes in CodeXL are particularly useful for profiling:

	GPU Profile Mode

	Analyze Mode

GPU Profile Mode

The GPU Profile Mode helps developers analyze and profile OpenCL™ host and device code. Developers can profile the entire application or only the kernels by using one of the following modes:

	Entire application profile: Collect application trace mode

	Kernel profile: Collect GPU performance counter mode

GPU Profile views:

While running your application in the GPU Profile mode, CodeXL collects valuable information, which is summarized in different views:

	API trace: View API calls with inputs and outputs View API input arguments and output results Find API hotspots
Determine top ten data transfer and kernel execution operations
Identify failed API calls, resource leaks and best practices

[image: ../_images/4.2.png]

	Timeline visualization: Visualize host and device execution in a timeline chart

View number of OpenCL™ contexts and command queues created and the relationships between these items

View data transfer operations and kernel executions on the device

Determine proper synchronization and load balancing

[image: ../_images/4.3.png]

	Warnings/Errors: View performance suggestions

Includes a helpful list of best practices

Includes recommendations to improve program performance

	Summary pages: Find top bottlenecks

I/O bound

Compute bound

[image: ../_images/4.4.png]

	Kernel occupancy: Estimate OpenCL™ kernel occupancy for AMD APUs and GPUs

Visual indication of the limiting kernel resources for number of wavefronts in flight

View the maximum number of wavefronts in flight limited by

–Work group size

–Number of allocated scalar or vector registers

–Amount of allocated LDS

–View the maximum resource limit for the GPU device

[image: ../_images/4.5.png]

	performance counter: view kernel performance bottlenecks

[image: ../_images/4.6.png]

Analyze Mode

The Analyze Mode provides a nice way to begin writing your kernel and to compile it to any supported device without the need to have the actual device installed on your machine. Upon successful compilation, the Statistics View can be used to gather useful statistics regarding the GPU usage of kernels.

The Analyze Mode allows a user to do the following:

	
	Edit your OpenCL™ kernel inside CodeXL editor
	Create a new file
Drag and drop an existing OpenCL™ kernel file

	
	Highlight keywords
	The CodeXL editor highlights keywords for easier editing

[image: ../_images/4.7.png]

	Choose your target device
The Analyze Mode enables to compile to any supported device target, without the need to install the device

	Fix OpenCL™ compiler errors and warnings in which the kernel file is the only input
View OpenCL compilation errors and fix immediately.

	Edit OpenCL™ Compiler options with an easy options tab
CodeXL summarizes all the OpenCL options so that it is easy to use them.

[image: ../_images/4.8.png]

	View IL and ISA compilation results

[image: ../_images/4.9.png]

	Statistics view: AMD Compiler gathers statistics for the use of GPU resources
Better understanding this data helps tune your kernel for better performance even before running on real GPU
The Statistics tab helps detect where bottlenecks are even before running your application

[image: ../_images/4.10.png]

OpenCL Static C++ Programming Language

Overview

This extension defines the OpenCL Static C++ kernel language, which is a form of the ISO/IEC Programming languages C++ specification1. This language supports overloading and templates that can be resolved at compile time (hence
static), while restricting the use of language features that require dynamic/runtime resolving. The language also is extended to support most of the features described in Section 6 of the OpenCL 1.2 specification: new data types (vectors, images, samples, etc.), OpenCL 1.2 Built-in functions, and more.

Supported Features

The following list contains the major static C++ features supported by this extension.

	Kernel and function overloading.

	
	Inheritance:
	
– Strict inheritance.

– Friend classes.

– Multiple inheritance.

	
	Templates:
	
–Kernel templates.

–Member templates.

–Template default argument.

–Limited class templates (the virtual. keyword is not exposed).

–Partial template specialization

	Namespaces.

	References.

	this operator.

Note that supporting templates and overloading highly improve the efficiency of writing code: it allows developers to avoid replication of code when not necessary.
Using kernel template and kernel overloading requires support from the runtime API as well. AMD provides a simple extension to clCreateKernel, which enables the user to specify the desired kernel.

Unsupported Features

Static C++ features not supported by this extension are:

	Virtual functions (methods marked with the virtual keyword).

	Abstract classes (a class defined only of pure virtual functions).

	Dynamic memory allocation (non-placement new/delete support is not provided).

	Exceptions (no support for throw/catch).

	The :: operator.

	STL and other standard C++ libraries.

	The language specified in this extension can be easily expanded to support these features.

Relations with ISO/IEC C++

This extension focuses on documenting the differences between the OpenCL Static C++ kernel language and the ISO/IEC Programming languages C++ specification. Where possible, this extension leaves technical definitions to the ISO/IEC specification.

Additions and Changes to Section 5 - The OpenCL C Runtime

Additions and Changes to Section 5.7.1 - Creating Kernel Objects

In the static C++ kernel language, a kernel can be overloaded, templated, or both. The syntax explaining how to do it is defined in Sections 5.3.4 and 5.3.5, below.

To support these cases, the following error codes were added; these can be returned by clCreateKernel.

	CL_INVALID_KERNEL_TEMPLATE_TYPE_ARGUMENT_AMD if a kernel template argument is not a valid type (is neither a valid OpenCL C type or a user defined type in the same source file).

	CL_INVALID_KERNEL_TYPE_ARGUMENT_AMD if a kernel type argument, used for overloading resolution, is not a valid type (is neither a valid OpenCL C type or user-defined type in the same source program).

Passing Classes between Host and Device

This extension allows a developer to pass classes between the host and the device. The mechanism used to pass the class to the device and back are the existing buffer object APIs. The class that is passed maintains its state (public and private members), and the compiler implicitly changes the class to use either the host-side or device-side methods.

On the host side, the application creates the class and an equivalent memory object with the same size (using the sizeof function). It then can use the class methods to set or change values of the class members. When the class is ready, the application uses a standard buffer API to move the class to the device (either Unmap or Write), then sets the buffer object as the appropriate kernel argument and enqueues the kernel for execution. When the kernel finishes the execution, the application can map back (or read) the buffer object into the class and continue working on it.

Additions and Changes to Section 6 - The OpenCL 1.2 C Programming Language

Building C++ Kernels

To compile a program that contains static C++ kernels and functions, the application must add the following compile option to clBuildProgramWithSource:

-x language

where language is defined as one of the following:

	clc – the source language is considered to be OpenCL C, as defined in the
The OpenCL Programming Language version 1.21.

	clc++ - the source language is considered to be OpenCL C++, as defined in the following sections of the this document.

x clc++ is required if the input language is static C++. -x clc++ may not be used with -cl-std=CL2.0 and may only be used with
cl-std=CL1.2 if-cl-std=CLX.Y is used.

Classes and Derived Classes

OpenCL C is extended to support classes and derived classes as per Sections
9 and 10 of the static C++ language specification, with the limitation that virtual functions and abstracts classes are not supported. The virtual keyword is reserved, and the OpenCL C++ compiler is required to report a compile time
error if it is used in the input program.

This limitation restricts class definitions to be fully statically defined. There is nothing prohibiting a future version of OpenCL C++ from relaxing this restriction, pending performance implications.

A class definition can not contain any address space qualifier, either for members or for methods:

class myClass{
public:
 int myMethod1(){ return x;}
void private:
 __local myMethod2(){x = 0;}
 int x;
 local y; // illegal
};

The class invocation inside a kernel, however, can be either in private or local address space:

kernel void myKernel()
{
 myClass c1;
 local myClass c2;
 ...
}

Classes can be passed as arguments to kernels, by defining a buffer object at the size of the class, and using it. The device invokes the adequate device- specific methods, and accesses the class members passed from the host.

OpenCL C kernels (defined with __kernel) may not be applied to a class constructor, destructor, or method, except in the case that the class method is defined static and thus does not require object construction to be invoked.

Namespaces

Namespaces are support without change as per [1].

Overloading

As defined in the static C++ language specification, when two or more different declarations are specified for a single name in the same scope, that name is said to be overloaded. By extension, two declarations in the same scope that declare the same name but with different types are called overloaded declarations. Only kernel and function declarations can be overloaded, not object and type declarations.

As per of the static C++ language specification, a number of restrictions limit how functions can be overloaded; these restrictions are defined formally in Section 13 of the static C++ language specification. Note that kernels and functions cannot be overloaded by return type.

Also, the rules for well-formed programs as defined by Section 13 of the static C++ language specification are lifted to apply to both kernel and function declarations.

The overloading resolution is per Section 13.1 of the static C++ language specification, but extended to account for vector types. The algorithm for “best viable function”, Section 13.3.3 of the static C++ language specification, is extended for vector types by inducing a partial-ordering as a function of the partial-ordering of its elements. Following the existing rules for vector types in the OpenCL 1.2 specification, explicit conversion between vectors is not allowed. (This reduces the number of possible overloaded functions with respect to vectors, but this is not expected to be a particular burden to developers because explicit conversion can always be applied at the point of function evocation.)

For overloaded kernels, the following syntax is used as part of the kernel name:

foo(type1,…,typen)

where type1,…,typen must be either an OpenCL scalar or vector type, or can be a user-defined type that is allocated in the same source file as the kernel foo.

To allow overloaded kernels, use the following syntax:

__attribute ((mangled_name(myMangledName)))

The kernel mangled_name is used as a parameter to pass to the clCreateKernel() API. This mechanism is needed to allow overloaded kernels without changing the existing OpenCL kernel creation API.

Templates

OpenCL C++ provides unrestricted support for C++ templates, as defined in Section 14 of the static C++ language specification. The arguments to templates are extended to allow for all OpenCL base types, including vectors and pointers qualified with OpenCL C address spaces (i.e. global, local, private, and constant).

OpenCL C++ kernels (defined with kernel) can be templated and can be called from within an OpenCL C (C++) program or as an external entry point (from the host).

For kernel templates, the following syntax is used as part of the kernel name
(assuming a kernel called foo):

foo<type1,…,typen>

where type1,…,typen must be either OpenCL scalar or vector type, or can be a user-defined type that is allocated in the same source file as the kernel foo. In this case a kernel is both overloaded and templated:

foo<type1,…,typen>(typen+1,…,typem)

Note that here overloading resolution is done by first matching non-templated arguments in order of appearance in the definition, then substituting template parameters. This allows intermixing of template and non-template arguments in the signature.

To support template kernels, the same mechanism for kernel overloading is used. Use the following syntax:

attribute ((mangled_name(myMangledName)))

The kernel mangled_name is used as a parameter to passed to the clCreateKernel() API. This mechanism is needed to allow template kernels without changing the existing OpenCL kernel creation API. An implementation is not required to detect name collision with the user-specified kernel_mangled names involved.

Exceptions

Exceptions, as per Section 15 of the static C++ language specification, are not supported. The keywords try, catch, and throw are reserved, and the OpenCL C++ compiler must produce a static compile time error if they are used in the input program.

Libraries

Support for the general utilities library, as defined in Sections 20-21 of the static C++ language specification, is not provided. The standard static C++ libraries and STL library are not supported.

Dynamic Operation

Features related to dynamic operation are not supported:

	the virtual modifier.
OpenCL C++ prohibits the use of the virtual modifier. Thus, virtual member functions and virtual inheritance are not supported.

	Dynamic cast that requires runtime check.

	Dynamic storage allocation and deallocation.

OpenCL C Built-in Functions

All the all OpenCL 1.2 built-in functions are supported.
None of the new built-in functions added in OpenCL 2.0 are supported.

Examples

Passing a Class from the Host to the Device and Back

The class definition must be the same on the host code and the device code, besides the members’ type in the case of vectors. If the class includes vector data types, the definition must conform to the table that appears on Section 6.1.2

of the OpenCL Programming Specification 1.2, Corresponding API type for
OpenCL Language types.

Example Kernel Code

Class Test
{
 setX (int value);
 private:
 int x;
}

kernel foo (global Test* InClass, ...)
{
 if (get_global_id(0) == 0) InClass->setX(5);
}

Example Host Code

Class Test
{
setX (int value);
private:
int x;
}

MyFunc ()
{
 tempClass = new(Test);
 ... // Some OpenCL startup code – create context, queue, etc.
 cl_mem classObj = clCreateBuffer(context, CL_MEM_USE_HOST_PTR, sizeof(Test), &tempClass, event);
 clEnqueueMapBuffer(...,classObj,...);
 tempClass.setX(10);
 clEnqueueUnmapBuffer(...,classObj,...); //class is passed to the Device
 clEnqueueNDRange(..., fooKernel, ...);
 clEnqueueMapBuffer(...,classObj,...); //class is passed back to the Host
}

Kernel Overloading

This example shows how to define and use mangled_name for kernel overloading, and how to choose the right kernel from the host code. Assume the following kernels are defined:

__attribute__((mangled_name(testAddFloat4))) kernel void
testAdd(global float4 * src1, global float4 * src2, global float4 * dst)
{
 int tid = get_global_id(0);
 dst[tid] = src1[tid] + src2[tid];
}
__attribute ((mangled_name(testAddInt8))) kernel void testAdd(global int8 * src1, global int8 * src2, global int8 * dst)
{
 int tid = get_global_id(0);
 dst[tid] = src1[tid] + src2[tid];
}

The names testAddFloat4 and testAddInt8 are the external names for the two kernel instants. When calling clCreateKernel, passing one of these kernel names leads to the correct overloaded kernel.

Kernel Template

This example defines a kernel template, testAdd. It also defines two explicit instants of the kernel template, testAddFloat4 and testAddInt8. The names testAddFloat4 and testAddInt8 are the external names for the two kernel template instants that must be used as parameters when calling to the clCreateKernel API.

template <class T>
kernel void testAdd(global T * src1, global T * src2, global T * dst)
{
 int tid = get_global_id(0);
 dst[tid] = src1[tid] + src2[tid];
}

template attribute ((mangled_name(testAddFloat4))) kernel void testAdd(global float4 * src1, global float4 * src2, global float4 * dst);

template attribute ((mangled_name(testAddInt8))) kernel void testAdd(global int8 * src1, global int8 * src2, global int8 * dst);

OpenCL 2.0

Introduction

The OpenCL 2.0 specification is a significant evolution of OpenCL. It introduces features that allow closer collaboration between the host and OpenCL devices, such as Shared Virtual Memory (SVM) and device-side enqueue. Other features, such as pipes and new image-related additions provide effective ways of expressing heterogeneous programming constructs.

The following sections highlight the salient features of OpenCL 2.0 and provide usage guidelines.

	Shared Virtual Memory (SVM)

	Generic Address Space

	Device-side enqueue and workgroup/sub-group level functions

	Atomics and synchronization

	Pipes

	Program-scope global Variables

	Image Enhancements

	Non-uniform work group size

Sample code is included wherever appropriate; complete samples illustrating the
OpenCL 2.0 and 2.1 features are provided with the ROCm 2.4 OpenCL Language Runtime and Compiler .

For guidelines on how to migrate from OpenCL 1.2 to OpenCL 2.1 and for information about querying for image- and device-specific extensions, see Portability considerations.

For a list of the new and deprecated functions, “New and deprecated functions in OpenCL 2.0.”

Shared Virtual Memory (SVM)

Overview

In OpenCL 1.2, the host and OpenCL devices do not share the same virtual address space. Consequently, the host memory, the device memory, and communication between the host and the OpenCL devices, need to be explicitly specified and managed. Buffers may need to be copied over to the OpenCL

device memory for processing and copied back after processing. To access locations within a buffer (or regions within an image), the appropriate offsets must be passed to and from the OpenCL devices; a host memory pointer cannot be used on the OpenCL device.

In OpenCL 2.0, the host and OpenCL devices may share the same virtual address space. Buffers need not be copied over between devices. When the host and the OpenCL devices share the address space, communication between the host and the devices can occur via shared memory (pointers). This simplifies programming in heterogeneous contexts.

Support for SVM does not imply or require that the host and the OpenCL devices in an OpenCL 2.0 compliant architecture share actual physical memory. The OpenCL runtime manages the transfer of data between the host and the OpenCL devices; the process is transparent to the programmer, who sees a unified address space.

A caveat, however, concerns situations in which the host and the OpenCL devices access the same region of memory at the same time. It would be highly inefficient for the host and the OpenCL devices to have a consistent view of the memory for each load/store from any device/host. In general, the memory model of the language or architecture implementation determines how or when a memory location written by one thread or agent is visible to another. The memory model also determines to what extent the programmer can control the scope of such accesses.

OpenCL 2.0 adopts the memory model defined in C++11 with some extensions. The memory orders taken from C++11 are: “relaxed”, “acquire”, “release”, “acquire-release”, and “sequential consistent”.

OpenCL 2.0 introduces a new (C++11-based) set of atomic operations with specific memory-model based semantics. Atomic operations are indivisible: a thread or agent cannot see partial results. The atomic operations supported are:

	atomic_load/store

	atomic_init

	atomic_work_item_fence

	atomic_exchange

	atomic_compare_exchange

	atomic_fetch_<op>, where <op> is “add”, “sub”, “xor”, “and”, or “or”

OpenCL 2.0 introduces the concept of “memory scope”, which limits the extent to which atomic operations are visible. For example:

	“workgroup” scope means that the updates are to be visible only within the work group

	“device” scope means that the updates are to be visible only within the device (across workgroups within the device)

	“all-svm-devices” scope means the updates are available across devices (GPUs and the host/CPU).

OpenCL 2.0 further differentiates between coarse-grained SVM buffer sharing and fine-grained SVM (buffer and system) sharing mechanisms. These mechanisms define the granularity at which the SVM buffers are shared.

Updates to coarse-grained or fine-grained SVM are visible to other devices at synchronization points:

	For coarse-grained SVM, the synchronization points are: the mapping or un- mapping of the SVM memory and kernel launch or completion. This means that any updates are visible only at the end of the kernel or at the point of un-mapping the region of memory.
Coarse-grained buffer memory has a fixed virtual address for all the devices it is allocated on. In the AMD implementation, the physical memory is allocated on Device Memory.

	For fine-grained SVM, the synchronization points include those defined for coarse-grained SVM as well as atomic operations. This means that updates are visible at the level of atomic operations on the SVM buffer (for fine- grained buffer SVM, allocated with the CL_MEM_SVM_ATOMICS flag) or the SVM system, i.e. anywhere in the SVM (for fine-grained system SVM).
Fine-grained buffer memory has the same virtual address for all devices it is allocated on. In the AMD implementation, the physical memory is allocated on the Device-Visible Host Memory. If the fine grain buffer is allocated with the CL_MEM_SVM_ATOMICS flag, the memory will be GPU-CPU coherent.

The OpenCL 2.0 specification mandates coarse-grained SVM but not fine- grained SVM.

For details, see the OpenCL 2.0 specification.

Usage

In OpenCL 2.0, SVM buffers shared between the host and OpenCL devices are created by calling clSVMAlloc (or malloc/new in the case of fine-grain system support). The contents of such buffers may include pointers (into SVM buffers). Pointer-based data structures are especially useful in heterogenous programming scenarios. A typical scenario is as follows:

	Host creates SVM buffer(s) with clSVMAlloc

	Host maps the SVM buffer(s) with the blocking call clEnqueueSVMMap

	Host fills/updates the SVM buffer(s) with data structures, including pointers

	Host unmaps the SVM buffer(s) by using clEnqueueSVMUnmap

	Host enqueues processing kernels, passing SVM buffers to the kernels with calls to clSetKernelArgSVMPointer and/or clSetKernelExecInfo

	The OpenCL 2.0 device processes the structures in SVM buffer(s) including following/updating pointers.

	Repeat step 2 through 6 as necessary.

Note that the map and unmap operations in Steps 2 and 4 may be eliminated if the SVM buffers are created by using the CL_MEM_SVM_FINE_GRAIN_BUFFER flag, which may not be supported on all devices.

Coarse-grained memory

Some applications do not require fine-grained atomics to ensure that the SVM is consistent across devices after each read/write access. After the initial map/creation of the buffer, the GPU or any other devices typically read from memory. Even if the GPU or other devices write to memory, they may not require a consistent view of the memory.

For example, while searching in parallel on a binary search tree , coarse-grain buffers are usually sufficient. In general, coarse-grain buffers provide faster access compared to fine grain buffers as the memory is not required to be consistent across devices.

for (i = 0; i < keys_per_wi; i++) {
key = search_keys[init_id + i]; tmp_node = root;
 while (1) {
 if (!tmp_node || (tmp_node->value == key))
 break;
 tmp_node = (key < tmp_node->value) ? tmp_node->left : tmp_node->right;
 }
 found_nodes[init_id + i] = tmp_node;
}

In the above example, the binary search tree root is created using coarse- grain SVM on the host:

svmTreeBuf = clSVMAlloc(context, CL_MEM_READ_WRITE, numNodes*sizeof(node), 0);

svmSearchBuf = clSVMAlloc(context, CL_MEM_READ_WRITE, numKeys*sizeof(searchKey), 0);

The host creates two buffers, svmTreeBuf and svmSearchBuf, to hold the given tree and the search keys, respectively. After populating the given tree, these two buffers are passed to the kernel as parameters.

The next task is to create the tree and populate the svmTreeBuf using clSVMEnqueueMap and clSVMEnqueueUnmap. The host-code method, cpuCreateBinaryTree, illustrates this mechanism; note the calls to these map/unmap APIs.

The host then creates the keys to be searched in svmSearchBuf, as the cpuInitSearchKeys method illustrates. Next, it enqueues the kernel to search the binary tree for the given keys in the svmSearchBuf, and it sets the parameters to the kernel using clSetKernelArgSVMPointer:

int status = clSetKernelArgSVMPointer(sample_kernel, 0, (void *)(svmTreeBuf));

status = clSetKernelArgSVMPointer(sample_kernel, 1, (void *)(svmSearchBuf));

Note that the routine passes both svmTreeBuf and svmSearchBuf to the kernel as parameters. The following node structure demonstrates how to create the tree on the host using pointers to the left and right children:

typedef struct nodeStruct
{
 int value;
 struct nodeStruct* left;
 struct nodeStruct* right;
} node;

At this point, the advantage of using SVM becomes clear. Because the structure and its nodes are SVM memory, all the pointer values in these nodes are valid on the GPUs as well.

The kernel running on the OpenCL 2.0 device can directly search the tree as follows:

while(NULL != searchNode)
{
 if(currKey->key == searchNode->value)
 {
 /* rejoice on finding key */
 currKey->oclNode = searchNode;
 searchNode = NULL;
 }
 else if(currKey->key < searchNode->value)
 {
 /* move left */
 searchNode = searchNode->left;
 }
 else
 {
 /* move right */
 searchNode = searchNode->right;
 }
}

Each work item searches one element in svmSearchKeys in parallel and sets oclNode in the searchKey structure for that node.

Updates to the tree occur on the host (CPU) or on the GPU, but not on both simultaneously.

Because the tree is created on the host, and because OpenCL 1.2 disallows SVM, implementing these steps is difficult in OpenCL 1.2. In OpenCL 1.2, you must store the tree as arrays, copy the arrays to the GPU memory (specifying the appropriate offsets), and then copy the arrays back to the host.

The “data” is the tree created by the host as a coarse-grain buffer and is passed to the kernel as an input pointer.

[image: ../_images/6.1.png]
The above table shows the performance of the 2.0 implementation over the 1.2 implementation. As you can see, the GPU times mentioned under the OpenCL 1.2 column include the GPU run time, time to transfer the buffers from the host
to the device, the time required to transform the buffers into arrays and offsets, and the time required to transfer the buffers from the device back to the host, respectively.

Finally, more than 5M nodes could not be allocated in 1.2, as the allowable memory allocation was limited by the amount of memory that could be used on the device. Overall, the 2.0 version exceeds the 1.2 version in both performance and usability.

Generic Address Space

Overview

In OpenCL 1.2, all pointer parameters in a function definition must have address spaces associated with them. (The default address space is the private address space.) This necessitates creating an explicit version of the function for each desired address space.

OpenCL 2.0 introduces a new address space called the generic address space. Data cannot be stored in the generic address space, but a pointer to this space can reference data located in the private, local, or global address spaces. A function with generic pointer arguments may be called with pointers to any address space except the constant address space. Pointers that are declared without pointing to a named address space, point to the generic address space. However, such pointers must be associated with a named address space before they can be used. Functions may be written with arguments and return values that point to the generic address space, improving readability and programmability.

Usage

Generic example

In OpenCL 1.2, the developer needed to write three functions for a pointer p that can reference the local, private, or global address space:

void fooL (local int *p) { … }
void fooP (private int *p) { … }
void fooG (global int *p) { … }

In OpenCL 2.0, the developer needs to write only one function:

void foo (int *p)

As foo is a generic function, the compiler will accept calls to it with pointers to any address space except the constant address space.
Note The generic address space feature also allows one to define a pointer-based data structure that can apply to different address spaces. In OpenCL 1.2, different structure types must be defined for different address spaces; in OpenCL 2.0, a single structure suffices, as shown below.

struct node{
struct node* next; // generic address space pointer
} ;

OpenCL example

OpenCL sample, addMul2d is a generic function that uses generic address spaces for its operands. The function computes the convolution sum of two vectors. Two kernels compute the convolution: one uses data in the global address space (convolution2DUsingGlobal); the other uses the local address space (sepiaToning2DUsingLocal). The use of a single function improves the readability of the source.

float4 addMul2D (uchar4 *src, float *filter, int2 filterDim, int width)
{
 int i, j;
 float4 sum = (float4)(0);
 for(i = 0; i < (filterDim.y); i++)
 {
 for(j = 0; j < (filterDim.x); j++)
 {
 sum += (convert_float4(src[(i*width)+j]))*((float4)(filter[(i*filterDim.x) +j]));
 }
 }
 return sum;
}

Device-side enqueue and workgroup/sub-group level functions

Device-side enqueue

In OpenCL 1.2, a kernel cannot be enqueued from a currently running kernel. Enqueuing a kernel requires returning control to the host – potentially undermining performance.

OpenCL 2.0 allows kernels to enqueue other kernels. It provides a new construct, “clang blocks,” and new built-in functions that allow a parent kernel to queue child

kernels. In addition, OpenCL 2.0 deprecates the run-time API call clCreateCommandQueue, in favor of a new call, clCreateCommandQueueWithProperties, that can create device-side command queues.

Because it eliminates the overhead of returning kernel-launch control to the host, device-side enqueue can in many cases improve application performance. Some platforms (such as AMD’s) provide a standard way of enqueuing work to the hardware, which can further improve the performance. Device-side enqueue has been observed to reduce by the overhead of enqueuing by more than 3x in some cases.

Applications that are inherently recursive or that require additional processing can derive particular benefit. A classic example of the latter case is a tree search that discovers new nodes when traversing from the root to the leaves.

Device enqueue is also useful in determining when all the workgroups of the parent kernel have finished executing. Doing so in OpenCL 1.2 requires waiting on a completion event from that kernel. If the host needs the result of a computation, the routine may also need to wait on the host. Since OpenCL 2.0 allows the parent kernel to launch child kernels, it can eliminate this delay.

Workgroup/subgroup-level functions

OpenCL 2.0 introduces new built-in functions that operate at the workgroup or subgroup level. (A workgroup comprises one or more subgroups; the vendor handles the exact subgroup implementation.) For example, on AMD platforms, a subgroup maps to a “wavefront”. (For details, see the AMD OpenCL User Guide.)

Basically, a wavefront is an execution unit on the GPU. The OpenCL specification requires that all work items in a workgroup/subgroup executing the kernel handle these new functions; otherwise, their results may be undefined.

OpenCL 2.0 defines the following new built-in functions. Note that it also defines similar functions for subgroups under the cl_khr_subgroups extensions in CL_DEVICE_EXTENSIONS.

	work_group_all and work_group_any: These functions test a given predicate on all work items in the workgroup. The “all” version effectively performs an AND operation on all predicates and returns the result to all work items; similarly, the “any” operation performs an OR operation. Thus, using the “all” function returns true if the predicate is true for all work items; “any” returns true if it is true for at least one work item.

	work_group_broadcast: This function broadcasts a local value from each work item to all the others in the workgroup.

	work_group_reduce: Given an operation, work_group_reduce performs the reduction operation on all work items and returns the result. The operation can be min, max or add. For example, when called for an array using the add operation, the function returns the sum of the array elements.

	work_group_inclusive/exclusive_scan: The “scan” operation is a prefix operation, which performs a reduction up to the work-item ID. If it includes the current ID, the function applies an inclusive scan; otherwise, if it covers everything up to but not including the current work item, it applies an exclusive scan. Again, the operation can be min, max or add.

OpenCL 2.0 introduces a Khronos sub-group extension. Sub-groups are a logical abstraction of the hardware SIMD execution model akin to wavefronts, warps, or vectors and permit programming closer to the hardware in a vendor-independent manner. This extension includes a set of cross-sub-group built-in functions that
match the set of the cross-work-group built-in functions specified above.

Usage

Iterate until convergence

Suppose a complex process requires 4 kernels, A, B, C, and Check, and that these kernels must be run in order repeatedly until the Check kernel produces a value indicating that the process has converged.

In OpenCL 1.2, the host side code to perform this might be structured as follows:

	Enqueue kernel A

	Enqueue kernel B

	Enqueue kernel C

	Enqueue kernel Check

	Enqueue blocking map of Check result, e.g. with clEnqueueMapBuffer

	If Check result is not “Converged” then: Enqueue unmap of Check result

	Go to Step 1

However, with device-side enqueue in OpenCL 2.0, the Check kernel may be altered to enqueue blocks that carry out A, B, C, and Check when it detects that convergence has not been reached. This avoids a potentially costly interaction with the host on each iteration. Also, a slight modification of Check might allow the replacement of the entire loop above with a single host-side enqueue of the Check kernel.

Data-dependent refinement

Consider a search or computational process that works from coarse levels to increasingly finer levels that operates something like this:

	Search/Compute over current region

	Loop over sub-regions in current region

	
	If a sub-region is interesting:
	
	Refine the sub-region

	Apply a process to the refined sub-region

With OpenCL 1.2, this process would require a complex interaction between the host and the OpenCL device. The device-side kernel would need to somehow mark the sub-regions requiring further work, and the host side code would need to scan all of the sub-regions looking for the marked ones and then enqueue a kernel for each marked sub-region. This process is made more difficult by the lack of globally visible atomic operations in OpenCL 1.2.

However, with OpenCL 2.0, rather than just marking each interesting sub-region, the kernel can instead launch a new sub-kernel to process each marked sub- region. This significantly simplifies the code and improves efficiency due to the elimination of the interactions with, and dependence on, the host.

Binary search using device-side enqueueNote

The power of device enqueue is aptly illustrated in the example of binary search. To make the problem interesting, multiple keys in a sorted array will be searched for. The versions written for OpenCL 1.2 and 2.0 will also be compared with respect to programmability and performance.

A binary search looks for a given key in a sorted sequence by dividing the sequence in two equal parts and then recursively checking the part that contains the key. Because a typical GPU processes more than two work items, we divide the sequence into several parts (globalThreads), and each work item searches its part for the key. Furthermore, to make things more interesting, a large number of keys are searched. At every recursion stage, the amount of work varies with the chunk size. Thus, the algorithm is a good candidate for device- side enqueue.

The OpenCL 1.2 version of the code that performs binary search is as follows:

kernel void binarySearch_mulkeys(global int *keys, global uint
*input, const unsigned int numKeys, global int *output)
{
 int gid = get_global_id(0);
 int lBound = gid * 256;
 int uBound = lBound + 255;
 for(int i = 0; i < numKeys; i++)
 {
 if(keys[i] >= input[lBound] && keys[i] <=input[uBound])
 output[i]=lBound;
 }
}

The search for multiple keys is done sequentially, while the sorted array is divided into 256 sized chunks. The NDRange is the size of the array divided by the chunk size. Each work item checks whether the key is present in the range and if the key is present, updates the output array.

The issue with the above approach is that if the input array is very large, the number of work items (NDRange) would be very large. The array is not divided into smaller, more-manageable chunks.

In OpenCL 2.0, the device enqueue feature offers clear advantages in binary search performance.

The kernel is rewritten in OpenCL 2.0 to enqueue itself. (For full details, see the complete sample in the AMD Compute SDK.) Each work item in the binarySearch_device_enqueue_multiKeys_child kernel searches its portion of the sequence for the keys; if it finds one, it updates the array bounds for that key and also sets a variable, , to declare that another enqueue is necessary. If all work items report failure, the search stops and reports that the sequence contains no keys.

Finally, the kernel launches itself again using device enqueue, but with new bounds:

void (^binarySearch_device_enqueue_wrapper_blk)(void) =
 ^{binarySearch_device_enqueue_multiKeys_child(outputArray,
 sortedArray,
 subdivSize,
 globalLowerIndex,
 keys,nKeys,
 parentGlobalids,
 globalThreads);
 };
int err_ret = enqueue_kernel(defQ,CLK_ENQUEUE_FLAGS_WAIT_KERNEL,ndrange1,binarySe arch_device_enqueue_wrapper_blk);

It also checks for missing keys; absent any such keys, the search stops by forgoing further enqueues:

/**** Search continues only if at least one key is found in previous search ****/
int Flag = atomic_load_explicit(&,memory_order_seq_cst);
if(Flag == 0)
 return;

The advantage is that when the input array is large, the OpenCL 2.0 version divides the input array into 1024-sized chunks. The chunk in which the given key falls is found and another kernel is enqueued which further divides it into 1024- sized chunks, and so on. In OpenCL 1.2, as the whole array is taken as the NDRange, a huge number of work groups require processing.

The following figure shows how the OpenCL 2.0 version compares to the OpenCL 1.2 as the array increases beyond a certain size.

[image: ../_images/6.2.png]
Note: These numbers are for an A10-7850K (3.7GHz) processor with 4GB of RAM running Windows 8.1.

The above figure shows the performance benefit of using OpenCL 2.0 over the same sample using OpenCL 1.2. In OpenCL 2.0, the reduced number of kernel launches from the host allow superior performance. The kernel enqueues are much more efficient when done from the device.

Device enqueue is a powerful feature, as the examples above help show. It can be especially useful when repeatedly applying a set of kernels to a data structure in accordance with a condition. For applications with dynamic data parallelism at run time-such as when searching a large space for which the amount of parallelism or the problem size is statically unknown from the outset-device enqueue offers many benefits.

The above examples also exemplify the new workgroup and subgroup functions that OpenCL 2.0 introduces. These functions can efficiently perform computation at the workgroup level because they can map directly to hardware instructions at the workgroup/subgroup level.

Atomics and synchronization

Overview

In OpenCL 1.2, only work-items in the same workgroup can synchronize. OpenCL 2.0 introduces a new and detailed memory model which allows
developers to reason about the effects of their code on memory, and in particular understand whether atomic operations and fences used for synchronization ensure the visibility of variables being used to communicate between threads. In conjunction with the new memory model, OpenCL 2.0 adds a new set of atomic built-in functions and fences derived from C++11 (although the set of types is restricted), and also deprecates the 1.2 atomic built in functions and fences.

These additions allow synchronization between work-items in different work- groups, as well as fine-grained synchronization with the host using atomic operations on memory in fine-grained SVM buffers (allocated with the CL_MEM_SVM_ATOMICS flag) for fine-grained SVM system memory.

Usage

The following examples to illustrate the use of atomics are part of the AMD Compute SDK.

Atomic Loads/Stores

This sample illustrates atomic loads/stores with the use of memory orders.

The first step is to create this memory on the host:

buffer = (int *) clSVMAlloc(context, CL_MEM_SVM_FINE_GRAIN_BUFFER, (N+1)*sizeof(int), 4);

atomicBuffer = (int *) clSVMAlloc(context, CL_MEM_SVM_FINE_GRAIN_BUFFER | CL_MEM_SVM_ATOMICS, (N+1)*sizeof(int), 4);

Note the flags sent as parameters: CL_MEM_SVM_FINE_GRAIN_BUFFER and CL_MEM_SVM_ATOMICS. The following kernel runs on all work items in parallel. It will atomically load atomicBuffer[0], check whether its value is 99, and wait till it is 99. The acquire memory order is used to indicate that the latest update must be done on the host and to ensure that the local L1 cache is not read from. This will be made 99 by the host (CPU) by

std::atomic_store_explicit ((std::atomic<int> *)&atomicBuffer[0], 99, std::memory_order_release);

The host uses the C++11 compiler and the same memory model.

__kernel void ldstore(volatile global int *buffer, global int* atomicBuffer)
{
 int i;
 while (atomic_load_explicit ((global atomic_int*)&atomicBuffer[0], memory_order_acquire) != 99);
 i = get_global_id(0);
 buffer[i] += i;
 atomic_store_explicit ((global atomic_int*)&atomicBuffer[i], (100+i), memory_order_release);
}

The kernel next stores (100+i), where i is the ID of the work-item into atomicBuffer[i]. The order used is memory_order_release which ensures that the updated copy reaches the CPU which is waiting for it to report PASS for the test.

After the atomic operation, the updates on fine-grain variables (such as buffer) will also be available at the host. The CPU checks for the following to ensure that the results are OK:

for (i=0;i<N;i++)
 while(std::atomic_load_explicit ((std::atomic<int>*)&atomicBuffer[i], std::memory_order_acquire) != (100+i));
 /* check the results now */
 for (i=0;i<N;i++)
 {
 if (buffer[i] != (64+i))
 printf(" Test Failed \n");
 else
 printf (" Test Passed! \n");
 }

Atomic Compare and Exchange (CAS)

This sample illustrates the use of the atomic CAS operation typically used for “lock-free” programming, in which a critical section can be created without having to use waiting mutexes/semaphores. The following kernel simultaneously inserts the IDs of various work items into the “list” array by using atomic CAS operation. The same loop also runs on the host and inserts the other half (N) work items. In this way, 2*N numbers are inserted into this “list”.

__kernel void linkKernel(global int *list) {
 int head, i;
 i = get_global_id(0) + 1;
 head = list[0];
 if (i != get_global_size(0)) {
 do {
 list[i] = head;
 } while (!atomic_compare_exchange_strong((global atomic_int *) &list[0], &head,i), memory_order_release, memory_order_acquire, memory_scope_system);
 }
}

Note how there is no wait to enter the critical section, but list[0] and head are updated atomically. On the CPU too, a similar loop runs. Again note that the variables “list”and “head” must be in fine-grain SVM buffers. memory_order_release and memory_scope_system are used to ensure that the CPU gets the updates – hence the name “platform atomics.”

Atomic Fetch

This sample illustrates the use of the atomic fetch operation. The fetch operation is an RMW (Read-Modify-Write) operation. The following kernel computes the maximum of the N numbers in array “A”. The result of the intermediate comparisons is computed and the result is placed in a Boolean array “B”. After the matrix “B” is computed, the row (i) is computed. The row which has all 1s will be the maximum (C[i]).

__kernel void atomicMax(volatile global int *A, global int *B, global int *C, global int *P)
{
 int i = get_global_id(0);
 int j = get_global_id(1);
 int N = *P, k;
 if (A[i] >= A[j])
 B[i*N+j] = 1;
 else
 B[i*N+j] = 0;
 if (j == 0)
 {
 C[i] = 1;
 for (k=0;k<N;k++)
 atomic_fetch_and_explicit((global atomic_int *)&C[i], B[i*N+k], memory_order_release, memory_scope_device);
 }
}

Similarly, another sample includes the following kernel that increments 2*N times, N times in the kernel and another N times on the host:

__kernel void counter(global int *count)
{
 atomic_fetch_add((atomic _int)count, 1);
 //(*count)++;
}

Note: If atomic_fetch_add is not used and instead an incrementing count (as performed in the commented line) is used, the sum will not be computed correctly.

Pipes

Overview

OpenCL 2.0 introduces a new mechanism, pipes, for passing data between kernels. A pipe is essentially a structured buffer containing some space for a set of “packets”–kernel-specified type objects, and for bookkeeping information. As the name suggests, these packets of data are ordered in the pipe (as a FIFO).

Pipes are accessed via special read_pipe and write_pipe built-in functions. A given kernel may either read from or write to a pipe, but not both. Pipes are only “coherent” at the standard synchronization points; the result of concurrent accesses to the same pipe by multiple kernels (even if permitted by hardware) is undefined. A pipe cannot be accessed from the host side; it can only be accessed by using the kernel built-in functions.

Pipes are created on the host with a call to clCreatePipe, and may be passed between kernels. Pipes may be particularly useful when combined with device- size enqueue for dynamically constructing computational data flow graphs.

There are two types of pipes: a read pipe, from which a number of packets can be read; and a write pipe, to which a number of packets can be written.

Note: A pipe specified as read-only cannot be written into and a pipe specified as write-only cannot be read from. A pipe cannot be read from and written into at the same time.

Functions for accessing pipes

A new host API function has been added into the OpenCL 2.0 spec to create the
Pipe.

cl_mem clCreatePipe (cl_context context, cl_mem_flags flags, cl_uint pipe_packet_size, cl_uint pipe_max_packets, const cl_pipe_properties * properties, cl_int *errcode_ret)

The memory allocated in the above function can be passed to kernels as read- only or write-only pipes. The pipe objects can only be passed as kernel arguments or kernel functions and cannot be declared inside a kernel or as program-scoped objects.

Also, a set of built-in functions have been added to operate on the pipes. The important ones are:

read_pipe (pipe p, gentype * ptr: for reading packet from pipe p into ptr.

write_pipe (pipe p, gentype * ptr: for writing packet pointed to by ptr to pipe p.

To ensure you have enough space in the pipe structure for reading and writing (before you actually do it), you can use built-in functions to “reserve” enough space. For example, you could reserve room by calling reserve_read_pipe or reserve_write_pipe. These functions return a reservation ID, which can be used when the actual operations are performed. Similarly, the standard has built-in functions for workgroup level reservations, such as work_group_reserve_read_pipe and work_group_reserve_write_pipe and for the workgroup order (in the program). These workgroup built-in functions operate at the workgroup level. Ordering across workgroups is undefined. Calls to commit_read_pipe and commit_write_pipe, as the names suggest, commit the actual operations (read/write).

Usage

The following example code illustrates a typical usage of pipes in the example code. The code contains two kernels: producer_kernel, which writes to the pipe, and consumer_kernel, which reads from the same pipe. In the example, the producer writes a sequence of random numbers; the consumer reads them and creates a histogram.

The host creates the pipe, which both kernels will use, as follows:

rngPipe = clCreatePipe(context, CL_MEM_READ_WRITE, szPipePkt,
szPipe, NULL,
&status);

This code makes a pipe that the program kernels can access (read/write). The host creates two kernels, producer_kernel and consumer_kernel. The producer kernel first reserves enough space for the write pipe:

//reserve space in pipe for writing random numbers.
reserve_id_t rid = work_group_reserve_write_pipe(rng_pipe, szgr);

Next, the kernel writes and commits to the pipe by invoking the following functions:

write_pipe(rng_pipe,rid,lid, &gfrn); work_group_commit_write_pipe(rng_pipe, rid); Similarly, the consumer kernel reads from the pipe:
//reserve pipe for reading
reserve_id_t rid = work_group_reserve_read_pipe(rng_pipe, szgr);
if(is_valid_reserve_id(rid)) {
//read random number from the pipe. read_pipe(rng_pipe,rid,lid, &rn); work_group_commit_read_pipe(rng_pipe, rid);
}

The consumer_kernel then uses this set of random number and constructs the histogram. The CPU creates the same histogram and verifies whether the histogram created by the kernel is correct. Here, lid is the local id of the work item, obtained by get_local_id(0).

The example code demonstrates how you can use a pipe as a convenient data structure that allows two kernels to communicate.

In OpenCL 1.2, this kind of communication typically involves the host – although kernels can communicate without returning control to the host. Pipes, however, ease programming by reducing the amount of code that some applications require.

Program-scope global Variables

Overview

OpenCL 1.2 permits the declaration of only constant address space variables at program scope.

OpenCL 2.0 permits the declaration of variables in the global address space at program (i.e. outside function) scope. These variables have the lifetime of the program in which they appear, and may be initialized. The host cannot directly access program-scope variables; a kernel must be used to read/write their contents from/to a buffer created on the host.

Program-scope global variables can save data across kernel executions. Using program-scope variables can potentially eliminate the need to create buffers on the host and pass them into each kernel for processing. However, there is a limit to the size of such variables. The developer must ensure that the total size does not exceed the value returned by the device info query: CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE.

Image Enhancements

Overview

OpenCL 2.0 introduces significant enhancements for processing images.

A read_write access qualifier for images has been added. The qualifier allows reading from and writing to certain types of images (verified against clGetSupportedImageFormats by using the CL_MEM_KERNEL_READ_AND_WRITE flag) in the same kernel, but reads must be sampler-less. An atomic_work_item_fence with the CLK_IMAGE_MEM_FENCE flag and the memory_scope_work_item memory scope is required between reads and writes to the same image to ensure that the writes are visible to subsequent reads. If multiple work-items are writing to and reading from multiple locations in an image, a call to work_group_barrier with the CLK_IMAGE_MEM_FENCE flag is required.

OpenCL 2.0 also allows 2D images to be created from a buffer or another 2D image and makes the ability to write to 3D images a core feature. This extends the power of image operations to more situations.

The function clGetSupportedImageFormats returns a list of the image formats supported by the OpenCL platform. The Image format has two parameters, channel order and data type. The following lists some image formats OpenCL supports:

Channel orders: CL_A, CL_RG, CL_RGB, CL_RGBA
Channel data type: CL_UNORM_INT8, CL_FLOAT.

OpenCL 2.0 provides improved image support, specially support for sRGB
images and depth images.

sRGB

sRGB is a standard RGB color space that is used widely on monitors, printers, digital cameras, and the Internet. Because the linear RGB value is used in most image processing algorithms, processing the images often requires converting sRGB to linear RGB.

OpenCL 2.0 provides a new feature for handling this conversion directly. Note that only the combination of data type CL_UNORM_INT8 and channel order CL_sRGBA is mandatory in OpenCL 2.0. The AMD implementations support this combination. The remaining combinations are optional in OpenCL 2.0.

When not using the mandatory combination (CL_sRGBA, CL_UNORM_INT8), the clGetSupportedImageFormats function must be used to get a list of supported image formats and data types before using the sRGB image,

Creating sRGB image objects is similar to creating an image object of existing supported channel order with OpenCL 2.0. The following snippet shows how to create CL_sRGBA image objects by using the read_image call.

cl_image_format imageFormat;
imageFormat.image_channel_data_type = CL_UNORM_INT8;
imageFormat.image_channel_order = CL_sRGBA
cl_mem imageObj = clCreateImage(
context, // A valid OpenCL context
CL_MEM_READ_ONY | CL_MEM_COPY_HOST_PTR,
&imageFormat,
&desc, //cl_image_desc
pSrcImage, // An pointer to the image data
&retErr); // Returned error code

A new sRGB image can also be created based on an existing RGB image object, so that the kernel can implicitly convert the sRGB image data to RGB. This is useful when the viewing pixels are sRGB but share the same data as the existing RGB image.

After an sRGB image object has been created, the read_imagef call can be used in the kernel to read it transparently. read_imagef implicitly converts sRGB values into linear RGB. Converting sRGB into RGB in the kernel explicitly is not necessary if the device supports OpenCL 2.0. Note that only read_imagef can be used for reading sRGB image data because only the CL_UNORM_INT8 data type is supported with OpenCL 2.0.

The following is a kernel sample that illustrates how to read an sRGB image object.

// Read sRGBA image object (input) and convert it to linear RGB
values(results)
kernel void sample_kernel(read_only image2d_t input, sampler_t imageSampler, global float *xOffsets, global float *yOffsets,
global float4 *results) // input: sRGBA image object
{
int tidX = get_global_id(0), tidY = get_global_id(1);
int offset = tidY*get_image_width(input) + tidX;
int2 coords = (int2)(xOffsets[offset], yOffsets[offset]);
results[offset] = read_imagef(input, imageSampler, coords);
}

OpenCL 2.0 does not include writing sRGB images directly, but provides the cl_khr_srgb_image_writes extension. The AMD implementations do not support this extension as of this writing.

In order to write sRGB pixels in a kernel, explicit conversion from linear RGB to sRGB must be implemented in the kernel.

clFillImage is an exception for writing sRGB image directly. The AMD OpenCL platform supports clFillImage for filling linear RGB image to sRGB image directly.

Depth images

As with other image formats, clCreateImage is used for creating depth image objects. However, the channel order must be set to CL_DEPTH, as illustrated below. For the data type of depth image, OpenCL 2.0 supports only CL_FLOAT and CL_UNORM_INT16.

cl_image_format imageFormat;
imageFormat.image_channel_data_type = CL_UNORM_INT16;
imageFormat.image_channel_order = CL_DEPTH
cl_mem imageObj = clCreateImage(
valid OpenCL contextcontext, // A
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
&imageFormat,
&desc, //cl_image_desc
pSrcImage, // A pointer to the image data
&retErr); // Returned error code

In OpenCL 2.0, depth images must be of type image2d or image2d array.
clCreateImage will fail for other dimensions when creating depth image.

A depth image object can be read by using the read_imagef call in the kernel. For write, write_imagef must be used. read_image(i|ui) and write_image(i|ui) are not supported for depth images.

OpenCL 2.0 C introduces two data types, image2d_depth_t and image2d_array_depth_t for declaring depth images. The following kernel code sample illustrates how to read depth image objects.

// Read depth image object (input) based on sampler and offset and save it (results)
 kernel void sample_kernel(read_only image2d_depth_t input, sampler_t imageSampler, global float *xOffsets, global float
*yOffsets, global float *results)
{
int tidX = get_global_id(0), tidY = get_global_id(1);
int offset = tidY*get_image_width(input) + tidX;
int2 coords = (int2)(xOffsets[offset], yOffsets[offset]);
results[offset] = read_imagef(input, imageSampler, coords);
}

The AMD OpenCL 2.0 platform fully supports the cl_khr_depth_images extension but not the cl_khr_gl_depth_images extension. Consequently, the AMD OpenCL platform does not support creating a CL depth image from a GL depth or depth-stencil texture.

Non-uniform work group size

Overview

Prior to OpenCL 2.0, each work-group size needed to divide evenly into the corresponding global size. This requirement is relaxed in OpenCL 2.0; the last work-group in each dimension is allowed to be smaller than all of the other work- groups in the “uniform” part of the NDRange. This can reduce the effort required to map problems onto NDRanges.

A consequence is that kernels may no longer assume that calls to get_work_group_size return the same value in all work-groups. However, a new call (get_enqueued_local_size) has been added to obtain the size in the uniform part, which is specified using the local_work_size argument to the clEnqueueNDRangeKernel.

A new compile time option (-cl-uniform-work-group-size) has been added to optimize the computation for cases in which the work-group size is known to, or required to, divide evenly into the global size.

Portability considerations

Migrating from OpenCL 1.2 to OpenCL 2.0

OpenCL 2.0 is backward compatible with OpenCL 1.2. Applications written on OpenCL 1.2 should run on OpenCL 2.0 without requiring any changes to the application.

OpenCL 2.0 includes changes in the runtime and the compiler. In the runtime, some new functions (such as for SVM) have been added. In the compiler, the - cl-std=CL2.0 option is needed in order to compile OpenCL 2.0 kernels.

If a program uses the OpenCL 2.0 functions and if one compiles a kernel by using the cl-std=CL2.0 option, the program will not build or compile on OpenCL 1.2 platforms. If a program uses only OpenCL 1.2 functions and if one

compiles a kernel without the cl-std=CL2.0 option, then the program should run on OpenCL 2.0 platforms.

Identifying implementation specifics

Applications can query for the OpenCL extensions and use the values returned from the OpenCL functions.

For instance, clGetSupportedImageFormats will return all image formats supported by OpenCL. The supported images may differ across implementations. Similarly, clGetDeviceInfo with the CL_DEVICE_EXTENSIONS parameter returns all the supported extensions. The supported extensions may differ across implementations and between different versions of OpenCL.

OpenCL Optional Extensions

The OpenCL extensions are associated with the devices and can be queried for a specific device. Extensions can be queried for platforms also, but that means that all devices in the platform support those extensions.

Extension Name Convention

The name of extension is standardized and must contain the following elements without spaces in the name (in lower case):

	cl_khr_<extension_name> - for extensions approved by Khronos Group. For example: cl_khr_fp64

	cl_ext_<extension_name> - for extensions provided collectively by multiple vendors. For example: cl_ext_device_fission

	cl_<vendor_name>_<extension_name> – for extension provided by a specific vendor. For example: cl_amd_media_ops

The OpenCL Specification states that all API functions of the extension must have names in the form of cl<FunctionName>KHR, cl<FunctionName>EXT, or cl<FunctionName><VendorName>. All enumerated values must be in the form of CL_<enum_name>_KHR, CL_<enum_name>_EXT, or CL_<enum_name>_<VendorName>.

Querying Extensions for a Platform

To query supported extensions for the OpenCL platform, use the clGetPlatformInfo() function, with the param_name parameter set to the enumerated value CL_PLATFORM_EXTENSIONS. This returns the extensions as a character string with extension names separated by spaces. To find out if a specific extension is supported by this platform, search the returned string for the required substring.

Querying Extensions for a Device

To get the list of devices to be queried for supported extensions, use one of the following:

	Query for available platforms using clGetPlatformIDs(). Select one, and query for a list of available devices with clGetDeviceIDs().

	For a specific device type, call clCreateContextFromType(), and query a list of devices by calling clGetContextInfo() with the param_name parameter set to the enumerated value CL_CONTEXT_DEVICES.

After the device list is retrieved, the extensions supported by each device can be queried with function call clGetDeviceInfo() with parameter param_name being set to enumerated value CL_DEVICE_EXTENSIONS.

The extensions are returned in a char string, with extension names separated by a space. To see if an extension is present, search the string for a specified substring.

Using Extensions in Kernel Programs

There are special directives for the OpenCL compiler to enable or disable available extensions supported by the OpenCL implementation, and, specifically, by the OpenCL compiler. The directive is defined as follows.

#pragma OPENCL EXTENSION <extention_name> : <behavior>
#pragma OPENCL EXTENSION all: <behavior>

The <extension_name> is described in Section A.1, “Extension Name
Convention.”. The second form allows to address all extensions at once. The <behavior> token can be either:

	enable - the extension is enabled if it is supported, or the error is reported if the specified extension is not supported or token “all” is used.

	disable - the OpenCL implementation/compiler behaves as if the specified extension does not exist.

	all - only core functionality of OpenCL is used and supported, all extensions are ignored. If the specified extension is not supported then a warning is issued by the compiler.

The order of directives in #pragma OPENCL EXTENSION is important: a later directive with the same extension name overrides any previous one.

The initial state of the compiler is set to ignore all extensions as if it was explicitly set with the following directive:

#pragma OPENCL EXTENSION all : disable

This means that the extensions must be explicitly enabled to be used in kernel programs.

Each extension that affects kernel code compilation must add a defined macro with the name of the extension. This allows the kernel code to be compiled differently, depending on whether the extension is supported and enabled, or not. For example, for extension cl_khr_fp64 there should be a #define directive for macro cl_khr_fp64, so that the following code can be preprocessed:

#ifdef cl_khr_fp64
// some code
#else
// some code
#endif

Getting Extension Function Pointers

Use the following function to get an extension function pointer.

void* clGetExtensionFunctionAddress(const char* FunctionName).

This returns the address of the extension function specified by the FunctionName string. The returned value must be appropriately cast to a function pointer type, specified in the extension spec and header file.

A return value of NULL means that the specified function does not exist in the CL implementation. A non-NULL return value does not guarantee that the extension function actually exists – queries described in sec. 2 or 3 must be done to ensure the extension is supported.

The clGetExtensionFunctionAddress() function cannot be used to get core API function addresses.

List of Supported Extensions that are Khronos-Approved

For a complete list of the supported extensions, see the OpenCL 1.2 and
OpenCL 2.0 specification documents. The typical extensions in OpenCL 1.2 are:

	cl_khr_global_int32_base_atomics – basic atomic operations on 32-bit integers in global memory.

	cl_khr_global_int32_extended_atomics – extended atomic operations on 32-bit integers in global memory.

	cl_khr_local_int32_base_atomics – basic atomic operations on 32-bit integers in local memory.

	cl_khr_local_int32_extended_atomics – extended atomic operations on 32-bit integers in local memory.

	cl_khr_int64_base_atomics – basic atomic operations on 64-bit integers in both global and local memory.

	cl_khr_int64_extended_atomics – extended atomic operations on 64-bit integers in both global and local memory.

	cl_khr_3d_image_writes – supports kernel writes to 3D images.

	cl_khr_byte_addressable_store – this eliminates the restriction of not allowing writes to a pointer (or array elements) of types less than 32-bit wide in kernel program.

	cl_khr_gl_sharing – allows association of OpenGL context or share group with CL context for interoperability.

	cl_khr_icd – the OpenCL Installable Client Driver (ICD) that lets developers select from multiple OpenCL runtimes which may be installed on a system.

	cl_khr_d3d10_sharing - allows association of D3D10 context or share group with CL context for interoperability.

	cl_dx9_media_sharing

	Cl_khr_fp16

	cl_khr_gl_event

The typical extensions in OpenCL 2.0 are:

	cl_khr_int64_base_atomics

	cl_khr_int64_extended_atomics

	cl_khr_fp16

	cl_khr_gl_sharing

	cl_khr_gl_event

	cl_khr_d3d10_sharing

	cl_dx9_media_sharing

	cl_khr_d3d11_sharing

	cl_khr_gl_depth_images

	cl_khr_gl_msaa_sharing

	cl_khr_initialize_memory

	cl_khr_terminate_context

	cl_khr_spir

	cl_khr_icd

	cl_khr_subgroups

	cl_khr_mipmap_image

	cl_khr_mipmap_image_writes

	cl_khr_egl_image

	cl_khr_egl_event

	cl_khr_device_enqueue_local_arg_types

cl_ext Extensions

	cl_ext_device_fission - Support for device fission in OpenCL™. For more information about this extension, see: http://www.khronos.org/registry/cl/extensions/ext/cl_ext_device_fission.txt

	cl_ext_atomic_counters_32 - Support for 32-bit atomic counters. For more information about this extension, see: https://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt

AMD Vendor-Specific Extensions

This section describes the AMD vendor-specific extensions.

cl_amd_fp64

Before using double data types, double-precision floating point operators, and/or double-precision floating point routines in OpenCL™ C kernels, include the
#pragma OPENCL EXTENSION cl_amd_fp64 : enable directive. See Table A.1 for a list of supported routines.

cl_amd_vec3

This extension adds support for vectors with three elements: float3, short3, char3, etc. This data type was added to OpenCL 1.1 as a core feature. For more details, see section 6.1.2 in the OpenCL 1.1 or OpenCL 1.2 spec.

cl_amd_device_persistent_memory

This extension adds support for the new buffer and image creation flag CL_MEM_USE_PERSISTENT_MEM_AMD. Buffers and images allocated with this flag reside in host-visible device memory. This flag is mutually exclusive with the flags CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR.

cl_amd_device_attribute_query

This extension provides a means to query AMD-specific device attributes. To enable this extension, include the #pragma OPENCL EXTENSION cl_amd_device_attribute_query : enable directive. Once the extension is enabled, and the clGetDeviceInfo parameter <param_name> is set to CL_DEVICE_PROFILING_TIMER_OFFSET_AMD, the offset in nano-seconds between an event timestamp and Epoch is returned.

cl_device_profiling_timer_offset_amd

This query enables the developer to get the offset between event timestamps in nano-seconds. To use it, compile the kernels with the #pragma OPENCL EXTENSION cl_amd_device_attribute_query : enable directive. For

kernels complied with this pragma, calling clGetDeviceInfo with <param_name> set to CL_DEVICE_PROFILING_TIMER_OFFSET_AMD returns the offset in nano- seconds between event timestamps.

cl_amd_device_topology

This query enables the developer to get a description of the topology used to connect the device to the host. Currently, this query works only in Linux. Calling clGetDeviceInfo with <param_name> set to CL_DEVICE_TOPOLOGY_AMD returns the following 32-bytes union of structures.

typedef union
{
struct { cl_uint type; cl_uint data[5]; } raw;
struct { cl_uint type; cl_char unused[17]; cl_char bus; cl_char
device; cl_char function; } pcie; } cl_device_topology_amd;

The type of the structure returned can be queried by reading the first unsigned int of the returned data. The developer can use this type to cast the returned union into the right structure type.

Currently, the only supported type in the structure above is PCIe (type value =
1). The information returned contains the PCI Bus/Device/Function of the device, and is similar to the result of the lspci command in Linux. It enables the developer to match between the OpenCL device ID and the physical PCI connection of the card.

cl_amd_device_board_name

This query enables the developer to get the name of the GPU board and model of the specific device. Currently, this is only for GPU devices.

Calling clGetDeviceInfo with <param_name> set to
CL_DEVICE_BOARD_NAME_AMD returns a 128-character value.

cl_amd_compile_options

This extension adds the following options, which are not part of the OpenCL specification.

	-g — This is an experimental feature that lets you use the GNU project debugger, GDB, to debug kernels on x86 CPUs running Linux or cygwin/minGW under Windows. For more details, see Chapter 4, “Debugging and Profiling OpenCL.” This option does not affect the default optimization of the OpenCL code.

	-O0 — Specifies to the compiler not to optimize. This is equivalent to the
OpenCL standard option -cl-opt-disable.

	-f[no-]bin-source — Does [not] generate OpenCL source in the .source section. For more information, see Appendix C, “OpenCL Binary Image Format (BIF) v2.0.” By default, the source is NOT generated.

	-f[no-]bin-llvmir — Does [not] generate LLVM IR in the .llvmir section.
For more information, see Appendix C, “OpenCL Binary Image Format (BIF)
v2.0.” By default, LLVM IR IS generated.

	-f[no-]bin-amdil — Does [not] generate AMD IL in the .amdil section. For more information, see Appendix C, “OpenCL Binary Image Format (BIF) v2.0.” By Default, AMD IL is NOT generated.

	-f[no-]bin-exe — Does [not] generate the executable (ISA) in .text section.
For more information, see Appendix C, “OpenCL Binary Image Format (BIF)
v2.0.” By default, the executable IS generated.

	-f[no-]bin-hsail Does [not] generate HSAIL/BRIG in the binary. By default, HSA IL/BRIG is NOT generated.

To avoid source changes, there are two environment variables that can be used to change CL options during the runtime.

	AMD_OCL_BUILD_OPTIONS — Overrides the CL options specified in clBuildProgram().

	AMD_OCL_BUILD_OPTIONS_APPEND — Appends options to the options specified in clBuildProgram().

cl_amd_offline_devices

To generate binary images offline, it is necessary to access the compiler for every device that the runtime supports, even if the device is currently not installed on the system. When, during context creation, CL_CONTEXT_OFFLINE_DEVICES_AMD is passed in the context properties, all supported devices, whether online or offline, are reported and can be used to create OpenCL binary images.

cl_amd_event_callback

This extension provides the ability to register event callbacks for states other than cl_complete. The full set of event states are allowed: cl_queued, cl_submitted, and cl_running. This extension is enabled automatically and does not need to be explicitly enabled through #pragma when using the AMD Compute SDK.

cl_amd_popcnt

This extension introduces a “population count” function called popcnt. This extension was taken into core OpenCL 1.2, and the function was renamed popcount. The core 1.2 popcount function (documented in section 6.12.3 of the OpenCL Specification) is identical to the AMD extension popcnt function.

cl_amd_media_ops

This extension adds the following built-in functions to the OpenCL language. Note: For OpenCL scalar types, n = 1; for vector types, it is {2, 4, 8, or 16}.

For more information, see: http://www.khronos.org/registry/cl/extensions/amd/cl_amd_media_ops.txt

cl_amd_printf

The OpenCL™ Specification 1.1 and 1.2 support the optional AMD extension cl_amd_printf, which provides printf capabilities to OpenCL C programs. To use this extension, an application first must include:

#pragma OPENCL EXTENSION cl_amd_printf : enable.

Built-in function:

printf(constant char * restrict format, …);

This function writes output to the stdout stream associated with the host application. The format string is a character sequence that:

–is null-terminated and composed of zero and more directives,

–ordinary characters (i.e. not %), which are copied directly to the output stream unchanged, and

–conversion specifications, each of which can result in fetching zero or more arguments, converting them, and then writing the final result to the output stream.

The format string must be resolvable at compile time; thus, it cannot be dynamically created by the executing program. (Note that the use of variadic arguments in the built-in printf does not imply its use in other built- ins; more importantly, it is not valid to use printf in user-defined functions or kernels.)

The OpenCL C printf closely matches the definition found as part of the C99 standard. Note that conversions introduced in the format string with % are supported with the following guidelines:

	A 32-bit floating point argument is not converted to a 64-bit double, unless the extension cl_khr_fp64 is supported and enabled, as defined in section 9.3 of the OpenCL Specification 1.1. This includes the double variants if cl_khr_fp64 is supported and defined in the corresponding compilation unit.

	64-bit integer types can be printed using %ld / %lx / %lu .

	%lld / %llx / %llu are not supported and reserved for 128-bit integer types (long long).

	All OpenCL vector types (section 6.1.2 of the OpenCL Specification 1.1) can be explicitly passed and printed using the modifier vn, where n can be 2, 3, 4, 8, or 16. This modifier appears before the original conversion specifier for the vector’s component type (for example, to print a float4 %v4f). Since vn is a conversion specifier, it is valid to apply optional flags, such as field width and precision, just as it is when printing the component types. Since a vector is an aggregate type, the comma separator is used between the components: 0:1, … , n-2:n-1.

cl_amd_predefined_macros

The following macros are predefined when compiling OpenCL™ C kernels. These macros are defined automatically based on the device for which the code is being compiled.

GPU devices:

__Barts__

__Bheem__

__Bonaire__

__Caicos__

__Capeverde__

__Carrizo__

__Cayman__

__Cedar__

__Cypress__

__Devastator__

__Hainan__

__Iceland__

__Juniper__

__Kalindi__

__Kauai__

__Lombok__

__Loveland__

__Mullins__

__Oland__

__Pitcairn__

__RV710__

__RV730__

__RV740__

__RV770__

__RV790__

__Redwood__

__Scrapper__

__Spectre__

__Spooky__

__Tahiti__

__Tonga__

__Turks__

__WinterPark__

__GPU__

CPU devices:

__CPU__

__X86__

__X86_64__

Note that GPU or CPU are predefined whenever a GPU or CPU device is the compilation target.

An example kernel is provided below.

#pragma OPENCL EXTENSION cl_amd_printf : enable const char* getDeviceName() {
#ifdef Cayman
return "Cayman";
#elif Barts
return "Barts";
#elif Cypress
return "Cypress";
#elif defined(Juniper)
return "Juniper";
#elif defined(Redwood)
return "Redwood";
#elif defined(Cedar)
return "Cedar";
#elif defined(ATI_RV770)
return "RV770";
#elif defined(ATI_RV730)
return "RV730";
#elif defined(ATI_RV710)
return "RV710";
#elif defined(Loveland)
return "Loveland";
#elif defined(GPU)
return "GenericGPU";
#elif defined(X86)
return "X86CPU";
#elif defined(X86_64)
return "X86-64CPU";
#elif defined(CPU)
return "GenericCPU";
#else
#endif
}
return "UnknownDevice";
kernel void test_pf(global int* a)
{
printf("Device Name: %s\n", getDeviceName());
}

cl_amd_bus_addressable_memory

This extension defines an API for peer-to-peer transfers between AMD GPUs and other PCIe device, such as third-party SDI I/O devices. Peer-to-peer transfers have extremely low latencies by not having to use the host’s main memory or the CPU (see Figure A.1). This extension allows sharing a memory allocated by the graphics driver to be used by other devices on the PCIe bus (peer-to-peer transfers) by exposing a write-only bus address. It also allows memory allocated on other PCIe devices (non-AMD GPU) to be directly accessed by AMD GPUs. One possible use of this is for a video capture device to directly write into the GPU memory using its DMA.This extension is supported only on AMD FirePro™ professional graphics cards.

[image: Programming_Guides/images/a.1.png]

Supported Functions for cl_amd_fp64 / cl_khr_fp64

AMD OpenCL is now cl_khr_fp64-compliant on devices compliant with OpenCL 1.1 and greater. Thus, cl_amd_fp64 is now a synonym for cl_khr_fp64 on all supported devices.

Extension Support by Device

Table A.1 and Table A.2 list the extension support for selected devices.

	Extensions

	Brazos

	Llano

	Trinity

	Cape Verde3

	Turks4

	Cayman5

	Barts6

	Cypress7

	cl_khr_*_atomics (32-bit)

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_ext_atomic_counters_32

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_khr_gl_sharing

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_khr_byte_addressable_store

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_ext_device_fission

	onlyCPU

	only CPU

	onlyCPU

	No

	No

	No

	No

	No

	cl_amd_device_attribute_query

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_khr_fp64

	onlyCPU

	only CPU

	onlyCPU

	Yes

	Yes

	Yes

	No

	Yes

	cl_amd_fp64

	onlyCPU

	only CPU

	onlyCPU

	Yes

	Yes

	Yes

	No

	Yes

	cl_amd_vec3

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_khr_d3d10_sharing

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_amd_media_ops

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_amd_printf

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_amd_popcnt

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	cl_khr_3d_image_writes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

Table A.1 Extension Support for AMD GPU Devices 1

	AMD Radeon™ HD 79XX series.

	AMD Radeon™ HD 78XX series.

	AMD Radeon™ HD 77XX series.

	AMD Radeon™ HD 75XX series and AMD Radeon™ HD 76XX series.

	AMD Radeon™ HD 69XX series.

	AMD Radeon™ HD 68XX series.

	ATI Radeon™ HD 59XX series and 58XX series, AMD FirePro™ V88XX series and V87XX series.

Note that an atomic counter is a device-level counter that can be added / decremented by different work-items, where the atomicity of the operation is guaranteed. The access to the counter is done only through add/dec built-in functions; thus, no two work-items have the same value returned in the case that a given kernel only increments or decrements the counter. (Also see http://www.khronos.org/registry/cl/extensions/ext/cl_ext_atomic_counters_32.txt.)

	Extension

	Juniper 1

	Redwood 2

	Cedar 3

	x86 CPU with SSE2 or later

	cl_khr_*_atomics

	Yes

	Yes

	Yes

	Yes

	cl_ext_atomic_counters_32

	Yes

	Yes

	Yes

	No

	cl_khr_gl_sharing

	Yes

	Yes

	Yes

	Yes

	cl_khr_byte_addressable_store

	Yes

	Yes

	Yes

	Yes

	cl_ext_device_fission

	No

	No

	No

	Yes

	cl_amd_device_attribute_query

	Yes

	Yes

	Yes

	Yes

	cl_khr_fp64

	Yes

	Yes

	Yes

	Yes

	cl_amd_fp64 4

	Yes

	Yes

	Yes

	Yes

	cl_amd_vec3

	Yes

	Yes

	Yes

	Yes

	Images

	Yes

	Yes

	Yes

	Yes

	cl_khr_d3d10_sharing

	Yes

	Yes

	Yes

	Yes

	cl_amd_media_ops

	Yes

	Yes

	Yes

	Yes

	cl_amd_media_ops2

	Yes

	Yes

	Yes

	Yes

	cl_amd_printf

	Yes

	Yes

	Yes

	Yes

	cl_amd_popcnt

	Yes

	Yes

	Yes

	Yes

	cl_khr_3d_image_writes

	Yes

	Yes

	Yes

	Yes

	Platform Extensions

	Yes

	Yes

	Yes

	Yes

	cl_khr_icd

	Yes

	Yes

	Yes

	Yes

	cl_amd_event_callback

	Yes

	Yes

	Yes

	Yes

	cl_amd_offline_devices

	Yes

	Yes

	Yes

	No

Table A.2 Extension Support for Older AMD GPUs and CPUs

	ATI Radeon™ HD 5700 series, AMD Mobility Radeon™ HD 5800 series, AMD FirePro™ V5800 series, AMD Mobility FirePro™ M7820.

	ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5600 Series, ATI Radeon™ HD 5500 Series, AMD Mobility Radeon™ HD 5700 Series, AMD Mobility Radeon™ HD 5600 Series, AMD FirePro™ V4800 Series, AMD FirePro™ V3800 Series, AMD Mobility FirePro™ M5800

	ATI Radeon™ HD 5400 Series, AMD Mobility Radeon™ HD 5400 Series

	Available on all devices that have double-precision, including all Southern Island devices.

	Environment variable CPU_IMAGE_SUPPORT must be set.

The OpenCL Installable Client Driver (ICD)

The OpenCL Installable Client Driver (ICD) is installed as part of the AMD Graphics driver software stack as well as the AMD Compute SDK.

Overview

The ICD allows multiple OpenCL implementations to co-exist; also, it allows applications to select between these implementations at runtime.

Use the clGetPlatformIDs() and clGetPlatformInfo() functions to see the list of available OpenCL implementations, and select the one that is best for your requirements. It is recommended that developers offer their users a choice on first run of the program or whenever the list of available platforms changes.

A properly implemented ICD and OpenCL library is transparent to the end-user.

Using ICD

Sample code that is part of the SDK contains examples showing how to query the platform API and call the functions that require a valid platform parameter.

This is a pre-ICD code snippet.

context = clCreateContextFromType(0,
 dType,
 NULL,
 NULL,
 &status);

The ICD-compliant version of this code follows.

/*
 * Have a look at the available platforms and pick either
 * the AMD one if available or a reasonable default.
*/

cl_uint numPlatforms;
cl_platform_id platform = NULL;
status = clGetPlatformIDs(0, NULL, &numPlatforms);
if(!sampleCommon->checkVal(status, CL_SUCCESS, "clGetPlatformIDs failed."))
{
 return SDK_FAILURE;
}
if (0 < numPlatforms)
{
 cl_platform_id* platforms = new cl_platform_id[numPlatforms];
 status = clGetPlatformIDs(numPlatforms, platforms, NULL);
 if(!sampleCommon->checkVal(status, CL_SUCCESS, "clGetPlatformIDs failed."))
 {
 return SDK_FAILURE;
 }
 for (unsigned i = 0; i < numPlatforms; ++i)
 {
 char pbuf[100];
 status = clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, sizeof(pbuf), pbuf, NULL);

 if(!sampleCommon->checkVal(status, CL_SUCCESS, "clGetPlatformInfo failed."))
 {
 return SDK_FAILURE;
 }

 platform = platforms[i];
 if (!strcmp(pbuf, "Advanced Micro Devices, Inc."))
 {
 break;
 }
 }
 delete[] platforms;
}
/*
* If we could find our platform, use it. Otherwise pass a NULL and
get whatever the
* implementation thinks we should be using.
*/

cl_context_properties cps[3] =
{
 CL_CONTEXT_PLATFORM, (cl_context_properties)platform, 0
};
/* Use NULL for backward compatibility */
cl_context_properties* cprops = (NULL == platform) ? NULL : cps;

context = clCreateContextFromType(cprops, dType, NULL, NULL, &status);

Another example of a pre-ICD code snippet follows.

status = clGetDeviceIDs(NULL, CL_DEVICE_TYPE_DEFAULT, 0, NULL, &numDevices);

The ICD-compliant version of the code snippet is:

status= clGetDeviceiDs(platform, CL_DEVICE_TYPE_DEFAULT, 0, NULL, &nurnDevices);

OpenCL Binary Image Format (BIF) v2.0

Overview

OpenCL Binary Image Format (BIF) 2.0 is in the ELF format. BIF2.0 allows the OpenCL binary to contain the OpenCL source program, the LLVM IR, and the executable. The BIF defines the following special sections:

	.source: for storing the OpenCL source program.

	.llvmir: for storing the OpenCL immediate representation (LLVM IR).

	.comment: for storing the OpenCL version and the driver version that created the binary.

The BIF can have other special sections for debugging, etc. It also contains several ELF special sections, such as:

	.text for storing the executable.

	.rodata for storing the OpenCL runtime control data.

	other ELF special sections required for forming an ELF (for example: .strtab, .symtab, .shstrtab).

By default, OpenCL generates a binary that has LLVM IR, and the executable for the GPU (,.llvmir, .amdil, and .text sections), as well as LLVM IR and the executable for the CPU (.llvmir and .text sections). The BIF binary always contains a .comment section, which is a readable C string. The default behavior can be changed with the BIF options described in Section C.2, “BIF Options,” page C-3.

The LLVM IR enables recompilation from LLVM IR to the target. When a binary is used to run on a device for which the original program was not generated and the original device is feature-compatible with the current device, OpenCL recompiles the LLVM IR to generate a new code for the device. Note that the LLVM IR is only universal within devices that are feature-compatible in the same device type, not across different device types. This means that the LLVM IR for the CPU is not compatible with the LLVM IR for the GPU. The LLVM IR for a GPU works only for GPU devices that have equivalent feature sets.

BIF2.0 is supported since Stream SDK 2.2.

Executable and Linkable Format (ELF) Header

For the ELF binary to be considered valid, the AMD OpenCL runtime expects certain values to be specified. The following header fields must be set for all binaries that are created outside of the OpenCL framework.

	Field

	Value

	Description

	e_ident[EI_CLASS]

	ELFCLASS32,ELFCLASS64

	BIF can be either 32-bit ELF or 64bit ELF.

	e_ident[EI_DATA]

	ELFDATA2LSB

	BIF is stored in little Endian order.

	e_ident[EI_OSABI]

	ELFOSABI_NONE

	Not used.

	e_ident[EI_ABIVERSION]

	0

	Not used.

	e_type

	ET_NONE

	Not used.

	e_machine

	oclElfTargets

	Enum CPU/GPU machine ID.

	E_version

	EV_CURRENT

	Must be EV_CURRENT.

	e_entry

	0

	Not used.

	E_phoff

	0

	Not used.

	e_flags

	0

	Not used.

	E_phentsize

	0

	Not used.

	E_phnum

	0

	Not used.

Table C.1 ELF Header Fields

The fields not shown in Table C.1 are given values according to the ELF Specification. The e_machine value is defined as one of the oclElfTargets enumerants; the values for these are:

	e_machine = 1001 + CaltargetEnum
	
2002

2003

typedef enum CALtargetEnum {
CAL_TARGET_600 = 0, /**< R600 GPU ISA */
CAL_TARGET_610 = 1, /**< RV610 GPU ISA */
CAL_TARGET_630 = 2, /**< RV630 GPU ISA */
CAL_TARGET_670 = 3, /**< RV670 GPU ISA */
CAL_TARGET_7XX = 4, /**< R700 class GPU ISA */
CAL_TARGET_770 = 5, /**< RV770 GPU ISA */
CAL_TARGET_710 = 6, /**< RV710 GPU ISA */
CAL_TARGET_730 = 7, /**< RV730 GPU ISA */
CAL_TARGET_CYPRESS = 8, /**< CYPRESS GPU ISA */
CAL_TARGET_JUNIPER = 9, /**< JUNIPER GPU ISA */
CAL_TARGET_REDWOOD = 10, /**< REDWOOD GPU ISA */
CAL_TARGET_CEDAR= 11, /**< CEDAR GPU ISA */
CAL_TARGET_SUMO = 12, /**< SUMO GPU ISA */
CAL_TARGET_SUPERSUMO =13, /**< SUPERSUMO GPU ISA */
CAL_TARGET_WRESTLER = 14, /**< WRESTLER GPU ISA */
CAL_TARGET_CAYMAN =15, /**< CAYMAN GPU ISA */
CAL_TARGET_KAUAI = 16, /**< KAUAI GPU ISA */
CAL_TARGET_BARTS = 17 , /**< BARTS GPU ISA */
CAL_TARGET_TURKS = 18 , /**< TURKS GPU ISA */
CAL_TARGET_CAICOS = 19, /**< CAICOS GPU ISA */
CAL_TARGET_TAHITI = 20,/**< TAHITI GPU ISA*/
CAL_TARGET_PITCAIRN = 21,/**< PITCAIRN GPU ISA*/
CAL_TARGET_CAPEVERDE = 22,/**< CAPE VERDE GPU ISA*/
CAL_TARGET_DEVASTATOR = 23,/**< DEVASTATOR GPU ISA*/
CAL_TARGET_SCRAPPER = 24, /**< SCRAPPER GPU ISA*/
CAL_TARGET_OLAND = 25, /**< OLAND GPU ISA*/
CAL_TARGET_BONAIRE = 26, /**< BONAIRE GPU ISA*/
CAL_TARGET_KALINDI = 29, /**< KALINDI GPU ISA*/
};

Bitness

The BIF can be either 32-bit ELF format or a 64-bit ELF format. For the GPU, OpenCL generates a 32-bit BIF binary; it can read either 32-bit BIF or 64-bit BIF binary. For the CPU, OpenCL generates and reads only 32-bit BIF binaries if the host application is 32-bit (on either 32-bit OS or 64-bit OS). It generates and reads only 64-bit BIF binary if the host application is 64-bit (on 64-bit OS).

BIF Options

OpenCL provides the following options to control what is contained in the binary.

-f[no-]bin-source — [not] generate OpenCL source in .source section.

-f[no-]bin-llvmir — [not] generate LLVM IR in .llvmir section.

-f[no-]bin-exe — [not] generate the executable (ISA) in .text section. The option syntax follows the GCC option syntax.
By default, OpenCL generates the .llvmir section, .amdil section, and .text
section. The following are examples for using these options: Example 1: Generate executable for execution:

clBuildProgram(program, 0, NULL, “-fno-bin-llvmir -fno-bin-amdil”, NULL,
NULL);

Example 2: Generate only LLVM IR:

clBuildProgram(program, 0, NULL, “-fno-bin-exe -fno-bin-amdil”, NULL,
NULL);

This binary can recompile for all the other devices of the same device type.

Hardware overview of pre-GCN devices

This chapter provides a hardware overview of pre-GCN devices. Pre-GCN devices include the Evergreen and Northern Islands families that are based on VLIW.

A general OpenCL device comprises compute units, each of which can have multiple processing elements. A work-item (or SPMD kernel instance) executes on a single processing element. The processing elements within a compute unit can execute in lock-step using SIMD execution. Compute units, however, execute independently (see Figure D.1).

AMD GPUs consist of multiple compute units. The number of them and the way they are structured varies with the device family, as well as device designations within a family. Each of these processing elements possesses ALUs. For devices in the Northern Islands and Southern Islands families, these ALUs are arranged in four (in the Evergreen family, there are five) processing elements with arrays of 16 ALUs. Each of these arrays executes a single instruction across each lane for each of a block of 16 work-items. That instruction is repeated over four cycles to make the 64-element vector called a wavefront. On Northern Islands and Evergreen family devices, the PE arrays execute instructions from one wavefront, so that each work-item issues four (for Northern Islands) or five (for Evergreen) instructions at once in a very-long-instruction-word (VLIW) packet.

[image: ../_images/d.1.png]
[image: ../_images/d.2.png]
Figure D.2 is a simplified diagram of an AMD GPU compute device. Different GPU compute devices have different characteristics (such as the number of compute units), but follow a similar design pattern.

GPU compute devices comprise groups of compute units. Each compute unit contains numerous processing elements, which are responsible for executing kernels, each operating on an independent data stream. Processing elements, in turn, contain numerous processing elements, which are the fundamental, programmable ALUs that perform integer, single-precision floating-point, double- precision floating-point, and transcendental operations. All processing elements within a compute unit execute the same instruction sequence in lock-step for
Evergreen and Northern Islands devices; different compute units can execute

	Much of this is transparent to the programmer.

different instructions.

A processing element is arranged as a five-way or four-way (depending on the
GPU type) very long instruction word (VLIW) processor (see bottom of
Figure D.2). Up to five scalar operations (or four, depending on the GPU type) can be co-issued in a VLIW instruction, each of which are executed on one of the corresponding five ALUs. ALUs can execute single-precision floating point or integer operations. One of the five ALUs also can perform transcendental operations (sine, cosine, logarithm, etc.). Double-precision floating point operations are processed (where supported) by connecting two or four of the ALUs (excluding the transcendental core) to perform a single double-precision operation. The processing element also contains one branch execution unit to handle branch instructions.

Different GPU compute devices have different numbers of processing elements. For example, the ATI Radeon™ HD 5870 GPU has 20 compute units, each with
16 processing elements, and each processing elements contains five ALUs; this
yields 1600 physical ALUs.

OpenCL-OpenGL Interoperability

This chapter explains how to establish an association between GL context and
CL context.

Please note the following guidelines.

	All devices used to create the OpenCL context associated with command_queue must support acquiring shared CL/GL objects. This constraint is enforced at context-creation time.

	clCreateContext and clCreateContextFromType fail context creation if the device list passed in cannot interoperate with the GLcontext. clCreateContext only permits GL-friendly device(s). clCreateFromContextType can only include GL-friendly device(s).

	
	Use clGetGLContextInfoKHR to determine GL-friendly device(s) from the following parameters:
	
	CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR only returns the device that can interoperate with the GL context.

	CL_DEVICES_FOR_GL_CONTEXT_KHR includes all GL-context interoperable devices.

	While it is possible to create as many GL contexts on a GPU, do not create concurrently two GL contexts for two GPUs from the same process.

	For OpenGL interoperability with OpenCL, there is a strict order in which the OpenCL context is created and the texture/buffershared allocations can be made. To use shared resources, the OpenGL application must create an OpenGL context and afterwards an OpenCL context. All resources (GL buffers and textures) created after the OpenCL context was created can be shared between OpenGL and OpenCL. If resources are allocated before the OpenCL context was created, they cannot be shared between OpenGL and OpenCL.

Linux Operating System

Single GPU Environment

Creating CL Context from a GL Context

Using GLUT

	Use glutInit to initialize the GLUT library and to negotiate a session with the windowing system. This function also processes the command-line options depending on the windowing system.

	Use glXGetCurrentContext to get the current rendering context (GLXContext).

	Use glXGetCurrentDisplay to get the display (Display *) that is associated with the current OpenGL rendering context of the calling thread.

	Use clGetGLContextInfoKHR (see Section 9.7 of the OpenCL Specification 1.1) and the CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR parameter to get the device ID of the CL device associated with the OpenGL context.

	Use clCreateContext (see Section 4.3 of the OpenCL Specification 1.1) to create the CL context (of type cl_context).

The following code snippet shows how to create an interoperability context using
GLUT in Linux.

glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE); glutInitWindowSize(WINDOW_WIDTH, WINDOW_HEIGHT); glutCreateWindow("OpenCL SimpleGL");
gGLXContext glCtx = glXGetCurrentContext(); Cl_context_properties cpsGL[] =
{
CL_CONTEXT_PLATFORM,

(cl_context_properties)platform, CL_GLX_DISPLAY_KHR,
(intptr_t) glXGetCurrentDisplay(), CL_GL_CONTEXT_KHR,
 (intptr_t) glCtx, 0};

 status = clGetGLContextInfoKHR(cpsGL, CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR, sizeof(cl_device_id),
&interopDevice,
NULL);

// Create OpenCL context from device's id context = clCreateContext(cpsGL,
1,
&interopDevice,
0,
0,
&status);

Using X Window System

	Use XOpenDisplay to open a connection to the server that controls a display.

	Use glXChooseFBConfig to get a list of GLX frame buffer configurations that match the specified attributes.

	Use glXChooseVisual to get a visual that matches specified attributes.

	Use XCreateColormap to create a color map of the specified visual type for the screen on which the specified window resides and returns the colormap ID associated with it. Note that the specified window is only used to determine the screen.

	Use XCreateWindow to create an unmapped sub-window for a specified parent window, returns the window ID of the created window, and causes the X server to generate a CreateNotify event. The created window is placed on top in the stacking order with respect to siblings.

	Use XMapWindow to map the window and all of its sub-windows that have had map requests. Mapping a window that has an unmapped ancestor does not display the window, but marks it as eligible for display when the ancestor becomes mapped. Such a window is called unviewable. When all its ancestors are mapped, the window becomes viewable and is visible on the screen if it is not obscured by another window.

	Use glXCreateContextAttribsARB to initialize the context to the initial state defined by the OpenGL specification, and returns a handle to it. This handle can be used to render to any GLX surface.

	Use glXMakeCurrent to make argrument3 (GLXContext) the current GLX rendering context of the calling thread, replacing the previously current context if there was one, and attaches argument3 (GLXcontext) to a GLX drawable, either a window or a GLX pixmap.

	Use clGetGLContextInfoKHR to get the OpenCL-OpenGL interoperability device corresponding to the window created in step 5.

	Use clCreateContext to create the context on the interoperable device obtained in step 9.

The following code snippet shows how to create a CL-GL interoperability context using the X Window system in Linux.

Display *displayName = XOpenDisplay(0);

int nelements;
GLXFBConfig *fbc = glXChooseFBConfig(displayName,
DefaultScreen(displayName), 0, &nelements);
static int attributeList[] = { GLX_RGBA,
GLX_DOUBLEBUFFER,
GLX_RED_SIZE,
1,
GLX_GREEN_SIZE,
1,
GLX_BLUE_SIZE,
1,
None
};
XVisualInfo *vi = glXChooseVisual(displayName,
DefaultScreen(displayName),
attributeList);

XSetWindowAttributes swa;
swa.colormap = XCreateColormap(displayName,
RootWindow(displayName, vi->screen),
vi->visual,
AllocNone);
swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;

Window win = XCreateWindow(displayName, RootWindow(displayName, vi->screen),
10,
10,
WINDOW_WIDTH,
WINDOW_HEIGHT,
0,
vi->depth,
InputOutput,
vi->visual,
CWBorderPixel|CWColormap|CWEventMask,
&swa);

XMapWindow (displayName, win);
std::cout << "glXCreateContextAttribsARB "
<< (void*) glXGetProcAddress((const
GLubyte*)"glXCreateContextAttribsARB")
<< std::endl;

GLXCREATECONTEXTATTRIBSARBPROC glXCreateContextAttribsARB = (GLXCREATECONTEXTATTRIBSARBPROC)
glXGetProcAddress((const
GLubyte*)"glXCreateContextAttribsARB");

int attribs[] = {
GLX_CONTEXT_MAJOR_VERSION_ARB, 3,
GLX_CONTEXT_MINOR_VERSION_ARB, 0,
0
};

GLXContext ctx = glXCreateContextAttribsARB(displayName,
*fbc,
0,
true,
attribs);
glXMakeCurrent (displayName,

win, ctx);
cl_context_properties cpsGL[] = { CL_CONTEXT_PLATFORM,(cl_context_properties)platform, CL_GLX_DISPLAY_KHR, (intptr_t) glXGetCurrentDisplay(), CL_GL_CONTEXT_KHR, (intptr_t) gGlCtx, 0
};
status = clGetGLContextInfoKHR(cpsGL,
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
sizeof(cl_device_id),
&interopDeviceId,
NULL);

// Create OpenCL context from device's id context = clCreateContext(cpsGL,
1,
&interopDeviceId,
0,
0,
&status);

Multi-GPU Configuration

Creating CL Context from a GL Context

Using X Window System

	Use XOpenDisplay to open a connection to the server that controls a display.

	Use ScreenCount to get the number of available screens.

	Use XCloseDisplay to close the connection to the X server for the display specified in the Display structure and destroy all windows, resource IDs (Window, Font, Pixmap, Colormap, Cursor, and GContext), or other resources that the client created on this display.

	Use a FOR loop to enumerate the displays. To change the display, change the value of the environment variable DISPLAY.

	
	Inside the loop:
	
	Use putenv to set the environment variable DISPLAY with respect to the display number.

	Use OpenDisplay to open a connection to the server that controls a display.

	Use glXChooseFBConfig to get a list of GLX frame buffer configurations that match the specified attributes.

d. Use glXChooseVisual to get a visual that matches specified attributes. e. Use XCreateColormap to create a color map of the specified visual type for the screen on which the specified window resides and returns the colormap ID associated with it. Note that the specified window is only used to determine the screen.
f. Use XCreateWindow to create an unmapped sub-window for a specified parent window, returns the window ID of the created window, and causes the X server to generate a CreateNotify event. The created window is placed on top in the stacking order with respect to siblings.
g. Use XMapWindow to map the window and all of its sub-windows that have had map requests. Mapping a window that has an unmapped ancestor does not display the window but marks it as eligible for display when the ancestor becomes mapped. Such a window is called unviewable. When all its ancestors are mapped, the window becomes viewable and is visible on the screen, if it is not obscured by another window.
h. Use glXCreateContextAttribsARB function to initialize the context to the initial state defined by the OpenGL specification and return a handle to it. This handle can be used to render to any GLX surface.
i. Use glXMakeCurrent to make argrument3 (GLXContext) the current GLX rendering context of the calling thread, replacing the previously current context, if there was one, and to attach argument3 (GLXcontext) to a GLX drawable, either a window or a GLX pixmap.
j. Use clGetGLContextInfoKHR to get the number of OpenCL-OpenGL interoperability devices corresponding to the window created in f, above.
k. If the number of interoperable devices is zero, use glXDestroyContext to destroy the context created at step h, and go to step A otherwise, exit from the loop (an OpenCL-OpenGL interoperable device has been found).

	Use clGetGLContextInfoKHR to get the OpenCL-OpenGL interoperable device id.

	Use clCreateContext to create the context on the interoperable device obtained in the previous step.

The following code segment shows how to create an OpenCL-OpenGL interoperability context on a system with multiple GPUs.

displayName = XOpenDisplay(NULL);
int screenNumber = ScreenCount(displayName);
XCloseDisplay(displayName);

for (int i = 0; i < screenNumber; i++)
{
if (isDeviceIdEnabled())
{
if (i < deviceId)
{
continue;
}
}
char disp[100];
sprintf(disp, "DISPLAY=:0.%d", i);
putenv(disp);
displayName = XOpenDisplay(0);
int nelements;
GLXFBConfig *fbc = glXChooseFBConfig(displayName,
DefaultScreen(displayName),
0,
&nelements);
static int attributeList[] = { GLX_RGBA,
GLX_DOUBLEBUFFER,
GLX_RED_SIZE,
1,
GLX_GREEN_SIZE,
1,
GLX_BLUE_SIZE,
1,
None
};

XVisualInfo *vi = glXChooseVisual(displayName, DefaultScreen(displayName), attributeList);
XSetWindowAttributes swa;
swa.colormap = XCreateColormap(displayName,
RootWindow(displayName, vi->screen),
vi->visual,
AllocNone);
swa.border_pixel = 0;
swa.event_mask = StructureNotifyMask;

win = XCreateWindow(displayName, RootWindow(displayName, vi->screen),
10,
10,
width,
height,
0,
vi->depth,
InputOutput,
vi->visual,
CWBorderPixel|CWColormap|CWEventMask,
&swa);

XMapWindow (displayName, win);
int attribs[] = {
};

GLX_CONTEXT_MAJOR_VERSION_ARB, 3, GLX_CONTEXT_MINOR_VERSION_ARB, 0,
0
GLXContext ctx = glXCreateContextAttribsARB(displayName,
*fbc,
0,
true,
attribs);
glXMakeCurrent (displayName,
win,
ctx);

gGlCtx = glXGetCurrentContext();
properties cpsGL[] = {
CL_CONTEXT_PLATFORM, (cl_context_properties)platform,
CL_GLX_DISPLAY_KHR, (intptr_t) glXGetCurrentDisplay(),
CL_GL_CONTEXT_KHR, (intptr_t) gGlCtx, 0
};

size_t deviceSize = 0;
status = clGetGLContextInfoKHR(cpsGL,
CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR,
0,
NULL,
&deviceSize);
int numDevices = (deviceSize / sizeof(cl_device_id));

if(numDevices == 0)
{
glXDestroyContext(glXGetCurrentDisplay(), gGlCtx);
continue;
}
else
{
//Interoperable device found std::cout<<"Interoperable device found "<<std::endl; break;
}
}

status = clGetGLContextInfoKHR(cpsGL, CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR, sizeof(cl_device_id),
&interopDeviceId, NULL);

// Create OpenCL context from device's id context = clCreateContext(cpsGL,
1,
&interopDeviceId,
0,
0,
&status);

Additional GL Formats Supported

The following is a list of GL formats beyond the minimum set listed in The OpenCL Extension Specification, v 1.2 that AMD supports.

	AMD-Supported GL Formats

	GL internal format

	GL_ALPHA8

	CL_A,CL_UNORM8

	GL_R8, CL_R,

	CL_UNORM_INT8

	GL_R8UI CL_R,

	CL_UNSIGNED_INT8

	GL_R8I CL_R,

	CL_SIGNED_INT8

	GL_RG8 CL_RG,

	CL_UNORM_INT8

	GL_RG8UI CL_RG,

	CL_UNSIGNED_INT8

	GL_RG8I CL_RG,

	CL_SIGNED_INT8

	GL_RGB8 CL_RGB,

	CL_UNORM_INT8

	GL_RGB8UI CL_RGB,

	CL_UNSIGNED_INT8

	GL_RGB8I CL_RGB,

	CL_SIGNED_INT8

	GL_R16 CL_R,

	CL_UNORM_INT16

	GL_R16UI CL_R,

	CL_UNSIGNED_INT16

	GL_R16I CL_R,

	CL_SIGNED_INT16

	GL_RG16 CL_RG,

	CL_UNORM_INT16

	GL_RG16UI CL_RG,

	CL_UNSIGNED_INT16

	GL_RG16I CL_RG,

	CL_SIGNED_INT16

	GL_RGB16 CL_RGB,

	CL_UNORM_INT16

	GL_RGB16UI CL_RGB,

	CL_UNSIGNED_INT16

	GL_RGB16I CL_RGB,

	CL_SIGNED_INT16

	GL_R32I CL_R,

	CL_SIGNED_INT32

	GL_R32UI CL_R,

	CL_UNSIGNED_INT32

	GL_R32F CL_R,

	CL_FLOAT

	GL_RG32I CL_RG,

	CL_SIGNED_INT32

	GL_RG32UI CL_RG,

	CL_UNSIGNED_INT32

	GL_RG32F CL_RG,

	CL_FLOAT

	GL_RGB32I CL_RGB,

	CL_SIGNED_INT32

	GL_RGB32UI CL_RGB,

	CL_UNSIGNED_INT32

New built-in functions in OpenCL 2.0

List of Functions

Work Item Functions

	get_enqueued_local_size

	local sizes in uniform part of NDRange

	get_global_linear_id

	unique 1D index for each work item in the NDRange

	get_local_linear_id

	unique 1D index for each work item in the work group

Integer functions

ctz : count trailing zero bits

Synchronization Functions

work_group_barrier : replaces barrier, adds scope

Address space qualifier functions

	to_global

	convert generic pointer to global pointer

	to_local

	convert genericpointer to local pointer

	to_private

	convert generic pointer to private pointer

	get_fence

	get fence appropriate to address space

Atomic functions

	atomic_init

	Initialize atomic value

	atomic_work_item_fence

	memory fence

	atomic_store[_explicit]

	atomic store

	atomic_load[_explicit]

	atomic load

	atomic_exchange[_explicit]

	atomic exchange

	atomic_compare_exchange_strong[_explicit]

	atomic compare and exchange (CAS)

	atomic_compare_exchange_weak[_explicit]

	atomic compare and exchange (CAS)

	atomic_fetch_add[_explicit]

	atomic fetch+add

	atomic_fetch_sub[_explicit]

	atomic fetch+sub

	atomic_fetch_or[_explicit]

	atomic fetch+or

	atomic_fetcn_xor[_explicit]

	atomic fetch+xor

	atomic_fetch_and[_explicit]

	atomic fetch+and

	atomic_fetch_max_[explicit]

	atomic fetch+max

	atomic_fetch_min[_explicit]

	

	atomic fetch+min

	

	atomic_flag_test_and_set[_explicit]

	atomic flag set

	atomic_flag_clear[_explicit]

	atomic flag clear

Image Read and Write Functions

read_imagef : Read from 2D depth [array] image

write_imagef : Write to 2D depth [array] image

Work group functions

	work_group_all

	Test all members of work group (and reduction)

	work_group_any

	Test any member of work group (or reduction)

	work_group_broadcast

	Brodcast value to every member of work group

	work_group_reduce_add

	Sum reduction across work group

	work_group_reduce_max

	Max reduction across work group

	work_group_reduce_min

	Min reduction across work group

	work_group_scan_exclusive_add

	Sum exclusive scan across work group

	work_group_scan_exclusive_max

	Max exclusive scan across work group

	work_group_scan_exclusive_min

	Min exclusive scan across work group

	work_group_scan_inclusive_add Sum inclusive

	scan across work group

	work_group_scan_inclusive_max Max inclusive

	scan across work group

	work_group_scan_inclusive_min Min inclusive

	scan across work group

Pipe functions

	read_pipe

	Read from pipe

	write_pipe

	Write to pipe

	reserve_read_pipe

	Reserve reads from pipe

	reserve_write_pipe

	Reserve writes to pipe

	commit_read_pipe

	Commit reserved pipe reads

	commit_write_pipe

	Commit reserved pipe writes

	is_valid_reserve_id

	Test reservation value

	work_group_reserve_read_pipe

	Work group read reservation

	work_group_reserve_write_pipe

	work group write reservation

	work_group_commit_read_pipe

	work group commit read reservation

	work_group_commit_write_pipe

	work group commit write reservation

	get_pipe_num_packets

	get current number of packets in pipe

	get_pipe_max_packets

	get capacity of pipe

Enqueueing Kernels

	enqueue_kernel

	Enqueue block as kernel

	get_kernel_work_group_size

	Query max work group size

	get_kernel_preferred_work_group_size_m

	Query preferred divisor of work group size multiple

	enqueue_marker

	Enqueue a marker

	retain_event

	Increment refcount of event

	release_event

	Decrement refcount of event

	create_user_event

	Create user event

	is_valid_event

	Check if event is valid

	set_user_event_status

	Signal user event

	capture_event_profiling_info

	Schedule capture of profiling info

	get_default_queue

	Get default queue

	ndrange_1D

	Create 1D NDRange

	ndrange_2D

	Create 2D NDRange

	ndrange_3D

	Create 3D NDRange

Deprecated built-ins barrier

mem_fence

read_mem_fence

write_mem_fence

atomic_add

atomic_sub

atomic_xchg

atomic_inc

atomic_dec

atomic_cmpxchg

atomic_min

atomic_max

atomic_and

atomic_or

atomic_xor

New runtime APIs in OpenCL 2.0

New Types

	cl_device_svm_capabilities

	Returned by clGetDeviceInfo(…CL_DEVICE_SVM_CAPABILITIES…)

	cl_queue_properties

	See clCreateCommandQueueWithProperties

	cl_svm_mem_flags

	See clSVMAlloc

	cl_pipe_properties

	See clCreatePipe

	cl_pipe_info

	See clGetPipeInfo

	cl_sampler_properties

	See clCreateSamplerWithProperties

	cl_kernel_exec_info

	See clSetKernelExecInfo

	cl_image_desc

	A field name changed from buffer to mem_object

	cl_kernel_sub_group_info

	See clGetKernelSubGroupInfoKHR

New Macros

CL_INVALID_PIPE_SIZE

CL_INVALID_DEVICE_QUEUE

CL_VERSION_2_0

CL_DEVICE_QUEUE_ON_HOST_PROPERTIES

CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS

CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE

CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES

CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE

CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE

CL_DEVICE_MAX_ON_DEVICE_QUEUES

CL_DEVICE_MAX_ON_DEVICE_EVENTS

CL_DEVICE_SVM_CAPABILITIES

CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_TOTAL_SIZE

CL_DEVICE_MAX_PIPE_ARGS

CL_DEVICE_PIPE_MAX_ACTIVE_RESERVATIONS

CL_DEVICE_PIPE_MAX_PACKET_SIZE

CL_DEVICE_PREFERRED_PLATFORM_ATOMIC_ALIGNMENT

CL_DEVICE_PREFERRED_GLOBAL_ATOMIC_ALIGNMENT

CL_DEVICE_PREFERRED_LOCAL_ATOMIC_ALIGNMENT

CL_QUEUE_ON_DEVICE

CL_QUEUE_ON_DEVICE_DEFAULT

CL_DEVICE_SVM_COARSE_GRAIN_BUFFER

CL_DEVICE_SVM_FINE_GRAIN_BUFFER

CL_DEVICE_SVM_FINE_GRAIN_SYSTEM

CL_DEVICE_SVM_ATOMICS

CL_QUEUE_SIZE

CL_MEM_SVM_FINE_GRAIN_BUFFER

CL_MEM_SVM_ATOMICS

CL_sRGB

CL_sRGBx

CL_sRGBA

CL_sBGRA

CL_ABGR

CL_MEM_OBJECT_PIPE

CL_MEM_USES_SVM_POINTER

CL_PIPE_PACKET_SIZE

CL_PIPE_MAX_PACKETS

CL_SAMPLER_MIP_FILTER_MODE

CL_SAMPLER_LOD_MIN

CL_SAMPLER_LOD_MAX

CL_PROGRAM_BUILD_GLOBAL_VARIABLE_TOTAL_SIZE

CL_KERNEL_ARG_TYPE_PIPE

CL_KERNEL_EXEC_INFO_SVM_PTRS

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM

CL_COMMAND_SVM_FREE

CL_COMMAND_SVM_MEMCPY

CL_COMMAND_SVM_MEMFILL

CL_COMMAND_SVM_MAP

CL_COMMAND_SVM_UNMAP

CL_PROFILING_COMMAND_COMPLETE

New API calls

clCreateCommandQueueWithProperties See section 5.1

clCreatePipe See section 5.4.1

clGetPipeInfo See section 5.4.2

clSVMAlloc See section 5.6.1

clSVMFree See section 5.6.1

clEnqueueSVMFree See section 5.6.1

clEnqueueSVMMemcpy See section 5.6.1

clEnqueueSVMMemFill See section 5.6.1

clEnqueueSVMMap See section 5.6.1

clEnqueueSVMUnmap See section 5.6.1

clCreateSamplerWithProperties See section 5.7.1

clSetKernelArgSVMPointer See section 5.9.2

clSetKernelExecInfo See section 5.9.2

clGetKernelSubGroupInfoKHR See section 9.17.2.1

Deprecated runtimes

clCreateCommandQueue

clCreateSampler

clEnqueueTask

OpenMP Support

OpenMP-Extras V12.9-0

The openmp-extras auxiliary package supports OpenMP within the ROCm compiler, which is on llvm 12, and is independent of the aomp-amdgpu
package. It contains OpenMP specific header files, which are installed in /opt/rocm/llvm/include as well as runtime libraries, fortran runtime
libraries, and device bitcode files in /opt/rocm/llvm/lib. The auxiliary package also consists of examples in /opt/rocm/llvm/examples.

OpenMP-Extras Installation

Openmp-extras is automatically installed as a part of the rocm-dkms or rocm-dev package. Refer to the AMD ROCm Installation Guide at

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

OpenMP-Extras Source Build

For instructions on building OpenMP-Extras from source, refer to `OPENMPEXTRAS_SOURCE_INSTALL.<https://github.com/ROCm-Developer-Tools/aomp/blob/rocm-3.9.x/docs/OPENMPEXTRAS_SOURCE_INSTALL.md>`__

System package dependencies can be found here. [https://github.com/ROCm-Developer-Tools/aomp/blob/rocm-3.9.0/docs/SOURCEINSTALL.md]

NOTE: The ROCm compiler, which supports OpenMP for AMDGPU, is located in /opt/rocm/llvm/bin/clang. The AOMP OpenMP support in ROCm
v3.9 is based on the standalone AOMP v11.9-0, with LLVM v11 as the underlying system. However, the ROCm compiler’s OpenMP support is based
on LLVM v12 (upstream).

2. AOMP - V11.9-0

Overview

AOMP in ROCm is a scripted build of LLVM 11 and supporting software. It has support for OpenMP target offload on AMD GPUs. The build of AOMP
uses a combination of sources from ROCm along with AOMP specific repos (aomp, flang, aomp-extras, amd-llvm-project).

AOMP Installation

AOMP in ROCm can be installed with the optional aomp-amdgpu package after rocm-dkms is installed.

NOTE: The optional AOMP package will reside in /opt/rocm/aomp and clang can be found in /opt/rocm/aomp/bin/clang.

AOMP Optional Package Deprecation Before the AMD ROCm v3.9 release, the optional AOMP package provided support for OpenMP. While AOMP is
available in this release, the optional package may be deprecated from ROCm in the future. It is recommended you transition to the ROCm
compiler by using openmp-extras or AOMP standalone releases [https://github.com/ROCM-Developer-Tools/aomp/releases] for
OpenMP support.

AOMP Installation Instructions

AOMP in ROCm can be installed via your package manager using the aomp-amdgpu package.

AOMP Source Build

See ROCM_AOMP_SOURCE_INSTALL [https://github.com/ROCm-Developer-Tools/aomp/blob/rocm-3.9.x/docs/ROCM_AOMP_SOURCE_INSTALL.md]
for instructions on building AOMP from source.

System package dependencies can be found here. [https://github.com/ROCm-Developer-Tools/aomp/blob/rocm-3.9.0/docs/SOURCEINSTALL.md]

GCN Assembler and Disassembler

The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. In a previous blog we described how to combine several languages in a single program using ROCm and Hsaco. This article explains how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture. I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s capabilities. Some reasons are the following:

	The program may be written in a high level language that does not expose all of the features available on the hardware.

	The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra]). Recent hardware architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To become more familiar with the instruction set, review the GCN ISA Reference Guide [https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf]. Note: the assembler is currently experimental; some of syntax we describe may change.

DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index, __global uint * out)
{
 size_t i = get_global_id(0);
 out[i] = in[index[i]];
}

Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding between variables—except to honor the requirements of natural alignment and any align qualifier. The example host program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like the following:

/*
* This is the host-side representation of the kernel arguments that the simplePermute kernel expects.
*/
struct simplePermute_args_t {
 uint32_t * in;
 uint32_t * index;
 uint32_t * out;
};
/*
 * Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate(kernarg_region, sizeof(simplePermute_args_t), (void**)(&args));
assert(HSA_STATUS_SUCCESS == status);
aql->kernarg_address = args;
/*
* Write the args directly to the kernargs buffer;
* the code assumes that memory is already allocated for the
* buffers that in_ptr, index_ptr and out_ptr point to
*/
args->in = in_ptr;
args->index = index_ptr;
args->out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 * sizeof(void*))) { return false; }

// Create buffers
Buffer *in, *index, *out;
in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer(size);

// Fill Kernarg memory
Kernarg(in); // Add base pointer to “in” buffer
Kernarg(index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the kernel, such as

	The LDS size

	The number of GPRs

	Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in the AMDGPU-ABI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer] specification. This is what it looks like in source code:

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
compute_pgm_rsrc1_vgprs = 1
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5
.end_amd_kernel_code_t

s_load_dwordx2 s[4:5], s[0:1], 0x10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_lshlrev_b32 v0, 2, v0
s_waitcnt lgkmcnt(0)
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc
flat_load_dword v1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vmcnt(0) & lgkmcnt(0)
v_lshlrev_b32 v1, 2, v1
ds_bpermute_b32 v1, v1, v2
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkmcnt(0)
flat_store_dword v[3:4], v1
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully, this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension. Registers v1 and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1] registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is the scheme showing initial state for our kernel.

[image: Programming_Guides/initial_state-768x387.png]

The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward, however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wavefront_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs v0–v4, so workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0–s5, since the special registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Previous generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers. The fields compute_pgm_rsrc1_*gprs contain a device-specific number for each register-block type to allocate for a wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following formulas for all three GCN GPU generations:

compute_pgm_rsrc1_vgprs = (workitem_vgpr_count-1)/4

compute_pgm_rsrc1_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into s[2:3] from kernarg
v_lshlrev_b32 v0, 2, v0 // v0 *= 4;
s_waitcnt lgkmcnt(0) // wait for memory reads to finish

// compute address of corresponding element of index buffer
// i.e. v[1:2] = &index[workitem_id]
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer
// i.e. v[3:4] = &in[workitem_id]
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword v1, v[1:2] // load index[workitem_id] into v1
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vmcnt(0) & lgkmcnt(0) // wait for memory reads to finish

// v1 *= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_lshlrev_b32 v1, 2, v1

// perform permutation
// temp[thread_id] = v2
// v1 = temp[v1]
// effectively we got v1 = in[index[thread_id]]
ds_bpermute_b32 v1, v1, v2

// compute address of corresponding element of out buffer
// i.e. v[3:4] = &out[workitem_id]
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc

s_waitcnt lgkmcnt(0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = v1
flat_store_dword v[3:4], v1

s_endpgm

Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so you can use Clang to do all the necessary magic:

clang -x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The GitHub examples [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra] use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

GCN Assembler Tools

Overview

This repository contains the following useful items related to AMDGPU ISA assembler:

	amdphdrs: utility to convert ELF produced by llvm-mc into AMD Code Object (v1)

	examples/asm-kernel: example of AMDGPU kernel code

	examples/gfx8/ds_bpermute: transfer data between lanes in a wavefront with ds_bpermute_b32

	examples/gfx8/dpp_reduce: calculate prefix sum in a wavefront with DPP instructions

	examples/gfx8/s_memrealtime: use s_memrealtime instruction to create a delay

	examples/gfx8/s_memrealtime_inline: inline assembly in OpenCL kernel version of s_memrealtime

	examples/api/assemble: use LLVM API to assemble a kernel

	examples/api/disassemble: use LLVM API to disassemble a stream of instructions

	bin/sp3_to_mc.pl: script to convert some AMD sp3 legacy assembler syntax into LLVM MC

	examples/sp3: examples of sp3 convertable code

At the time of this writing (February 2016), LLVM trunk build and latest ROCR runtime is needed.

LLVM trunk (May or later) now uses lld as linker and produces AMD Code Object (v2).

Building

Top-level CMakeLists.txt is provided to build everything included. The following CMake variables should be set:

	HSA_DIR (default /opt/hsa/bin): path to ROCR Runtime

	LLVM_DIR: path to LLVM build directory

To build everything, create build directory and run cmake and make:

mkdir build
cd build
cmake -DLLVM_DIR=/srv/git/llvm.git/build ..
make

Examples that require clang will only be built if clang is built as part of llvm.

Use cases

Assembling to code object with llvm-mc from command line

The following llvm-mc command line produces ELF object asm.o from assembly source asm.s:

llvm-mc -arch=amdgcn -mcpu=fiji -filetype=obj -o asm.o asm.s

Assembling to raw instruction stream with llvm-mc from command line

It is possible to extract contents of .text section after assembling to code object:

llvm-mc -arch=amdgcn -mcpu=fiji -filetype=obj -o asm.o asm.s
objdump -h asm.o | grep .text | awk '{print "dd if='asm.o' of='asm' bs=1 count=$[0x" $3 "] skip=$[0x" $6 "]"}' | bash

Disassembling code object from command line

The following command line may be used to dump contents of code object:

llvm-objdump -disassemble -mcpu=fiji asm.o

This includes text disassembly of .text section.

Disassembling raw instruction stream from command line

The following command line may be used to disassemble raw instruction stream (without ELF structure):

hexdump -v -e '/1 "0x%02X "' asm | llvm-mc -arch=amdgcn -mcpu=fiji -disassemble

Here, hexdump is used to display contents of file in hexadecimal (0x.. form) which is then consumed by llvm-mc.

Assembling source into code object using LLVM API

Refer to examples/api/assemble.

Disassembling instruction stream using LLVM API

Refer to examples/api/disassemble.

Using amdphdrs

Note that normally standard lld and Code Object version 2 should be used which is closer to standard ELF format.

amdphdrs (now obsolete) is complimentary utility that can be used to produce AMDGPU Code Object version 1.
For example, given assembly source in asm.s, the following will assemble it and link using amdphdrs:

llvm-mc -arch=amdgcn -mcpu=fiji -filetype=obj -o asm.o asm.s
andphdrs asm.o asm.co

Differences between LLVM AMDGPU Assembler and AMD SP3 assembler

Macro support

SP3 supports proprietary set of macros/tools. sp3_to_mc.pl script attempts to translate them into GAS syntax understood by llvm-mc.
flat_atomic_cmpswap instruction has 32-bit destination

LLVM AMDGPU:

flat_atomic_cmpswap v7, v[9:10], v[7:8]

SP3:

flat_atomic_cmpswap v[7:8], v[9:10], v[7:8]

Atomic instructions that return value should have glc flag explicitly

LLVM AMDGPU:

flat_atomic_swap_x2 v[0:1], v[0:1], v[2:3] glc

SP3:

flat_atomic_swap_x2 v[0:1], v[0:1], v[2:3]

References

	LLVM Use Guide for AMDGPU Back-End [http://llvm.org/docs/AMDGPUUsage.html]

	
	AMD ISA Documents
	
	AMD GCN3 Instruction Set Architecture (2016) [http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf]

	AMD_Southern_Islands_Instruction_Set_Architecture [https://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf]

HCC: Heterogeneous Compute Compiler (Deprecated)

HCC is an Open Source, Optimizing C++ Compiler for Heterogeneous Devices

This repository hosts the HCC compiler implementation project. The goal is to implement a compiler that takes a program that conforms to a parallel programming standard such as C++ AMP, HC, C++ 17 ParallelSTL, or OpenMP, and transforms it into the AMD GCN ISA.

The project is based on LLVM+CLANG. For more information, please visit the HCC WIKI (Deprecated)

The Heterogeneous Compute Compiler (HCC) provides two important benefits:

Ease of development

	A full C++ API for managing devices, queues and events

	C++ data containers that provide type safety, multidimensional-array indexing and automatic data management

	C++ kernel-launch syntax using parallel_for_each plus C++11 lambda functions

	A single-source C++ programming environment—the host and device code can be in the same source file and use the same C++ language;templates and classes work naturally across the host/device boundary

	HCC generates both host and device code from the same compiler, so it benefits from a consistent view of the source code using the
same Clang-based language parser

Full control over the machine

	Access AMD scratchpad memories (“LDS”)

	Fully control data movement, prefetch and discard

	Fully control asynchronous kernel launch and completion

	Get device-side dependency resolution for kernel and data commands (without host involvement)

	Obtain HSA agents, queues and signals for low-level control of the architecture using the HSA Runtime API

	Use [direct-to-ISA](https://github.com/RadeonOpenCompute/HCC-Native-GCN-ISA) compilation

Download HCC

The project now employs git submodules to manage external components it depends upon. It it advised to add –recursive when you clone the project so all submodules are fetched automatically.

For example:

automatically fetches all submodules
git clone --recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.git

For more information about git submodules, please refer to git documentation [https://git-scm.com/book/en/v2/Git-Tools-Submodules].

Build HCC from source

To configure and build HCC from source, use the following steps:

mkdir -p build; cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
make

To install it, use the following steps:

sudo make install

Use HCC

For HC source codes:

hcc -hc foo.cpp -o foo

Multiple ISA

HCC now supports having multiple GCN ISAs in one executable file. You can do it in different ways:

use ``–amdgpu-target=`` command line option

It’s possible to specify multiple `` –amdgpu-target= `` option.

Example:

ISA for Fiji(gfx803) and Vega10(gfx900) would
be produced
 hcc -hc \
 --amdgpu-target=gfx803 \
 --amdgpu-target=gfx900 \
 foo.cpp

configure HCC use CMake ``HSA_AMDGPU_GPU_TARGET`` variable

If you build HCC from source, it’s possible to configure it to automatically produce multiple ISAs via HSA_AMDGPU_GPU_TARGET CMake variable.

Use ; to delimit each AMDGPU target.
Example:

ISA for Fiji(gfx803) and Vega10(gfx900) would
be produced by default
cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DHSA_AMDGPU_GPU_TARGET="gfx803;gfx900" \
 ../hcc

CodeXL Activity Logger

To enable the CodeXL Activity Logger [https://github.com/RadeonOpenCompute/ROCm-Profiler/tree/master/CXLActivityLogger], use the USE_CODEXL_ACTIVITY_LOGGER environment variable.

Configure the build in the following way:

cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DUSE_CODEXL_ACTIVITY_LOGGER=1 \
 <ToT HCC checkout directory>

In your application compiled using hcc, include the CodeXL Activiy Logger header:

#include <CXLActivityLogger.h>

For information about the usage of the Activity Logger for profiling, please refer to its documentation [https://github.com/RadeonOpenCompute/ROCm-Profiler/blob/master/CXLActivityLogger/doc/AMDTActivityLogger.pdf].

HCC with ThinLTO Linking

To enable the ThinLTO link time, use the KMTHINLTO environment variable.

Set up your environment in the following way:

export KMTHINLTO=1

ThinLTO Phase 1 - Implemented

For applications compiled using hcc, ThinLTO could significantly improve link-time performance. This implementation will maintain kernels in their .bc file format, create module-summaries for each, perform llvm-lto’s cross-module function importing and then perform clamp-device (which uses opt and llc tools) on each of the kernel files. These files are linked with lld into one .hsaco per target specified.

ThinLTO Phase 2 - Under development
This ThinLTO implementation which will use llvm-lto LLVM tool to replace clamp-device bash script. It adds an optllc option into ThinLTOGenerator, which will perform in-program opt and codegen in parallel.

To use HCC Printf Functions

Set up environmental variable:

export HCC_ENABLE_PRINTF=1

Then compile the printf kernel with HCC_ENABLE_ACCELERATOR_PRINTF macro defined.

~/build/bin/hcc -hc -DHCC_ENABLE_ACCELERATOR_PRINTF -lhc_am -o printf.out ~/hcc/tests/Unit/HSA/printf.cpp

HCC built-in macros

Built-in macros:

	Macro

	Meaning

	__HCC__

	always be 1

	__hcc_major__

	major version number of HCC

	__hcc_minor__

	minor version number of HCC

	__hcc_patchlevel__

	patchlevel of HCC

	__hcc_version__

	combined string of __hcc_major__, __hcc_minor__, __hcc_patchlevel__

The rule for __hcc_patchlevel__ is: yyWW-(HCC driver git commit #)-(HCC clang git commit #)

	yy stands for the last 2 digits of the year

	WW stands for the week number of the year

Macros for language modes in use:

	Macro

	Meaning

	__KALMAR_AMP__

	1 in case in C++ AMP mode (-std=c++amp; Removed from ROCm 2.0 onwards)

	__KALMAR_HC__

	1 in case in HC mode (-hc)

Compilation mode: HCC is a single-source compiler where kernel codes and host codes can reside in the same file. Internally HCC would trigger 2 compilation iterations, and the following macros can be used by user programs to determine which mode the compiler is in.

	Macro

	Meaning

	__KALMAR_ACCELERATOR__

	not 0 in case the compiler runs in kernel code compilation mode

	__KALMAR_CPU__

	not 0 in case the compiler runs in host code compilation mode

For more examples on how to use printf, see tests in tests/Unit/HSA/printf*.cpp.

HCC Profile Mode (Deprecated)

HCC supports low-overhead profiler to trace or summarize command timestamp information to stderr for any HCC or HIP program. Tho profiler messages are interleaved with the trace output from the application - which is handy to identify the region-of-interest and can complement deeper analysis with the CodeXL GUI Additionally, the hcc profiler requires only console mode access and can be used on machine where graphics are not available or are hard to access.

Some other useful features:

	Calculates the actual bandwidth for memory transfers

	Identifies PeerToPeer memory copies

	Shows start / stop timestamps for each command (if requested)

	Shows barrier commands and the time they spent waiting to resolve (if requested)

Enable and configure

HCC_PROFILE=1 shows a summary of kernel and data commands when hcc exits. (under development) HCC_PROFILE=2 enables a profile message after each command (kernel or data movement) completes.

Additionally, the HCC_PROFILE_VERBOSE variable controls the information shown in the profile log. This is a bit-vector: 0x2 : Show start and stop timestamps for each command. 0x4 : Show the device.queue.cmdseqnum for each command. 0x8 : Show the short CPU TID for each command. (not supported) 0x10 : Show logs for barrier commands.

Sample Output

Kernel Commands

This shows the simplest trace output for kernel commands with no additional verbosity flags:

$ HCC_PROFILE=2 ./my-hcc-app ...
profile: kernel; Im2Col; 17.8 us;
profile: kernel; tg_betac_alphaab; 32.6 us;
profile: kernel; MIOpenConvUni; 125.4 us;

PROFILE: TYPE; KERNEL_NAME ; DURATION;

This example shows profiled kernel commands with full verbose output:

$ HCC_PROFILE=2 HCC_PROFILE_VERBOSE=0xf ./my-hcc-app ...
profile: kernel; Im2Col; 17.8 us; 94859076277181; 94859076294941; #0.3.1;
profile: kernel; tg_betac_alphaab; 32.6 us; 94859537593679; 94859537626319; #0.3.2;
profile: kernel; MIOpenConvUni; 125.4 us; 94860077852212; 94860077977651; #0.3.3;

PROFILE: TYPE; KERNEL_NAME ; DURATION; START ; STOP ; ID

	PROFILE: always “profile:” to distinguish it from other output.

	TYPE: the command type : kernel, copy, copyslo, or barrier. The examples and descriptions in this section are all kernel commands.

	KERNEL_NAME: the (short) kernel name.

	DURATION: command duration measured in us. This is measured using the GPU timestamps and represents the command execution on the acclerator device.

	START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	ID: command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm is a unique mononotically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely identifies the command during the process execution.

Memory Copy Commands

This example shows memory copy commands with full verbose output:

profile: copyslo; HostToDevice_sync_slow; 909.2 us; 94858703102; 94858704012; #0.0.0; 2359296 bytes; 2.2 MB; 2.5 GB/s;
profile: copy; DeviceToHost_sync_fast; 117.0 us; 94858726408; 94858726525; #0.0.0; 1228800 bytes; 1.2 MB; 10.0 GB/s;
profile: copy; DeviceToHost_sync_fast; 9.0 us; 94858726668; 94858726677; #0.0.0; 400 bytes; 0.0 MB; 0.0 GB/s;
profile: copy; HostToDevice_sync_fast; 15.2 us; 94858727639; 94858727654; #0.0.0; 9600 bytes; 0.0 MB; 0.6 GB/s;
profile: copy; HostToDevice_async_fast; 131.5 us; 94858729198; 94858729330; #0.6.1; 1228800 bytes; 1.2 MB; 8.9 GB/s;
PROFILE: TYPE; COPY_NAME ; DURATION; START; STOP; ID ; SIZE_BYTES; SIZE_MB; BANDWIDTH;

	PROFILE: always “profile:” to distinguish it from other output.

	TYPE: the command type : kernel, copy, copyslo,or barrier. The examples and descriptions in this section are all copy or copyslo commands.

	
	COPY_NAME has 3 parts:
	
	Copy kind: HostToDevice, HostToHost, DeviceToHost, DeviceToDevice, or PeerToPeer. DeviceToDevice indicates the copy occurs on a single device while PeerToPeer indicates a copy between devices.

	Sync or Async. Synchronous copies indicate the host waits for the completion for the copy. Asynchronous copies are launched by the host without waiting for the copy to complete.

	Fast or Slow. Fast copies use the GPUs optimized copy routines from the hsa_amd_memory_copy routine. Slow copies typically involve unpinned host memory and can’t take the fast path.

	For example `HostToDevice_async_fast.

	DURATION: command duration measured in us. This is measured using the GPU timestamps and represents the command execution on the acclerator device.

	START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	ID: command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm is a unique mononotically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely identifies the command during the process execution.

	SIZE_BYTES: the size of the transfer, measured in bytes.

	SIZE_MB: the size of the transfer, measured in megabytes.

	BANDWIDTH: the bandwidth of the transfer, measured in GB/s.

Barrier Commands

Barrier commands are only enabled if HCC_PROFILE_VERBOSE 0x

An example barrier command with full vebosity:

profile: barrier; deps:0_acq:none_rel:sys; 5.3 us; 94858731419410; 94858731424690; #0.0.2;
PROFILE: TYPE; BARRIER_NAME ; DURATION; START ; STOP ; ID ;

	PROFILE: always “profile:” to distinguish it from other output.

	TYPE: the command type: either kernel, copy, copyslo, or barrier. The examples and descriptions in this section are all copy commands. Copy indicates that the runtime used a call to the fast hsa memory copy routine while copyslo indicates that the copy was implemented with staging buffers or another less optimal path. copy computes the commands using device-side timestamps while copyslo computes the bandwidth based on host timestamps.

	
	BARRIER_NAME has 3 parts:
	
	deps:# - the number of input dependencies into the barrier packet.

	acq: - the acquire fence for the barrier. May be none, acc(accelerator or agent), sys(system). See HSA AQL spec for additional information.

	rel: - the release fence for the barrier. May be none, acc(accelerator or agent), sys(system). See HSA AQL spec for additional information.

	DURATION: command duration measured in us. This is measured using the GPU timestamps from the time the barrier reaches the head of the queue to when it executes. Thus this includes the time to wait for all input dependencies, plus the previous command to complete, plus any fence operations performed by the barrier.

	START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

	ID: the command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm is a unique mononotically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely identifies the command during the process execution.

Overhead

The hcc profiler does not add any additional synchronization between commands or queues. Profile information is recorded when a command is deleted. The profile mode will allocate a signal for each command to record the timestamp information. This can add 1-2 us to the overall program execution for command which do not already use a completion signal. However, the command duration (start-stop) is still accurate. Trace mode will generate strings to stderr which will likely impact the overall application exection time. However, the GPU duration and timestamps are still valid. Summary mode accumulates statistics into an array and should have little impact on application execution time.

Additional Details and tips

	Commands are logged in the order they are removed from the internal HCC command tracker. Typically this is the same order that commands are dispatched, though sometimes these may diverge. For example, commands from different devices,queues, or cpu threads may be interleaved on the hcc trace display to stderr. If a single view in timeline order is required, enable and sort by the profiler START timestamps (HCC_PROFILE_VERBOSE=0x2)

	If the application keeps a reference to a completion_future, then the command timestamp may be reported significantly after it occurs.

	HCC_PROFILE has an (untested) feature to write to a log file.

HIP Programming Guide v4.x

For the latest version of the HIP Programming Guide for AMD ROCm, refer to

https://github.com/RadeonOpenCompute/ROCm

HIP Programming Guide v3.x

Host Memory

Introduction

hipHostMemory allocates pinned host memory which is mapped into the address space of all GPUs in the system. There are two use cases for this host memory:

	Faster HostToDevice and DeviceToHost Data Transfers: The runtime tracks the hipHostMalloc allocations and can avoid some of the setup required for regular unpinned memory. For exact measurements on a specific system, experiment with –unpinned and –pinned switches for the hipBusBandwidth tool.

	Zero-Copy GPU Access: GPU can directly access the host memory over the CPU/GPU interconnect, without need to copy the data. This avoids the need for the copy, but during the kernel access each memory access must traverse the interconnect, which can be tens of times slower than accessing the GPU’s local device memory. Zero-copy memory can be a good choice when the memory accesses are infrequent (perhaps only once). Zero-copy memory is typically “Coherent” and thus not cached by the GPU but this can be overridden if desired and is explained in more detail below.

Memory allocation flags

hipHostMalloc always sets the hipHostMallocPortable and hipHostMallocMapped flags. Both usage models described above use the same allocation flags, and the difference is in how the surrounding code uses the host memory. See the hipHostMalloc API for more information.

Coherency Controls

ROCm defines two coherency options for host memory:

	Coherent memory : Supports fine-grain synchronization while the kernel is running. For example, a kernel can perform atomic operations that are visible to the host CPU or to other (peer) GPUs. Synchronization instructions include threadfence_system and C++11-style atomic operations. However, coherent memory cannot be cached by the GPU and thus may have lower performance.

	Non-coherent memory : Can be cached by GPU, but cannot support synchronization while the kernel is running. Non-coherent memory can be optionally synchronized only at command (end-of-kernel or copy command) boundaries. This memory is appropriate for high-performance access when fine-grain synchronization is not required.

IP provides the developer with controls to select which type of memory is used via allocation flags passed to hipHostMalloc and the HIP_HOST_COHERENT environment variable:

	
	hipHostllocCoherent=0, hipHostMallocNonCoherent=0: Use HIP_HOST_COHERENT environment variable:
	
	If HIP_HOST_COHERENT is 1 or undefined, the host memory allocation is coherent.

	If host memory is `defined and 0: the host memory allocation is non-coherent. - hipHostMallocCoherent=1, hipHostMallocNonCoherent=0: The host memory allocation will be coherent. HIP_HOST_COHERENT env variable is ignored. - hipHostMallocCoherent=0, hipHostMallocNonCoherent=1: The host memory allocation will be non-coherent. HIP_HOST_COHERENT env variable is ignored. - hipHostMallocCoherent=1, hipHostMallocNonCoherent=1: Illegal.

Visibility of Zero-Copy Host Memory

Coherent host memory is automatically visible at synchronization points.

Non-coherent

	HIP API

	Synchronization Effect

	Fence

	Coherent Host Memory Visibiity

	Non-Coherent Host Memory Visibility

	hipStreamSynchronize

	host waits for all commands in the specified stream to complete

	system-scope release

	yes

	yes

	hipDeviceSynchronize

	host waits for all commands in all streams on the specified device to complete

	system-scope release

	yes

	yes

	hipEventSynchronize

	host waits for the specified event to complete

	device-scope release

	yes

	depends - see below

	hipStreamWaitEvent

	stream waits for the specified event to complete

	none

	yes

	no

hipEventSynchronize

Developers can control the release scope for hipEvents:

	By default, the GPU performs a device-scope acquire and release operation with each recorded event. This will make host and device memory visible to other commands executing on the same device.

A stronger system-level fence can be specified when the event is created with hipEventCreateWithFlags:

	hipEventReleaseToSystem : Perform a system-scope release operation when the event is recorded. This will make both Coherent and Non-Coherent host memory visible to other agents in the system, but may involve heavyweight operations such as cache flushing. Coherent memory will typically use lighter-weight in-kernel synchronization mechanisms such as an atomic operation and thus does not need to use hipEventReleaseToSystem.

Summary and Recommendations:

	Coherent host memory is the default and is the easiest to use since the memory is visible to the CPU at typical synchronization points. This memory allows in-kernel synchronization commands such as threadfence_system to work transparently.

	HIP/ROCm also supports the ability to cache host memory in the GPU using the “Non-Coherent” host memory allocations. This can provide performance benefit, but care must be taken to use the correct synchronization.

Unpinned Memory Transfer Optimizations

Please note that this document lists possible ways for experimenting with HIP stack to gain performance. Performance may vary from platform to platform.

On Small BAR Setup

There are two possible ways to transfer data from host-to-device (H2D) and device-to-host(D2H)

	Using Staging Buffers

	Using PinInPlace

On Large BAR Setup

There are three possible ways to transfer data from host-to-device (H2D)

	Using Staging Buffers

	Using PinInPlace

	Direct Memcpy

And there are two possible ways to transfer data from device-to-host (D2H)

	Using Staging Buffers

	Using PinInPlace

Some GPUs may not be able to directly access host memory, and in these cases we need to stage the copy through an optimized pinned staging buffer, to implement H2D and D2H copies.The copy is broken into buffer-sized chunks to limit the size of the buffer and also to provide better performance by overlapping the CPU copies with the DMA copies.

PinInPlace is another algorithm which pins the host memory “in-place”, and copies it with the DMA engine.

By default staging buffers are used for unpinned memory transfers. Environment variables allow control over the unpinned copy algorithm and parameters:

	HIP_PININPLACE - This environment variable forces the use of PinInPlace logic for all unpinned memory copies

	
	HIP_OPTIMAL_MEM_TRANSFER- This environment variable enables a hybrid memory copy logic based on thresholds. These thresholds can be managed with following environment variables:
	
	HIP_H2D_MEM_TRANSFER_THRESHOLD_STAGING_OR_PININPLACE - Threshold in bytes for H2D copy. For sizes smaller than threshold staging buffers logic would be used else PinInPlace logic.

	HIP_H2D_MEM_TRANSFER_THRESHOLD_DIRECT_OR_STAGING - Threshold in bytes for H2D copy. For sizes smaller than threshold direct copy logic would be used else staging buffers logic.

	HIP_D2H_MEM_TRANSFER_THRESHOLD - Threshold in bytes for D2H copy. For sizes smaller than threshold staging buffer logic would be used else PinInPlace logic.

HIP Programming Guide

Host Memory

Introduction

hipHostMalloc allocates pinned host memory which is mapped into the address space of all GPUs in the system. There are two use cases for this host memory:

	Faster HostToDevice and DeviceToHost Data Transfers: The runtime tracks the hipHostMalloc allocations and can avoid some of the setup required for regular unpinned memory. For exact measurements on a specific system, experiment with –unpinned and –pinned switches for the hipBusBandwidth tool.

	Zero-Copy GPU Access: GPU can directly access the host memory over the CPU/GPU interconnect, without need to copy the data. This avoids the need for the copy, but during the kernel access each memory access must traverse the interconnect, which can be tens of times slower than accessing the GPU’s local device memory. Zero-copy memory can be a good choice when the memory accesses are infrequent (perhaps only once). Zero-copy memory is typically “Coherent” and thus not cached by the GPU but this can be overridden if desired and is explained in more detail below.

Memory allocation flags

hipHostMalloc always sets the hipHostMallocPortable and hipHostMallocMapped flags. Both usage models described above use the same allocation flags, and the difference is in how the surrounding code uses the host memory. See the hipHostMalloc API for more information.

Coherency Controls

ROCm defines two coherency options for host memory:

	Coherent memory : Supports fine-grain synchronization while the kernel is running. For example, a kernel can perform atomic operations that are visible to the host CPU or to other (peer) GPUs. Synchronization instructions include threadfence_system and C++11-style atomic operations. However, coherent memory cannot be cached by the GPU and thus may have lower performance.

	Non-coherent memory : Can be cached by GPU, but cannot support synchronization while the kernel is running. Non-coherent memory can be optionally synchronized only at command (end-of-kernel or copy command) boundaries. This memory is appropriate for high-performance access when fine-grain synchronization is not required.

IP provides the developer with controls to select which type of memory is used via allocation flags passed to hipHostMalloc and the HIP_HOST_COHERENT environment variable:

	hipHostllocCoherent=0, hipHostMallocNonCoherent=0: Use HIP_HOST_COHERENT environment variable:
* If HIP_HOST_COHERENT is 1 or undefined, the host memory allocation is coherent.
* If host memory is `defined and 0: the host memory allocation is non-coherent. - hipHostMallocCoherent=1, hipHostMallocNonCoherent=0: The host memory allocation will be coherent. HIP_HOST_COHERENT env variable is ignored. - hipHostMallocCoherent=0, hipHostMallocNonCoherent=1: The host memory allocation will be non-coherent. HIP_HOST_COHERENT env variable is ignored. - hipHostMallocCoherent=1, hipHostMallocNonCoherent=1: Illegal.

Visibility of Zero-Copy Host Memory

Coherent host memory is automatically visible at synchronization points.

Non-coherent

hipEventSynchronize

Developers can control the release scope for hipEvents:

	By default, the GPU performs a device-scope acquire and release operation with each recorded event. This will make host and device memory visible to other commands executing on the same device.

A stronger system-level fence can be specified when the event is created with hipEventCreateWithFlags:

	hipEventReleaseToSystem : Perform a system-scope release operation when the event is recorded. This will make both Coherent and Non-Coherent host memory visible to other agents in the system, but may involve heavyweight operations such as cache flushing. Coherent memory will typically use lighter-weight in-kernel synchronization mechanisms such as an atomic operation and thus does not need to use hipEventReleaseToSystem.

Summary and Recommendations:

	Coherent host memory is the default and is the easiest to use since the memory is visible to the CPU at typical synchronization points. This memory allows in-kernel synchronization commands such as threadfence_system to work transparently.

	HIP/ROCm also supports the ability to cache host memory in the GPU using the “Non-Coherent” host memory allocations. This can provide performance benefit, but care must be taken to use the correct synchronization.

Unpinned Memory Transfer Optimization

Please note that this document lists possible ways for experimenting with HIP stack to gain performance. Performance may vary from platform to platform.

On Small BAR Setup

There are two possible ways to transfer data from host-to-device (H2D) and device-to-host(D2H)

	Using Staging Buffers

	Using PinInPlace

On Large BAR Setup

There are three possible ways to transfer data from host-to-device (H2D)

	Using Staging Buffers

	Using PinInPlace

	Direct Memcpy

And there are two possible ways to transfer data from device-to-host (D2H)

	Using Staging Buffers

	Using PinInPlace

Some GPUs may not be able to directly access host memory, and in these cases we need to stage the copy through an optimized pinned staging buffer, to implement H2D and D2H copies.The copy is broken into buffer-sized chunks to limit the size of the buffer and also to provide better performance by overlapping the CPU copies with the DMA copies.

PinInPlace is another algorithm which pins the host memory “in-place”, and copies it with the DMA engine.

Unpinned memory transfer mode can be controlled using environment variable HCC_UNPINNED_COPY_MODE.

By default HCC_UNPINNED_COPY_MODE is set to 0, which uses default threshold values to decide which transfer way to use based on data size.

Setting HCC_UNPINNED_COPY_MODE = 1, forces all unpinned transfer to use PinInPlace logic.

Setting HCC_UNPINNED_COPY_MODE = 2, forces all unpinned transfer to use Staging buffers.

Setting HCC_UNPINNED_COPY_MODE = 3, forces all unpinned transfer to use direct memcpy on large BAR systems.

Following environment variables can be used to control the transfer thresholds:

	HCC_H2D_STAGING_THRESHOLD - Threshold in KB for H2D copy. For sizes smaller than threshold direct copy logic would be used else staging buffers logic. By default it is set to 64.

	HCC_H2D_PININPLACE_THRESHOLD - Threshold in KB for H2D copy. For sizes smaller than threshold staging buffers logic would be used else PinInPlace logic. By default it is set to 4096.

	HCC_D2H_PININPLACE_THRESHOLD - Threshold in KB for D2H copy. For sizes smaller than threshold staging buffer logic would be used else PinInPlace logic. By default it is set to 1024.

Device-Side Malloc

hip-hcc and hip-clang supports device-side malloc and free. Users can allocate memory dynamically in a kernel. The allocated memory are in global address space, however, different threads get different memory allocations for the same call of malloc. The allocated memory can be accessed or freed by other threads or other kernels. It persists in the life time of the HIP program until it is freed.

The memory are allocated in pages. Users can define macro __HIP_SIZE_OF_PAGE for controlling the page size in bytes and macro __HIP_NUM_PAGES for controlling the total number of pages that can be allocated.

Use of Long Double Type

In HCC and HIP-Clang, long double type is 80-bit extended precision format for x86_64, which is not supported by AMDGPU. HCC and HIP-Clang treat long double type as IEEE double type for AMDGPU. Using long double type in HIP source code will not cause issue as long as data of long double type is not transferred between host and device. However, long double type should not be used as kernel argument type.

Supported Clang Options [https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/clang_options.md]

Installing pre-built packages

HIP can be easily installed using pre-built binary packages using the package manager for your platform.

Prerequisites

HIP code can be developed either on AMD ROCm platform using hcc or clang compiler, or a CUDA platform with nvcc installed:

AMD-hcc

	Add the ROCm package server to your system as per the OS-specific guide available here.

	Install the “hip_hcc” package. This will install HCC and the HIP porting layer.

apt-get install hip_hcc

 * Default paths and environment variables:
 * By default HIP looks for hcc in /opt/rocm/hcc (can be overridden by setting HCC_HOME environment variable)
 * By default HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH environment variable)
 * By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).
 * Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

HIP-clang

	Using clang to compile HIP program for AMD GPU is under development. Users need to build LLVM, clang, lld, ROCm device library, and HIP from source.

	Install the rocm [http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/] packages. ROCm will install some of the necessary components, including the kernel driver, HSA runtime, etc.

	
	Build LLVM/clang/lld by using the following repository and branch and following the general LLVM/clang build procedure. It is recommended to use -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm with cmake so that LLVM/clang/lld are installed to the default path expected by hipcc.
	
	LLVM: [https://github.com/RadeonOpenCompute/llvm.git] amd-common branch

	clang: [https://github.com/RadeonOpenCompute/clang] amd-common branch

	lld: [https://github.com/RadeonOpenCompute/lld] amd-common branch

	
	Build Rocm device library
	
	Checkout [https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git] master branch and build it with clang built from the last step.

	
	Build HIP
	
	Checkout [https://github.com/ROCm-Developer-Tools/HIP.git] master branch and build it with HCC installed with ROCm packages. Please use -DHIP_COMPILER=clang with cmake to enable hip-clang.

	
	Default paths and environment variables:
	
	By default HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH environment variable)

	By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).

	By default HIP looks for clang in /opt/rocm/llvm/bin (can be overridden by setting HIP_CLANG_PATH environment variable)

	By default HIP looks for device library in /opt/rocm/lib (can be overriden by setting DEVICE_LIB_PATH environment variable).

	Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

	Optionally, set HIPCC_VERBOSE=7 to output the command line for compilation to make sure clang is used instead of hcc.

NVIDIA-nvcc

	Add the ROCm package server to your system as per the OS-specific guide available here.

	Install the “hip_nvcc” package. This will install CUDA SDK and the HIP porting layer.

apt-get install hip_nvcc

 * Default paths and environment variables:
 * By default HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting CUDA_PATH env variable)
 * By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).
 * Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

Verify your installation

Run hipconfig (instructions below assume default installation path) :

/opt/rocm/bin/hipconfig --full

Compile and run the square sample [https://github.com/ROCm-Developer-Tools/HIP/tree/master/samples/0_Intro/square].

Building HIP from source

HIP source code is available and the project can be built from source on the HCC platform.

	Follow the above steps to install and validate the binary packages.

	Download HIP source code

	Install HIP build-time dependencies using sudo apt-get install libelf-dev.

	Build and install HIP (This is the simple version assuming default paths ; see below for additional options.)

By default, HIP uses HCC to compile programs. To use HIP-Clang, add -DHIP_COMPILER=clang to cmake command line.

cd HIP
mkdir build
cd build
cmake ..
make
make install

 * Default paths:
 * By default cmake looks for hcc in /opt/rocm/hcc (can be overridden by setting -DHCC_HOME=/path/to/hcc in the cmake step).*
 * By default cmake looks for HSA in /opt/rocm/hsa (can be overridden by setting -DHSA_PATH=/path/to/hsa in the cmake step).*
 * By default cmake installs HIP to /opt/rocm/hip (can be overridden by setting -DCMAKE_INSTALL_PREFIX=/where/to/install/hip in the cmake step).*

Here’s a richer command-line that overrides the default paths:

cd HIP
mkdir build
cd build
cmake -DHSA_PATH=/path/to/hsa -DHCC_HOME=/path/to/hcc -DCMAKE_INSTALL_PREFIX=/where/to/install/hip -DCMAKE_BUILD_TYPE=Release ..
make
make install

 * After installation, make sure HIP_PATH is pointed to /where/to/install/hip.

Porting CUDA Driver API

Introduction to the CUDA Driver and Runtime APIs

CUDA provides a separate CUDA Driver and Runtime APIs. The two APIs have significant overlap in functionality:

	Both APIs support events, streams, memory management, memory copy, and error handling.

	Both APIs deliver similar performance.

	Driver APIs calls begin with the prefix cu while Runtime APIs begin with the prefix cuda. For example, the Driver API API contains cuEventCreate while the Runtime API contains cudaEventCreate, with similar functionality.

	The Driver API defines a different but largely overlapping error code space than the Runtime API, and uses a different coding convention. For example, Driver API defines CUDA_ERROR_INVALID_VALUE while the Runtime API defines cudaErrorInvalidValue

The Driver API offers two additional pieces of functionality not provided by the Runtime API: cuModule and cuCtx APIs.

cuModule API

The Module section of the Driver API provides additional control over how and when accelerator code objects are loaded. For example, the driver API allows code objects to be loaded from files or memory pointers. Symbols for kernels or global data can be extracted from the loaded code objects. In contrast, the Runtime API automatically loads and (if necessary) compiles all of the kernels from an executable binary when run. In this mode, NVCC must be used to compile kernel code so the automatic loading can function correctly.

Both Driver and Runtime APIs define a function for launching kernels (called cuLaunchKernel or cudaLaunchKernel. The kernel arguments and the execution configuration (grid dimensions, group dimensions, dynamic shared memory, and stream) are passed as arguments to the launch function. The Runtime additionally provides the <<< >>> syntax for launching kernels, which resembles a special function call and is easier to use than explicit launch API (in particular with respect to handling of kernel arguments). However, this syntax is not standard C++ and is available only when NVCC is used to compile the host code.

The Module features are useful in an environment which generates the code objects directly, such as a new accelerator language front-end. Here, NVCC is not used. Instead, the environment may have a different kernel language or different compilation flow. Other environments have many kernels and do not want them to be all loaded automatically. The Module functions can be used to load the generated code objects and launch kernels. As we will see below, HIP defines a Module API which provides similar explicit control over code object management.

cuCtx API

The Driver API defines “Context” and “Devices” as separate entities. Contexts contain a single device, and a device can theoretically have multiple contexts. Each context contains a set of streams and events specific to the context. Historically contexts also defined a unique address space for the GPU, though this may no longer be the case in Unified Memory platforms (since the CPU and all the devices in the same process share a single unified address space). The Context APIs also provide a mechanism to switch between devices, which allowed a single CPU thread to send commands to different GPUs. HIP as well as a recent versions of CUDA Runtime provide other mechanisms to accomplish this feat - for example using streams or cudaSetDevice.

The CUDA Runtime API unifies the Context API with the Device API. This simplifies the APIs and has little loss of functionality since each Context can contain a single device, and the benefits of multiple contexts has been replaced with other interfaces. HIP provides a context API to facilitate easy porting from existing Driver codes. In HIP, the Ctx functions largely provide an alternate syntax for changing the active device.

Most new applications will prefer to use hipSetDevice or the stream APIs , therefore HIP has marked hipCtx APIs as deprecated. Support for these APIs may not be available in future releases. For more details on deprecated APIs please refer HIP deprecated APIs.

HIP Module and Ctx APIs

Rather than present two separate APIs, HIP extends the HIP API with new APIs for Modules and Ctx control.

hipModule API

Like the CUDA Driver API, the Module API provides additional control over how code is loaded, including options to load code from files or from in-memory pointers. NVCC and HCC target different architectures and use different code object formats: NVCC is cubin or ptx files, while the HCC path is the hsaco format. The external compilers which generate these code objects are responsible for generating and loading the correct code object for each platform. Notably, there is not a fat binary format that can contain code for both NVCC and HCC platforms. The following table summarizes the formats used on each platform:

hipcc uses NVCC and HCC to compile host codes. Both of these may embed code objects into the final executable, and these code objects will be automatically loaded when the application starts. The hipModule API can be used to load additional code objects, and in this way provides an extended capability to the automatically loaded code objects. HCC allows both of these capabilities to be used together, if desired. Of course it is possible to create a program with no kernels and thus no automatic loading.

hipCtx API

HIP provides a Ctx API as a thin layer over the existing Device functions. This Ctx API can be used to set the current context, or to query properties of the device associated with the context. The current context is implicitly used by other APIs such as hipStreamCreate.

hipify translation of CUDA Driver API

The hipify tool converts CUDA Driver APIs for streams, events, modules, devices, memory management, context, profiler to the equivalent HIP driver calls. For example, cuEventCreate will be translated to hipEventCreate. Hipify also converts error code from the Driver namespace and coding convention to the equivalent HIP error code. Thus, HIP unifies the APIs for these common functions.

The memory copy API requires additional explanation. The CUDA driver includes the memory direction in the name of the API (ie cuMemcpyH2D) while the CUDA driver API provides a single memory copy API with a parameter that specifies the direction and additionally supports a “default” direction where the runtime determines the direction automatically. HIP provides APIs with both styles: for example, hipMemcpyH2D as well as hipMemcpy. The first flavor may be faster in some cases since they avoid host overhead to detect the different memory directions.

HIP defines a single error space, and uses camel-case for all errors (i.e. hipErrorInvalidValue).

HCC Implementation Notes (Deprecated)

.hsaco

The .hsaco format used by HCC is described in more detail here. An example and blog that show how to use the format is here. hsaco can be generated by hcc + extractkernel tool, cloc, the GCN assembler, or other tools.

Address Spaces

HCC defines a process-wide address space where the CPU and all devices allocate addresses from a single unified pool. Thus addresses may be shared between contexts, and unlike the original CUDA definition a new context does not create a new address space for the device.

Using hipModuleLaunchKernel

hipModuleLaunchKernel is cuLaunchKernel in HIP world. It takes the same arguments as cuLaunchKernel. The argument kernelParams is not fully implemented for HCC. The workaround for it is, to use platform specific macros for each target. Or, extra argument can be used which works on both the platforms.

Additional Information

	HCC allocates staging buffers (used for unpinned copies) on a per-device basis.

	HCC creates a primary context when the HIP API is called. So in a pure driver API code, HIP/HCC will create a primary context while HIP/NVCC will have empty context stack. HIP/HCC will push primary context to context stack when it is empty. This can have subtle differences on applications which mix the runtime and driver APIs.

hip-clang Implementation Notes

.hip_fatbin

hip-clang links device code from different translation units together. For each device target, a code object is generated. Code objects for different device targets are bundled by clang-offload-bundler as one fatbinary, which is embeded as a global symbol __hip_fatbin in the .hip_fatbin section of the ELF file of the executable or shared object.

Initialization and Termination Functions

hip-clang generates initializatiion and termination functions for each translation unit for host code compilation. The initialization functions call __hipRegisterFatBinary to register the fatbinary embeded in the ELF file. They also call __hipRegisterFunction and __hipRegisterVar to register kernel functions and device side global variables. The termination functions call __hipUnregisterFatBinary. hip-clang emits a global variable __hip_gpubin_handle of void** type with linkonce linkage and inital value 0 for each host translation unit. Each initialization function checks __hip_gpubin_handle and register the fatbinary only if __hip_gpubin_handle is 0 and saves the return value of __hip_gpubin_handle to __hip_gpubin_handle. This is to guarantee that the fatbinary is only registered once. Similar check is done in the termination functions.

Kernel Launching

hip-clang supports kernel launching by CUDA <<<>>> syntax, hipLaunchKernelGGL. The latter is a macro which expands to CUDA <<<>>> syntax.

In host code, hip-clang emits a stub function with the same name and arguments as the kernel. In the body of this function, hipSetupArgument is called for each kernel argument, then hipLaunchByPtr is called with a function pointer to the stub function.

When the executable or shared library is loaded by the dynamic linker, the initilization functions are called. In the initialization functions, when __hipRegisterFatBinary is called, the code objects containing all kernels are loaded; when __hipRegisterFunction is called, the stub functions are associated with the corresponding kernels in code objects.

In the host code, for the <<<>>> statement, hip-clang first emits call of hipConfigureCall to set up the threads and grids, then emits call of the stub function with the given arguments. In the stub function, when the runtime host API function hipLaunchByPtr is called, the real kernel associated with the stub function is launched.

NVCC Implementation Notes

Interoperation between HIP and CUDA Driver

CUDA applications may want to mix CUDA driver code with HIP code (see example below). This table shows the type equivalence to enable this interaction.

	HIP Type

	CU Driver Type

	CUDA Runtime Type

	hipModule_t

	CUmodule

	

	hipFunction_t

	CUfunction

	

	hipCtx_t

	CUcontext

	

	hipDevice_t

	CUdevice

	

	hipStream_t

	CUstream

	cudaStream_t

	hipEvent_t

	CUevent

	cudaEvent_t

	hipArray

	CUarray

	cudaArray

Compilation Options

The hipModule_t interface does not support cuModuleLoadDataEx function, which is used to control PTX compilation options. HCC does not use PTX and does not support these compilation options. In fact, HCC code objects always contain fully compiled ISA and do not require additional compilation as a part of the load step. The corresponding HIP function hipModuleLoadDataEx behaves as hipModuleLoadData on HCC path (compilation options are not used) and as cuModuleLoadDataEx on NVCC path. For example (CUDA):

CUmodule module;
void *imagePtr = ...; // Somehow populate data pointer with code object

const int numOptions = 1;
CUJit_option options[numOptions];
void * optionValues[numOptions];

options[0] = CU_JIT_MAX_REGISTERS;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

cuModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);

CUfunction k;
cuModuleGetFunction(&k, module, "myKernel");

HIP:

hipModule_t module;
void *imagePtr = ...; // Somehow populate data pointer with code object

const int numOptions = 1;
hipJitOption options[numOptions];
void * optionValues[numOptions];

options[0] = hipJitOptionMaxRegisters;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

// hipModuleLoadData(module, imagePtr) will be called on HCC path, JIT options will not be used, and
// cupModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues) will be called on NVCC path
hipModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);

hipFunction_t k;
hipModuleGetFunction(&k, module, "myKernel");

The below sample shows how to use hipModuleGetFunction.

#include<hip_runtime.h>
#include<hip_runtime_api.h>
#include<iostream>
#include<fstream>
#include<vector>

#define LEN 64
#define SIZE LEN<<2

#ifdef __HIP_PLATFORM_HCC__
#define fileName "vcpy_isa.co"
#endif

#ifdef __HIP_PLATFORM_NVCC__
#define fileName "vcpy_isa.ptx"
#endif

#define kernel_name "hello_world"

int main(){
 float *A, *B;
 hipDeviceptr_t Ad, Bd;
 A = new float[LEN];
 B = new float[LEN];

 for(uint32_t i=0;i<LEN;i++){
 A[i] = i*1.0f;
 B[i] = 0.0f;
 std::cout<<A[i] << " "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipInit(0);
 hipDevice_t device;
 hipCtx_t context;
 hipDeviceGet(&device, 0);
 hipCtxCreate(&context, 0, device);
#endif

 hipMalloc((void**)&Ad, SIZE);
 hipMalloc((void**)&Bd, SIZE);

 hipMemcpyHtoD(Ad, A, SIZE);
 hipMemcpyHtoD(Bd, B, SIZE);
 hipModule_t Module;
 hipFunction_t Function;
 hipModuleLoad(&Module, fileName);
 hipModuleGetFunction(&Function, Module, kernel_name);

 std::vector<void*>argBuffer(2);
 memcpy(&argBuffer[0], &Ad, sizeof(void*));
 memcpy(&argBuffer[1], &Bd, sizeof(void*));

 size_t size = argBuffer.size()*sizeof(void*);

 void *config[] = {
 HIP_LAUNCH_PARAM_BUFFER_POINTER, &argBuffer[0],
 HIP_LAUNCH_PARAM_BUFFER_SIZE, &size,
 HIP_LAUNCH_PARAM_END
 };

 hipModuleLaunchKernel(Function, 1, 1, 1, LEN, 1, 1, 0, 0, NULL, (void**)&config);

 hipMemcpyDtoH(B, Bd, SIZE);
 for(uint32_t i=0;i<LEN;i++){
 std::cout<<A[i]<<" - "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipCtxDetach(context);
#endif

 return 0;
}

HIP Module and Texture Driver API

HIP supports texture driver APIs however texture reference should be declared in host scope. Following code explains the use of texture reference for HIP_PLATFORM_HCC platform.

	::
	// Code to generate code object

#include “hip/hip_runtime.h”
extern texture<float, 2, hipReadModeElementType> tex;

	__global__ void tex2dKernel(float* outputData,
	int width,
int height)

	{
	int x = hipBlockIdx_x*hipBlockDim_x + hipThreadIdx_x;
int y = hipBlockIdx_y*hipBlockDim_y + hipThreadIdx_y;
outputData[y*width + x] = tex2D(tex, x, y);

}

// Host code:

texture<float, 2, hipReadModeElementType> tex;

void myFunc ()
{

// …

textureReference* texref;
hipModuleGetTexRef(&texref, Module1, “tex”);
hipTexRefSetAddressMode(texref, 0, hipAddressModeWrap);
hipTexRefSetAddressMode(texref, 1, hipAddressModeWrap);
hipTexRefSetFilterMode(texref, hipFilterModePoint);
hipTexRefSetFlags(texref, 0);
hipTexRefSetFormat(texref, HIP_AD_FORMAT_FLOAT, 1);
hipTexRefSetArray(texref, array, HIP_TRSA_OVERRIDE_FORMAT);

// …

}

Profiling HIP Code

This section describes the profiling and debugging capabilities that HIP provides.
Profiling information can viewed in the CodeXL visualization tool or printed directly to stderr as the application runs. This document starts with some of the general capabilities of CodeXL and then describes some of the additional HIP marker and debug features.

Note: CodeXL is no longer supported in AMD ROCm. We strongly recommend you use rocprof for profiling HIP applications. For more information about rocprof, refer

https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html#rocprof

	CodeXL Profiling

	
	Collecting and Viewing Traces
	
	Using rocm-profiler timestamp profiling

	Using rocm-profiler performance counter collection

	Using CodeXL to view profiling results

	More information on CodeXL

	
	HIP Markers
	
	Profiling HIP APIs

	Adding markers to applications

	
	Additional HIP Profiling Features
	
	Demangling C++ Kernel Names

	Controlling when profiling starts and ends

	Reducing timeline trace output file size

	How to enable profiling at HIP build time

	Tracing and Debug

	
	Tracing HIP APIs
	
	Color

CodeXL Profiling

Collecting and Viewing Traces

Using rocm-profiler timestamp profiling

rocm-profiler is a command-line tool for tracing any application that uses ROCr API, including HCC and HIP. rocm-profiler’s timeline trace will show the beginning and end for all kernel commands, data transfer commands, and HSA Runtime (ROCr) API calls. The trace results are saved into a file, which by convention uses the “atp” extension. Here is an example that shows how to run the command-line profiler:

$ /opt/rocm/bin/rocm-profiler -o <outputATPFileName> -A -T <applicationName> <applicationArguments>

Using rocm-profiler performance counter collection

rocm-profiler can record performance counter information to provide greater insight inside a kernel, such as the memory bandwidth, ALU busy percentage, and cache statistics. Collecting the common set of useful counters requires passing the counter configuration files for two passes:

$ /opt/rocm/bin/rocm-profiler -C -O --counterfile /opt/rocm/profiler/counterfiles/counters_HSA_Fiji_pass1 --counterfile /opt/rocm/profiler/counterfiles/counters_HSA_Fiji_pass2 <applicationName> <applicationArguments>

Using CodeXL to view profiling results

The trace can be loaded and viewed in the CodeXL visualization tool:

	Open the CodeXL GUI, create an new project, and switch to “Profile Mode”:

	$ CodeXL &

	[File->New Project, leave fields as is, just click “OK”]

	[Profile->Switch to Profile Mode]

	Load timestamp tracing results into a timeline view:

	Right click on the project in the CodeXL Explorer view

	Click “Import Session…”

	Select to $HOME/apitrace.atp (or appropriate .atp file if you used another file name)

	Load the performance counter results

	Right click on the project in the CodeXL Explorer view

	Click “Import Session…”

	Select $HOME/Session1.csv (or appropriate .csv file if you used another file name)

More information on CodeXL

rocm-profiler –help will show additional options and usage guidelines.

See this blog [http://gpuopen.com/getting-up-to-speed-with-the-codexl-gpu-profiler-and-radeon-open-compute/] for more information on profiling ROCm apps (including HIP) with CodeXL.

The 2.2 version of Windows CodeXL does not correctly handle Linux line-endings. If you are collecting a trace on Linux and then viewing it with the 2.2 Windows CodeXL, first convert the line ending in the .atp file to Windows-style line endings.

HIP Markers

Profiling HIP APIs

HIP can generate markers at function beginning and end which are displayed on the CodeXL timeline view. HIP 1.0 compiles marker support by default, and you can enable it by setting the HIP_PROFILE_API environment variable and then running the rocm-profiler:

Use profile to generate timeline view:
export HIP_PROFILE_API=1
$ /opt/rocm/bin/rocm-profiler -A -T <applicationName> <applicationArguments>

Or
$ /opt/rocm/bin/rocm-profiler -e HIP_PROFILE_API=1 -A -T <applicationName> <applicationArguments>

HIP_PROFILE_API supports two levels of information.

	HIP_PROFILE_API=1 : Short format. Print name of API but no arguments. For example:
hipMemcpy

	HIP_PROFILE_API=2 : Long format. Print name of API + values of all function arguments. For example:
hipMemcpy (0x7f32154db010, 0x50446e000, 4000000, hipMemcpyDeviceToHost)

Adding markers to applications

Markers can be used to define application-specific events that will be recorded in the ATP file and displayed in the CodeXL GUI. This can be particularly useful for visualizing how the higher-level phases of application behavior relate to the lower level HIP APIs, kernel launches, and data transfers. For example, an instrumented machine learning framework could show the beginning and ending of each layer in the network.

Markers have a specific begin and end time, and can be nested. Nested calls are displayed hierarchically in the CodeXL GUI, with each level of the hierarchy occupying a different row.

The HIP APis are defined in “hip_profile.h”:

#include <hip/hip_profile.h>

HIP_BEGIN_MARKER(const char *markerName, const char *groupName);
HIP_END_MARKER();

HIP_BEGIN_MARKER("Setup", "MyAppGroup");
// ...
// application code for setup
// ...
HIP_END_MARKER();

For C++ codes, HIP also provides a scoped marker which records the start time when constructed and the end time when the scoped marker is destructed at the end of the scope. This provides a convenient, single-line mechanism to record an event that neatly corresponds to a region of code.

void FunctionFoo(...)
{
 HIP_SCOPED_MARKER("FunctionFoo", "MyAppGroup"); // Marker starts recording here.

 // ...
 // Function implementation
 // ...

 // Marker destroyed here and records end time stamp.
};

The HIP marker API is only supported on ROCm platform. The marker macros are defined on CUDA platforms and will compile, but are silently ignored at runtime.

This HIP sample [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/hip_profiling.html#profiling-hip-apis] shows the profiler marker API used in a small application.

More information on the marker API can be found in the profiler header file and PDF in a ROCm installation:

	/opt/rocm/profiler/CXLActivityLogger/include/CXLActivityLogger.h

	/opt/rocm/profiler/CXLActivityLogger/doc/CXLActivityLogger.pdf

Additional HIP Profiling Features

Demangling C++ Kernel Names

HIP includes the hipdemangleatp tool which can post-process an ATP file to “demangle” C++ names. Mangled kernel names encode the C++ arguments and other information, and are guaranteed to be unique even for cases such as operator overloading. However, the mangled names can be quite verbose. For example:

ZZ39gemm_NoTransA_MICRO_NBK_M_N_K_TS16XMTS4RN2hc16accelerator_viewEPKflS3_lPfliiiiiiffEN3_EC__719__cxxamp_trampolineElililiiiiiiS3_iS3_S4_ff

hipdemangleatp will convert this into the more readable:

gemm_NoTransA_MICRO_NBK_M_N_K_TS16XMTS4

The hipdemangleatp tool operates on the ATP file “in-place” and thus replaces the input file with the demangled version.

$ hipdemangleatp myfile.atp

The kernel name is also shown in some of the summary htlm files (Top10 kernels). These can be regenerated from the demangled ATP file by re-running rocm-profiler:

$ rocm-profiler -T --atpfile myfile.atp

A future version of CodeXL may directly integrate demangle functionality.

Controlling when profiling starts and ends

hipProfilerStart() and hipProfilerEnd() can be inserted into an application to control which phases of the applications are profiled. These APIs can be used to skip initialization code or to focus profiling on a desired region, and are particularly useful for large long-running applications. See the API documentation for more information. These APIs work on both ROCm and CUDA paths.

On ROCm, the following environment variables can be used to control when profiling occurs:

HIP_DB_START_API : Comma-separated list of tid.api_seq_num for when to start debug and profiling.
HIP_DB_STOP_API : Comma-separated list of tid.api_seq_num for when to stop debug and profiling.

HIP/ROCm assigns a monotonically increasing sequence number to the APIs called from each thread. The thread and API sequence number can be used in the above API to control when tracing starts and stops. These flags also control the HIP_DB messages (described below).

When using these options, start the profiler with profiling disabled:

ROCm:
$ rocm-profiler --startdisabled ...

CUDA:
$ nvprof --profile-from-start-off ...

This feature is under development.

Reducing timeline trace output file size

If the application is already recording the HIP APIs, the HSA APIs are somewhat redundant and the ATP file size can be substantially reduced by not recording these APIs. HIP includes a text file that lists all of the HSA APIs and can assist in this filtering:

$ rocm-profiler -F hip/bin/hsa-api-filter-cxl.txt

This file can be copied and edited to provide more selective HSA event recording.

How to enable profiling at HIP build time

Recent pre-built packages of HIP are always built with profiling support enabled. For developer builds, you must enable marker support manually when compiling HIP.

	Build HIP with ATP markers enabled HIP pre-built packages are enabled with ATP marker support by default. To enable ATP marker support when building HIP from source, use the option -DCOMPILE_HIP_ATP_MARKER=1 during the cmake configure step. Build and install HIP.

$ mkdir build && cd build
$ cmake .. -DCOMPILE_HIP_ATP_MARKER
$ make install

	Install ROCm-Profiler Installing HIP from the rocm [http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/] pre-built packages, installs the ROCm-Profiler as well. Alternatively, you can build ROCm-Profiler using the instructions here.

	Recompile the target application

Then follow the steps above to collect a marker-enabled trace.

Tracing and Debug

Tracing HIP APIs

The HIP runtime can print the HIP function strings to stderr using HIP_TRACE_API environment variable. The trace prints two messages for each API - one at the beginning of the API call (line starts with “<<”) and one at the end of the API call (line ends with “>>”). Here’s an example for one API followed by a description for the sections of the trace:

<<hip-api tid:1.6 hipMemcpy (0x7f32154db010, 0x50446e000, 4000000, hipMemcpyDeviceToHost)
 hip-api tid:1.6 hipMemcpy ret= 0 (hipSuccess)>>

	<<hip-api is the header used for all HIP API debug messages. The message is also shown in a specific color. This can be used to distinguish this API from other HIP or application messages.

	tid:1.6 indicates that this API call came from thread #1 and is the 6th API call in that thread. When the first API in a new thread is called, HIP will associates a short sequential ID with that thread. You can see the full thread ID (reported by C++) as 0x7f6183b097c0 in the example below.

	hipMemcpy is the name of the API.

	The first line then prints a comma-separated list of the arguments to the function. APIs which return values to the caller by writing to pointers will show the pointer addresses rather than the pointer contents. This behavior may change in the future.

	The second line shows the completion of the API, including the numeric return value (ret= 0) as well as an string representation for the error code (hipSuccess). If the returned error code is non-zero, then the csecond line message is shown in red (unless HIP_TRACE_API_COLOR is “none” - see below).

Heres a specific example showing the output of the square program running on HIP:

$ HIP_TRACE_API=1 ./square.hip.out
 hip-api tid:1:HIP initialized short_tid#1 (maps to full_tid: 0x7f6183b097c0)
<<hip-api tid:1.1 hipGetDeviceProperties (0x7ffddb673e08, 0)
 hip-api tid:1.1 hipGetDeviceProperties ret= 0 (hipSuccess)>>
info: running on device gfx803
info: allocate host mem (7.63 MB)
info: allocate device mem (7.63 MB)
<<hip-api tid:1.2 hipMalloc (0x7ffddb673fb8, 4000000)
 hip-api tid:1.2 hipMalloc ret= 0 (hipSuccess)>>
<<hip-api tid:1.3 hipMalloc (0x7ffddb673fb0, 4000000)
 hip-api tid:1.3 hipMalloc ret= 0 (hipSuccess)>>
info: copy Host2Device
<<hip-api tid:1.4 hipMemcpy (0x50409d000, 0x7f32158ac010, 4000000, hipMemcpyHostToDevice)
 hip-api tid:1.4 hipMemcpy ret= 0 (hipSuccess)>>
info: launch 'vector_square' kernel
1.5 hipLaunchKernelGGL 'HIP_KERNEL_NAME(vector_square)' gridDim:{512,1,1} groupDim:{256,1,1} sharedMem:+0 stream#0.0
info: copy Device2Host
<<hip-api tid:1.6 hipMemcpy (0x7f32154db010, 0x50446e000, 4000000, hipMemcpyDeviceToHost)
 hip-api tid:1.6 hipMemcpy ret= 0 (hipSuccess)>>
info: check result
PASSED!

HIP_TRACE_API supports multiple levels of debug information:

	0x1 = print all HIP APIs. This is the most verbose setting; the flags below allow selecting a subset.

	0x2 = print HIP APIs which initiate GPU kernel commands. Includes hipLaunchKernelGGL, hipLaunchModuleKernel

	0x4 = print HIP APIs which initiate GPU memory commands. Includes hipMemcpy*, hipMemset*.

	0x8 = print HIP APIs which allocate or free memory. Includes hipMalloc, hipHostMalloc, hipFree, hipHostFree.

These can be combined. For example, HIP_TRACE_API=6 shows a concise view of the HIP commands (both kernel and memory) that are sent to the GPU.

Color

Note this trace mode uses colors. “less -r” can handle raw control characters and will display the debug output in proper colors. You can change the color used for the trace mode with the HIP_TRACE_API_COLOR environment variable. Possible values are None/Red/Green/Yellow/Blue/Magenta/Cyan/White. None will disable use of color control codes for both the opening and closing and may be useful when saving the trace file or when a pure text trace is desired.

Porting CUDA Driver API

Introduction to the CUDA Driver and Runtime APIs

CUDA provides a separate CUDA Driver and Runtime APIs. The two APIs have significant overlap in functionality:

	Both APIs support events, streams, memory management, memory copy, and error handling.

	Both APIs deliver similar performance.

	Driver APIs calls begin with the prefix cu while Runtime APIs begin with the prefix cuda. For example, the Driver API API contains ‘cuEventCreate’ while the Runtime API contains ‘cudaEventCreate’, with similar functionality.

	The Driver API defines a different but largely overlapping error code space than the Runtime API, and uses a different coding convention. For example, Driver API defines CUDA_ERROR_INVALID_VALUE while the Runtime API defines cudaErrorInvalidValue

The Driver API offers two additional pieces of functionality not provided by the Runtime API: cuModule and cuCtx APIs.

cuModule API

The Module section of the Driver API provides additional control over how and when accelerator code objects are loaded. For example, the driver API allows code objects to be loaded from files or memory pointers. Symbols for kernels or global data can be extracted from the loaded code objects. In contrast, the Runtime API automatically loads and (if necessary) compiles all of the kernels from an executable binary when run. In this mode, NVCC must be used to compile kernel code so the automatic loading can function correctly.

Both Driver and Runtime APIs define a function for launching kernels (called cuLaunchKernel or cudaLaunchKernel. The kernel arguments and the execution configuration (grid dimensions, group dimensions, dynamic shared memory, and stream) are passed as arguments to the launch function. The Runtime additionally provides the <<< >>> syntax for launching kernels, which resembles a special function call and is easier to use than explicit launch API (in particular with respect to handling of kernel arguments). However, this syntax is not standard C++ and is available only when NVCC is used to compile the host code.

The Module features are useful in an environment which generates the code objects directly, such as a new accelerator language front-end. Here, NVCC is not used. Instead, the environment may have a different kernel language or different compilation flow. Other environments have many kernels and do not want them to be all loaded automatically. The Module functions can be used to load the generated code objects and launch kernels. As we will see below, HIP defines a Module API which provides similar explicit control over code object management.

cuCtx API

The Driver API defines “Context” and “Devices” as separate entities. Contexts contain a single device, and a device can theoretically have multiple contexts. Each context contains a set of streams and events specific to the context. Historically contexts also defined a unique address space for the GPU, though this may no longer be the case in Unified Memory platforms (since the CPU and all the devices in the same process share a single unified address space). The Context APIs also provide a mechanism to switch between devices, which allowed a single CPU thread to send commands to different GPUs. HIP as well as a recent versions of CUDA Runtime provide other mechanisms to accomplish this feat - for example using streams or cudaSetDevice.

The CUDA Runtime API unifies the Context API with the Device API. This simplifies the APIs and has little loss of functionality since each Context can contain a single device, and the benefits of multiple contexts has been replaced with other interfaces. HIP provides a context API to facilitate easy porting from existing Driver codes. In HIP, the Ctx functions largely provide an alternate syntax for changing the active device. Most new applications will prefer to use hipSetDevice or the stream APIs,therefore HIP has marked hipCtx APIs as deprecated. Support for these APIs may not be available in future releases. For more details on deprecated APIs please refer HIP deprecated APIs [https://github.com/ROCm-Developer-Tools/HIP/tree/master/docs/markdown/hip_deprecated_api_list.md]

HIP Module and Ctx APIs

Rather than present two separate APIs, HIP extends the HIP API with new APIs for Modules and Ctx control.

hipModule API

Like the CUDA Driver API, the Module API provides additional control over how code is loaded, including options to load code from files or from in-memory pointers. NVCC and HCC target different architectures and use different code object formats: NVCC is cubin or ptx files, while the HCC path is the hsaco format. The external compilers which generate these code objects are responsible for generating and loading the correct code object for each platform. Notably, there is not a fat binary format that can contain code for both NVCC and HCC platforms. The following table summarizes the formats used on each platform:

	Format

	APIs

	NVCC

	HCC

	Code Object

	hipModuleLoad, hipModuleLoadData

	.cubin or PTX text

	.hsaco

	Fat Binary

	hipModuleLoadFatBin

	.fatbin

	Under Development

hipCtx API

HIP provides a Ctx API as a thin layer over the existing Device functions. This Ctx API can be used to set the current context, or to query properties of the device associated with the context. The current context is implicitly used by other APIs such as hipStreamCreate.

hipify translation of CUDA Driver API

The hipify tool converts CUDA Driver APIs for streams, events, modules, devices, memory management, context, profiler to the equivalent HIP driver calls. For example, cuEventCreate will be translated to hipEventCreate. Hipify also converts error code from the Driver namespace and coding convention to the equivalent HIP error code. Thus, HIP unifies the APIs for these common functions.

The memory copy API requires additional explanation. The CUDA driver includes the memory direction in the name of the API (ie cuMemcpyH2D) while the CUDA driver API provides a single memory copy API with a parameter that specifies the direction and additionally supports a “default” direction where the runtime determines the direction automatically. HIP provides APIs with both styles: for example, hipMemcpyH2D as well as hipMemcpy. The first flavor may be faster in some cases since they avoid host overhead to detect the different memory directions.

HIP defines a single error space, and uses camel-case for all errors (i.e. hipErrorInvalidValue).

HCC Implementation Notes

.hsaco

The .hsaco format used by HCC is described in more detail here [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html]. An example and blog that show how to use the format is here [http://gpuopen.com/rocm-with-harmony-combining-opencl-hcc-hsa-in-a-single-program]. hsaco can be generated by hcc + extractkernel tool, cloc, the GCN assembler, or other tools.

Address Spaces

HCC defines a process-wide address space where the CPU and all devices allocate addresses from a single unified pool. Thus addresses may be shared between contexts, and unlike the original CUDA definition a new context does not create a new address space for the device.

Using hipModuleLaunchKernel

hipModuleLaunchKernel is cuLaunchKernel in HIP world. It takes the same arguments as cuLaunchKernel. The argument kernelParams is not fully implemented for HCC. The workaround for it is, to use platform specific macros for each target. Or, extra argument can be used which works on both the platforms.

Additional Information

	HCC allocates staging buffers (used for unpinned copies) on a per-device basis.

	HCC creates a primary context when the HIP API is called. So in a pure driver API code, HIP/HCC will create a primary context while HIP/NVCC will have empty context stack. HIP/HCC will push primary context to context stack when it is empty. This can have subtle differences on applications which mix the runtime and driver APIs.

hip-clang Implementation Notes

.hip_fatbin

hip-clang links device code from different translation units together. For each device target, a code object is generated. Code objects for different device targets are bundled by clang-offload-bundler as one fatbinary, which is embeded as a global symbol __hip_fatbin in the .hip_fatbin section of the ELF file of the executable or shared object.

Initialization and Termination Functions

hip-clang generates initializatiion and termination functions for each translation unit for host code compilation. The initialization functions call __hipRegisterFatBinary to register the fatbinary embeded in the ELF file. They also call __hipRegisterFunction and __hipRegisterVar to register kernel functions and device side global variables. The termination functions call __hipUnregisterFatBinary. hip-clang emits a global variable __hip_gpubin_handle of void** type with linkonce linkage and inital value 0 for each host translation unit. Each initialization function checks __hip_gpubin_handle and register the fatbinary only if __hip_gpubin_handle is 0 and saves the return value of __hip_gpubin_handle to __hip_gpubin_handle. This is to guarantee that the fatbinary is only registered once. Similar check is done in the termination functions.

Kernel Launching

hip-clang supports kernel launching by CUDA <<<>>> syntax, hipLaunchKernelGGL. The latter is a macros which expands to CUDA <<<>>> syntax.

In host code, hip-clang emits a stub function with the same name and arguments as the kernel. In the body of this function, hipSetupArgument is called for each kernel argument, then hipLaunchByPtr is called with a function pointer to the stub function.

When the executable or shared library is loaded by the dynamic linker, the initilization functions are called. In the initialization functions, when __hipRegisterFatBinary is called, the code objects containing all kernels are loaded; when __hipRegisterFunction is called, the stub functions are associated with the corresponding kernels in code objects.

In the host code, for the <<<>>> statement, hip-clang first emits call of hipConfigureCall to set up the threads and grids, then emits call of the stub function with the given arguments. In the stub function, when the runtime host API function hipLaunchByPtr is called, the real kernel associated with the stub function is launched.

NVCC Implementation Notes

Interoperation between HIP and CUDA Driver

CUDA applications may want to mix CUDA driver code with HIP code (see example below). This table shows the type equivalence to enable this interaction.

	HIP Type

	CU Driver Type

	CUDA Runtime Type

	hipModule_t

	CUmodule

	

	hipFunction_t

	CUfunction

	

	hipCtx_t

	CUcontext

	

	hipDevice_t

	CUdevice

	

	hipStream_t

	CUstream

	cudaStream_t

	hipEvent_t

	CUevent

	cudaEvent_t

	hipArray

	CUarray

	cudaArray

Compilation Options

The hipModule_t interface does not support cuModuleLoadDataEx function, which is used to control PTX compilation options. HCC does not use PTX and does not support these compilation options. In fact, HCC code objects always contain fully compiled ISA and do not require additional compilation as a part of the load step. The corresponding HIP function hipModuleLoadDataEx behaves as hipModuleLoadData on HCC path (compilation options are not used) and as cuModuleLoadDataEx on NVCC path.

For example (CUDA):

CUmodule module;
void *imagePtr = ...; // Somehow populate data pointer with code object

const int numOptions = 1;
CUJit_option options[numOptions];
void * optionValues[numOptions];

options[0] = CU_JIT_MAX_REGISTERS;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

cuModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);

CUfunction k;
cuModuleGetFunction(&k, module, "myKernel");

HIP:

hipModule_t module;
void *imagePtr = ...; // Somehow populate data pointer with code object

const int numOptions = 1;
hipJitOption options[numOptions];
void * optionValues[numOptions];

options[0] = hipJitOptionMaxRegisters;
unsigned maxRegs = 15;
optionValues[0] = (void*)(&maxRegs);

// hipModuleLoadData(module, imagePtr) will be called on HCC path, JIT options will not be used, and
// cupModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues) will be called on NVCC path
hipModuleLoadDataEx(module, imagePtr, numOptions, options, optionValues);

hipFunction_t k;
hipModuleGetFunction(&k, module, "myKernel");

The below sample shows how to use hipModuleGetFunction.

#include<hip_runtime.h>
#include<hip_runtime_api.h>
#include<iostream>
#include<fstream>
#include<vector>

#define LEN 64
#define SIZE LEN<<2

#ifdef __HIP_PLATFORM_HCC__
#define fileName "vcpy_isa.co"
#endif

#ifdef __HIP_PLATFORM_NVCC__
#define fileName "vcpy_isa.ptx"
#endif

#define kernel_name "hello_world"

int main(){
 float *A, *B;
 hipDeviceptr_t Ad, Bd;
 A = new float[LEN];
 B = new float[LEN];

 for(uint32_t i=0;i<LEN;i++){
 A[i] = i*1.0f;
 B[i] = 0.0f;
 std::cout<<A[i] << " "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipInit(0);
 hipDevice_t device;
 hipCtx_t context;
 hipDeviceGet(&device, 0);
 hipCtxCreate(&context, 0, device);
#endif

 hipMalloc((void**)&Ad, SIZE);
 hipMalloc((void**)&Bd, SIZE);

 hipMemcpyHtoD(Ad, A, SIZE);
 hipMemcpyHtoD(Bd, B, SIZE);
 hipModule_t Module;
 hipFunction_t Function;
 hipModuleLoad(&Module, fileName);
 hipModuleGetFunction(&Function, Module, kernel_name);

 std::vector<void*>argBuffer(2);
 memcpy(&argBuffer[0], &Ad, sizeof(void*));
 memcpy(&argBuffer[1], &Bd, sizeof(void*));

 size_t size = argBuffer.size()*sizeof(void*);

 void *config[] = {
 HIP_LAUNCH_PARAM_BUFFER_POINTER, &argBuffer[0],
 HIP_LAUNCH_PARAM_BUFFER_SIZE, &size,
 HIP_LAUNCH_PARAM_END
 };

 hipModuleLaunchKernel(Function, 1, 1, 1, LEN, 1, 1, 0, 0, NULL, (void**)&config);

 hipMemcpyDtoH(B, Bd, SIZE);
 for(uint32_t i=0;i<LEN;i++){
 std::cout<<A[i]<<" - "<<B[i]<<std::endl;
 }

#ifdef __HIP_PLATFORM_NVCC__
 hipCtxDetach(context);
#endif

 return 0;
}

HIP Module and Texture Driver API

HIP supports texture driver APIs however texture reference should be declared in host scope. Following code explains the use of texture reference for HIP_PLATFORM_HCC platform.

// Code to generate code object

#include "hip/hip_runtime.h"
extern texture<float, 2, hipReadModeElementType> tex;

__global__ void tex2dKernel(float* outputData,
 int width,
 int height)
 {
 int x = hipBlockIdx_x*hipBlockDim_x + hipThreadIdx_x;
 int y = hipBlockIdx_y*hipBlockDim_y + hipThreadIdx_y;
 outputData[y*width + x] = tex2D(tex, x, y);
 }

// Host code:

texture<float, 2, hipReadModeElementType> tex;

void myFunc ()
 {
 // ...

 textureReference* texref;
 hipModuleGetTexRef(&texref, Module1, "tex");
 hipTexRefSetAddressMode(texref, 0, hipAddressModeWrap);
 hipTexRefSetAddressMode(texref, 1, hipAddressModeWrap);
 hipTexRefSetFilterMode(texref, hipFilterModePoint);
 hipTexRefSetFlags(texref, 0);
 hipTexRefSetFormat(texref, HIP_AD_FORMAT_FLOAT, 1);
 hipTexRefSetArray(texref, array, HIP_TRSA_OVERRIDE_FORMAT);

 // ...
}

 The following content is removed from the main Programming_Guides.rst file.

HIP Best Practices

	Installing pre-built packages

	Kernel Language

	HIP Runtime API (Doxygen) [https://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/HIP-API.html#hip-api]

	Porting CUDA Driver API

	Profiling HIP Code

	HIP Debugging

	HIP terminology comparison with OpenCL, Cuda, C++ AMP 4.x

	Terms used in HIP Documentation

	hipify-clang [https://github.com/ROCm-Developer-Tools/HIP/blob/master/hipify-clang/README.md]

HIP Documentation v3.x

ROCm Supported Languages

ROCm, Lingua Franca, C++, OpenCL and Python

The open-source ROCm stack offers multiple programming-language choices. The goal is to give you a range of tools to help solve the
problem at hand. Here, we describe some of the options and how to choose among them.

OpenCL™: Open Compute Language

What is OpenCL ? It’s a framework for developing programs that can execute across a wide variety of heterogeneous platforms. AMD, Intel
and Nvidia GPUs support version 1.2 of the specification, as do x86 CPUs and other devices (including FPGAs and DSPs). OpenCL provides a C run-time API and C99-based kernel language.

When to Use OpenCL

Use OpenCL when you have existing code in that language and when you need portability to multiple platforms and devices. It runs on
Windows, Linux and Mac OS, as well as a wide variety of hardware platforms (described above).

Anaconda Python With Numba

What is Anaconda ? It’s a modern open-source analytics platform powered by Python. Continuum Analytics, a ROCm platform partner, is the driving force behind it. Anaconda delivers high-performance capabilities including acceleration of HSA APUs, as well as
ROCm-enabled discrete GPUs via Numba. It gives superpowers to the people who are changing the world.

Numba

Numba gives you the power to speed up your applications with high-performance functions written directly in Python. Through a few
annotations, you can just-in-time compile array-oriented and math-heavy Python code to native machine instructions—offering
performance similar to that of C, C++ and Fortran—without having to switch languages or Python interpreters.

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, run time or statically
(through the included Pycc tool). It supports Python compilation to run on either CPU or GPU hardware and is designed to integrate with Python scientific software stacks, such as NumPy.

	Anaconda® with Numba acceleration [http://numba.pydata.org/numba-doc/latest/index.html]

When to Use Anaconda

Use Anaconda when you’re handling large-scale data-analytics,
scientific and engineering problems that require you to manipulate
large data arrays.

Wrap-Up

From a high-level perspective, ROCm delivers a rich set of tools that
allow you to choose the best language for your application.

	HCC (Heterogeneous Compute Compiler) supports HC dialects

	HIP is a run-time library that layers on top of HCC (for AMD ROCm platforms; for Nvidia, it uses the NVCC compiler)

	
	The following will soon offer native compiler support for the GCN ISA:
	
	OpenCL 1.2+

	Anaconda (Python) with Numba

All are open-source projects, so you can employ a fully open stack from the language down to the metal. AMD is committed to providing an open ecosystem that gives developers the ability to choose; we are excited about innovating quickly using open source and about
interacting closely with our developer community. More to come soon!

Table Comparing Syntax for Different Compute APIs

Notes

	For HC and C++AMP, assume a captured _tiled_ext_ named “t_ext” and captured _extent_ named “ext”. These languages use captured variables to pass information to the kernel rather than using special built-in functions so the exact variable name may vary.

	The indexing functions (starting with thread-index) show the terminology for a 1D grid. Some APIs use reverse order of xyz / 012 indexing for 3D grids.

	HC allows tile dimensions to be specified at runtime while C++AMP requires that tile dimensions be specified at compile-time. Thus hc syntax for tile dims is t_ext.tile_dim[0] while C++AMP is t_ext.tile_dim0.

	From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

HIP Repository Information

HIP is a C++ Runtime API and Kernel Language that allows developers to create portable applications for AMD and NVIDIA GPUs from single source
code.

Key features include:

	HIP is very thin and has little or no performance impact over coding
directly in CUDA mode.

	HIP allows coding in a single-source C++ programming language
including features such as templates, C++11 lambdas, classes,
namespaces, and more.

	HIP allows developers to use the best development environment and
tools on each target platform.

	The
HIPIFY [https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md]
tools automatically convert source from CUDA to HIP.

	Developers can specialize for the platform (CUDA or AMD) to tune for
performance or handle tricky cases.

New projects can be developed directly in the portable HIP C++ language
and can run on either NVIDIA or AMD platforms. Additionally, HIP
provides porting tools which make it easy to port existing CUDA codes to
the HIP layer, with no loss of performance as compared to the original
CUDA application. HIP is not intended to be a drop-in replacement for
CUDA, and developers should expect to do some manual coding and
performance tuning work to complete the port.

Repository Branches

The HIP repository maintains several branches. The branches that are of
importance are:

	master branch: This is the stable branch. All stable releases are based on this branch.

	developer-preview branch: This is the branch were the new features still under development are visible. While this maybe of interest to
many, it should be noted that this branch and the features under development might not be stable.

Release Tagging

HIP releases are typically of two types. The tag naming convention is different for both types of releases to help differentiate them.

	release_x.yy.zzzz: These are the stable releases based on the master
branch. This type of release is typically made once a month.

	preview_x.yy.zzzz: These denote pre-release code and are based on the
developer-preview branch. This type of release is typically made once
a week.

	HIP Programming Guide

HIP FAQ and HIP Porting Guide

	HIP-FAQ

	HIP Porting Guide

	HIP Programming Guide

How to Install

Refer to the Installation Guide at https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html#hip-installation-instructions

HIP API Code - Example

The HIP API includes functions such as hipMalloc, hipMemcpy, and hipFree. Programmers familiar with CUDA will also be able to quickly
learn and start coding with the HIP API. Compute kernels are launched with the hipLaunchKernel’s macro call. Here is an example showing a
snippet of HIP API code:

hipMalloc(&A_d, Nbytes));
hipMalloc(&C_d, Nbytes));

hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);

const unsigned blocks = 512;
const unsigned threadsPerBlock = 256;
hipLaunchKernel(vector_square, /* compute kernel*/
 dim3(blocks), dim3(threadsPerBlock), 0/*dynamic shared*/, 0/*stream*/, /* launch config*/
 C_d, A_d, N); /* arguments to the compute kernel */

hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

The HIP kernel language defines builtins for determining grid and block coordinates, math functions, short vectors, atomics, and timer
functions. It also specifies additional defines and keywords for function types, address spaces, and optimization controls (See the HIP
Kernel Language for a full description). Here’s an example of defining a simple ‘vector_square’
kernel.

template <typename T>
__global__ void
vector_square(T *C_d, const T *A_d, size_t N)
{
 size_t offset = (hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x);
 size_t stride = hipBlockDim_x * hipGridDim_x;

 for (size_t i=offset; i<N; i+=stride) {
 C_d[i] = A_d[i] * A_d[i];
 }
}

The HIP Runtime API code and compute kernel definition can exist in the
same source file - HIP takes care of generating host and device code
appropriately.

HIP Portability and Compiler Technology

HIP C++ code can be compiled with either, - On the NVIDIA CUDA platform,
HIP provides header file which translate from the HIP runtime APIs to
CUDA runtime APIs. The header file contains mostly inlined functions and
thus has very low overhead - developers coding in HIP should expect the
same performance as coding in native CUDA. The code is then compiled
with nvcc, the standard C++ compiler provided with the CUDA SDK.
Developers can use any tools supported by the CUDA SDK including the
CUDA profiler and debugger. - On the AMD ROCm platform, HIP provides a
header and runtime library built on top of HIP-Clang compiler. The HIP
runtime implements HIP streams, events, and memory APIs, and is a object
library that is linked with the application. The source code for all
headers and the library implementation is available on GitHub. HIP
developers on ROCm can use AMDâ€™s ROCgdb
(https://github.com/ROCm-Developer-Tools/ROCgdb) for debugging and
profiling.

Thus HIP source code can be compiled to run on either platform.
Platform-specific features can be isolated to a specific platform using
conditional compilation. Thus HIP provides source portability to either
platform. HIP provides the hipcc compiler driver which will call the
appropriate toolchain depending on the desired platform.

Examples and Getting Started

	A sample and
blog [http://gpuopen.com/hip-to-be-squared-an-introductory-hip-tutorial]
that uses any of
HIPIFY [https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md]
tools to convert a simple app from CUDA to HIP:

cd samples/01_Intro/square
follow README / blog steps to hipify the application.

	A sample and
blog [http://gpuopen.com/platform-aware-coding-inside-hip/]
demonstrating platform specialization:

cd samples/01_Intro/bit_extract
make

	Guide to Porting a New Cuda
Project

More Examples

The GitHub repository
HIP-Examples [https://github.com/ROCm-Developer-Tools/HIP-Examples.git]
contains a hipified version of the popular Rodinia benchmark suite. The README with the procedures and tips the team used during this porting
effort is here: Porting Guide [https://github.com/ROCm-Developer-Tools/HIP-Examples/blob/master/rodinia_3.0/hip/README.hip_porting]

Tour of the HIP Directories

	include:

	hip_runtime_api.h : Defines HIP runtime APIs and can be
compiled with many standard Linux compilers (hcc, GCC, ICC, CLANG,
etc), in either C or C++ mode.

	hip_runtime.h : Includes everything in hip_runtime_api.h PLUS
hipLaunchKernel and syntax for writing device kernels and device
functions. hip_runtime.h can only be compiled with hcc.

	hcc_detail/** , nvcc_detail/** : Implementation
details for specific platforms. HIP applications should not
include these files directly.

	hcc.h : Includes interop APIs for HIP and HCC

	bin: Tools and scripts to help with hip porting

	hipify-perl : Script based tool to convert CUDA code to
portable CPP. Converts CUDA APIs and kernel builtins.

	hipcc : Compiler driver that can be used to replace nvcc in
existing CUDA code. hipcc will call nvcc or HIP-Clang depending on
platform and include appropriate platform-specific headers and
libraries.

	hipconfig : Print HIP configuration (HIP_PATH, HIP_PLATFORM,
HIP_COMPILER, HIP_RUNTIME, CXX config flags, etc.)

	hipexamine-perl.sh : Script to scan the directory, find all
code, and report statistics on how much can be ported with HIP
(and identify likely features not yet supported).

	hipconvertinplace-perl.sh : Script to scan the directory, find
all code, and convert the found CUDA code to HIP reporting all
unconverted things.

	doc: Documentation - markdown and doxygen information.

Reporting an Issue

Use the GitHub issue tracker [https://github.com/ROCm-Developer-Tools/HIP/issues].

If reporting a bug, include the output of ‘hipconfig’ ‘full’ and samples/1_hipInfo/hipInfo (if possible).

BLAS1 functions

SWAP - Swap elements from 2 vectors

Warning

doxygenfunction: Cannot find function “clblasCswap” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDswap” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSswap” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZswap” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SCAL - Scales a vector by a constant

Warning

doxygenfunction: Cannot find function “clblasCscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SSCAL - Scales a complex vector by a real constant

Warning

doxygenfunction: Cannot find function “clblasCsscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZdscal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

COPY - Copies elements from vector X to vector Y

Warning

doxygenfunction: Cannot find function “clblasCcopy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDcopy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasScopy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZcopy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

AXPY - Scale X and add to Y

Warning

doxygenfunction: Cannot find function “clblasCaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

DOT - Dot product of two vectors

Warning

doxygenfunction: Cannot find function “clblasCdotc” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasCdotu” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDdot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSdot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZdotc” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZdotu” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

ROTG - Constructs givens plane rotation

Warning

doxygenfunction: Cannot find function “clblasCrotg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDrotg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSrotg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZrotg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

ROTMG - Constructs the modified givens rotation

Warning

doxygenfunction: Cannot find function “clblasDrotmg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSrotmg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

ROT - Apply givens rotation

Warning

doxygenfunction: Cannot find function “clblasCsrot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDrot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSrot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZdrot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

ROTM - Apply modified givens rotation for points in the plane

Warning

doxygenfunction: Cannot find function “clblasDrotm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSrotm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

NRM2 - Euclidean norm of a vector

Warning

doxygenfunction: Cannot find function “clblasDnrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDznrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasScnrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSnrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

iAMAX - Index of max absolute value

Warning

doxygenfunction: Cannot find function “clblasiCamax” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasiDamax” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasiSamax” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasiZamax” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

ASUM - Sum of absolute values

Warning

doxygenfunction: Cannot find function “clblasDasum” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDzasum” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSasum” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasScasum” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

BLAS 2 functions

GEMV - General matrix-Vector multiplication

Warning

doxygenfunction: Cannot find function “clblasCgemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDgemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSgemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZgemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYMV - Symmetric matrix-Vector multiplication

Warning

doxygenfunction: Cannot find function “clblasDsymv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSsymv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HEMV - Hermitian matrix-vector multiplication

Warning

doxygenfunction: Cannot find function “clblasChemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhemv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TRMV - Triangular matrix vector multiply

Warning

doxygenfunction: Cannot find function “clblasCtrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TRSV - Triangular matrix vector Solve

Warning

doxygenfunction: Cannot find function “clblasCtrsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtrsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStrsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtrsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

GER - General matrix rank 1 operation

Warning

doxygenfunction: Cannot find function “clblasDger” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSger” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

GERU - General matrix rank 1 operation

Warning

doxygenfunction: Cannot find function “clblasCgeru” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZgeru” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

GERC - General matrix rank 1 operation

Warning

doxygenfunction: Cannot find function “clblasCgerc” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZgerc” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYR - Symmetric rank 1 update

Warning

doxygenfunction: Cannot find function “clblasDsyr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSsyr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HER - Hermitian rank 1 operation

Warning

doxygenfunction: Cannot find function “clblasCher” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZher” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYR2 - Symmetric rank 2 update

Warning

doxygenfunction: Cannot find function “clblasDsyr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSsyr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HER2 - Hermitian rank 2 update

Warning

doxygenfunction: Cannot find function “clblasCher2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZher2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TPMV - Triangular packed matrix-vector multiply

Warning

doxygenfunction: Cannot find function “clblasCtpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TPSV - Triangular packed matrix vector solve

Warning

doxygenfunction: Cannot find function “clblasCtpsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStpsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtpsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SPMV - Symmetric packed matrix vector multiply

Warning

doxygenfunction: Cannot find function “clblasDspmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSspmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HPMV - Hermitian packed matrix-vector multiplication

Warning

doxygenfunction: Cannot find function “clblasChpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhpmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SPR - Symmetric packed matrix rank 1 update

Warning

doxygenfunction: Cannot find function “clblasDspr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSspr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HPR - Hermitian packed matrix rank 1 update

Warning

doxygenfunction: Cannot find function “clblasChpr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhpr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SPR2 - Symmetric packed matrix rank 2 update

Warning

doxygenfunction: Cannot find function “clblasDspr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSspr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HPR2 - Hermitian packed matrix rank 2 update

Warning

doxygenfunction: Cannot find function “clblasChpr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhpr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

GBMV - General banded matrix-vector multiplication

Warning

doxygenfunction: Cannot find function “clblasCgbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDgbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSgbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZgbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TBMV - Triangular banded matrix vector multiply

Warning

doxygenfunction: Cannot find function “clblasCtbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SBMV - Symmetric banded matrix-vector multiplication

Warning

doxygenfunction: Cannot find function “clblasDsbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSsbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HBMV - Hermitian banded matrix-vector multiplication

Warning

doxygenfunction: Cannot find function “clblasChbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhbmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TBSV - Solving triangular banded matrix

Warning

doxygenfunction: Cannot find function “clblasCtbsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtbsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStbsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtbsv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

BLAS-3 functions

GEMM - General matrix-matrix multiplication

Warning

doxygenfunction: Cannot find function “clblasCgemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDgemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSgemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZgemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TRMM - Triangular matrix-matrix multiplication

Warning

doxygenfunction: Cannot find function “clblasCtrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

TRSM - Solving triangular systems of equations

Warning

doxygenfunction: Cannot find function “clblasCtrsm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDtrsm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasStrsm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZtrsm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYRK - Symmetric rank-k update of a matrix

Warning

doxygenfunction: Cannot find function “clblasCsyrk” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDsyrk” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasCsyr2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDsyr2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYR2K - Symmetric rank-2k update to a matrix

Warning

doxygenfunction: Cannot find function “clblasSsyr2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZsyr2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

SYMM - Symmetric matrix-matrix multiply

Warning

doxygenfunction: Cannot find function “clblasCsymm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasDsymm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasSsymm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZsymm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HEMM - Hermitian matrix-matrix multiplication

Warning

doxygenfunction: Cannot find function “clblasChemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZhemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HERK - Hermitian rank-k update to a matrix

Warning

doxygenfunction: Cannot find function “clblasCherk” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZherk” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HER2K - Hermitian rank-2k update to a matrix

Warning

doxygenfunction: Cannot find function “clblasCher2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clblasZher2k” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

HCC API Documentation (Deprecated)

	HCC Documentation

	HC API

HCC Documentation

HC is a C++ API for accelerated computing provided by the HCC compiler. It has some similarities to C++ AMP and therefore, reference materials (blogs, articles, books) that describe C++ AMP also proivide an excellent way to become familiar with HC. For example, both APIs use a parallel_for_each construct to specify a parallel execution region that runs on accelerator. However, HC has several important differences from C++ AMP, including the removal of the “restrict” keyword to annotate device code, an explicit asynchronous launch behavior for parallel_for_each, the support for non-constant tile size, the support for memory pointer, etc..

HC API

HC comes with two header files as of now:

	<hc.hpp> : Main header file for HC

	<hc_math.hpp> : Math functions for HC

Most HC APIs are stored under “hc” namespace, and the class name is the same as their counterpart in C++AMP “Concurrency” namespace. Users of C++AMP should find it easy to switch from C++AMP to HC.

	C++AMP

	HC

	Concurrency::accelerator

	hc::accelerator

	Concurrency::accelerator_view

	hc::accelerator_view

	Concurrency::extent

	hc::extent

	Concurrency::index

	hc::index

	Concurrency::completion_future

	hc::completion_future

	Concurrency::array

	hc::array

	Concurrency::array_view

	hc::array_view

How to build programs with HC API

Use “hcc-config”, instead of “clamp-config”, or you could manually add “-hc” when you invoke clang++. Also, “hcc” is added as an alias for “clang++”.

For example:

`` hcchcc-config –cxxflags –ldflagsfoo.cpp -o foo ``

HCC built-in macros

Built-in macros:

	Macro

	Meaning

	__HCC__

	always be 1

	__hcc_major__

	major version number of HCC

	__hcc_minor__

	minor version number of HCC

	__hcc_patchlevel__

	patchlevel of HCC

	__hcc_version__

	combined string of __hcc_major__, __hcc_minor__, __hcc_patchlevel__

The rule for __hcc_patchlevel__ is: yyWW-(HCC driver git commit #)-(HCC clang git commit #)

	yy stands for the last 2 digits of the year

	WW stands for the week number of the year

Macros for language modes in use:

	Macro

	Meaning.

	__KALMAR_AMP__

	1 in case in C++ AMP mode (-std=c++amp; Removed from ROCm 2.0 onwards)

	__KALMAR_HC__

	1 in case in HC mode (-hc)

Compilation mode: HCC is a single-source compiler where kernel codes and host codes can reside in the same file. Internally HCC would trigger 2 compilation iterations, and the following macros can be user by user programs to determine which mode the compiler is in.

	Macro

	Meaning

	__KALMAR_ACCELERATOR__

	not 0 in case the compiler runs in kernel code compilation mode

	__KALMAR_CPU__

	not 0 in case the compiler runs in host code compilation mode

HC-specific features

	relaxed rules in operations allowed in kernels

	new syntax of tiled_extent and tiled_index

	dynamic group segment memory allocation

	true asynchronous kernel launching behavior

	additional HSA-specific APIs

Differences between HC API and C++ AMP

Despite HC and C++ AMP sharing many similar program constructs (e.g. parallel_for_each, array, array_view, etc.), there are several significant differences between the two APIs.

Support for explicit asynchronous parallel_for_each

In C++ AMP, the parallel_for_each appears as a synchronous function call in a program (i.e. the host waits for the kernel to complete); howevever, the compiler may optimize it to execute the kernel asynchronously and the host would synchronize with the device on the first access of the data modified by the kernel. For example, if a parallel_for_each writes the an array_view, then the first access to this array_view on the host after the parallel_for_each would block until the parallel_for_each completes.

HC supports the automatic synchronization behavior as in C++ AMP. In addition, HC’s parallel_for_each supports explicit asynchronous execution. It returns a completion_future (similar to C++ std::future) object that other asynchronous operations could synchronize with, which provides better flexibility on task graph construction and enables more precise control on optimization.

Annotation of device functions

C++ AMP uses the restrict(amp) keyword to annotate functions that runs on the device.

``` void foo() restrict(amp) { .. } … parallel_for_each(…,[=] () restrict(amp) { foo(); });

```

HC uses a function attribute ([[hc]] or __attribute__((hc))) to annotate a device function.

` void foo() [[hc]] { .. } ... parallel_for_each(...,[=] () [[hc]] { foo(); }); `

The [[hc]] annotation for the kernel function called by parallel_for_each is optional as it is automatically annotated as a device function by the hcc compiler. The compiler also supports partial automatic [[hc]] annotation for functions that are called by other device functions within the same source file:

``` // Since bar is called by foo, which is a device function, the hcc compiler // will automatically annotate bar as a device function void bar() { … }

void foo() [[hc]] { bar(); } ```




Dynamic tile size

C++ AMP doesn’t support dynamic tile size. The size of each tile dimensions has to be a compile-time constant specified as template arguments to the tile_extent object:

``` extent<2> ex(x, y);

// To create a tile extent of 8x8 from the extent object // observe that the tile dimensions have to be constant values tiled_extent<8,8> t_ex(ex);

parallel_for_each(t_ex, [=](tiled_index<8,8> t_id) restrict(amp) { … }); ` HC supports both static and dynamic tile size: ` extent<2> ex(x,y)

// create a tile extent from dynamically calculated values // observe that the the tiled_extent template takes the rank instead of dimensions tx = test_x ? tx_a : tx_b; ty = test_y ? ty_a : ty_b; tiled_extent<2> t_ex(ex, tx, ty);

parallel_for_each(t_ex, [=](tiled_index<2> t_id) [[hc]] { … });

```




Support for memory pointer

C++ AMP doesn’t support lambda capture of memory pointer into a GPU kernel.

HC supports capturing memory pointer by a GPU kernel.

``` // allocate GPU memory through the HSA API int* gpu_pointer; hsa_memory_allocate(…, &gpu_pointer); … parallel_for_each(ext, [=](index i) [[hc]] { gpu_pointer[i[0]]++; }

` For HSA APUs that supports system wide shared virtual memory, a GPU kernel can directly access system memory allocated by the host: ` int* cpu_memory = (int*) malloc(…); … parallel_for_each(ext, [=](index i) [[hc]] { cpu_memory[i[0]]++; }); ```

HIP API Documentation

Contents:

	Device management
	hipDeviceSynchronize

	hipDeviceReset

	hipSetDevice

	hipGetDevice

	hipGetDeviceCount

	hipDeviceGetAttribute

	hipGetDeviceProperties

	hipDeviceSetCacheConfig

	hipDeviceGetCacheConfig

	hipDeviceGetLimit

	hipFuncSetCacheConfig

	hipDeviceGetSharedMemConfig

	hipDeviceSetSharedMemConfig

	hipSetDeviceFlags

	hipChooseDevice

	Error Handling
	hipGetLastError

	hipPeekAtLastError

	hipGetErrorName

	hipGetErrorString

	Stream Management
	hipStreamCreate

	hipStreamCreateWithFlags

	hipStreamCreateWithPriority

	hipDeviceGetStreamPriorityRange

	hipStreamDestroy

	hipStreamQuery

	hipStreamSynchronize

	hipStreamWaitEvent

	hipStreamGetFlags

	hipStreamGetPriority

	hipStreamAddCallback

	Event Management
	hipEventCreateWithFlags

	hipEventCreate

	hipEventRecord

	hipEventDestroy

	hipEventSynchronize

	hipEventElapsedTime

	hipEventQuery S

	Memory Management
	hipPointerGetAttributes

	hipMalloc

	hipHostMalloc

	hipHostGetDevicePointer

	hipHostGetFlags

	hipHostRegister

	hipHostUnregister

	hipMallocPitch

	hipFree

	hipMemcpy

	hipMemcpyHtoD

	hipMemcpyDtoH

	hipMemcpyDtoD

	hipMemcpyHtoDAsync

	hipMemcpyDtoHAsync

	hipMemcpyDtoDAsync

	hipMemcpyToSymbolAsync

	hipMemcpyFromSymbol

	hipMemcpyAsync

	hipMemset

	hipMemsetD8

	hipMemsetAsync

	hipMemset2D

	hipMemGetInfo

	hipMemPtrGetInfo

	hipMallocArray

	hipFreeArray

	hipMalloc3DArray

	hipMemcpy2D

	hipMemcpy2DAsync

	hipMemcpy2DToArray

	hipMemcpyToArray

	hipMemcpy3D

	Device Memory Access
	hipDeviceCanAccessPeer

	hipDeviceEnablePeerAccess

	hipDeviceDisablePeerAccess

	hipMemGetAddressRange

	hipMemcpyPeer

	Initialization and Version
	hipInit

	hipDeviceGet

	hipDeviceComputeCapability

	hipDeviceGetName

	hipDeviceGetPCIBusId

	hipDeviceGetByPCIBusId

	hipDeviceTotalMem

	hipDriverGetVersion

	hipRuntimeGetVersion

	hipModuleLoad

	hipModuleUnload

	hipModuleGetFunction

	hipModuleGetGlobal

	hipModuleLoadData

	hipModuleLoadDataEx

	hipModuleLaunchKernel

	Context Management
	hipCtxCreate

	hipCtxDestroy

	hipDevicePrimaryCtxGetState

	hipDevicePrimaryCtxRelease

	hipDevicePrimaryCtxRetain

	hipDevicePrimaryCtxReset

	hipDevicePrimaryCtxSetFlags

	Control
	hipProfilerStart

	hipProfilerStop

HIP MATH API Documentation

HIP supports most of the device functions supported by CUDA. Way to find the unsupported one is to search for the function and check its description

Note

This document is not human generated. Any changes to this file will be discarded. Please make changes to Python3 script docs/markdown/device_md_gen.py

For Developers

If you add or fixed a device function, make sure to add a signature of the function and definition later.
For example, if you want to add __device__ float __dotf(float4, float4), which does a dot product on 4 float vector components
The way to add to the header is,

__device__ static float __dotf(float4, float4);

/Way down in the file…./
__device__ static inline float __dotf(float4 x, float4 y) {

/implementation/

}

This helps python script to add the device function newly declared into markdown documentation (as it looks at functions with ; at the end and __device__ at the beginning)

The next step would be to add Description to`deviceFuncDesc` dictionary in python script.
From the above example, it can be writtern as,
deviceFuncDesc[‘__dotf’] = ‘This functions takes 2 4 component float vector and outputs dot product across them’

acosf

__device__ float acosf(float x);

Description: This function returns floating point of arc cosine from a floating point input

acoshf

__device__ float acoshf(float x);

Description: Supported

asinf

__device__ float asinf(float x);

Description: Supported

asinhf

__device__ float asinhf(float x);

Description: Supported

atan2f

__device__ float atan2f(float y, float x);

Description: Supported

atanf

__device__ float atanf(float x);

Description: Supported

atanhf

__device__ float atanhf(float x);

Description: Supported

cbrtf

__device__ float cbrtf(float x);

Description: Supported

ceilf

__device__ float ceilf(float x);

Description: Supported

copysignf

__device__ float copysignf(float x, float y);

Description: Supported

cosf

__device__ float cosf(float x);

Description: Supported

coshf

__device__ float coshf(float x);

Description: Supported

cospif

__device__ float cospif(float x);

Description: Supported

cyl_bessel_i0f

//__device__ float cyl_bessel_i0f(float x);

Description: NOT Supported

cyl_bessel_i1f

//__device__ float cyl_bessel_i1f(float x);

Description: NOT Supported

erfcf

__device__ float erfcf(float x);

Description: Supported

erfcinvf

__device__float erfcinvf(float y);

Description: Supported

erfcxf

__device__ float erfcxf(float x);

Description: Supported

erff

__device__ float erff(float x);

Description: Supported

erfinvf

__device__ float erfinvf(float y);

Description: Supported

exp10f

__device__ float exp10f(float x);

Description: Supported

exp2f

_device__ float exp2f(float x);

Description: Supported

expf

__device__ float expf(float x);

Description: Supported

expm1f

__device__ float expm1f(float x);

Description: Supported

fabsf

__device__ float fabsf(float x);

Description: Supported

fdimf

__device__ float fdimf(float x, float y);

Description: Supported

fdivide

__device__ float fdividef(float x, float y);

Description: Supported

floorf

__device__ float floorf(float x);

Description: Supported

fmaf

__device__ float fmaf(float x, float y, float z);

Description: Supported

fmaxf

__device__ float fmaxf(float x, float y);

Description: Supported

fminf

__device__ float fminf(float x, float y);

Description: Supported

fmodf

__device__ float fmodf(float x, float y);

Description: Supported

frexpf

//__device__ float frexpf(float x, int* nptr);

Description: NOT Supported

hypotf

__device__ float hypotf(float x, float y);

Description: Supported

ilogbf

__device__ float ilogbf(float x);

Description: Supported

isfinite

__device__ int isfinite(float a);

Description: Supported

isinf

__device__ unsigned isinf(float a);

Description: Supported

isnan

__device__ unsigned isnan(float a);

Description: Supported

j0f

__device__ float j0f(float x);

Description: Supported

j1f

__device__ float j1f(float x);

Description: Supported

jnf

__device__ float jnf(int n, float x);

Description: Supported

ldexpf

__device__ float ldexpf(float x, int exp);

Description: Supported

lgammaf

//__device__ float lgammaf(float x);

Description: NOT Supported

llrintf

__device__ long long int llrintf(float x);

Description: Supported

llroundf

__device__ long long int llroundf(float x);

Description: Supported

log10f

__device__ float log10f(float x);

Description: Supported

log1pf

__device__ float log1pf(float x);

Description: Supported

logbf

__device__ float logbf(float x);

Description: Supported

lrintf

__device__ long int lrintf(float x);

Description: Supported

lroundf

__device__ long int lroundf(float x);

Description: Supported

modff

//__device__ float modff(float x, float *iptr);

Description: NOT Supported

nanf

__device__ float nanf(const char* tagp);

Description: Supported

nearbyintf

__device__ float nearbyintf(float x);

Description: Supported

nextafterf

//__device__ float nextafterf(float x, float y);

Description: NOT Supported

norm3df

__device__ float norm3df(float a, float b, float c);

Description: Supported

norm4df

__device__ float norm4df(float a, float b, float c, float d);

Description: Supported

normcdff

__device__ float normcdff(float y);

Description: Supported

normcdfinvf

__device__ float normcdfinvf(float y);

Description: Supported

normf

__device__ float normf(int dim, const float *a);

Description: Supported

powf

__device__ float powf(float x, float y);

Description: Supported

rcbrtf

__device__ float rcbrtf(float x);

Description: Supported

remainderf

__device__ float remainderf(float x, float y);

Description: Supported

remquof

__device__ float remquof(float x, float y, int *quo);

Description: Supported

rhypotf

__device__ float rhypotf(float x, float y);

Description: Supported

rintf

__device__ float rintf(float x);

Description: Supported

rnorm3df

__device__ float rnorm3df(float a, float b, float c);

Description: Supported

rnorm4df

__device__ float rnorm4df(float a, float b, float c, float d);

Description: Supported

rnormf

__device__ float rnormf(int dim, const float* a);

Description: Supported

roundf

__device__ float roundf(float x);

Description: Supported

rsqrtf

__device__ float rsqrtf(float x);

Description: Supported

scalblnf

__device__ float scalblnf(float x, long int n);

Description: Supported

scalbnf

__device__ float scalbnf(float x, int n);

Description: Supported

signbit

__device__ int signbit(float a);

Description: Supported

sincosf

__device__ void sincosf(float x, float *sptr, float *cptr);

Description: Supported

sincospif

__device__ void sincospif(float x, float *sptr, float *cptr);

Description: Supported

sinf

__device__ float sinf(float x);

Description: Supported

sinhf

__device__ float sinhf(float x);

Description: Supported

sinpif

__device__ float sinpif(float x);

Description: Supported

sqrtf

__device__ float sqrtf(float x);

Description: Supported

tanf

__device__ float tanf(float x);

Description: Supported

tanhf

__device__ float tanhf(float x);

Description: Supported

tgammaf

__device__ float tgammaf(float x);

Description: Supported

truncf

__device__ float truncf(float x);

Description: Supported

y0f

__device__ float y0f(float x);

Description: Supported

y1f

__device__ float y1f(float x);

Description: Supported

ynf

__device__ float ynf(int n, float x);

Description: Supported

acos

__device__ double acos(double x);

Description: Supported

acosh

__device__ double acosh(double x);

Description: Supported

asin

__device__ double asin(double x);

Description: Supported

asinh

__device__ double asinh(double x);

Description: Supported

atan

__device__ double atan(double x);

Description: Supported

atan2

__device__ double atan2(double y, double x);

Description: Supported

atanh

__device__ double atanh(double x);

Description: Supported

cbrt

__device__ double cbrt(double x);

Description: Supported

ceil

__device__ double ceil(double x);

Description: Supported

copysign

__device__ double copysign(double x, double y);

Description: Supported

cos

__device__ double cos(double x);

Description: Supported

cosh

__device__ double cosh(double x);

Description: Supported

cospi

__device__ double cospi(double x);

Description: Supported

cyl_bessel_i0

//__device__ double cyl_bessel_i0(double x);

Description: NOT Supported

cyl_bessel_i1

//__device__ double cyl_bessel_i1(double x);

Description: NOT Supported

erf

__device__ double erf(double x);

Description: Supported

erfc

__device__ double erfc(double x);

Description: Supported

erfcinv

__device__ double erfcinv(double y);

Description: Supported

erfcx

__device__ double erfcx(double x);

Description: Supported

erfinv

__device__ double erfinv(double x);

Description: Supported

exp

__device__ double exp(double x);

Description: Supported

exp10

__device__ double exp10(double x);

Description: Supported

exp2

__device__ double exp2(double x);

Description: Supported

expm1

__device__ double expm1(double x);

Description: Supported

fabs

__device__ double fabs(double x);

Description: Supported

fdim

__device__ double fdim(double x, double y);

Description: Supported

floor

__device__ double floor(double x);

Description: Supported

fma

__device__ double fma(double x, double y, double z);

Description: Supported

fmax

__device__ double fmax(double x, double y);

Description: Supported

fmin

__device__ double fmin(double x, double y);

Description: Supported

fmod

__device__ double fmod(double x, double y);

Description: Supported

frexp

//__device__ double frexp(double x, int *nptr);

Description: NOT Supported

hypot

__device__ double hypot(double x, double y);

Description: Supported

ilogb

__device__ double ilogb(double x);

Description: Supported

isfinite

__device__ int isfinite(double x);

Description: Supported

isinf

__device__ unsigned isinf(double x);

Description: Supported

isnan

__device__ unsigned isnan(double x);

Description: Supported

j0

__device__ double j0(double x);

Description: Supported

j1

__device__ double j1(double x);

Description: Supported

jn

__device__ double jn(int n, double x);

Description: Supported

ldexp

__device__ double ldexp(double x, int exp);

Description: Supported

lgamma

__device__ double lgamma(double x);

Description: Supported

llrint

__device__ long long llrint(double x);

Description: Supported

llround

__device__ long long llround(double x);

Description: Supported

log

__device__ double log(double x);

Description: Supported

log10

__device__ double log10(double x);

Description: Supported

log1p

__device__ double log1p(double x);

Description: Supported

log2

__device__ double log2(double x);

Description: Supported

logb

__device__ double logb(double x);

Description: Supported

lrint

__device__ long int lrint(double x);

Description: Supported

lround

__device__ long int lround(double x);

Description: Supported

modf

//__device__ double modf(double x, double *iptr);

Description: NOT Supported

nan

__device__ double nan(const char* tagp);

Description: Supported

nearbyint

__device__ double nearbyint(double x);

Description: Supported

nextafter

__device__ double nextafter(double x, double y);

Description: Supported

norm

__device__ double norm(int dim, const double* t);

Description: Supported

norm3d

__device__ double norm3d(double a, double b, double c);

Description: Supported

norm4d

__device__ double norm4d(double a, double b, double c, double d);

Description: Supported

normcdf

__device__ double normcdf(double y);

Description: Supported

normcdfinv

__device__ double normcdfinv(double y);

Description: Supported

pow

__device__ double pow(double x, double y);

Description: Supported

rcbrt

__device__ double rcbrt(double x);

Description: Supported

remainder

__device__ double remainder(double x, double y);

Description: Supported

remquo

//__device__ double remquo(double x, double y, int *quo);

Description: NOT Supported

rhypot

__device__ double rhypot(double x, double y);

Description: Supported

rint

__device__ double rint(double x);

Description: Supported

rnorm

__device__ double rnorm(int dim, const double* t);

Description: Supported

rnorm3d

__device__ double rnorm3d(double a, double b, double c);

Description: Supported

rnorm4d

__device__ double rnorm4d(double a, double b, double c, double d);

Description: Supported

round

__device__ double round(double x);

Description: Supported

rsqrt

__device__ double rsqrt(double x);

Description: Supported

scalbln

__device__ double scalbln(double x, long int n);

Description: Supported

scalbn

__device__ double scalbn(double x, int n);

Description: Supported

signbit

__device__ int signbit(double a);

Description: Supported

sin

__device__ double sin(double a);

Description: Supported

sincos

__device__ void sincos(double x, double *sptr, double *cptr);

Description: Supported

sincospi

__device__ void sincospi(double x, double *sptr, double *cptr);

Description: Supported

sinh

__device__ double sinh(double x);

Description: Supported

sinpi

__device__ double sinpi(double x);

Description: Supported

sqrt

__device__ double sqrt(double x);

Description: Supported

tan

__device__ double tan(double x);

Description: Supported

tanh

__device__ double tanh(double x);

Description: Supported

tgamma

__device__ double tgamma(double x);

Description: Supported

trunc

__device__ double trunc(double x);

Description: Supported

y0

__device__ double y0(double x);

Description: Supported

y1

__device__ double y1(double y);

Description: Supported

yn

__device__ double yn(int n, double x);

Description: Supported

__cosf

__device__float __cosf(float x);

Description: Supported

__exp10f

__device__float __exp10f(float x);

Description: Supported

__expf

__device__float __expf(float x);

Description: Supported

__fadd_rd

__device__ staticfloat __fadd_rd(float x, float y);

Description: Supported

__fadd_rn

__device__ staticfloat __fadd_rn(float x, float y);

Description: Supported

__fadd_ru

__device__ staticfloat __fadd_ru(float x, float y);

Description: Supported

__fadd_rz

__device__ staticfloat __fadd_rz(float x, float y);

Description: Supported

__fdiv_rd

__device__ staticfloat __fdiv_rd(float x, float y);

Description: Supported

__fdiv_rn

__device__ staticfloat __fdiv_rn(float x, float y);

Description: Supported

__fdiv_ru

__device__ staticfloat __fdiv_ru(float x, float y);

Description: Supported

__fdiv_rz

__device__ staticfloat __fdiv_rz(float x, float y);

Description: Supported

__fdividef

__device__ staticfloat __fdividef(float x, float y);

Description: Supported

__fmaf_rd

__device__float __fmaf_rd(float x, float y, float z);

Description: Supported

__fmaf_rn

__device__float __fmaf_rn(float x, float y, float z);

Description: Supported

__fmaf_ru

__device__float __fmaf_ru(float x, float y, float z);

Description: Supported

__fmaf_rz

__device__float __fmaf_rz(float x, float y, float z);

Description: Supported

__fmul_rd

__device__ staticfloat __fmul_rd(float x, float y);

Description: Supported

__fmul_rn

__device__ staticfloat __fmul_rn(float x, float y);

Description: Supported

__fmul_ru

__device__ staticfloat __fmul_ru(float x, float y);

Description: Supported

__fmul_rz

__device__ staticfloat __fmul_rz(float x, float y);

Description: Supported

__frcp_rd

__device__float __frcp_rd(float x);

Description: Supported

__frcp_rn

__device__float __frcp_rn(float x);

Description: Supported

__frcp_ru

__device__float __frcp_ru(float x);

Description: Supported

__frcp_rz

__device__float __frcp_rz(float x);

Description: Supported

__frsqrt_rn

__device__float __frsqrt_rn(float x);

Description: Supported

__fsqrt_rd

__device__float __fsqrt_rd(float x);

Description: Supported

__fsqrt_rn
::
__device__float __fsqrt_rn(float x);

Description: Supported

__fsqrt_ru

__device__float __fsqrt_ru(float x);

Description: Supported

__fsqrt_rz

__device__float __fsqrt_rz(float x);

Description: Supported

__fsub_rd

__device__ staticfloat __fsub_rd(float x, float y);

Description: Supported

__fsub_rn

__device__ staticfloat __fsub_rn(float x, float y);

Description: Supported

__fsub_ru

__device__ staticfloat __fsub_ru(float x, float y);

Description: Supported

__log10f

__device__float __log10f(float x);

Description: Supported

__log2f

__device__float __log2f(float x);

Description: Supported

__logf

__device__float __logf(float x);

Description: Supported

__powf

__device__float __powf(float base, float exponent);

Description: Supported

__saturatef

__device__ staticfloat __saturatef(float x);

Description: Supported

__sincosf

__device__void __sincosf(float x, float *s, float *c);

Description: Supported

__sinf

__device__float __sinf(float x);

Description: Supported

__tanf

__device__float __tanf(float x);

Description: Supported

__dadd_rd

__device__ staticdouble __dadd_rd(double x, double y);

Description: Supported

__dadd_rn

__device__ staticdouble __dadd_rn(double x, double y);

Description: Supported

__dadd_ru

__device__ staticdouble __dadd_ru(double x, double y);

Description: Supported

__dadd_rz

__device__ staticdouble __dadd_rz(double x, double y);

Description: Supported

__ddiv_rd

__device__ staticdouble __ddiv_rd(double x, double y);

Description: Supported

__ddiv_rn

__device__ staticdouble __ddiv_rn(double x, double y);

Description: Supported

__ddiv_ru

__device__ staticdouble __ddiv_ru(double x, double y);

Description: Supported

__ddiv_rz

__device__ staticdouble __ddiv_rz(double x, double y);

Description: Supported

__dmul_rd

__device__ staticdouble __dmul_rd(double x, double y);

Description: Supported

__dmul_rn

__device__ staticdouble __dmul_rn(double x, double y);

Description: Supported

__dmul_ru

__device__ staticdouble __dmul_ru(double x, double y);

Description: Supported

__dmul_rz

__device__ staticdouble __dmul_rz(double x, double y);

Description: Supported

__drcp_rd

__device__double __drcp_rd(double x);

Description: Supported

__drcp_rn

__device__double __drcp_rn(double x);

Description: Supported

__drcp_ru

__device__double __drcp_ru(double x);

Description: Supported

__drcp_rz

__device__double __drcp_rz(double x);

Description: Supported

__dsqrt_rd

__device__double __dsqrt_rd(double x);

Description: Supported

__dsqrt_rn

__device__double __dsqrt_rn(double x);

Description: Supported

__dsqrt_ru

__device__double __dsqrt_ru(double x);

Description: Supported

__dsqrt_rz

__device__double __dsqrt_rz(double x);

Description: Supported

__dsub_rd

__device__ staticdouble __dsub_rd(double x, double y);

Description: Supported

__dsub_rn

__device__ staticdouble __dsub_rn(double x, double y);

Description: Supported

__dsub_ru

__device__ staticdouble __dsub_ru(double x, double y);

Description: Supported

__dsub_rz

__device__ staticdouble __dsub_rz(double x, double y);

Description: Supported

__fma_rd

__device__double __fma_rd(double x, double y, double z);

Description: Supported

__fma_rn

__device__double __fma_rn(double x, double y, double z);

Description: Supported

__fma_ru

__device__double __fma_ru(double x, double y, double z);

Description: Supported

__fma_rz

__device__double __fma_rz(double x, double y, double z);

Description: Supported

__brev

__device__ unsigned int __brev(unsigned int x);

Description: Supported

__brevll

__device__ unsigned long long int __brevll(unsigned long long int x);

Description: Supported

__byte_perm

__device__ unsigned int __byte_perm(unsigned int x, unsigned int y, unsigned int s);

Description: Supported

__clz

__device__ unsigned int __clz(int x);

Description: Supported

__clzll

__device__ unsigned int __clzll(long long int x);

Description: Supported

__ffs

__device__ unsigned int __ffs(int x);

Description: Supported

__ffsll

__device__ unsigned int __ffsll(long long int x);

Description: Supported

__hadd

__device__ static unsigned int __hadd(int x, int y);

Description: Supported

__mul24

__device__ static int __mul24(int x, int y);

Description: Supported

__mul64hi

__device__ long long int __mul64hi(long long int x, long long int y);

Description: Supported

__mulhi

__device__ static int __mulhi(int x, int y);

Description: Supported

__popc

__device__ unsigned int __popc(unsigned int x);

Description: Supported

__popcll

__device__ unsigned int __popcll(unsigned long long int x);

Description: Supported

__rhadd

__device__ static int __rhadd(int x, int y);

Description: Supported

__sad

__device__ static unsigned int __sad(int x, int y, int z);

Description: Supported

__uhadd

__device__ static unsigned int __uhadd(unsigned int x, unsigned int y);

Description: Supported

__umul24

__device__ static int __umul24(unsigned int x, unsigned int y);

Description: Supported

__umul64hi

__device__ unsigned long long int __umul64hi(unsigned long long int x, unsigned long long int y);

Description: Supported

__umulhi

__device__ static unsigned int __umulhi(unsigned int x, unsigned int y);

Description: Supported

__urhadd

__device__ static unsigned int __urhadd(unsigned int x, unsigned int y);

Description: Supported

__usad

__device__ static unsigned int __usad(unsigned int x, unsigned int y, unsigned int z);

Description: Supported

__double2float_rd

__device__ float __double2float_rd(double x);

Description: Supported

__double2float_rn

__device__ float __double2float_rn(double x);

Description: Supported

__double2float_ru

__device__ float __double2float_ru(double x);

Description: Supported

__double2float_rz

__device__ float __double2float_rz(double x);

Description: Supported

__double2hiint

__device__ int __double2hiint(double x);

Description: Supported

__double2int_rd

__device__ int __double2int_rd(double x);

Description: Supported

__double2int_rn

__device__ int __double2int_rn(double x);

Description: Supported

__double2int_ru

__device__ int __double2int_ru(double x);

Description: Supported

__double2int_rz

__device__ int __double2int_rz(double x);

Description: Supported

__double2ll_rd

__device__ long long int __double2ll_rd(double x);

Description: Supported

__double2ll_rn

__device__ long long int __double2ll_rn(double x);

Description: Supported

__double2ll_ru

__device__ long long int __double2ll_ru(double x);

Description: Supported

__double2ll_rz

__device__ long long int __double2ll_rz(double x);

Description: Supported

__double2loint

__device__ int __double2loint(double x);

Description: Supported

__double2uint_rd

__device__ unsigned int __double2uint_rd(double x);

Description: Supported

__double2uint_rn

__device__ unsigned int __double2uint_rn(double x);

Description: Supported

__double2uint_ru

__device__ unsigned int __double2uint_ru(double x);

Description: Supported

__double2uint_rz

__device__ unsigned int __double2uint_rz(double x);

Description: Supported

__double2ull_rd

__device__ unsigned long long int __double2ull_rd(double x);

Description: Supported

__double2ull_rn

__device__ unsigned long long int __double2ull_rn(double x);

Description: Supported

__double2ull_ru

__device__ unsigned long long int __double2ull_ru(double x);

Description: Supported

__double2ull_rz

__device__ unsigned long long int __double2ull_rz(double x);

Description: Supported

__double_as_longlong

__device__ long long int __double_as_longlong(double x);

Description: Supported

__float2half_rn

__device__ unsigned short __float2half_rn(float x);

Description: Supported

__half2float

__device__ float __half2float(unsigned short);

Description: Supported

__float2half_rn

__device__ __half __float2half_rn(float x);

Description: Supported

__half2float

__device__ float __half2float(__half);

Description: Supported

__float2int_rd

__device__ int __float2int_rd(float x);

Description: Supported

__float2int_rn

__device__ int __float2int_rn(float x);

Description: Supported

__float2int_ru

__device__ int __float2int_ru(float x);

Description: Supported

__float2int_rz

__device__ int __float2int_rz(float x);

Description: Supported

__float2ll_rd

__device__ long long int __float2ll_rd(float x);

Description: Supported

__float2ll_rn

__device__ long long int __float2ll_rn(float x);

Description: Supported

__float2ll_ru

__device__ long long int __float2ll_ru(float x);

Description: Supported

__float2ll_rz

__device__ long long int __float2ll_rz(float x);

Description: Supported

__float2uint_rd

__device__ unsigned int __float2uint_rd(float x);

Description: Supported

__float2uint_rn

__device__ unsigned int __float2uint_rn(float x);

Description: Supported

__float2uint_ru

__device__ unsigned int __float2uint_ru(float x);

Description: Supported

__float2uint_rz

__device__ unsigned int __float2uint_rz(float x);

Description: Supported

__float2ull_rd

__device__ unsigned long long int __float2ull_rd(float x);

Description: Supported

__float2ull_rn

__device__ unsigned long long int __float2ull_rn(float x);

Description: Supported

__float2ull_ru

__device__ unsigned long long int __float2ull_ru(float x);

Description: Supported

__float2ull_rz

__device__ unsigned long long int __float2ull_rz(float x);

Description: Supported

__float_as_int

__device__ int __float_as_int(float x);

Description: Supported

__float_as_uint

__device__ unsigned int __float_as_uint(float x);

Description: Supported

__hiloint2double

__device__ double __hiloint2double(int hi, int lo);

Description: Supported

__int2double_rn

__device__ double __int2double_rn(int x);

Description: Supported

__int2float_rd

__device__ float __int2float_rd(int x);

Description: Supported

__int2float_rn

__device__ float __int2float_rn(int x);

Description: Supported

__int2float_ru

__device__ float __int2float_ru(int x);

Description: Supported

__int2float_rz

__device__ float __int2float_rz(int x);

Description: Supported

__int_as_float

__device__ float __int_as_float(int x);

Description: Supported

__ll2double_rd

__device__ double __ll2double_rd(long long int x);

Description: Supported

__ll2double_rn

__device__ double __ll2double_rn(long long int x);

Description: Supported

__ll2double_ru

__device__ double __ll2double_ru(long long int x);

Description: Supported

__ll2double_rz

__device__ double __ll2double_rz(long long int x);

Description: Supported

__ll2float_rd

__device__ float __ll2float_rd(long long int x);

Description: Supported

__ll2float_rn

__device__ float __ll2float_rn(long long int x);

Description: Supported

__ll2float_ru

__device__ float __ll2float_ru(long long int x);

Description: Supported

__ll2float_rz

__device__ float __ll2float_rz(long long int x);

Description: Supported

__longlong_as_double

__device__ double __longlong_as_double(long long int x);

Description: Supported

__uint2double_rn

__device__ double __uint2double_rn(int x);

Description: Supported

__uint2float_rd

__device__ float __uint2float_rd(unsigned int x);

Description: Supported

__uint2float_rn

__device__ float __uint2float_rn(unsigned int x);

Description: Supported

__uint2float_ru

__device__ float __uint2float_ru(unsigned int x);

Description: Supported

__uint2float_rz

__device__ float __uint2float_rz(unsigned int x);

Description: Supported

__uint_as_float

__device__ float __uint_as_float(unsigned int x);

Description: Supported

__ull2double_rd

__device__ double __ull2double_rd(unsigned long long int x);

Description: Supported

__ull2double_rn

__device__ double __ull2double_rn(unsigned long long int x);

Description: Supported

__ull2double_ru

__device__ double __ull2double_ru(unsigned long long int x);

Description: Supported

__ull2double_rz

__device__ double __ull2double_rz(unsigned long long int x);

Description: Supported

__ull2float_rd

__device__ float __ull2float_rd(unsigned long long int x);

Description: Supported

__ull2float_rn

__device__ float __ull2float_rn(unsigned long long int x);

Description: Supported

__ull2float_ru

__device__ float __ull2float_ru(unsigned long long int x);

Description: Supported

__ull2float_rz

__device__ float __ull2float_rz(unsigned long long int x);

Description: Supported

__hadd

__device__ static __half __hadd(const __half a, const __half b);

Description: Supported

__hadd_sat

__device__ static __half __hadd_sat(__half a, __half b);

Description: Supported

__hfma

__device__ static __half __hfma(__half a, __half b, __half c);

Description: Supported

__hfma_sat

__device__ static __half __hfma_sat(__half a, __half b, __half c);

Description: Supported

__hmul

__device__ static __half __hmul(__half a, __half b);

Description: Supported

__hmul_sat

__device__ static __half __hmul_sat(__half a, __half b);

Description: Supported

__hneg

__device__ static __half __hneg(__half a);

Description: Supported

__hsub

__device__ static __half __hsub(__half a, __half b);

Description: Supported

__hsub_sat

__device__ static __half __hsub_sat(__half a, __half b);

Description: Supported

hdiv

__device__ static __half hdiv(__half a, __half b);

Description: Supported

__hadd2

__device__ static __half2 __hadd2(__half2 a, __half2 b);

Description: Supported

__hadd2_sat

__device__ static __half2 __hadd2_sat(__half2 a, __half2 b);

Description: Supported

__hfma2

__device__ static __half2 __hfma2(__half2 a, __half2 b, __half2 c);

Description: Supported

__hfma2_sat

__device__ static __half2 __hfma2_sat(__half2 a, __half2 b, __half2 c);

Description: Supported

__hmul2

__device__ static __half2 __hmul2(__half2 a, __half2 b);

Description: Supported

__hmul2_sat

__device__ static __half2 __hmul2_sat(__half2 a, __half2 b);

Description: Supported

__hsub2

__device__ static __half2 __hsub2(__half2 a, __half2 b);

Description: Supported

__hneg2

__device__ static __half2 __hneg2(__half2 a);

Description: Supported

__hsub2_sat

__device__ static __half2 __hsub2_sat(__half2 a, __half2 b);

Description: Supported

h2div

__device__ static __half2 h2div(__half2 a, __half2 b);

Description: Supported

__heq

__device__bool __heq(__half a, __half b);

Description: Supported

__hge

__device__bool __hge(__half a, __half b);

Description: Supported

__hgt

__device__bool __hgt(__half a, __half b);

Description: Supported

__hisinf

__device__bool __hisinf(__half a);

Description: Supported

__hisnan

__device__bool __hisnan(__half a);

Description: Supported

__hle

__device__bool __hle(__half a, __half b);

Description: Supported

__hlt

__device__bool __hlt(__half a, __half b);

Description: Supported

__hne

__device__bool __hne(__half a, __half b);

Description: Supported

__hbeq2

__device__bool __hbeq2(__half2 a, __half2 b);

Description: Supported

__hbge2

__device__bool __hbge2(__half2 a, __half2 b);

Description: Supported

__hbgt2

__device__bool __hbgt2(__half2 a, __half2 b);

Description: Supported

__hble2

__device__bool __hble2(__half2 a, __half2 b);

Description: Supported

__hblt2

__device__bool __hblt2(__half2 a, __half2 b);

Description: Supported

__hbne2

__device__bool __hbne2(__half2 a, __half2 b);

Description: Supported

__heq2

__device____half2 __heq2(__half2 a, __half2 b);

Description: Supported

__hge2

__device____half2 __hge2(__half2 a, __half2 b);

Description: Supported

__hgt2

__device____half2 __hgt2(__half2 a, __half2 b);

Description: Supported

__hisnan2

__device____half2 __hisnan2(__half2 a);

Description: Supported

__hle2

__device____half2 __hle2(__half2 a, __half2 b);

Description: Supported

__hlt2

__device____half2 __hlt2(__half2 a, __half2 b);

Description: Supported

__hne2

__device____half2 __hne2(__half2 a, __half2 b);

Description: Supported

hceil

__device__ static __half hceil(const __half h);

Description: Supported

hcos

__device__ static __half hcos(const __half h);

Description: Supported

hexp

__device__ static __half hexp(const __half h);

Description: Supported

hexp10

__device__ static __half hexp10(const __half h);

Description: Supported

hexp2

__device__ static __half hexp2(const __half h);

Description: Supported

hfloor

__device__ static __half hfloor(const __half h);

Description: Supported

hlog

__device__ static __half hlog(const __half h);

Description: Supported

hlog10

__device__ static __half hlog10(const __half h);

Description: Supported

hlog2

__device__ static __half hlog2(const __half h);

Description: Supported

hrcp

//__device__ static __half hrcp(const __half h);

Description: NOT Supported

hrint

__device__ static __half hrint(const __half h);

Description: Supported

hsin

__device__ static __half hsin(const __half h);

Description: Supported

hsqrt

__device__ static __half hsqrt(const __half a);

Description: Supported

htrunc

__device__ static __half htrunc(const __half a);

Description: Supported

h2ceil

__device__ static __half2 h2ceil(const __half2 h);

Description: Supported

h2exp

__device__ static __half2 h2exp(const __half2 h);

Description: Supported

h2exp10

__device__ static __half2 h2exp10(const __half2 h);

Description: Supported

h2exp2

__device__ static __half2 h2exp2(const __half2 h);

Description: Supported

h2floor

__device__ static __half2 h2floor(const __half2 h);

Description: Supported

h2log

__device__ static __half2 h2log(const __half2 h);

Description: Supported

h2log10

__device__ static __half2 h2log10(const __half2 h);

Description: Supported

h2log2

__device__ static __half2 h2log2(const __half2 h);

Description: Supported

h2rcp

__device__ static __half2 h2rcp(const __half2 h);

Description: Supported

h2rsqrt

__device__ static __half2 h2rsqrt(const __half2 h);

Description: Supported

h2sin

__device__ static __half2 h2sin(const __half2 h);

Description: Supported

h2sqrt

__device__ static __half2 h2sqrt(const __half2 h);

Description: Supported

__float22half2_rn

__device____half2 __float22half2_rn(const float2 a);

Description: Supported

__float2half

__device____half __float2half(const float a);

Description: Supported

__float2half2_rn

__device____half2 __float2half2_rn(const float a);

Description: Supported

__float2half_rd

__device____half __float2half_rd(const float a);

Description: Supported

__float2half_rn

__device____half __float2half_rn(const float a);

Description: Supported

__float2half_ru

__device____half __float2half_ru(const float a);

Description: Supported

__float2half_rz

__device____half __float2half_rz(const float a);

Description: Supported

__floats2half2_rn

__device____half2 __floats2half2_rn(const float a, const float b);

Description: Supported

__half22float2

__device__float2 __half22float2(const __half2 a);

Description: Supported

__half2float

__device__float __half2float(const __half a);

Description: Supported

half2half2

__device____half2 half2half2(const __half a);

Description: Supported

__half2int_rd

__device__int __half2int_rd(__half h);

Description: Supported

__half2int_rn

__device__int __half2int_rn(__half h);

Description: Supported

__half2int_ru

__device__int __half2int_ru(__half h);

Description: Supported

__half2int_rz

__device__int __half2int_rz(__half h);

Description: Supported

__half2ll_rd

__device__long long int __half2ll_rd(__half h);

Description: Supported

__half2ll_rn

__device__long long int __half2ll_rn(__half h);

Description: Supported

__half2ll_ru

__device__long long int __half2ll_ru(__half h);

Description: Supported

__half2ll_rz

__device__long long int __half2ll_rz(__half h);

Description: Supported

__half2short_rd

__device__short __half2short_rd(__half h);

Description: Supported

__half2short_rn

__device__short __half2short_rn(__half h);

Description: Supported

__half2short_ru

__device__short __half2short_ru(__half h);

Description: Supported

__half2short_rz

__device__short __half2short_rz(__half h);

Description: Supported

__half2uint_rd

__device__unsigned int __half2uint_rd(__half h);

Description: Supported

__half2uint_rn

__device__unsigned int __half2uint_rn(__half h);

Description: Supported

__half2uint_ru

__device__unsigned int __half2uint_ru(__half h);

Description: Supported

__half2uint_rz

__device__unsigned int __half2uint_rz(__half h);

Description: Supported

__half2ull_rd

__device__unsigned long long int __half2ull_rd(__half h);

Description: Supported

__half2ull_rn

__device__unsigned long long int __half2ull_rn(__half h);

Description: Supported

__half2ull_ru

__device__unsigned long long int __half2ull_ru(__half h);

Description: Supported

__half2ull_rz

__device__unsigned long long int __half2ull_rz(__half h);

Description: Supported

__half2ushort_rd

__device__unsigned short int __half2ushort_rd(__half h);

Description: Supported

__half2ushort_rn

__device__unsigned short int __half2ushort_rn(__half h);

Description: Supported

__half2ushort_ru

__device__unsigned short int __half2ushort_ru(__half h);

Description: Supported

__half2ushort_rz

__device__unsigned short int __half2ushort_rz(__half h);

Description: Supported

__half_as_short

__device__short int __half_as_short(const __half h);

Description: Supported

__half_as_ushort

__device__unsigned short int __half_as_ushort(const __half h);

Description: Supported

__halves2half2

__device____half2 __halves2half2(const __half a, const __half b);

Description: Supported

__high2float

__device__float __high2float(const __half2 a);

Description: Supported

__high2half

__device____half __high2half(const __half2 a);

Description: Supported

__high2half2

__device____half2 __high2half2(const __half2 a);

Description: Supported

__highs2half2

__device____half2 __highs2half2(const __half2 a, const __half2 b);

Description: Supported

__int2half_rd

__device____half __int2half_rd(int i);

Description: Supported

__int2half_rn

__device____half __int2half_rn(int i);

Description: Supported

__int2half_ru

__device____half __int2half_ru(int i);

Description: Supported

__int2half_rz

__device____half __int2half_rz(int i);

Description: Supported

__ll2half_rd

__device____half __ll2half_rd(long long int i);

Description: Supported

__ll2half_rn

__device____half __ll2half_rn(long long int i);

Description: Supported

__ll2half_ru

__device____half __ll2half_ru(long long int i);

Description: Supported

__ll2half_rz

__device____half __ll2half_rz(long long int i);

Description: Supported

__low2float

__device__float __low2float(const __half2 a);

Description: Supported

__low2half

__device__ __half __low2half(const __half2 a);

Description: Supported

__low2half2

__device__ __half2 __low2half2(const __half2 a, const __half2 b);

Description: Supported

__low2half2

__device__ __half2 __low2half2(const __half2 a);

Description: Supported

__lowhigh2highlow

__device__ __half2 __lowhigh2highlow(const __half2 a);

Description: Supported

__lows2half2

__device__ __half2 __lows2half2(const __half2 a, const __half2 b);

Description: Supported

__short2half_rd

__device____half __short2half_rd(short int i);

Description: Supported

__short2half_rn

__device____half __short2half_rn(short int i);

Description: Supported

__short2half_ru

__device____half __short2half_ru(short int i);

Description: Supported

__short2half_rz

__device____half __short2half_rz(short int i);

Description: Supported

__uint2half_rd

__device____half __uint2half_rd(unsigned int i);

Description: Supported

__uint2half_rn

__device____half __uint2half_rn(unsigned int i);

Description: Supported

__uint2half_ru

__device____half __uint2half_ru(unsigned int i);

Description: Supported

__uint2half_rz

__device____half __uint2half_rz(unsigned int i);

Description: Supported

__ull2half_rd

__device____half __ull2half_rd(unsigned long long int i);

Description: Supported

__ull2half_rn

__device____half __ull2half_rn(unsigned long long int i);

Description: Supported

__ull2half_ru

__device____half __ull2half_ru(unsigned long long int i);

Description: Supported

__ull2half_rz

__device____half __ull2half_rz(unsigned long long int i);

Description: Supported

__ushort2half_rd

__device____half __ushort2half_rd(unsigned short int i);

Description: Supported

__ushort2half_rn

__device____half __ushort2half_rn(unsigned short int i);

Description: Supported

__ushort2half_ru

__device____half __ushort2half_ru(unsigned short int i);

Description: Supported

__ushort2half_rz

__device____half __ushort2half_rz(unsigned short int i);

Description: Supported

__ushort_as_half

__device____half __ushort_as_half(const unsigned short int i);

Description: Supported

ROCm API References

For the latest HIP API guide, see https://github.com/RadeonOpenCompute/ROCm/blob/master/AMD_HIP_API_Guide_v4.3.pdf

ROCm 3.x API Documentation

ROCr System Runtime API

	ROCr API Documentation

Math Library API

	hcRNG [http://hcrng-documentation.readthedocs.io/en/latest/]

	clBLAS API Documentation

	clSPARSE API Documentation

HCC Language Runtime API (Deprecated)

	HCC API Documentation (Deprecated)

ROCr API Documentation

Runtime Notification

	
enum hsa_status_t

	Status codes.

Values:

	
enumerator HSA_STATUS_SUCCESS

	The function has been executed successfully.

	
enumerator HSA_STATUS_INFO_BREAK

	A traversal over a list of elements has been interrupted by the application before completing.

	
enumerator HSA_STATUS_ERROR

	A generic error has occurred.

	
enumerator HSA_STATUS_ERROR_INVALID_ARGUMENT

	One of the actual arguments does not meet a precondition stated in the documentation of the corresponding formal argument.

	
enumerator HSA_STATUS_ERROR_INVALID_QUEUE_CREATION

	The requested queue creation is not valid.

	
enumerator HSA_STATUS_ERROR_INVALID_ALLOCATION

	The requested allocation is not valid.

	
enumerator HSA_STATUS_ERROR_INVALID_AGENT

	The agent is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_REGION

	The memory region is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_SIGNAL

	The signal is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_QUEUE

	The queue is invalid.

	
enumerator HSA_STATUS_ERROR_OUT_OF_RESOURCES

	The HSA runtime failed to allocate the necessary resources. This error may also occur when the HSA runtime needs to spawn threads or create internal OS-specific events.

	
enumerator HSA_STATUS_ERROR_INVALID_PACKET_FORMAT

	The AQL packet is malformed.

	
enumerator HSA_STATUS_ERROR_RESOURCE_FREE

	An error has been detected while releasing a resource.

	
enumerator HSA_STATUS_ERROR_NOT_INITIALIZED

	An API other than hsa_init has been invoked while the reference count of the HSA runtime is 0.

	
enumerator HSA_STATUS_ERROR_REFCOUNT_OVERFLOW

	The maximum reference count for the object has been reached.

	
enumerator HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS

	The arguments passed to a functions are not compatible.

	
enumerator HSA_STATUS_ERROR_INVALID_INDEX

	The index is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_ISA

	The instruction set architecture is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_ISA_NAME

	The instruction set architecture name is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_CODE_OBJECT

	The code object is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_EXECUTABLE

	The executable is invalid.

	
enumerator HSA_STATUS_ERROR_FROZEN_EXECUTABLE

	The executable is frozen.

	
enumerator HSA_STATUS_ERROR_INVALID_SYMBOL_NAME

	There is no symbol with the given name.

	
enumerator HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED

	The variable is already defined.

	
enumerator HSA_STATUS_ERROR_VARIABLE_UNDEFINED

	The variable is undefined.

	
enumerator HSA_STATUS_ERROR_EXCEPTION

	An HSAIL operation resulted in a hardware exception.

	
enumerator HSA_STATUS_ERROR_INVALID_CODE_SYMBOL

	The code object symbol is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_EXECUTABLE_SYMBOL

	The executable symbol is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_FILE

	The file descriptor is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_CODE_OBJECT_READER

	The code object reader is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_CACHE

	The cache is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_WAVEFRONT

	The wavefront is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_SIGNAL_GROUP

	The signal group is invalid.

	
enumerator HSA_STATUS_ERROR_INVALID_RUNTIME_STATE

	The HSA runtime is not in the configuration state.

	
enumerator HSA_STATUS_ERROR_FATAL

	The queue received an error that may require process termination.

	
hsa_status_t HSA_API hsa_status_string (hsa_status_t status, const char **status_string)

	Query additional information about a status code.

	Parameters
	
	[in] status: Status code.

	[out] status_string: A NUL-terminated string that describes the error status.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: status is an invalid status code, or status_string is NULL.

common definition

	
enum hsa_access_permission_t

	Access permissions.

Values:

	
enumerator HSA_ACCESS_PERMISSION_RO

	Read-only access.

	
enumerator HSA_ACCESS_PERMISSION_WO

	Write-only access.

	
enumerator HSA_ACCESS_PERMISSION_RW

	Read and write access.

	
struct hsa_dim3_t

	Three-dimensional coordinate.

Initialization and Shut Down

	
hsa_status_t HSA_API hsa_init ()

	Initialize the HSA runtime.

Initializes the HSA runtime if it is not already initialized, and increases the reference counter associated with the HSA runtime for the current process. Invocation of any HSA function other than hsa_init results in undefined behavior if the current HSA runtime reference counter is less than one.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_REFCOUNT_OVERFLOW: The HSA runtime reference count reaches INT32_MAX.

	
hsa_status_t HSA_API hsa_shut_down ()

	Shut down the HSA runtime.

Decreases the reference count of the HSA runtime instance. When the reference count reaches 0, the HSA runtime is no longer considered valid but the application might call hsa_init to initialize the HSA runtime again.

Once the reference count of the HSA runtime reaches 0, all the resources associated with it (queues, signals, agent information, etc.) are considered invalid and any attempt to reference them in subsequent API calls results in undefined behavior. When the reference count reaches 0, the HSA runtime may release resources associated with it.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

System and Agent Information

	
enum hsa_agent_feature_t

	Agent features.

Values:

	
enumerator HSA_AGENT_FEATURE_KERNEL_DISPATCH

	The agent supports AQL packets of kernel dispatch type. If this feature is enabled, the agent is also a kernel agent.

	
enumerator HSA_AGENT_FEATURE_AGENT_DISPATCH

	The agent supports AQL packets of agent dispatch type.

	
enum hsa_agent_info_t

	Agent attributes.

Values:

	
enumerator HSA_AGENT_INFO_NAME

	Agent name. The type of this attribute is a NUL-terminated char[64]. The name must be at most 63 characters long (not including the NUL terminator) and all array elements not used for the name must be NUL.

	
enumerator HSA_AGENT_INFO_VENDOR_NAME

	Name of vendor. The type of this attribute is a NUL-terminated char[64]. The name must be at most 63 characters long (not including the NUL terminator) and all array elements not used for the name must be NUL.

	
enumerator HSA_AGENT_INFO_FEATURE

	Agent capability. The type of this attribute is hsa_agent_feature_t.

	
enumerator HSA_AGENT_INFO_MACHINE_MODEL

	
	
Deprecated:

	Query HSA_ISA_INFO_MACHINE_MODELS for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Machine model supported by the agent. The type of this attribute is hsa_machine_model_t.

	
enumerator HSA_AGENT_INFO_PROFILE

	
	
Deprecated:

	Query HSA_ISA_INFO_PROFILES for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Profile supported by the agent. The type of this attribute is hsa_profile_t.

	
enumerator HSA_AGENT_INFO_DEFAULT_FLOAT_ROUNDING_MODE

	
	
Deprecated:

	Query HSA_ISA_INFO_DEFAULT_FLOAT_ROUNDING_MODES for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Default floating-point rounding mode. The type of this attribute is hsa_default_float_rounding_mode_t, but the value HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT is not allowed.

	
enumerator HSA_AGENT_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES

	
	
Deprecated:

	Query HSA_ISA_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

A bit-mask of hsa_default_float_rounding_mode_t values, representing the default floating-point rounding modes supported by the agent in the Base profile. The type of this attribute is uint32_t. The default floating-point rounding mode (HSA_AGENT_INFO_DEFAULT_FLOAT_ROUNDING_MODE) bit must not be set.

	
enumerator HSA_AGENT_INFO_FAST_F16_OPERATION

	
	
Deprecated:

	Query HSA_ISA_INFO_FAST_F16_OPERATION for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Flag indicating that the f16 HSAIL operation is at least as fast as the f32 operation in the current agent. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is bool.

	
enumerator HSA_AGENT_INFO_WAVEFRONT_SIZE

	
	
Deprecated:

	Query HSA_WAVEFRONT_INFO_SIZE for a given wavefront and intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas and the first wavefront enumerated by hsa_isa_iterate_wavefronts for that ISA.

Number of work-items in a wavefront. Must be a power of 2 in the range [1,256]. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_WORKGROUP_MAX_DIM

	
	
Deprecated:

	Query HSA_ISA_INFO_WORKGROUP_MAX_DIM for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Maximum number of work-items of each dimension of a work-group. Each maximum must be greater than 0. No maximum can exceed the value of HSA_AGENT_INFO_WORKGROUP_MAX_SIZE. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is uint16_t[3].

	
enumerator HSA_AGENT_INFO_WORKGROUP_MAX_SIZE

	
	
Deprecated:

	Query HSA_ISA_INFO_WORKGROUP_MAX_SIZE for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Maximum total number of work-items in a work-group. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_GRID_MAX_DIM

	
	
Deprecated:

	Query HSA_ISA_INFO_GRID_MAX_DIM for a given intruction set architecture supported by the agent instead.

Maximum number of work-items of each dimension of a grid. Each maximum must be greater than 0, and must not be smaller than the corresponding value in HSA_AGENT_INFO_WORKGROUP_MAX_DIM. No maximum can exceed the value of HSA_AGENT_INFO_GRID_MAX_SIZE. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is hsa_dim3_t.

	
enumerator HSA_AGENT_INFO_GRID_MAX_SIZE

	
	
Deprecated:

	Query HSA_ISA_INFO_GRID_MAX_SIZE for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Maximum total number of work-items in a grid. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_FBARRIER_MAX_SIZE

	
	
Deprecated:

	Query HSA_ISA_INFO_FBARRIER_MAX_SIZE for a given intruction set architecture supported by the agent instead. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Maximum number of fbarriers per work-group. Must be at least 32. The value of this attribute is undefined if the agent is not a kernel agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_QUEUES_MAX

	
	
Deprecated:

	The maximum number of queues is not statically determined.

Maximum number of queues that can be active (created but not destroyed) at one time in the agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_QUEUE_MIN_SIZE

	Minimum number of packets that a queue created in the agent can hold. Must be a power of 2 greater than 0. Must not exceed the value of HSA_AGENT_INFO_QUEUE_MAX_SIZE. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_QUEUE_MAX_SIZE

	Maximum number of packets that a queue created in the agent can hold. Must be a power of 2 greater than 0. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_QUEUE_TYPE

	Type of a queue created in the agent. The type of this attribute is hsa_queue_type32_t.

	
enumerator HSA_AGENT_INFO_NODE

	
	
Deprecated:

	NUMA information is not exposed anywhere else in the API.

Identifier of the NUMA node associated with the agent. The type of this attribute is uint32_t.

	
enumerator HSA_AGENT_INFO_DEVICE

	Type of hardware device associated with the agent. The type of this attribute is hsa_device_type_t.

	
enumerator HSA_AGENT_INFO_CACHE_SIZE

	
	
Deprecated:

	Query hsa_agent_iterate_caches to retrieve information about the caches present in a given agent.

Array of data cache sizes (L1..L4). Each size is expressed in bytes. A size of 0 for a particular level indicates that there is no cache information for that level. The type of this attribute is uint32_t[4].

	
enumerator HSA_AGENT_INFO_ISA

	
	
Deprecated:

	An agent may support multiple instruction set architectures. See hsa_agent_iterate_isas. If more than one ISA is supported by the agent, the returned value corresponds to the first ISA enumerated by hsa_agent_iterate_isas.

Instruction set architecture of the agent. The type of this attribute is hsa_isa_t.

	
enumerator HSA_AGENT_INFO_EXTENSIONS

	Bit-mask indicating which extensions are supported by the agent. An extension with an ID of i is supported if the bit at position i is set. The type of this attribute is uint8_t[128].

	
enumerator HSA_AGENT_INFO_VERSION_MAJOR

	Major version of the HSA runtime specification supported by the agent. The type of this attribute is uint16_t.

	
enumerator HSA_AGENT_INFO_VERSION_MINOR

	Minor version of the HSA runtime specification supported by the agent. The type of this attribute is uint16_t.

	
enum hsa_cache_info_t

	Cache attributes.

Values:

	
enumerator HSA_CACHE_INFO_NAME_LENGTH

	The length of the cache name in bytes, not including the NUL terminator. The type of this attribute is uint32_t.

	
enumerator HSA_CACHE_INFO_NAME

	Human-readable description. The type of this attribute is a NUL-terminated character array with the length equal to the value of HSA_CACHE_INFO_NAME_LENGTH attribute.

	
enumerator HSA_CACHE_INFO_LEVEL

	Cache level. A L1 cache must return a value of 1, a L2 must return a value of 2, and so on. The type of this attribute is uint8_t.

	
enumerator HSA_CACHE_INFO_SIZE

	Cache size, in bytes. A value of 0 indicates that there is no size information available. The type of this attribute is uint32_t.

	
enum hsa_default_float_rounding_mode_t

	Default floating-point rounding mode.

Values:

	
enumerator HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT

	Use a default floating-point rounding mode specified elsewhere.

	
enumerator HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO

	Operations that specify the default floating-point mode are rounded to zero by default.

	
enumerator HSA_DEFAULT_FLOAT_ROUNDING_MODE_NEAR

	Operations that specify the default floating-point mode are rounded to the nearest representable number and that ties should be broken by selecting the value with an even least significant bit.

	
enum hsa_device_type_t

	Hardware device type.

Values:

	
enumerator HSA_DEVICE_TYPE_CPU

	CPU device.

	
enumerator HSA_DEVICE_TYPE_GPU

	GPU device.

	
enumerator HSA_DEVICE_TYPE_DSP

	DSP device.

	
enum hsa_endianness_t

	Endianness. A convention used to interpret the bytes making up a data word.

Values:

	
enumerator HSA_ENDIANNESS_LITTLE

	The least significant byte is stored in the smallest address.

	
enumerator HSA_ENDIANNESS_BIG

	The most significant byte is stored in the smallest address.

	
enum hsa_exception_policy_t

	Exception policies applied in the presence of hardware exceptions.

Values:

	
enumerator HSA_EXCEPTION_POLICY_BREAK

	If a hardware exception is detected, a work-item signals an exception.

	
enumerator HSA_EXCEPTION_POLICY_DETECT

	If a hardware exception is detected, a hardware status bit is set.

	
enum hsa_extension_t

	HSA extensions.

Values:

	
enumerator HSA_EXTENSION_FINALIZER

	Finalizer extension.

	
enumerator HSA_EXTENSION_IMAGES

	Images extension.

	
enumerator HSA_EXTENSION_PERFORMANCE_COUNTERS

	Performance counter extension.

	
enumerator HSA_EXTENSION_PROFILING_EVENTS

	Profiling events extension.

	
enumerator HSA_EXTENSION_STD_LAST

	Extension count.

	
enumerator HSA_AMD_FIRST_EXTENSION

	First AMD extension number.

	
enumerator HSA_EXTENSION_AMD_PROFILER

	Profiler extension.

	
enumerator HSA_EXTENSION_AMD_LOADER

	Loader extension.

	
enumerator HSA_EXTENSION_AMD_AQLPROFILE

	AqlProfile extension.

	
enumerator HSA_AMD_LAST_EXTENSION

	Last AMD extension.

	
enum hsa_machine_model_t

	Machine model. A machine model determines the size of certain data types in HSA runtime and an agent.

Values:

	
enumerator HSA_MACHINE_MODEL_SMALL

	Small machine model. Addresses use 32 bits.

	
enumerator HSA_MACHINE_MODEL_LARGE

	Large machine model. Addresses use 64 bits.

	
enum hsa_profile_t

	Profile. A profile indicates a particular level of feature support. For example, in the base profile the application must use the HSA runtime allocator to reserve shared virtual memory, while in the full profile any host pointer can be shared across all the agents.

Values:

	
enumerator HSA_PROFILE_BASE

	Base profile.

	
enumerator HSA_PROFILE_FULL

	Full profile.

	
enum hsa_system_info_t

	System attributes.

Values:

	
enumerator HSA_SYSTEM_INFO_VERSION_MAJOR

	Major version of the HSA runtime specification supported by the implementation. The type of this attribute is uint16_t.

	
enumerator HSA_SYSTEM_INFO_VERSION_MINOR

	Minor version of the HSA runtime specification supported by the implementation. The type of this attribute is uint16_t.

	
enumerator HSA_SYSTEM_INFO_TIMESTAMP

	Current timestamp. The value of this attribute monotonically increases at a constant rate. The type of this attribute is uint64_t.

	
enumerator HSA_SYSTEM_INFO_TIMESTAMP_FREQUENCY

	Timestamp value increase rate, in Hz. The timestamp (clock) frequency is in the range 1-400MHz. The type of this attribute is uint64_t.

	
enumerator HSA_SYSTEM_INFO_SIGNAL_MAX_WAIT

	Maximum duration of a signal wait operation. Expressed as a count based on the timestamp frequency. The type of this attribute is uint64_t.

	
enumerator HSA_SYSTEM_INFO_ENDIANNESS

	Endianness of the system. The type of this attribute is hsa_endianness_t.

	
enumerator HSA_SYSTEM_INFO_MACHINE_MODEL

	Machine model supported by the HSA runtime. The type of this attribute is hsa_machine_model_t.

	
enumerator HSA_SYSTEM_INFO_EXTENSIONS

	Bit-mask indicating which extensions are supported by the implementation. An extension with an ID of i is supported if the bit at position i is set. The type of this attribute is uint8_t[128].

	
enumerator HSA_AMD_SYSTEM_INFO_BUILD_VERSION

	String containing the ROCr build identifier.

	
hsa_status_t HSA_API hsa_agent_get_info (hsa_agent_t agent, hsa_agent_info_t attribute, void *value)

	Get the current value of an attribute for a given agent.

	Parameters
	
	[in] agent: A valid agent.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid agent attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_agent_iterate_caches (hsa_agent_t agent, hsa_status_t(*callback)(hsa_cache_t cache, void *data), void *data)

	Iterate over the memory caches of a given agent, and invoke an application-defined callback on every iteration.

Caches are visited in ascending order according to the value of the HSA_CACHE_INFO_LEVEL attribute.

	Parameters
	
	[in] agent: A valid agent.

	[in] callback: Callback to be invoked once per cache that is present in the agent. The HSA runtime passes two arguments to the callback: the cache and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and that value is returned.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API hsa_agent_major_extension_supported (uint16_t extension, hsa_agent_t agent, uint16_t version_major, uint16_t *version_minor, bool *result)

	Query if a given version of an extension is supported by an agent. All minor versions from 0 up to the returned version_minor must be supported.

	Parameters
	
	[in] extension: Extension identifier.

	[in] agent: Agent.

	[in] version_major: Major version number.

	[out] version_minor: Minor version number.

	[out] result: Pointer to a memory location where the HSA runtime stores the result of the check. The result is true if the specified version of the extension is supported, and false otherwise. The result must be false if hsa_system_extension_supported returns false for the same extension version.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: extension is not a valid extension, or version_minor is NULL, or result is NULL.

	
hsa_status_t HSA_API hsa_cache_get_info (hsa_cache_t cache, hsa_cache_info_t attribute, void *value)

	Get the current value of an attribute for a given cache object.

	Parameters
	
	[in] cache: Cache.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CACHE: The cache is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid instruction set architecture attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_extension_get_name (uint16_t extension, const char **name)

	Query the name of a given extension.

	Parameters
	
	[in] extension: Extension identifier. If the extension is not supported by the implementation (see HSA_SYSTEM_INFO_EXTENSIONS), the behavior is undefined.

	[out] name: Pointer to a memory location where the HSA runtime stores the extension name. The extension name is a NUL-terminated string.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: extension is not a valid extension, or name is NULL.

	
hsa_status_t HSA_API hsa_iterate_agents (hsa_status_t(*callback)(hsa_agent_t agent, void *data), void *data)

	Iterate over the available agents, and invoke an application-defined callback on every iteration.

	Parameters
	
	[in] callback: Callback to be invoked once per agent. The HSA runtime passes two arguments to the callback: the agent and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_iterate_agents returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_system_extension_supported (uint16_t extension, uint16_t version_major, uint16_t version_minor, bool *result)

	Query if a given version of an extension is supported by the HSA implementation.

	
Deprecated:

	

	Parameters
	
	[in] extension: Extension identifier.

	[in] version_major: Major version number.

	[in] version_minor: Minor version number.

	[out] result: Pointer to a memory location where the HSA runtime stores the result of the check. The result is true if the specified version of the extension is supported, and false otherwise.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: extension is not a valid extension, or result is NULL.

	
hsa_status_t HSA_API hsa_system_get_info (hsa_system_info_t attribute, void *value)

	Get the current value of a system attribute.

	Parameters
	
	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid system attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_system_get_major_extension_table (uint16_t extension, uint16_t version_major, size_t table_length, void *table)

	Retrieve the function pointers corresponding to a given major version of an extension. Portable applications are expected to invoke the extension API using the returned function pointers.

The application is responsible for verifying that the given major version of the extension is supported by the HSA implementation (see hsa_system_major_extension_supported). If the given combination of extension and major version is not supported by the implementation, the behavior is undefined. Additionally if the length doesn’t allow space for a full minor version, it is implementation defined if only some of the function pointers for that minor version get written.

	Parameters
	
	[in] extension: Extension identifier.

	[in] version_major: Major version number for which to retrieve the function pointer table.

	[in] table_length: Size in bytes of the function pointer table to be populated. The implementation will not write more than this many bytes to the table.

	[out] table: Pointer to an application-allocated function pointer table that is populated by the HSA runtime. Must not be NULL. The memory associated with table can be reused or freed after the function returns.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: extension is not a valid extension, or table is NULL.

	
hsa_status_t HSA_API hsa_system_major_extension_supported (uint16_t extension, uint16_t version_major, uint16_t *version_minor, bool *result)

	Query if a given version of an extension is supported by the HSA implementation. All minor versions from 0 up to the returned version_minor must be supported by the implementation.

	Parameters
	
	[in] extension: Extension identifier.

	[in] version_major: Major version number.

	[out] version_minor: Minor version number.

	[out] result: Pointer to a memory location where the HSA runtime stores the result of the check. The result is true if the specified version of the extension is supported, and false otherwise.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: extension is not a valid extension, or version_minor is NULL, or result is NULL.

Signals

	
struct hsa_signal_t

	Signal handle.

	
typedef int32_t hsa_signal_value_t

	Signal value. The value occupies 32 bits in small machine mode, and 64 bits in large machine mode.

	
struct hsa_signal_group_t

	Group of signals.

	
enum hsa_signal_condition_t

	Wait condition operator.

Values:

	
enumerator HSA_SIGNAL_CONDITION_EQ

	The two operands are equal.

	
enumerator HSA_SIGNAL_CONDITION_NE

	The two operands are not equal.

	
enumerator HSA_SIGNAL_CONDITION_LT

	The first operand is less than the second operand.

	
enumerator HSA_SIGNAL_CONDITION_GTE

	The first operand is greater than or equal to the second operand.

	
enum hsa_wait_state_t

	State of the application thread during a signal wait.

Values:

	
enumerator HSA_WAIT_STATE_BLOCKED

	The application thread may be rescheduled while waiting on the signal.

	
enumerator HSA_WAIT_STATE_ACTIVE

	The application thread stays active while waiting on a signal.

	
void HSA_API hsa_signal_add_relaxed (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically increment the value of a signal by a given amount.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to add to the value of the signal.

	
void HSA_API HSA_DEPRECATED hsa_signal_add_release (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically increment the value of a signal by a given amount.

	
Deprecated:

	Renamed as hsa_signal_add_screlease.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to add to the value of the signal.

	
void HSA_API hsa_signal_add_scacq_screl (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically increment the value of a signal by a given amount.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to add to the value of the signal.

	
void HSA_API hsa_signal_add_scacquire (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically increment the value of a signal by a given amount.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to add to the value of the signal.

	
void HSA_API hsa_signal_add_screlease (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically increment the value of a signal by a given amount.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to add to the value of the signal.

	
void HSA_API HSA_DEPRECATED hsa_signal_and_acq_rel (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically perform a bitwise AND operation between the value of a signal and a given value.

	
Deprecated:

	Renamed as hsa_signal_and_scacq_screl.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to AND with the value of the signal.

	
void HSA_API hsa_signal_and_relaxed (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically perform a bitwise AND operation between the value of a signal and a given value.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to AND with the value of the signal.

	
void HSA_API hsa_signal_and_scacq_screl (hsa_signal_t signal, hsa_signal_value_t value)

	Atomically perform a bitwise AND operation between the value of a signal and a given value.

If the value of the signal is changed, all the agents waiting on signal for which value satisfies their wait condition are awakened.

	Parameters
	
	[in] signal: Signal. If signal is a queue doorbell signal, the behavior is undefined.

	[in] value: Value to AND with the value of the signal.

Memory

	
enum hsa_region_global_flag_t

	Global region flags.

Values:

	
enumerator HSA_REGION_GLOBAL_FLAG_KERNARG

	The application can use memory in the region to store kernel arguments, and provide the values for the kernarg segment of a kernel dispatch. If this flag is set, then HSA_REGION_GLOBAL_FLAG_FINE_GRAINED must be set.

	
enumerator HSA_REGION_GLOBAL_FLAG_FINE_GRAINED

	Updates to memory in this region are immediately visible to all the agents under the terms of the HSA memory model. If this flag is set, then HSA_REGION_GLOBAL_FLAG_COARSE_GRAINED must not be set.

	
enumerator HSA_REGION_GLOBAL_FLAG_COARSE_GRAINED

	Updates to memory in this region can be performed by a single agent at a time. If a different agent in the system is allowed to access the region, the application must explicitely invoke hsa_memory_assign_agent in order to transfer ownership to that agent for a particular buffer.

	
enum hsa_region_info_t

	Attributes of a memory region.

Values:

	
enumerator HSA_REGION_INFO_SEGMENT

	Segment where memory in the region can be used. The type of this attribute is hsa_region_segment_t.

	
enumerator HSA_REGION_INFO_GLOBAL_FLAGS

	Flag mask. The value of this attribute is undefined if the value of HSA_REGION_INFO_SEGMENT is not HSA_REGION_SEGMENT_GLOBAL. The type of this attribute is uint32_t, a bit-field of hsa_region_global_flag_t values.

	
enumerator HSA_REGION_INFO_SIZE

	Size of this region, in bytes. The type of this attribute is size_t.

	
enumerator HSA_REGION_INFO_ALLOC_MAX_SIZE

	Maximum allocation size in this region, in bytes. Must not exceed the value of HSA_REGION_INFO_SIZE. The type of this attribute is size_t.

If the region is in the global or readonly segments, this is the maximum size that the application can pass to hsa_memory_allocate.

If the region is in the group segment, this is the maximum size (per work-group) that can be requested for a given kernel dispatch. If the region is in the private segment, this is the maximum size (per work-item) that can be requested for a specific kernel dispatch, and must be at least 256 bytes.

	
enumerator HSA_REGION_INFO_ALLOC_MAX_PRIVATE_WORKGROUP_SIZE

	Maximum size (per work-group) of private memory that can be requested for a specific kernel dispatch. Must be at least 65536 bytes. The type of this attribute is uint32_t. The value of this attribute is undefined if the region is not in the private segment.

	
enumerator HSA_REGION_INFO_RUNTIME_ALLOC_ALLOWED

	Indicates whether memory in this region can be allocated using hsa_memory_allocate. The type of this attribute is bool.

The value of this flag is always false for regions in the group and private segments.

	
enumerator HSA_REGION_INFO_RUNTIME_ALLOC_GRANULE

	Allocation granularity of buffers allocated by hsa_memory_allocate in this region. The size of a buffer allocated in this region is a multiple of the value of this attribute. The value of this attribute is only defined if HSA_REGION_INFO_RUNTIME_ALLOC_ALLOWED is true for this region. The type of this attribute is size_t.

	
enumerator HSA_REGION_INFO_RUNTIME_ALLOC_ALIGNMENT

	Alignment of buffers allocated by hsa_memory_allocate in this region. The value of this attribute is only defined if HSA_REGION_INFO_RUNTIME_ALLOC_ALLOWED is true for this region, and must be a power of 2. The type of this attribute is size_t.

	
enum hsa_region_segment_t

	Memory segments associated with a region.

Values:

	
enumerator HSA_REGION_SEGMENT_GLOBAL

	Global segment. Used to hold data that is shared by all agents.

	
enumerator HSA_REGION_SEGMENT_READONLY

	Read-only segment. Used to hold data that remains constant during the execution of a kernel.

	
enumerator HSA_REGION_SEGMENT_PRIVATE

	Private segment. Used to hold data that is local to a single work-item.

	
enumerator HSA_REGION_SEGMENT_GROUP

	Group segment. Used to hold data that is shared by the work-items of a work-group.

	
enumerator HSA_REGION_SEGMENT_KERNARG

	Kernarg segment. Used to store kernel arguments.

	
hsa_status_t HSA_API hsa_agent_iterate_regions (hsa_agent_t agent, hsa_status_t(*callback)(hsa_region_t region, void *data), void *data)

	Iterate over the memory regions associated with a given agent, and invoke an application-defined callback on every iteration.

	Parameters
	
	[in] agent: A valid agent.

	[in] callback: Callback to be invoked once per region that is accessible from the agent. The HSA runtime passes two arguments to the callback, the region and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_agent_iterate_regions returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API hsa_memory_allocate (hsa_region_t region, size_t size, void **ptr)

	Allocate a block of memory in a given region.

	Parameters
	
	[in] region: Region where to allocate memory from. The region must have the HSA_REGION_INFO_RUNTIME_ALLOC_ALLOWED flag set.

	[in] size: Allocation size, in bytes. Must not be zero. This value is rounded up to the nearest multiple of HSA_REGION_INFO_RUNTIME_ALLOC_GRANULE in region.

	[out] ptr: Pointer to the location where to store the base address of the allocated block. The returned base address is aligned to the value of HSA_REGION_INFO_RUNTIME_ALLOC_ALIGNMENT in region. If the allocation fails, the returned value is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_REGION: The region is invalid.

	HSA_STATUS_ERROR_INVALID_ALLOCATION: The host is not allowed to allocate memory in region, or size is greater than the value of HSA_REGION_INFO_ALLOC_MAX_SIZE in region.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: ptr is NULL, or size is 0.

	
hsa_status_t HSA_API hsa_memory_assign_agent (void *ptr, hsa_agent_t agent, hsa_access_permission_t access)

	Change the ownership of a global, coarse-grained buffer.

The contents of a coarse-grained buffer are visible to an agent only after ownership has been explicitely transferred to that agent. Once the operation completes, the previous owner cannot longer access the data in the buffer.

An implementation of the HSA runtime is allowed, but not required, to change the physical location of the buffer when ownership is transferred to a different agent. In general the application must not assume this behavior. The virtual location (address) of the passed buffer is never modified.

	Parameters
	
	[in] ptr: Base address of a global buffer. The pointer must match an address previously returned by hsa_memory_allocate. The size of the buffer affected by the ownership change is identical to the size of that previous allocation. If ptr points to a fine-grained global buffer, no operation is performed and the function returns success. If ptr does not point to global memory, the behavior is undefined.

	[in] agent: Agent that becomes the owner of the buffer. The application is responsible for ensuring that agent has access to the region that contains the buffer. It is allowed to change ownership to an agent that is already the owner of the buffer, with the same or different access permissions.

	[in] access: Access permissions requested for the new owner.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: ptr is NULL, or access is not a valid access value.

	
hsa_status_t HSA_API hsa_memory_copy (void *dst, const void *src, size_t size)

	Copy a block of memory from the location pointed to by src to the memory block pointed to by dst.

	Parameters
	
	[out] dst: Buffer where the content is to be copied. If dst is in coarse-grained memory, the copied data is only visible to the agent currently assigned (hsa_memory_assign_agent) to dst.

	[in] src: A valid pointer to the source of data to be copied. The source buffer must not overlap with the destination buffer. If the source buffer is in coarse-grained memory then it must be assigned to an agent, from which the data will be retrieved.

	[in] size: Number of bytes to copy. If size is 0, no copy is performed and the function returns success. Copying a number of bytes larger than the size of the buffers pointed by dst or src results in undefined behavior.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: The source or destination pointers are NULL.

	
hsa_status_t HSA_API hsa_memory_deregister (void *ptr, size_t size)

	Deregister memory previously registered using hsa_memory_register.

If the memory interval being deregistered does not match a previous registration (start and end addresses), the behavior is undefined.

	Parameters
	
	[in] ptr: A pointer to the base of the buffer to be deregistered. If a NULL pointer is passed, no operation is performed.

	[in] size: Size of the buffer to be deregistered.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	
hsa_status_t HSA_API hsa_memory_free (void *ptr)

	Deallocate a block of memory previously allocated using hsa_memory_allocate.

	Parameters
	
	[in] ptr: Pointer to a memory block. If ptr does not match a value previously returned by hsa_memory_allocate, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	
hsa_status_t HSA_API hsa_memory_register (void *ptr, size_t size)

	Register a global, fine-grained buffer.

Registering a buffer serves as an indication to the HSA runtime that the memory might be accessed from a kernel agent other than the host. Registration is a performance hint that allows the HSA runtime implementation to know which buffers will be accessed by some of the kernel agents ahead of time.

Registration is only recommended for buffers in the global segment that have not been allocated using the HSA allocator (hsa_memory_allocate), but an OS allocator instead. Registering an OS-allocated buffer in the base profile is equivalent to a no-op.

Registrations should not overlap.

	Parameters
	
	[in] ptr: A buffer in global, fine-grained memory. If a NULL pointer is passed, no operation is performed. If the buffer has been allocated using hsa_memory_allocate, or has already been registered, no operation is performed.

	[in] size: Requested registration size in bytes. A size of 0 is only allowed if ptr is NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: size is 0 but ptr is not NULL.

	
hsa_status_t HSA_API hsa_region_get_info (hsa_region_t region, hsa_region_info_t attribute, void *value)

	Get the current value of an attribute of a region.

	Parameters
	
	[in] region: A valid region.

	[in] attribute: Attribute to query.

	[out] value: Pointer to a application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_REGION: The region is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid region attribute, or value is NULL.

Queue

	
enum hsa_queue_feature_t

	Queue features.

Values:

	
enumerator HSA_QUEUE_FEATURE_KERNEL_DISPATCH

	Queue supports kernel dispatch packets.

	
enumerator HSA_QUEUE_FEATURE_AGENT_DISPATCH

	Queue supports agent dispatch packets.

	
enum hsa_queue_type_t

	Queue type. Intended to be used for dynamic queue protocol determination.

Values:

	
enumerator HSA_QUEUE_TYPE_MULTI

	Queue supports multiple producers.

	
enumerator HSA_QUEUE_TYPE_SINGLE

	Queue only supports a single producer. In some scenarios, the application may want to limit the submission of AQL packets to a single agent. Queues that support a single producer may be more efficient than queues supporting multiple producers.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_add_write_index_acq_rel (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	
Deprecated:

	Renamed as hsa_queue_add_write_index_scacq_screl.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_add_write_index_acquire (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	
Deprecated:

	Renamed as hsa_queue_add_write_index_scacquire.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API hsa_queue_add_write_index_relaxed (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_add_write_index_release (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	
Deprecated:

	Renamed as hsa_queue_add_write_index_screlease.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API hsa_queue_add_write_index_scacquire (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API hsa_queue_add_write_index_screlease (const hsa_queue_t *queue, uint64_t value)

	Atomically increment the write index of a queue by an offset.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to add to the write index.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_cas_write_index_acq_rel (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	
Deprecated:

	Renamed as hsa_queue_cas_write_index_scacq_screl.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_cas_write_index_acquire (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	
Deprecated:

	Renamed as hsa_queue_cas_write_index_scacquire.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API hsa_queue_cas_write_index_relaxed (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_cas_write_index_release (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	
Deprecated:

	Renamed as hsa_queue_cas_write_index_screlease.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API hsa_queue_cas_write_index_scacq_screl (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API hsa_queue_cas_write_index_scacquire (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
uint64_t HSA_API hsa_queue_cas_write_index_screlease (const hsa_queue_t *queue, uint64_t expected, uint64_t value)

	Atomically set the write index of a queue if the observed value is equal to the expected value. The application can inspect the returned value to determine if the replacement was done.

	Return
	Previous value of the write index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] expected: Expected value.

	[in] value: Value to assign to the write index if expected matches the observed write index. Must be greater than expected.

	
hsa_status_t HSA_API hsa_queue_create (hsa_agent_t agent, uint32_t size, hsa_queue_type32_t type, void(*callback)(hsa_status_t status, hsa_queue_t *source, void *data), void *data, uint32_t private_segment_size, uint32_t group_segment_size, hsa_queue_t **queue)

	Create a user mode queue.

The HSA runtime creates the queue structure, the underlying packet buffer, the completion signal, and the write and read indexes. The initial value of the write and read indexes is 0. The type of every packet in the buffer is initialized to HSA_PACKET_TYPE_INVALID.

The application should only rely on the error code returned to determine if the queue is valid.

	Parameters
	
	[in] agent: Agent where to create the queue.

	[in] size: Number of packets the queue is expected to hold. Must be a power of 2 between 1 and the value of HSA_AGENT_INFO_QUEUE_MAX_SIZE in agent. The size of the newly created queue is the maximum of size and the value of HSA_AGENT_INFO_QUEUE_MIN_SIZE in agent.

	[in] type: Type of the queue. If the value of HSA_AGENT_INFO_QUEUE_TYPE in agent is HSA_QUEUE_TYPE_SINGLE, then type must also be HSA_QUEUE_TYPE_SINGLE.

	[in] callback: Callback invoked by the HSA runtime for every asynchronous event related to the newly created queue. May be NULL. The HSA runtime passes three arguments to the callback: a code identifying the event that triggered the invocation, a pointer to the queue where the event originated, and the application data.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	[in] private_segment_size: Hint indicating the maximum expected private segment usage per work-item, in bytes. There may be performance degradation if the application places a kernel dispatch packet in the queue and the corresponding private segment usage exceeds private_segment_size. If the application does not want to specify any particular value for this argument, private_segment_size must be UINT32_MAX. If the queue does not support kernel dispatch packets, this argument is ignored.

	[in] group_segment_size: Hint indicating the maximum expected group segment usage per work-group, in bytes. There may be performance degradation if the application places a kernel dispatch packet in the queue and the corresponding group segment usage exceeds group_segment_size. If the application does not want to specify any particular value for this argument, group_segment_size must be UINT32_MAX. If the queue does not support kernel dispatch packets, this argument is ignored.

	[out] queue: Memory location where the HSA runtime stores a pointer to the newly created queue.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_QUEUE_CREATION: agent does not support queues of the given type.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: size is not a power of two, size is 0, type is an invalid queue type, or queue is NULL.

	
hsa_status_t HSA_API hsa_queue_destroy (hsa_queue_t *queue)

	Destroy a user mode queue.

When a queue is destroyed, the state of the AQL packets that have not been yet fully processed (their completion phase has not finished) becomes undefined. It is the responsibility of the application to ensure that all pending queue operations are finished if their results are required.

The resources allocated by the HSA runtime during queue creation (queue structure, ring buffer, doorbell signal) are released. The queue should not be accessed after being destroyed.

	Parameters
	
	[in] queue: Pointer to a queue created using hsa_queue_create.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_QUEUE: The queue is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: queue is NULL.

	
hsa_status_t HSA_API hsa_queue_inactivate (hsa_queue_t *queue)

	Inactivate a queue.

Inactivating the queue aborts any pending executions and prevent any new packets from being processed. Any more packets written to the queue once it is inactivated will be ignored by the packet processor.

	Parameters
	
	[in] queue: Pointer to a queue.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_QUEUE: The queue is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: queue is NULL.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_load_read_index_acquire (const hsa_queue_t *queue)

	Atomically load the read index of a queue.

	
Deprecated:

	Renamed as hsa_queue_load_read_index_scacquire.

	Return
	Read index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
uint64_t HSA_API hsa_queue_load_read_index_relaxed (const hsa_queue_t *queue)

	Atomically load the read index of a queue.

	Return
	Read index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
uint64_t HSA_API hsa_queue_load_read_index_scacquire (const hsa_queue_t *queue)

	Atomically load the read index of a queue.

	Return
	Read index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
uint64_t HSA_API HSA_DEPRECATED hsa_queue_load_write_index_acquire (const hsa_queue_t *queue)

	Atomically load the write index of a queue.

	
Deprecated:

	Renamed as hsa_queue_load_write_index_scacquire.

	Return
	Write index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
uint64_t HSA_API hsa_queue_load_write_index_relaxed (const hsa_queue_t *queue)

	Atomically load the write index of a queue.

	Return
	Write index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
uint64_t HSA_API hsa_queue_load_write_index_scacquire (const hsa_queue_t *queue)

	Atomically load the write index of a queue.

	Return
	Write index of the queue pointed by queue.

	Parameters
	
	[in] queue: Pointer to a queue.

	
void HSA_API hsa_queue_store_read_index_relaxed (const hsa_queue_t *queue, uint64_t value)

	Atomically set the read index of a queue.

Modifications of the read index are not allowed and result in undefined behavior if the queue is associated with an agent for which only the corresponding packet processor is permitted to update the read index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the read index.

	
void HSA_API HSA_DEPRECATED hsa_queue_store_read_index_release (const hsa_queue_t *queue, uint64_t value)

	Atomically set the read index of a queue.

	
Deprecated:

	Renamed as hsa_queue_store_read_index_screlease.

Modifications of the read index are not allowed and result in undefined behavior if the queue is associated with an agent for which only the corresponding packet processor is permitted to update the read index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the read index.

	
void HSA_API hsa_queue_store_read_index_screlease (const hsa_queue_t *queue, uint64_t value)

	Atomically set the read index of a queue.

Modifications of the read index are not allowed and result in undefined behavior if the queue is associated with an agent for which only the corresponding packet processor is permitted to update the read index.

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the read index.

	
void HSA_API hsa_queue_store_write_index_relaxed (const hsa_queue_t *queue, uint64_t value)

	Atomically set the write index of a queue.

It is recommended that the application uses this function to update the write index when there is a single agent submitting work to the queue (the queue type is HSA_QUEUE_TYPE_SINGLE).

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the write index.

	
void HSA_API HSA_DEPRECATED hsa_queue_store_write_index_release (const hsa_queue_t *queue, uint64_t value)

	Atomically set the write index of a queue.

	
Deprecated:

	Renamed as hsa_queue_store_write_index_screlease.

It is recommended that the application uses this function to update the write index when there is a single agent submitting work to the queue (the queue type is HSA_QUEUE_TYPE_SINGLE).

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the write index.

	
void HSA_API hsa_queue_store_write_index_screlease (const hsa_queue_t *queue, uint64_t value)

	Atomically set the write index of a queue.

It is recommended that the application uses this function to update the write index when there is a single agent submitting work to the queue (the queue type is HSA_QUEUE_TYPE_SINGLE).

	Parameters
	
	[in] queue: Pointer to a queue.

	[in] value: Value to assign to the write index.

	
hsa_status_t HSA_API hsa_soft_queue_create (hsa_region_t region, uint32_t size, hsa_queue_type32_t type, uint32_t features, hsa_signal_t doorbell_signal, hsa_queue_t **queue)

	Create a queue for which the application or a kernel is responsible for processing the AQL packets.

The application can use this function to create queues where AQL packets are not parsed by the packet processor associated with an agent, but rather by a unit of execution running on that agent (for example, a thread in the host application).

The application is responsible for ensuring that all the producers and consumers of the resulting queue can access the provided doorbell signal and memory region. The application is also responsible for ensuring that the unit of execution processing the queue packets supports the indicated features (AQL packet types).

When the queue is created, the HSA runtime allocates the packet buffer using region, and the write and read indexes. The initial value of the write and read indexes is 0, and the type of every packet in the buffer is initialized to HSA_PACKET_TYPE_INVALID. The value of the size, type, features, and doorbell_signal fields in the returned queue match the values passed by the application.

	Parameters
	
	[in] region: Memory region that the HSA runtime should use to allocate the AQL packet buffer and any other queue metadata.

	[in] size: Number of packets the queue is expected to hold. Must be a power of 2 greater than 0.

	[in] type: Queue type.

	[in] features: Supported queue features. This is a bit-field of hsa_queue_feature_t values.

	[in] doorbell_signal: Doorbell signal that the HSA runtime must associate with the returned queue. The signal handle must not be 0.

	[out] queue: Memory location where the HSA runtime stores a pointer to the newly created queue. The application should not rely on the value returned for this argument but only in the status code to determine if the queue is valid. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: size is not a power of two, size is 0, type is an invalid queue type, the doorbell signal handle is 0, or queue is NULL.

Architected Queuing Language

	
struct hsa_kernel_dispatch_packet_t

	AQL kernel dispatch packet.

	
struct hsa_agent_dispatch_packet_t

	Agent dispatch packet.

	
struct hsa_barrier_and_packet_t

	Barrier-AND packet.

	
struct hsa_barrier_or_packet_t

	Barrier-OR packet.

	
enum hsa_fence_scope_t

	Scope of the memory fence operation associated with a packet.

Values:

	
enumerator HSA_FENCE_SCOPE_NONE

	No scope (no fence is applied). The packet relies on external fences to ensure visibility of memory updates.

	
enumerator HSA_FENCE_SCOPE_AGENT

	The fence is applied with agent scope for the global segment.

	
enumerator HSA_FENCE_SCOPE_SYSTEM

	The fence is applied across both agent and system scope for the global segment.

	
enum hsa_kernel_dispatch_packet_setup_t

	Sub-fields of the kernel dispatch packet setup field. The offset (with respect to the address of setup) of a sub-field is identical to its enumeration constant. The width of each sub-field is determined by the corresponding value in hsa_kernel_dispatch_packet_setup_width_t. The offset and the width are expressed in bits.

Values:

	
enumerator HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS

	Number of dimensions of the grid. Valid values are 1, 2, or 3.

	
enum hsa_packet_header_t

	Sub-fields of the header field that is present in any AQL packet. The offset (with respect to the address of header) of a sub-field is identical to its enumeration constant. The width of each sub-field is determined by the corresponding value in hsa_packet_header_width_t. The offset and the width are expressed in bits.

Values:

	
enumerator HSA_PACKET_HEADER_TYPE

	Packet type. The value of this sub-field must be one of hsa_packet_type_t. If the type is HSA_PACKET_TYPE_VENDOR_SPECIFIC, the packet layout is vendor-specific.

	
enumerator HSA_PACKET_HEADER_BARRIER

	Barrier bit. If the barrier bit is set, the processing of the current packet only launches when all preceding packets (within the same queue) are complete.

	
enumerator HSA_PACKET_HEADER_SCACQUIRE_FENCE_SCOPE

	Acquire fence scope. The value of this sub-field determines the scope and type of the memory fence operation applied before the packet enters the active phase. An acquire fence ensures that any subsequent global segment or image loads by any unit of execution that belongs to a dispatch that has not yet entered the active phase on any queue of the same kernel agent, sees any data previously released at the scopes specified by the acquire fence. The value of this sub-field must be one of hsa_fence_scope_t.

	
enumerator HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE

	
	
Deprecated:

	Renamed as HSA_PACKET_HEADER_SCACQUIRE_FENCE_SCOPE.

	
enumerator HSA_PACKET_HEADER_SCRELEASE_FENCE_SCOPE

	Release fence scope, The value of this sub-field determines the scope and type of the memory fence operation applied after kernel completion but before the packet is completed. A release fence makes any global segment or image data that was stored by any unit of execution that belonged to a dispatch that has completed the active phase on any queue of the same kernel agent visible in all the scopes specified by the release fence. The value of this sub-field must be one of hsa_fence_scope_t.

	
enumerator HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE

	
	
Deprecated:

	Renamed as HSA_PACKET_HEADER_SCRELEASE_FENCE_SCOPE.

	
enum hsa_packet_header_width_t

	Width (in bits) of the sub-fields in hsa_packet_header_t.

Values:

	
enumerator HSA_PACKET_HEADER_WIDTH_TYPE

	

	
enumerator HSA_PACKET_HEADER_WIDTH_BARRIER

	

	
enumerator HSA_PACKET_HEADER_WIDTH_SCACQUIRE_FENCE_SCOPE

	

	
enumerator HSA_PACKET_HEADER_WIDTH_ACQUIRE_FENCE_SCOPE

	
	
Deprecated:

	Use HSA_PACKET_HEADER_WIDTH_SCACQUIRE_FENCE_SCOPE.

	
enumerator HSA_PACKET_HEADER_WIDTH_SCRELEASE_FENCE_SCOPE

	

	
enumerator HSA_PACKET_HEADER_WIDTH_RELEASE_FENCE_SCOPE

	
	
Deprecated:

	Use HSA_PACKET_HEADER_WIDTH_SCRELEASE_FENCE_SCOPE.

	
enum hsa_packet_type_t

	Packet type.

Values:

	
enumerator HSA_PACKET_TYPE_VENDOR_SPECIFIC

	Vendor-specific packet.

	
enumerator HSA_PACKET_TYPE_INVALID

	The packet has been processed in the past, but has not been reassigned to the packet processor. A packet processor must not process a packet of this type. All queues support this packet type.

	
enumerator HSA_PACKET_TYPE_KERNEL_DISPATCH

	Packet used by agents for dispatching jobs to kernel agents. Not all queues support packets of this type (see hsa_queue_feature_t).

	
enumerator HSA_PACKET_TYPE_BARRIER_AND

	Packet used by agents to delay processing of subsequent packets, and to express complex dependencies between multiple packets. All queues support this packet type.

	
enumerator HSA_PACKET_TYPE_AGENT_DISPATCH

	Packet used by agents for dispatching jobs to agents. Not all queues support packets of this type (see hsa_queue_feature_t).

	
enumerator HSA_PACKET_TYPE_BARRIER_OR

	Packet used by agents to delay processing of subsequent packets, and to express complex dependencies between multiple packets. All queues support this packet type.

Instruction Set Architecture.

	
enum hsa_flush_mode_t

	Flush to zero modes.

Values:

	
enumerator HSA_FLUSH_MODE_FTZ

	Flush to zero.

	
enumerator HSA_FLUSH_MODE_NON_FTZ

	Do not flush to zero.

	
enum hsa_fp_type_t

	Floating-point types.

Values:

	
enumerator HSA_FP_TYPE_16

	16-bit floating-point type.

	
enumerator HSA_FP_TYPE_32

	32-bit floating-point type.

	
enumerator HSA_FP_TYPE_64

	64-bit floating-point type.

	
enum hsa_isa_info_t

	Instruction set architecture attributes.

Values:

	
enumerator HSA_ISA_INFO_NAME_LENGTH

	The length of the ISA name in bytes, not including the NUL terminator. The type of this attribute is uint32_t.

	
enumerator HSA_ISA_INFO_NAME

	Human-readable description. The type of this attribute is character array with the length equal to the value of HSA_ISA_INFO_NAME_LENGTH attribute.

	
enumerator HSA_ISA_INFO_CALL_CONVENTION_COUNT

	
	
Deprecated:

	

Number of call conventions supported by the instruction set architecture. Must be greater than zero. The type of this attribute is uint32_t.

	
enumerator HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONT_SIZE

	
	
Deprecated:

	

Number of work-items in a wavefront for a given call convention. Must be a power of 2 in the range [1,256]. The type of this attribute is uint32_t.

	
enumerator HSA_ISA_INFO_CALL_CONVENTION_INFO_WAVEFRONTS_PER_COMPUTE_UNIT

	
	
Deprecated:

	

Number of wavefronts per compute unit for a given call convention. In practice, other factors (for example, the amount of group memory used by a work-group) may further limit the number of wavefronts per compute unit. The type of this attribute is uint32_t.

	
enumerator HSA_ISA_INFO_MACHINE_MODELS

	Machine models supported by the instruction set architecture. The type of this attribute is a bool[2]. If the ISA supports the small machine model, the element at index HSA_MACHINE_MODEL_SMALL is true. If the ISA supports the large model, the element at index HSA_MACHINE_MODEL_LARGE is true.

	
enumerator HSA_ISA_INFO_PROFILES

	Profiles supported by the instruction set architecture. The type of this attribute is a bool[2]. If the ISA supports the base profile, the element at index HSA_PROFILE_BASE is true. If the ISA supports the full profile, the element at index HSA_PROFILE_FULL is true.

	
enumerator HSA_ISA_INFO_DEFAULT_FLOAT_ROUNDING_MODES

	Default floating-point rounding modes supported by the instruction set architecture. The type of this attribute is a bool[3]. The value at a given index is true if the corresponding rounding mode in hsa_default_float_rounding_mode_t is supported. At least one default mode has to be supported.

If the default mode is supported, then HSA_ISA_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES must report that both the zero and the near roundings modes are supported.

	
enumerator HSA_ISA_INFO_BASE_PROFILE_DEFAULT_FLOAT_ROUNDING_MODES

	Default floating-point rounding modes supported by the instruction set architecture in the Base profile. The type of this attribute is a bool[3]. The value at a given index is true if the corresponding rounding mode in hsa_default_float_rounding_mode_t is supported. The value at index HSA_DEFAULT_FLOAT_ROUNDING_MODE_DEFAULT must be false. At least one of the values at indexes HSA_DEFAULT_FLOAT_ROUNDING_MODE_ZERO or HSA_DEFAULT_FLOAT_ROUNDING_MODE_NEAR must be true.

	
enumerator HSA_ISA_INFO_FAST_F16_OPERATION

	Flag indicating that the f16 HSAIL operation is at least as fast as the f32 operation in the instruction set architecture. The type of this attribute is bool.

	
enumerator HSA_ISA_INFO_WORKGROUP_MAX_DIM

	Maximum number of work-items of each dimension of a work-group. Each maximum must be greater than 0. No maximum can exceed the value of HSA_ISA_INFO_WORKGROUP_MAX_SIZE. The type of this attribute is uint16_t[3].

	
enumerator HSA_ISA_INFO_WORKGROUP_MAX_SIZE

	Maximum total number of work-items in a work-group. The type of this attribute is uint32_t.

	
enumerator HSA_ISA_INFO_GRID_MAX_DIM

	Maximum number of work-items of each dimension of a grid. Each maximum must be greater than 0, and must not be smaller than the corresponding value in HSA_ISA_INFO_WORKGROUP_MAX_DIM. No maximum can exceed the value of HSA_ISA_INFO_GRID_MAX_SIZE. The type of this attribute is hsa_dim3_t.

	
enumerator HSA_ISA_INFO_GRID_MAX_SIZE

	Maximum total number of work-items in a grid. The type of this attribute is uint64_t.

	
enumerator HSA_ISA_INFO_FBARRIER_MAX_SIZE

	Maximum number of fbarriers per work-group. Must be at least 32. The type of this attribute is uint32_t.

	
enum hsa_round_method_t

	Round methods.

Values:

	
enumerator HSA_ROUND_METHOD_SINGLE

	Single round method.

	
enumerator HSA_ROUND_METHOD_DOUBLE

	Double round method.

	
enum hsa_wavefront_info_t

	Wavefront attributes.

Values:

	
enumerator HSA_WAVEFRONT_INFO_SIZE

	Number of work-items in the wavefront. Must be a power of 2 in the range [1,256]. The type of this attribute is uint32_t.

	
hsa_status_t HSA_API hsa_agent_iterate_isas (hsa_agent_t agent, hsa_status_t(*callback)(hsa_isa_t isa, void *data), void *data)

	Iterate over the instruction sets supported by the given agent, and invoke an application-defined callback on every iteration. The iterator is deterministic: if an agent supports several instruction set architectures, they are traversed in the same order in every invocation of this function.

	Parameters
	
	[in] agent: A valid agent.

	[in] callback: Callback to be invoked once per instruction set architecture. The HSA runtime passes two arguments to the callback: the ISA and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and that status value is returned.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_isa_compatible (hsa_isa_t code_object_isa, hsa_isa_t agent_isa, bool *result)

	Check if the instruction set architecture of a code object can be executed on an agent associated with another architecture.

	
Deprecated:

	Use hsa_agent_iterate_isas to query which instructions set architectures are supported by a given agent.

	Parameters
	
	[in] code_object_isa: Instruction set architecture associated with a code object.

	[in] agent_isa: Instruction set architecture associated with an agent.

	[out] result: Pointer to a memory location where the HSA runtime stores the result of the check. If the two architectures are compatible, the result is true; if they are incompatible, the result is false.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: code_object_isa or agent_isa are invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: result is NULL.

	
hsa_status_t HSA_API hsa_isa_from_name (const char *name, hsa_isa_t *isa)

	Retrieve a reference to an instruction set architecture handle out of a symbolic name.

	Parameters
	
	[in] name: Vendor-specific name associated with a a particular instruction set architecture. name must start with the vendor name and a colon (for example, “AMD:”). The rest of the name is vendor-specific. Must be a NUL-terminated string.

	[out] isa: Memory location where the HSA runtime stores the ISA handle corresponding to the given name. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA_NAME: The given name does not correspond to any instruction set architecture.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: name is NULL, or isa is NULL.

	
hsa_status_t HSA_API hsa_isa_get_exception_policies (hsa_isa_t isa, hsa_profile_t profile, uint16_t *mask)

	Retrieve the exception policy support for a given combination of instruction set architecture and profile.

	Parameters
	
	[in] isa: A valid instruction set architecture.

	[in] profile: Profile.

	[out] mask: Pointer to a memory location where the HSA runtime stores a mask of hsa_exception_policy_t values. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: profile is not a valid profile, or mask is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_isa_get_info (hsa_isa_t isa, hsa_isa_info_t attribute, uint32_t index, void *value)

	Get the current value of an attribute for a given instruction set architecture (ISA).

	
Deprecated:

	The concept of call convention has been deprecated. If the application wants to query the value of an attribute for a given instruction set architecture, use hsa_isa_get_info_alt instead. If the application wants to query an attribute that is specific to a given combination of ISA and wavefront, use hsa_wavefront_get_info.

	Parameters
	
	[in] isa: A valid instruction set architecture.

	[in] attribute: Attribute to query.

	[in] index: Call convention index. Used only for call convention attributes, otherwise ignored. Must have a value between 0 (inclusive) and the value of the attribute HSA_ISA_INFO_CALL_CONVENTION_COUNT (not inclusive) in isa.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid.

	HSA_STATUS_ERROR_INVALID_INDEX: The index is out of range.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid instruction set architecture attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_isa_get_info_alt (hsa_isa_t isa, hsa_isa_info_t attribute, void *value)

	Get the current value of an attribute for a given instruction set architecture (ISA).

	Parameters
	
	[in] isa: A valid instruction set architecture.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid instruction set architecture attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_isa_get_round_method (hsa_isa_t isa, hsa_fp_type_t fp_type, hsa_flush_mode_t flush_mode, hsa_round_method_t *round_method)

	Retrieve the round method (single or double) used to implement the floating-point multiply add instruction (mad) for a given combination of instruction set architecture, floating-point type, and flush to zero modifier.

	Parameters
	
	[in] isa: Instruction set architecture.

	[in] fp_type: Floating-point type.

	[in] flush_mode: Flush to zero modifier.

	[out] round_method: Pointer to a memory location where the HSA runtime stores the round method used by the implementation. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: fp_type is not a valid floating-point type, or flush_mode is not a valid flush to zero modifier, or round_method is NULL.

	
hsa_status_t HSA_API hsa_isa_iterate_wavefronts (hsa_isa_t isa, hsa_status_t(*callback)(hsa_wavefront_t wavefront, void *data), void *data)

	Iterate over the different wavefronts supported by an instruction set architecture, and invoke an application-defined callback on every iteration.

	Parameters
	
	[in] isa: Instruction set architecture.

	[in] callback: Callback to be invoked once per wavefront that is supported by the agent. The HSA runtime passes two arguments to the callback: the wavefront handle and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and that value is returned.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_ISA: The instruction set architecture is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API hsa_wavefront_get_info (hsa_wavefront_t wavefront, hsa_wavefront_info_t attribute, void *value)

	Get the current value of a wavefront attribute.

	Parameters
	
	[in] wavefront: A wavefront.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_WAVEFRONT: The wavefront is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid wavefront attribute, or value is NULL.

Executable

	
struct hsa_executable_symbol_t

	Executable symbol handle.

The lifetime of an executable object symbol matches that of the executable associated with it. An operation on a symbol whose associated executable has been destroyed results in undefined behavior.

	
enum hsa_executable_info_t

	Executable attributes.

Values:

	
enumerator HSA_EXECUTABLE_INFO_PROFILE

	Profile this executable is created for. The type of this attribute is hsa_profile_t.

	
enumerator HSA_EXECUTABLE_INFO_STATE

	Executable state. The type of this attribute is hsa_executable_state_t.

	
enumerator HSA_EXECUTABLE_INFO_DEFAULT_FLOAT_ROUNDING_MODE

	Default floating-point rounding mode specified when executable was created. The type of this attribute is hsa_default_float_rounding_mode_t.

	
enum hsa_executable_state_t

	Executable state.

Values:

	
enumerator HSA_EXECUTABLE_STATE_UNFROZEN

	Executable state, which allows the user to load code objects and define external variables. Variable addresses, kernel code handles, and indirect function code handles are not available in query operations until the executable is frozen (zero always returned).

	
enumerator HSA_EXECUTABLE_STATE_FROZEN

	Executable state, which allows the user to query variable addresses, kernel code handles, and indirect function code handles using query operations. Loading new code objects, as well as defining external variables, is not allowed in this state.

	
enum hsa_executable_symbol_info_t

	Executable symbol attributes.

Values:

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_TYPE

	The kind of the symbol. The type of this attribute is hsa_symbol_kind_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH

	The length of the symbol name in bytes, not including the NUL terminator. The type of this attribute is uint32_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_NAME

	The name of the symbol. The type of this attribute is character array with the length equal to the value of HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH attribute.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH

	
	
Deprecated:

	

The length of the module name in bytes (not including the NUL terminator) to which this symbol belongs if this symbol has module linkage, otherwise 0 is returned. The type of this attribute is uint32_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME

	
	
Deprecated:

	

The module name to which this symbol belongs if this symbol has module linkage, otherwise an empty string is returned. The type of this attribute is character array with the length equal to the value of HSA_EXECUTABLE_SYMBOL_INFO_MODULE_NAME_LENGTH attribute.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_AGENT

	
	
Deprecated:

	

Agent associated with this symbol. If the symbol is a variable, the value of this attribute is only defined if HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION is HSA_VARIABLE_ALLOCATION_AGENT. The type of this attribute is hsa_agent_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS

	The address of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is uint64_t.

If executable’s state is HSA_EXECUTABLE_STATE_UNFROZEN, then 0 is returned.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_LINKAGE

	The linkage kind of the symbol. The type of this attribute is hsa_symbol_linkage_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_IS_DEFINITION

	Indicates whether the symbol corresponds to a definition. The type of this attribute is bool.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALLOCATION

	
	
Deprecated:

	

The allocation kind of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is hsa_variable_allocation_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SEGMENT

	
	
Deprecated:

	

The segment kind of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is hsa_variable_segment_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ALIGNMENT

	
	
Deprecated:

	

Alignment of the symbol in memory. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is uint32_t.

The current alignment of the variable in memory may be greater than the value specified in the source program variable declaration.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE

	
	
Deprecated:

	

Size of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is uint32_t.

A value of 0 is returned if the variable is an external variable and has an unknown dimension.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_IS_CONST

	
	
Deprecated:

	

Indicates whether the variable is constant. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is bool.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT

	Kernel object handle, used in the kernel dispatch packet. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint64_t.

If the state of the executable is HSA_EXECUTABLE_STATE_UNFROZEN, then 0 is returned.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE

	Size of kernarg segment memory that is required to hold the values of the kernel arguments, in bytes. Must be a multiple of 16. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT

	Alignment (in bytes) of the buffer used to pass arguments to the kernel, which is the maximum of 16 and the maximum alignment of any of the kernel arguments. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE

	Size of static group segment memory required by the kernel (per work-group), in bytes. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

The reported amount does not include any dynamically allocated group segment memory that may be requested by the application when a kernel is dispatched.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE

	Size of static private, spill, and arg segment memory required by this kernel (per work-item), in bytes. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

If the value of HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK is true, the kernel may use more private memory than the reported value, and the application must add the dynamic call stack usage to private_segment_size when populating a kernel dispatch packet.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK

	Dynamic callstack flag. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is bool.

If this flag is set (the value is true), the kernel uses a dynamically sized call stack. This can happen if recursive calls, calls to indirect functions, or the HSAIL alloca instruction are present in the kernel.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_CALL_CONVENTION

	
	
Deprecated:

	

Call convention of the kernel. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_OBJECT

	Indirect function object handle. The value of this attribute is undefined if the symbol is not an indirect function, or the associated agent does not support the Full Profile. The type of this attribute depends on the machine model: the type is uint32_t for small machine model, and uint64_t for large model.

If the state of the executable is HSA_EXECUTABLE_STATE_UNFROZEN, then 0 is returned.

	
enumerator HSA_EXECUTABLE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION

	
	
Deprecated:

	

Call convention of the indirect function. The value of this attribute is undefined if the symbol is not an indirect function, or the associated agent does not support the Full Profile. The type of this attribute is uint32_t.

	
enum hsa_symbol_kind_t

	Symbol type.

Values:

	
enumerator HSA_SYMBOL_KIND_VARIABLE

	Variable.

	
enumerator HSA_SYMBOL_KIND_KERNEL

	Kernel.

	
enumerator HSA_SYMBOL_KIND_INDIRECT_FUNCTION

	Indirect function.

	
enum hsa_symbol_linkage_t

	Linkage type of a symbol.

Values:

	
enumerator HSA_SYMBOL_LINKAGE_MODULE

	Module linkage.

	
enumerator HSA_SYMBOL_LINKAGE_PROGRAM

	Program linkage.

	
enum hsa_variable_allocation_t

	Allocation type of a variable.

Values:

	
enumerator HSA_VARIABLE_ALLOCATION_AGENT

	Agent allocation.

	
enumerator HSA_VARIABLE_ALLOCATION_PROGRAM

	Program allocation.

	
enum hsa_variable_segment_t

	Memory segment associated with a variable.

Values:

	
enumerator HSA_VARIABLE_SEGMENT_GLOBAL

	Global memory segment.

	
enumerator HSA_VARIABLE_SEGMENT_READONLY

	Readonly memory segment.

	
hsa_status_t HSA_API hsa_code_object_reader_create_from_file (hsa_file_t file, hsa_code_object_reader_t *code_object_reader)

	Create a code object reader to operate on a file.

The file is owned and managed by the application; the lifetime of the file descriptor must exceed that of any associated code object reader.

	Parameters
	
	[in] file: File descriptor. The file must have been opened by application with at least read permissions prior calling this function. The file must contain a vendor-specific code object.

	Parameters
	
	[out] code_object_reader: Memory location to store the newly created code object reader handle. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_FILE: file is invalid.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: code_object_reader is NULL.

	
hsa_status_t HSA_API hsa_code_object_reader_create_from_memory (const void *code_object, size_t size, hsa_code_object_reader_t *code_object_reader)

	Create a code object reader to operate on memory.

	Parameters
	
	[in] code_object: Memory buffer that contains a vendor-specific code object. The buffer is owned and managed by the application; the lifetime of the buffer must exceed that of any associated code object reader.

	[in] size: Size of the buffer pointed to by code_object. Must not be 0.

	[out] code_object_reader: Memory location to store newly created code object reader handle. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: code_object is NULL, size is zero, or code_object_reader is NULL.

	
hsa_status_t HSA_API hsa_code_object_reader_destroy (hsa_code_object_reader_t code_object_reader)

	Destroy a code object reader.

The code object reader handle becomes invalid after completion of this function. Any file or memory used to create the code object read is not closed, removed, or deallocated by this function.

	Parameters
	
	[in] code_object_reader: Code object reader to destroy.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT_READER: code_object_reader is invalid.

	
hsa_status_t HSA_API hsa_executable_agent_global_variable_define (hsa_executable_t executable, hsa_agent_t agent, const char *variable_name, void *address)

	Define an external global variable with agent allocation.

This function allows the application to provide the definition of a variable in the global segment memory with agent allocation. The variable must be defined before loading a code object into an executable. In addition, code objects loaded must not define the variable.

	Parameters
	
	[in] executable: Executable. Must not be in frozen state.

	[in] agent: Agent for which the variable is being defined.

	[in] variable_name: Name of the variable. The Programmer’s Reference Manual describes the standard name mangling scheme.

	[in] address: Address where the variable is defined. This address must have been previously allocated using hsa_memory_allocate in a global region that is only visible to agent. The application cannot deallocate the buffer pointed by address before executable is destroyed.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_AGENT: agent is invalid.

	HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED: The variable is already defined.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no variable with the variable_name.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: executable is frozen.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: variable_name is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_executable_create (hsa_profile_t profile, hsa_executable_state_t executable_state, const char *options, hsa_executable_t *executable)

	Create an empty executable.

	
Deprecated:

	Use hsa_executable_create_alt instead, which allows the application to specify the default floating-point rounding mode of the executable and assumes an unfrozen initial state.

	Parameters
	
	[in] profile: Profile used in the executable.

	[in] executable_state: Executable state. If the state is HSA_EXECUTABLE_STATE_FROZEN, the resulting executable is useless because no code objects can be loaded, and no variables can be defined.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] executable: Memory location where the HSA runtime stores the newly created executable handle.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: profile is invalid, or executable is NULL.

	
hsa_status_t HSA_API hsa_executable_create_alt (hsa_profile_t profile, hsa_default_float_rounding_mode_t default_float_rounding_mode, const char *options, hsa_executable_t *executable)

	Create an empty executable.

	Parameters
	
	[in] profile: Profile used in the executable.

	[in] default_float_rounding_mode: Default floating-point rounding mode used in the executable. Allowed rounding modes are near and zero (default is not allowed).

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] executable: Memory location where the HSA runtime stores newly created executable handle. The initial state of the executable is HSA_EXECUTABLE_STATE_UNFROZEN.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: profile is invalid, or executable is NULL.

	
hsa_status_t HSA_API hsa_executable_destroy (hsa_executable_t executable)

	Destroy an executable.

An executable handle becomes invalid after the executable has been destroyed. Code object handles that were loaded into this executable are still valid after the executable has been destroyed, and can be used as intended. Resources allocated outside and associated with this executable (such as external global or readonly variables) can be released after the executable has been destroyed.

Executable should not be destroyed while kernels are in flight.

	Parameters
	
	[in] executable: Executable.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	
hsa_status_t HSA_API hsa_executable_freeze (hsa_executable_t executable, const char *options)

	Freeze the executable.

No modifications to executable can be made after freezing: no code objects can be loaded to the executable, and no external variables can be defined. Freezing the executable does not prevent querying the executable’s attributes. The application must define all the external variables in an executable before freezing it.

	Parameters
	
	[in] executable: Executable.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_VARIABLE_UNDEFINED: One or more variables are undefined in the executable.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: executable is already frozen.

	
hsa_status_t HSA_API hsa_executable_get_info (hsa_executable_t executable, hsa_executable_info_t attribute, void *value)

	Get the current value of an attribute for a given executable.

	Parameters
	
	[in] executable: Executable.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid executable attribute, or value is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_executable_get_symbol (hsa_executable_t executable, const char *module_name, const char *symbol_name, hsa_agent_t agent, int32_t call_convention, hsa_executable_symbol_t *symbol)

	Get the symbol handle for a given a symbol name.

	
Deprecated:

	Use hsa_executable_get_symbol_by_name instead.

	Parameters
	
	[in] executable: Executable.

	[in] module_name: Module name. Must be NULL if the symbol has program linkage.

	[in] symbol_name: Symbol name.

	[in] agent: Agent associated with the symbol. If the symbol is independent of any agent (for example, a variable with program allocation), this argument is ignored.

	[in] call_convention: Call convention associated with the symbol. If the symbol does not correspond to an indirect function, this argument is ignored.

	[out] symbol: Memory location where the HSA runtime stores the symbol handle.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no symbol with a name that matches symbol_name.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: symbol_name is NULL, or symbol is NULL.

	
hsa_status_t HSA_API hsa_executable_get_symbol_by_name (hsa_executable_t executable, const char *symbol_name, const hsa_agent_t *agent, hsa_executable_symbol_t *symbol)

	Retrieve the symbol handle corresponding to a given a symbol name.

	Parameters
	
	[in] executable: Executable.

	[in] symbol_name: Symbol name. Must be a NUL-terminated character array. The Programmer’s Reference Manual describes the standard name mangling scheme.

	[in] agent: Pointer to the agent for which the symbol with the given name is defined. If the symbol corresponding to the given name has program allocation, agent must be NULL.

	[out] symbol: Memory location where the HSA runtime stores the symbol handle. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no symbol with a name that matches symbol_name.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: symbol_name is NULL, or symbol is NULL.

	
hsa_status_t HSA_API hsa_executable_global_variable_define (hsa_executable_t executable, const char *variable_name, void *address)

	Define an external global variable with program allocation.

This function allows the application to provide the definition of a variable in the global segment memory with program allocation. The variable must be defined before loading a code object into an executable. In addition, code objects loaded must not define the variable.

	Parameters
	
	[in] executable: Executable. Must not be in frozen state.

	[in] variable_name: Name of the variable. The Programmer’s Reference Manual describes the standard name mangling scheme.

	[in] address: Address where the variable is defined. This address must be in global memory and can be read and written by any agent in the system. The application cannot deallocate the buffer pointed by address before executable is destroyed.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED: The variable is already defined.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no variable with the variable_name.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: executable is frozen.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: variable_name is NULL.

	
hsa_status_t HSA_API hsa_executable_iterate_agent_symbols (hsa_executable_t executable, hsa_agent_t agent, hsa_status_t(*callback)(hsa_executable_t exec, hsa_agent_t agent, hsa_executable_symbol_t symbol, void *data), void *data)

	Iterate over the kernels, indirect functions, and agent allocation variables in an executable for a given agent, and invoke an application- defined callback on every iteration.

	Parameters
	
	[in] executable: Executable.

	[in] agent: Agent.

	[in] callback: Callback to be invoked once per executable symbol. The HSA runtime passes three arguments to the callback: the executable, a symbol, and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_executable_iterate_symbols returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API hsa_executable_iterate_program_symbols (hsa_executable_t executable, hsa_status_t(*callback)(hsa_executable_t exec, hsa_executable_symbol_t symbol, void *data), void *data)

	Iterate over the program allocation variables in an executable, and invoke an application-defined callback on every iteration.

	Parameters
	
	[in] executable: Executable.

	[in] callback: Callback to be invoked once per executable symbol. The HSA runtime passes three arguments to the callback: the executable, a symbol, and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_executable_iterate_symbols returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_executable_iterate_symbols (hsa_executable_t executable, hsa_status_t(*callback)(hsa_executable_t exec, hsa_executable_symbol_t symbol, void *data), void *data)

	Iterate over the symbols in a executable, and invoke an application-defined callback on every iteration.

	
Deprecated:

	

	Parameters
	
	[in] executable: Executable.

	[in] callback: Callback to be invoked once per executable symbol. The HSA runtime passes three arguments to the callback: the executable, a symbol, and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_executable_iterate_symbols returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API hsa_executable_load_agent_code_object (hsa_executable_t executable, hsa_agent_t agent, hsa_code_object_reader_t code_object_reader, const char *options, hsa_loaded_code_object_t *loaded_code_object)

	Load an agent code object into an executable.

The agent code object contains all defined agent allocation variables, functions, indirect functions, and kernels in a given program for a given instruction set architecture.

Any module linkage declaration must have been defined either by a define variable or by loading a code object that has a symbol with module linkage definition.

The default floating-point rounding mode of the code object associated with code_object_reader must match that of the executable (HSA_EXECUTABLE_INFO_DEFAULT_FLOAT_ROUNDING_MODE), or be default (in which case the value of HSA_EXECUTABLE_INFO_DEFAULT_FLOAT_ROUNDING_MODE is used). If the agent code object uses extensions, the implementation and the agent must support them for this operation to return successfully.

	Parameters
	
	[in] executable: Executable.

	[in] agent: Agent to load code object for. A code object can be loaded into an executable at most once for a given agent. The instruction set architecture of the code object must be supported by the agent.

	[in] code_object_reader: A code object reader that holds the code object to load. If a code object reader is destroyed before all the associated executables are destroyed, the behavior is undefined.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] loaded_code_object: Pointer to a memory location where the HSA runtime stores the loaded code object handle. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: The executable is frozen.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT_READER: code_object_reader is invalid.

	HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS: The code object read by code_object_reader is not compatible with the agent (for example, the agent does not support the instruction set architecture of the code object), the executable (for example, there is a default floating-point mode mismatch between the two), or the implementation.

	
hsa_status_t HSA_API hsa_executable_load_program_code_object (hsa_executable_t executable, hsa_code_object_reader_t code_object_reader, const char *options, hsa_loaded_code_object_t *loaded_code_object)

	Load a program code object into an executable.

A program code object contains information about resources that are accessible by all kernel agents that run the executable, and can be loaded at most once into an executable.

If the program code object uses extensions, the implementation must support them for this operation to return successfully.

	Parameters
	
	[in] executable: Executable.

	[in] code_object_reader: A code object reader that holds the program code object to load. If a code object reader is destroyed before all the associated executables are destroyed, the behavior is undefined.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] loaded_code_object: Pointer to a memory location where the HSA runtime stores the loaded code object handle. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: The executable is frozen.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT_READER: code_object_reader is invalid.

	HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS: The program code object is not compatible with the executable or the implementation (for example, the code object uses an extension that is not supported by the implementation).

	
hsa_status_t HSA_API hsa_executable_readonly_variable_define (hsa_executable_t executable, hsa_agent_t agent, const char *variable_name, void *address)

	Define an external readonly variable.

This function allows the application to provide the definition of a variable in the readonly segment memory. The variable must be defined before loading a code object into an executable. In addition, code objects loaded must not define the variable.

	Parameters
	
	[in] executable: Executable. Must not be in frozen state.

	[in] agent: Agent for which the variable is being defined.

	[in] variable_name: Name of the variable. The Programmer’s Reference Manual describes the standard name mangling scheme.

	[in] address: Address where the variable is defined. This address must have been previously allocated using hsa_memory_allocate in a readonly region associated with agent. The application cannot deallocate the buffer pointed by address before executable is destroyed.

	[in] address: Address where the variable is defined. The buffer pointed by address is owned by the application, and cannot be deallocated before executable is destroyed.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: Executable is invalid.

	HSA_STATUS_ERROR_INVALID_AGENT: agent is invalid.

	HSA_STATUS_ERROR_VARIABLE_ALREADY_DEFINED: The variable is already defined.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no variable with the variable_name.

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: executable is frozen.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: variable_name is NULL.

	
hsa_status_t HSA_API hsa_executable_symbol_get_info (hsa_executable_symbol_t executable_symbol, hsa_executable_symbol_info_t attribute, void *value)

	Get the current value of an attribute for a given executable symbol.

	Parameters
	
	[in] executable_symbol: Executable symbol.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE_SYMBOL: The executable symbol is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid executable symbol attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_executable_validate (hsa_executable_t executable, uint32_t *result)

	Validate an executable. Checks that all code objects have matching machine model, profile, and default floating-point rounding mode. Checks that all declarations have definitions. Checks declaration-definition compatibility (see the HSA Programming Reference Manual for compatibility rules). Invoking this function is equivalent to invoking hsa_executable_validate_alt with no options.

	Parameters
	
	[in] executable: Executable. Must be in frozen state.

	[out] result: Memory location where the HSA runtime stores the validation result. If the executable passes validation, the result is 0.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: result is NULL.

	
hsa_status_t HSA_API hsa_executable_validate_alt (hsa_executable_t executable, const char *options, uint32_t *result)

	Validate an executable. Checks that all code objects have matching machine model, profile, and default floating-point rounding mode. Checks that all declarations have definitions. Checks declaration-definition compatibility (see the HSA Programming Reference Manual for compatibility rules).

	Parameters
	
	[in] executable: Executable. Must be in frozen state.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] result: Memory location where the HSA runtime stores the validation result. If the executable passes validation, the result is 0.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: executable is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: result is NULL.

Code Objects (deprecated).

	
enum hsa_code_object_type_t

	Code object type.

	
Deprecated:

	

Values:

	
enumerator HSA_CODE_OBJECT_TYPE_PROGRAM

	Produces code object that contains ISA for all kernels and indirect functions in HSA source.

	
enum hsa_code_symbol_info_t

	Code object symbol attributes.

	
Deprecated:

	

Values:

	
enumerator HSA_CODE_SYMBOL_INFO_TYPE

	The type of the symbol. The type of this attribute is hsa_symbol_kind_t.

	
enumerator HSA_CODE_SYMBOL_INFO_NAME_LENGTH

	The length of the symbol name in bytes, not including the NUL terminator. The type of this attribute is uint32_t.

	
enumerator HSA_CODE_SYMBOL_INFO_NAME

	The name of the symbol. The type of this attribute is character array with the length equal to the value of HSA_CODE_SYMBOL_INFO_NAME_LENGTH attribute.

	
enumerator HSA_CODE_SYMBOL_INFO_MODULE_NAME_LENGTH

	The length of the module name in bytes (not including the NUL terminator) to which this symbol belongs if this symbol has module linkage, otherwise 0 is returned. The type of this attribute is uint32_t.

	
enumerator HSA_CODE_SYMBOL_INFO_MODULE_NAME

	The module name to which this symbol belongs if this symbol has module linkage, otherwise an empty string is returned. The type of this attribute is character array with the length equal to the value of HSA_CODE_SYMBOL_INFO_MODULE_NAME_LENGTH attribute.

	
enumerator HSA_CODE_SYMBOL_INFO_LINKAGE

	The linkage kind of the symbol. The type of this attribute is hsa_symbol_linkage_t.

	
enumerator HSA_CODE_SYMBOL_INFO_IS_DEFINITION

	Indicates whether the symbol corresponds to a definition. The type of this attribute is bool.

	
enumerator HSA_CODE_SYMBOL_INFO_VARIABLE_ALLOCATION

	The allocation kind of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is hsa_variable_allocation_t.

	
enumerator HSA_CODE_SYMBOL_INFO_VARIABLE_SEGMENT

	The segment kind of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is hsa_variable_segment_t.

	
enumerator HSA_CODE_SYMBOL_INFO_VARIABLE_ALIGNMENT

	Alignment of the symbol in memory. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is uint32_t.

The current alignment of the variable in memory may be greater than the value specified in the source program variable declaration.

	
enumerator HSA_CODE_SYMBOL_INFO_VARIABLE_SIZE

	Size of the variable. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is uint32_t.

A size of 0 is returned if the variable is an external variable and has an unknown dimension.

	
enumerator HSA_CODE_SYMBOL_INFO_VARIABLE_IS_CONST

	Indicates whether the variable is constant. The value of this attribute is undefined if the symbol is not a variable. The type of this attribute is bool.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE

	Size of kernarg segment memory that is required to hold the values of the kernel arguments, in bytes. Must be a multiple of 16. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_ALIGNMENT

	Alignment (in bytes) of the buffer used to pass arguments to the kernel, which is the maximum of 16 and the maximum alignment of any of the kernel arguments. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE

	Size of static group segment memory required by the kernel (per work-group), in bytes. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

The reported amount does not include any dynamically allocated group segment memory that may be requested by the application when a kernel is dispatched.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE

	Size of static private, spill, and arg segment memory required by this kernel (per work-item), in bytes. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

If the value of HSA_CODE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK is true, the kernel may use more private memory than the reported value, and the application must add the dynamic call stack usage to private_segment_size when populating a kernel dispatch packet.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_DYNAMIC_CALLSTACK

	Dynamic callstack flag. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is bool.

If this flag is set (the value is true), the kernel uses a dynamically sized call stack. This can happen if recursive calls, calls to indirect functions, or the HSAIL alloca instruction are present in the kernel.

	
enumerator HSA_CODE_SYMBOL_INFO_KERNEL_CALL_CONVENTION

	Call convention of the kernel. The value of this attribute is undefined if the symbol is not a kernel. The type of this attribute is uint32_t.

	
enumerator HSA_CODE_SYMBOL_INFO_INDIRECT_FUNCTION_CALL_CONVENTION

	Call convention of the indirect function. The value of this attribute is undefined if the symbol is not an indirect function. The type of this attribute is uint32_t.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_deserialize (void *serialized_code_object, size_t serialized_code_object_size, const char *options, hsa_code_object_t *code_object)

	Deserialize a code object.

	
Deprecated:

	

	Parameters
	
	[in] serialized_code_object: A serialized code object. Must not be NULL.

	[in] serialized_code_object_size: The size (in bytes) of serialized_code_object. Must not be 0.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] code_object: Memory location where the HSA runtime stores the deserialized code object.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: serialized_code_object, or code_object are NULL, or serialized_code_object_size is 0.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_destroy (hsa_code_object_t code_object)

	Destroy a code object.

	
Deprecated:

	

The lifetime of a code object must exceed that of any executable where it has been loaded. If an executable that loaded code_object has not been destroyed, the behavior is undefined.

	Parameters
	
	[in] code_object: Code object. The handle becomes invalid after it has been destroyed.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_get_info (hsa_code_object_t code_object, hsa_code_object_info_t attribute, void *value)

	Get the current value of an attribute for a given code object.

	
Deprecated:

	

	Parameters
	
	[in] code_object: Code object.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid code object attribute, or value is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_get_symbol (hsa_code_object_t code_object, const char *symbol_name, hsa_code_symbol_t *symbol)

	Get the symbol handle within a code object for a given a symbol name.

	
Deprecated:

	

	Parameters
	
	[in] code_object: Code object.

	[in] symbol_name: Symbol name.

	[out] symbol: Memory location where the HSA runtime stores the symbol handle.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no symbol with a name that matches symbol_name.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: symbol_name is NULL, or symbol is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_get_symbol_from_name (hsa_code_object_t code_object, const char *module_name, const char *symbol_name, hsa_code_symbol_t *symbol)

	Get the symbol handle within a code object for a given a symbol name.

	
Deprecated:

	

	Parameters
	
	[in] code_object: Code object.

	[in] module_name: Module name. Must be NULL if the symbol has program linkage.

	[in] symbol_name: Symbol name.

	[out] symbol: Memory location where the HSA runtime stores the symbol handle.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INVALID_SYMBOL_NAME: There is no symbol with a name that matches symbol_name.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: symbol_name is NULL, or symbol is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_iterate_symbols (hsa_code_object_t code_object, hsa_status_t(*callback)(hsa_code_object_t code_object, hsa_code_symbol_t symbol, void *data), void *data)

	Iterate over the symbols in a code object, and invoke an application-defined callback on every iteration.

	
Deprecated:

	

	Parameters
	
	[in] code_object: Code object.

	[in] callback: Callback to be invoked once per code object symbol. The HSA runtime passes three arguments to the callback: the code object, a symbol, and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_code_object_iterate_symbols returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_object_serialize (hsa_code_object_t code_object, hsa_status_t(*alloc_callback)(size_t size, hsa_callback_data_t data, void **address), hsa_callback_data_t callback_data, const char *options, void **serialized_code_object, size_t *serialized_code_object_size)

	Serialize a code object. Can be used for offline finalization, install-time finalization, disk code caching, etc.

	
Deprecated:

	

	Parameters
	
	[in] code_object: Code object.

	[in] alloc_callback: Callback function for memory allocation. Must not be NULL. The HSA runtime passes three arguments to the callback: the allocation size, the application data, and a pointer to a memory location where the application stores the allocation result. The HSA runtime invokes alloc_callback once to allocate a buffer that contains the serialized version of code_object. If the callback returns a status code other than HSA_STATUS_SUCCESS, this function returns the same code.

	[in] callback_data: Application data that is passed to alloc_callback. May be NULL.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	[out] serialized_code_object: Memory location where the HSA runtime stores a pointer to the serialized code object. Must not be NULL.

	[out] serialized_code_object_size: Memory location where the HSA runtime stores the size (in bytes) of serialized_code_object. The returned value matches the allocation size passed by the HSA runtime to alloc_callback. Must not be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: alloc_callback, serialized_code_object, or serialized_code_object_size are NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_code_symbol_get_info (hsa_code_symbol_t code_symbol, hsa_code_symbol_info_t attribute, void *value)

	Get the current value of an attribute for a given code symbol.

	
Deprecated:

	

	Parameters
	
	[in] code_symbol: Code symbol.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behavior is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_INVALID_CODE_SYMBOL: The code symbol is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid code symbol attribute, or value is NULL.

	
hsa_status_t HSA_API HSA_DEPRECATED hsa_executable_load_code_object (hsa_executable_t executable, hsa_agent_t agent, hsa_code_object_t code_object, const char *options)

	Load code object into the executable.

	
Deprecated:

	

Every global or readonly variable that is external must be defined before loading the code object. An internal global or readonly variable is allocated once the code object, that is being loaded, references this variable and this variable is not allocated.

Any module linkage declaration must have been defined either by a define variable or by loading a code object that has a symbol with module linkage definition.

	Parameters
	
	[in] executable: Executable.

	[in] agent: Agent to load code object for. The agent must support the default floating-point rounding mode used by code_object.

	[in] code_object: Code object to load. The lifetime of the code object must exceed that of the executable: if code_object is destroyed before executable, the behavior is undefined.

	[in] options: Standard and vendor-specific options. Unknown options are ignored. A standard option begins with the “-hsa_” prefix. Options beginning with the “-hsa_ext_<extension_name>_” prefix are reserved for extensions. A vendor-specific option begins with the “-<vendor_name>_” prefix. Must be a NUL-terminated string. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: The HSA runtime failed to allocate the required resources.

	HSA_STATUS_ERROR_INVALID_EXECUTABLE: The executable is invalid.

	HSA_STATUS_ERROR_INVALID_AGENT: The agent is invalid.

	HSA_STATUS_ERROR_INVALID_CODE_OBJECT: code_object is invalid.

	HSA_STATUS_ERROR_INCOMPATIBLE_ARGUMENTS: agent is not compatible with code_object (for example, agent does not support the default floating-point rounding mode specified by code_object), or code_object is not compatible with executable (for example, code_object and executable have different machine models or profiles).

	HSA_STATUS_ERROR_FROZEN_EXECUTABLE: executable is frozen.

Finalization Program

	
enum hsa_ext_finalizer_call_convention_t

	Finalizer-determined call convention.

Values:

	
enumerator HSA_EXT_FINALIZER_CALL_CONVENTION_AUTO

	Finalizer-determined call convention.

	
enum hsa_ext_program_info_t

	HSAIL program attributes.

Values:

	
enumerator HSA_EXT_PROGRAM_INFO_MACHINE_MODEL

	Machine model specified when the HSAIL program was created. The type of this attribute is hsa_machine_model_t.

	
enumerator HSA_EXT_PROGRAM_INFO_PROFILE

	Profile specified when the HSAIL program was created. The type of this attribute is hsa_profile_t.

	
enumerator HSA_EXT_PROGRAM_INFO_DEFAULT_FLOAT_ROUNDING_MODE

	Default float rounding mode specified when the HSAIL program was created. The type of this attribute is hsa_default_float_rounding_mode_t.

	
hsa_status_t HSA_API hsa_ext_program_add_module (hsa_ext_program_t program, hsa_ext_module_t module)

	Add a HSAIL module to an existing HSAIL program.

The HSA runtime does not perform a deep copy of the HSAIL module upon addition. Instead, it stores a pointer to the HSAIL module. The ownership of the HSAIL module belongs to the application, which must ensure that module is not released before destroying the HSAIL program.

The HSAIL module is successfully added to the HSAIL program if module is valid, if all the declarations and definitions for the same symbol are compatible, and if module specify machine model and profile that matches the HSAIL program.

	Parameters
	
	[in] program: HSAIL program.

	[in] module: HSAIL module. The application can add the same HSAIL module to program at most once. The HSAIL module must specify the same machine model and profile as program. If the floating-mode rounding mode of module is not default, then it should match that of program.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: There is a failure to allocate resources required for the operation.

	HSA_EXT_STATUS_ERROR_INVALID_PROGRAM: The HSAIL program is invalid.

	HSA_EXT_STATUS_ERROR_INVALID_MODULE: The HSAIL module is invalid.

	HSA_EXT_STATUS_ERROR_INCOMPATIBLE_MODULE: The machine model of module does not match machine model of program, or the profile of module does not match profile of program.

	HSA_EXT_STATUS_ERROR_MODULE_ALREADY_INCLUDED: The HSAIL module is already a part of the HSAIL program.

	HSA_EXT_STATUS_ERROR_SYMBOL_MISMATCH: Symbol declaration and symbol definition compatibility mismatch. See the symbol compatibility rules in the HSA Programming Reference Manual.

	
hsa_status_t HSA_API hsa_ext_program_create (hsa_machine_model_t machine_model, hsa_profile_t profile, hsa_default_float_rounding_mode_t default_float_rounding_mode, const char *options, hsa_ext_program_t *program)

	Create an empty HSAIL program.

	Parameters
	
	[in] machine_model: Machine model used in the HSAIL program.

	[in] profile: Profile used in the HSAIL program.

	[in] default_float_rounding_mode: Default float rounding mode used in the HSAIL program.

	[in] options: Vendor-specific options. May be NULL.

	[out] program: Memory location where the HSA runtime stores the newly created HSAIL program handle.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: There is a failure to allocate resources required for the operation.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: machine_model is invalid, profile is invalid, default_float_rounding_mode is invalid, or program is NULL.

	
hsa_status_t HSA_API hsa_ext_program_destroy (hsa_ext_program_t program)

	Destroy a HSAIL program.

The HSAIL program handle becomes invalid after it has been destroyed. Code object handles produced by hsa_ext_program_finalize are still valid after the HSAIL program has been destroyed, and can be used as intended. Resources allocated outside and associated with the HSAIL program (such as HSAIL modules that are added to the HSAIL program) can be released after the finalization program has been destroyed.

	Parameters
	
	[in] program: HSAIL program.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_EXT_STATUS_ERROR_INVALID_PROGRAM: The HSAIL program is invalid.

	
hsa_status_t HSA_API hsa_ext_program_finalize (hsa_ext_program_t program, hsa_isa_t isa, int32_t call_convention, hsa_ext_control_directives_t control_directives, const char *options, hsa_code_object_type_t code_object_type, hsa_code_object_t *code_object)

	Finalize an HSAIL program for a given instruction set architecture.

Finalize all of the kernels and indirect functions that belong to the same HSAIL program for a specific instruction set architecture (ISA). The transitive closure of all functions specified by call or scall must be defined. Kernels and indirect functions that are being finalized must be defined. Kernels and indirect functions that are referenced in kernels and indirect functions being finalized may or may not be defined, but must be declared. All the global/readonly segment variables that are referenced in kernels and indirect functions being finalized may or may not be defined, but must be declared.

	Parameters
	
	[in] program: HSAIL program.

	[in] isa: Instruction set architecture to finalize for.

	[in] call_convention: A call convention used in a finalization. Must have a value between HSA_EXT_FINALIZER_CALL_CONVENTION_AUTO (inclusive) and the value of the attribute HSA_ISA_INFO_CALL_CONVENTION_COUNT in isa (not inclusive).

	[in] control_directives: Low-level control directives that influence the finalization process.

	[in] options: Vendor-specific options. May be NULL.

	[in] code_object_type: Type of code object to produce.

	[out] code_object: Code object generated by the Finalizer, which contains the machine code for the kernels and indirect functions in the HSAIL program. The code object is independent of the HSAIL module that was used to generate it.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_STATUS_ERROR_OUT_OF_RESOURCES: There is a failure to allocate resources required for the operation.

	HSA_EXT_STATUS_ERROR_INVALID_PROGRAM: The HSAIL program is invalid.

	HSA_STATUS_ERROR_INVALID_ISA: isa is invalid.

	HSA_EXT_STATUS_ERROR_DIRECTIVE_MISMATCH: The directive in the control directive structure and in the HSAIL kernel mismatch, or if the same directive is used with a different value in one of the functions used by this kernel.

	HSA_EXT_STATUS_ERROR_FINALIZATION_FAILED: The Finalizer encountered an error while compiling a kernel or an indirect function.

	
hsa_status_t HSA_API hsa_ext_program_get_info (hsa_ext_program_t program, hsa_ext_program_info_t attribute, void *value)

	Get the current value of an attribute for a given HSAIL program.

	Parameters
	
	[in] program: HSAIL program.

	[in] attribute: Attribute to query.

	[out] value: Pointer to an application-allocated buffer where to store the value of the attribute. If the buffer passed by the application is not large enough to hold the value of attribute, the behaviour is undefined.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_EXT_STATUS_ERROR_INVALID_PROGRAM: The HSAIL program is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: attribute is an invalid HSAIL program attribute, or value is NULL.

	
hsa_status_t HSA_API hsa_ext_program_iterate_modules (hsa_ext_program_t program, hsa_status_t(*callback)(hsa_ext_program_t program, hsa_ext_module_t module, void *data), void *data)

	Iterate over the HSAIL modules in a program, and invoke an application-defined callback on every iteration.

	Parameters
	
	[in] program: HSAIL program.

	[in] callback: Callback to be invoked once per HSAIL module in the program. The HSA runtime passes three arguments to the callback: the program, a HSAIL module, and the application data. If callback returns a status other than HSA_STATUS_SUCCESS for a particular iteration, the traversal stops and hsa_ext_program_iterate_modules returns that status value.

	[in] data: Application data that is passed to callback on every iteration. May be NULL.

	Return Value
	
	HSA_STATUS_SUCCESS: The function has been executed successfully.

	HSA_STATUS_ERROR_NOT_INITIALIZED: The HSA runtime has not been initialized.

	HSA_EXT_STATUS_ERROR_INVALID_PROGRAM: The program is invalid.

	HSA_STATUS_ERROR_INVALID_ARGUMENT: callback is NULL.

hipThrust

HIP back-end for Thrust

Introduction

Thrust is a parallel algorithm library. This library has been ported to HIP/ROCm platform. This repository contains the HIP port of Thrust. The HIP ported library works on both HIP/CUDA and HIP/ROCm platforms.

Pre-requisites

Hardware

For detailed ROCm Hardware requirements and other details please follow up on this page ROCm hardware requiremnets [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#supported-cpus]

Installation

AMD ROCm Installation

$ wget -qO - https://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
$ sudo sh -c 'echo deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'
$ sudo apt-get update
$ sudo apt install rocm-dkms

Thrust Build Steps:

$ git clone https://github.com/ROCmSoftwarePlatform/Thrust.git
$ cd Thrust

For NVCC or HCC platform, build application using hipcc compiler.

Follow the below steps to generate executables

Note

Set HIP_PLATFORM to either NVCC or HCC depending on the platform being used

Steps to follow:

$ export HIP_PLATFORM=hcc (For HCC Platform)
$ export HIP_PLATFORM=nvcc (For NVCC Platform)
$ cd examples
$./cu_to_cpp.sh
$./script_compile_testing_hcc.sh

To execute applications:

$ cd Thrust/
$./script_run_hcc.sh foldername (eg:examples/testing/performance)

Sample applications

Here is a sample output of some applications exercising thrust API’s :

transform_iterator:

$./transform_iterator.out
values : 2 5 7 1 6 0 3 8
clamped values : 2 5 5 1 5 1 3 5
sum of clamped values : 27
sequence : 0 1 2 3 4 5 6 7 8 9
clamped sequence : 1 1 2 3 4 5 5 5 5 5
negated sequence : -1 -1 -2 -3 -4 -5 -5 -5 -5 -5
negated values : -2 -5 -7 -1 -6 0 -3 -8

sort:

$./sort.out
sorting integers
 79 78 62 78 94 40 86 57 40 16 28 54 77 87 93 98
 16 28 40 40 54 57 62 77 78 78 79 86 87 93 94 98

sorting integers (descending)
 79 78 62 78 94 40 86 57 40 16 28 54 77 87 93 98
 98 94 93 87 86 79 78 78 77 62 57 54 40 40 28 16

sorting integers (user-defined comparison)
 79 78 62 78 94 40 86 57 40 16 28 54 77 87 93 98
 16 28 40 40 54 62 78 78 86 94 98 57 77 79 87 93

sorting floats
 7.5 7.5 6.0 7.5 9.0 4.0 8.5 5.5 4.0 1.5 2.5 5.0 7.5 8.5 9.0 9.5
 1.5 2.5 4.0 4.0 5.0 5.5 6.0 7.5 7.5 7.5 7.5 8.5 8.5 9.0 9.0 9.5

sorting pairs
 (7,7) (5,7) (9,3) (8,5) (3,0) (2,4) (7,8) (9,9) (7,1) (1,9) (0,5) (3,6) (8,0) (7,6) (4,2) (8,3)
 (0,5) (1,9) (2,4) (3,0) (3,6) (4,2) (5,7) (7,1) (7,6) (7,7) (7,8) (8,0) (8,3) (8,5) (9,3) (9,9)

key-value sorting
 (79, 0) (78, 1) (62, 2) (78, 3) (94, 4) (40, 5) (86, 6) (57, 7) (40, 8) (16, 9) (28,10) (54,11) (77,12) (87,13) (93,14) (98,15)
 (16, 9) (28,10) (40, 5) (40, 8) (54,11) (57, 7) (62, 2) (77,12) (78, 1) (78, 3) (79, 0) (86, 6) (87,13) (93,14) (94, 4) (98,15)

key-value sorting (descending)
 (79, 0) (78, 1) (62, 2) (78, 3) (94, 4) (40, 5) (86, 6) (57, 7) (40, 8) (16, 9) (28,10) (54,11) (77,12) (87,13) (93,14) (98,15)
 (98,15) (94, 4) (93,14) (87,13) (86, 6) (79, 0) (78, 1) (78, 3) (77,12) (62, 2) (57, 7) (54,11) (40, 5) (40, 8) (28,10) (16, 9)

expand:

$./expand.out
Expanding values according to counts
counts 3 5 2 0 1 3 4 2 4
values 1 2 3 4 5 6 7 8 9
output 1 1 1 2 2 2 2 2 3 3 5 6 6 6 7 7 7 7 8 8 9 9 9 9

Unit Test

The test suite consists of unit tests.

Run the following commands to perform unit testing of different components of Thrust.

Note

Set HIP_PLATFORM to either NVCC or HCC depending on the platform being used

$ cd Thrust/testing
$./cu_to_cpp.sh
$./script_compile_testing_hcc.sh

To execute unit tests:

$ cd Thrust/
$./script_run_hcc.sh testing/

Sample output of transform and Max element test cases

./transform.out
Running 34 unit tests.
..................................
Totals: 0 failures, 0 known failures, 0 errors, and 34 passes.
Time: 0.366667 minutes

./max_element.out
Running 7 unit tests.
..................................
Totals: 0 failures, 0 known failures, 0 errors, and 7 passes.
Time: 0.0166667 minutes

Performance Tests

Run the following commands to exercise Performance tests in Thrust

Note

Set HIP_PLATFORM to either NVCC or HCC depending on the platform being used

$ cd Thrust/performance
$./script_compile_performance.sh

To execute performance tests:

$ cd Thrust/
$./script_run_hcc.sh performance/

./adjacent_difference.cpp.out

<?xml version="1.0"?>
<testsuite name="adjacent_difference">
<platform>
<device name="Device 6863">
<property name="revision" value="3.0"/>
<property name="global memory" value="17163091968" units="bytes"/>
<property name="multiprocessors" value="64"/>
<property name="cores" value="512"/>
<property name="constant memory" value="16384" units="bytes"/>
<property name="shared memory per block" value="65536" units="bytes"/>
<property name="warp size" value="64"/>
<property name="max threads per block" value="1024"/>
<property name="clock rate" value="1.6" units="GHz"/>
</device>
<compilation>
<property name="host compiler" value="GCC 40201"/>
<property name="__DATE__" value="May 15 2018"/>
<property name="__TIME__" value="20:32:34"/>
</compilation>
</platform>
<test name="adjacent_difference_int_16777216">
<variable name="InputType" value="int"/>
<variable name="InputSize" value="16777216"/>
<result name="Time" value="0.000607142" units="seconds"/>
<result name="Throughput" value="27.6331" units="GOp/s"/>
<result name="Bandwidth" value="221.065" units="GBytes/s"/>
<status result="Success" message=""/>
</test>
</testsuite>

Known issues

Currently thrust::sort and thrust::stable_sort_by_key are not supported on HIP/CUDA path. Due to this, the applications exercising these API’s will display slight deviation from desired output on HIP/CUDA.

see this Ticket [https://github.com/ROCmSoftwarePlatform/cub-hip/issues/9].

There is a corner case issue while exercising API’s in bucker_sort2d application on HIP/ROCm path.

Dependency

There exists a dependency on hipified version of cub to generate executables. The hipified cub is available as cub-hip in https://github.com/ROCmSoftwarePlatform/cub-hip/tree/cubhip_mxnet

Credentials may be required to clone cub-hip. The hipified cub should be placed according to the directory structure mentioned above.

API’s supported

A list of `Thrust API’s supported on HIP/CUDA and HIP/ROCm.

	
	Serial
	No.

	Thrust API

	HIP/CUDA

	HIP/ROCm

	1

	thrust::binary_function

	Supported

	Supported

	2

	thrust::max

	Supported

	Supported

	3

	thrust::default_random_engine

	Supported

	Supported

	4

	thrust::uniform_int_distribution

	Supported

	Supported

	5

	thrust::tuple

	Supported

	Supported

	6

	thrust::uniform_real_distribution

	Supported

	Supported

	7

	thrust::host_vector

	Supported

	Supported

	8

	thrust::generate

	Supported

	Supported

	9

	thrust::lower_bound

	Supported

	Supported

	10

	thrust::upper_bound

	Supported

	Supported

	11

	thrust::gather

	Supported

	Supported

	12

	thrust::make_transform_output_iterator

	Supported

	Supported

	13

	thrust::reduce

	Supported

	Supported

	14

	thrust::device_malloc

	Supported

	Supported

	15

	thrust::raw_pointer_cast

	Supported

	Supported

	16

	thrust::device_free

	Supported

	Supported

	17

	thrust::sort

	Known issue

	Supported

	18

	thrust::device_pointer_cast

	Supported

	Supported

	19

	thrust::for_each

	Supported

	Supported

	20

	thrust::make_transform_iterator

	Supported

	Supported

	21

	thrust::placeholders

	Supported

	Supported

	22

	thrust::multiplies

	Supported

	Supported

	23

	thrust::remove_if

	Supported

	Supported

	24

	thrust::raw_reference_cast

	Supported

	Supported

	25

	thrust::device_system_tag

	Supported

	Supported

	26

	thrust::make_permutation_iterator

	Supported

	Supported

	27

	thrust::merge_by_key

	Supported

	Supported

	28

	thrust::negate

	Supported

	Supported

	29

	thrust::device_execution_policy

	Supported

	Supported

	30

	thrust::zip_iterator

	Supported

	Supported

	31

	thrust::unique

	Supported

	Supported

	32

	thrust::advance

	Supported

	Supported

	33

	thrust::device_ptr

	Supported

	Supported

	34

	thrust::make_zip_iterator

	Supported

	Supported

	35

	thrust::copy

	Supported

	Supported

	36

	thrust::stable_sort_by_key

	Known issue

	Supported

	37

	thrust::sequence

	Supported

	Supported

	38

	thrust::inner_product

	Supported

	Supported

	39

	thrust::plus

	Supported

	Supported

	40

	thrust::distance

	Supported

	Supported

	41

	thrust::transform

	Supported

	Supported

	42

	thrust::inclusive_scan_by_key

	Supported

	Supported

	43

	thrust::exclusive_scan

	Supported

	Supported

	44

	thrust::inclusive_scan

	Supported

	Supported

	45

	thrust::iterator_difference

	Supported

	Supported

	46

	thrust::device_vector

	Supported

	Supported

	47

	thrust::unary_function

	Supported

	Supported

	48

	thrust::get<>

	Supported

	Supported

	49

	thrust::transform_iterator

	Supported

	Supported

	50

	thrust::permutation_iterator

	Supported

	Supported

	51

	thrust::make_tuple

	Supported

	Supported

	52

	thrust::fill

	Supported

	Supported

	53

	thrust::transform_reduce

	Supported

	Supported

	54

	thrust::counting_iterator

	Supported

	Supported

	55

	thrust::maximum

	Supported

	Supported

	56

	thrust::identity

	Supported

	Supported

	57

	thrust::equal_to

	Supported

	Supported

	58

	thrust::not_equal_to

	Supported

	Supported

	59

	thrust::reduce_by_key

	Supported

	Supported

	60

	thrust::system_error

	Supported

	Supported

	61

	thrust::cuda_category

	Supported

	Supported

	62

	thrust::minstd_rand

	Supported

	Supported

	63

	thrust::cuda::par

	Supported

	Supported

	64

	thrust::system::cuda::experimental::pinned_allocator

	Supported

	Supported

	65

	thrust::make_reverse_iterator

	Supported

	Supported

	66

	thrust::constant_iterator

	Supported

	Supported

	67

	thrust::scatter_if

	Supported

	Supported

	68

	thrust::tabulate

	Supported

	Supported

	69

	thrust::reverse_iterator

	Supported

	Supported

	70

	thrust::make_counting_iterator

	Supported

	Supported

	71

	thrust::make_pair

	Supported

	Supported

	72

	thrust::pair

	Supported

	Supported

	73

	thrust:sort_by_key

	Supported

	Supported

	74

	thrust::copy_if

	Supported

	Supported

	75

	thrust::find_if

	Supported

	Supported

	76

	thrust::find

	Supported

	Supported

	77

	thrust::max_element

	Supported

	Supported

	78

	thrust::normal_distribution

	Supported

	Supported

	79

	thrust::min

	Supported

	Supported

	80

	thrust::greater<>

	Supported

	Supported

	81

	thrust::make_constant_iterator

	Supported

	Supported

	82

	thrust::unique_by_key

	Supported

	Supported

	83

	thrust::partition_copy

	Supported

	Supported

	84

	thrust::unique_copy

	Supported

	Supported

	85

	thrust::reverse

	Supported

	Supported

Github

For Github repository click here : Thrust [https://github.com/ROCmSoftwarePlatform/Thrust]

rocSOLVER API

This section provides details of the rocSOLVER library API as in release
ROCm 2.10 [https://github.com/ROCmSoftwarePlatform/rocSOLVER/tree/master-rocm-2.10].

Types

Most rocSOLVER types are aliases of rocBLAS types.
See rocBLAS types here [https://rocblas.readthedocs.io/en/latest/api.html#types].

Definitions

rocsolver_int

Warning

doxygentypedef: Cannot find typedef “rocsolver_int” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Enums

rocsolver_handle

Warning

doxygentypedef: Cannot find typedef “rocsolver_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_operation

Warning

doxygentypedef: Cannot find typedef “rocsolver_operation” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_fill

Warning

doxygentypedef: Cannot find typedef “rocsolver_fill” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_diagonal

Warning

doxygentypedef: Cannot find typedef “rocsolver_diagonal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_side

Warning

doxygentypedef: Cannot find typedef “rocsolver_side” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_direct

Warning

doxygenenum: Cannot find enum “rocsolver_direct” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_storev

Warning

doxygenenum: Cannot find enum “rocsolver_storev” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_status

Warning

doxygentypedef: Cannot find typedef “rocsolver_status” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Auxiliary Functions

These are functions that support more advanced Lapack routines.

Matrix permutations and manipulations

rocsolver_<type>laswp()

Warning

doxygenfunction: Cannot find function “rocsolver_zlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_claswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Householder reflexions

rocsolver_<type>larfg()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larft()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larf()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larfb()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Orthonormal matrices

rocsolver_<type>org2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgl2()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orglq()

Warning

doxygenfunction: Cannot find function “rocsolver_dorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgbr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orm2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>ormqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Functions

Lapack routines solve complex Numerical Linear Algebra problems.

Special Matrix Factorizations

rocsolver_<type>potf2()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General Matrix Factorizations

rocsolver_<type>getf2()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General systems solvers

rocsolver_<type>getrs()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Auxiliaries

rocSOLVER auxiliary functions are aliases of rocBLAS auxiliary functions. See rocBLAS auxiliary functions
here [https://rocblas.readthedocs.io/en/latest/api.html#auxiliary].

rocSOLVER handle auxiliaries

rocsolver_create_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_create_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_destroy_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_destroy_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_add_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_add_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_set_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_get_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Other auxiliaries

rocsolver_set_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_set_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_get_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_set_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_get_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

clBLAS API Documentation

This is an implementation of Basic Linear Algebra Subprograms, levels 1, 2 and 3 using OpenCL and optimized for the AMD GPU hardware.

	
	BLAS1 [http://clmathlibraries.github.io/clBLAS/group__BLAS1.html]
	The Level 1 Basic Linear Algebra Subprograms are functions that perform vector-vector operations.

	
	BLAS2 [http://clmathlibraries.github.io/clBLAS/group__BLAS2.html]
	The Level 2 Basic Linear Algebra Subprograms are functions that perform matrix-vector operations.

	
	BLAS3 [http://clmathlibraries.github.io/clBLAS/group__BLAS3.html]
	The Level 3 Basic Linear Algebra Subprograms are funcions that perform matrix-matrix operations.

clSPARSE API Documentation

Library setup or teardown functions

Warning

doxygenfunction: Cannot find function “clsparseGetVersion” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSetup” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseTeardown” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Routines to initialize a clsparse object

Warning

doxygenfunction: Cannot find function “cldenseInitMatrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseInitCooMatrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseInitCsrMatrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseInitScalar” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseInitScalar” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Modifying library state

Warning

doxygentypedef: Cannot find typedef “clsparseControl” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseCreateControl” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseEnableAsync” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseEnableExtendedPrecision” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseGetEvent” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseReleaseControl” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Sparse iterative solvers

Warning

doxygenfunction: Cannot find function “clsparseCreateSolverControl” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDcsrbicgStab” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDcsrcg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseReleaseSolverControl” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsrbicgStab” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsrcg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSetSolverParams” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSolverPrintMode” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Support functions provided to read sparse matrices from file

Warning

doxygenfunction: Cannot find function “clsparseCsrMetaCreate” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseCsrMetaDelete” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseCsrMetaSize” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDCooMatrixfromFile” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDCsrMatrixfromFile” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseHeaderfromFile” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSCooMatrixfromFile” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSCsrMatrixfromFile” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

clSPARSE BLAS operations

Dense L1 BLAS operations

Warning

doxygenfunction: Cannot find function “cldenseDadd” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDaxpby” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDdiv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDdot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDmul” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDnrm1” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDnrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDreduce” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDscale” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseDsub” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseIreduce” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSadd” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSaxpby” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSaxpy” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSdiv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSdot” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSmul” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSnrm1” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSnrm2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSreduce” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSscale” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “cldenseSsub” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Sparse L2 BLAS operations

Warning

doxygenfunction: Cannot find function “clsparseDcoomv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDcsrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScoomv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsrmv” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Sparse L3 BLAS operations

Warning

doxygenfunction: Cannot find function “clsparseDcsrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsrmm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsrSpGemm” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Matrix conversion routines

Warning

doxygenfunction: Cannot find function “clsparseDcoo2csr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDcsr2coo” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDcsr2dense” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseDdense2csr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScoo2csr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsr2coo” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseScsr2dense” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “clsparseSdense2csr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

clSPARSE API Documentation

It is an OpenCL library implementing Sparse linear algebra routines.

	
	Dense L1 BLAS operations [http://clmathlibraries.github.io/clSPARSE/group___b_l_a_s-1.html]
	Dense BLAS level 1 routines for dense vectors

	
	Sparse L2 BLAS operations [http://clmathlibraries.github.io/clSPARSE/group___b_l_a_s-2.html]
	Sparse BLAS level 2 routines for sparse matrix dense vector

	
	Sparse L3 BLAS operations [http://clmathlibraries.github.io/clSPARSE/group___b_l_a_s-3.html]
	Sparse BLAS level 3 routines for sparse matrix dense matrix

rocBLAS

Warning

doxygenclass: Cannot find file: /home/docs/checkouts/readthedocs.org/user_builds/cgmb-rocm-docs/checkouts/latest/rocBLASxml/index.xml

Context Management

hipCtxCreate

	
hipError_t hipCtxCreate(hipCtx_t *ctx, unsigned int flags, hipDevice_t device)

	Create a context and set it as current/ default context.

	Return
	#hipSuccess

	See
	hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[out] ctx:

	[in] flags:

	[in] associated: device handle

hipCtxDestroy

	
hipError_t hipCtxDestroy(hipCtx_t ctx)

	Destroy a HIP context.

	Return
	#hipSuccess, #hipErrorInvalidValue

	See
	hipCtxCreate, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent,hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize , hipCtxGetDevice

	Parameters
	
	[in] ctx: Context to destroy

hipDevicePrimaryCtxGetState

	
hipError_t hipDevicePrimaryCtxGetState(hipDevice_t dev, unsigned int *flags, int *active)

	Get the state of the primary context.

	Return
	#hipSuccess

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[in] Device: to get primary context flags for

	[out] Pointer: to store flags

	[out] Pointer: to store context state; 0 = inactive, 1 = active

hipDevicePrimaryCtxRelease

	
hipError_t hipDevicePrimaryCtxRelease(hipDevice_t dev)

	Release the primary context on the GPU.

	Return
	#hipSuccess

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Warning
	This function return #hipSuccess though doesn’t release the primaryCtx by design on HIP/HCC path.

	Parameters
	
	[in] Device: which primary context is released

hipDevicePrimaryCtxRetain

	
hipError_t hipDevicePrimaryCtxRetain(hipCtx_t *pctx, hipDevice_t dev)

	Retain the primary context on the GPU.

	Return
	#hipSuccess

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[out] Returned: context handle of the new context

	[in] Device: which primary context is released

hipDevicePrimaryCtxReset

	
hipError_t hipDevicePrimaryCtxReset(hipDevice_t dev)

	Resets the primary context on the GPU.

	Return
	#hipSuccess

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[in] Device: which primary context is reset

hipDevicePrimaryCtxSetFlags

	
hipError_t hipDevicePrimaryCtxSetFlags(hipDevice_t dev, unsigned int flags)

	Set flags for the primary context.

	Return
	#hipSuccess, #hipErrorContextAlreadyInUse

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[in] Device: for which the primary context flags are set

	[in] New: flags for the device

Control

hipProfilerStart

	
hipError_t hipProfilerStart()

	Start recording of profiling information When using this API, start the profiler with profiling disabled.

(startdisabled)
	Warning
	: hipProfilerStart API is under development.

hipProfilerStop

Device Memory Access

hipDeviceCanAccessPeer

	
hipError_t hipDeviceCanAccessPeer(int *canAccessPeer, int deviceId, int peerDeviceId)

	Determine if a device can access a peer’s memory.

Returns “1” in

canAccessPeer if the specified device is capable of directly accessing memory physically located on peerDevice , or “0” if not.
	Parameters
	
	[out] canAccessPeer: Returns the peer access capability (0 or 1)

	[in] device: - device from where memory may be accessed.

	[in] peerDevice: - device where memory is physically located

Returns “0” in canAccessPeer if deviceId == peerDeviceId, and both are valid devices : a device is not a peer of itself.

	Return
	#hipSuccess,

	Return
	#hipErrorInvalidDevice if deviceId or peerDeviceId are not valid devices

hipDeviceEnablePeerAccess

	
hipError_t hipDeviceEnablePeerAccess(int peerDeviceId, unsigned int flags)

	Enable direct access from current device’s virtual address space to memory allocations physically located on a peer device.

Memory which already allocated on peer device will be mapped into the address space of the current device. In addition, all future memory allocations on peerDeviceId will be mapped into the address space of the current device when the memory is allocated. The peer memory remains accessible from the current device until a call to hipDeviceDisablePeerAccess or hipDeviceReset.

	Return
	#hipErrorPeerAccessAlreadyEnabled if peer access is already enabled for this device.

	Parameters
	
	[in] peerDeviceId:

	[in] flags: Returns #hipSuccess, #hipErrorInvalidDevice, #hipErrorInvalidValue,

hipDeviceDisablePeerAccess

	
hipError_t hipDeviceDisablePeerAccess(int peerDeviceId)

	Disable direct access from current device’s virtual address space to memory allocations physically located on a peer device.

Returns hipErrorPeerAccessNotEnabled if direct access to memory on peerDevice has not yet been enabled from the current device.

	Return
	#hipSuccess, #hipErrorPeerAccessNotEnabled

	Parameters
	
	[in] peerDeviceId:

hipMemGetAddressRange

	
hipError_t hipMemGetAddressRange(hipDeviceptr_t *pbase, size_t *psize, hipDeviceptr_t dptr)

	Get information on memory allocations.

	Return
	#hipSuccess, #hipErrorInvalidDevicePointer

	See
	hipCtxCreate, hipCtxDestroy, hipCtxGetFlags, hipCtxPopCurrent, hipCtxGetCurrent, hipCtxSetCurrent, hipCtxPushCurrent, hipCtxSetCacheConfig, hipCtxSynchronize, hipCtxGetDevice

	Parameters
	
	[out] pbase: - BAse pointer address

	[out] psize: - Size of allocation

	[in] dptr-: Device Pointer

hipMemcpyPeer

	
hipError_t hipMemcpyPeer(void *dst, int dstDeviceId, const void *src, int srcDeviceId, size_t sizeBytes)

	Copies memory from one device to memory on another device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidDevice

	Parameters
	
	[out] dst: - Destination device pointer.

	[in] dstDeviceId: - Destination device

	[in] src: - Source device pointer

	[in] srcDeviceId: - Source device

	[in] sizeBytes: - Size of memory copy in bytes

Device management

Device management types and functions.

hipDeviceSynchronize

	
hipError_t hipDeviceSynchronize(void)

	Waits on all active streams on current device.

When this command is invoked, the host thread gets blocked until all the commands associated with streams associated with the device. HIP does not support multiple blocking modes (yet!).

	Return
	#hipSuccess

	See
	hipSetDevice, hipDeviceReset

hipDeviceReset

	
hipError_t hipDeviceReset(void)

	The state of current device is discarded and updated to a fresh state.

Calling this function deletes all streams created, memory allocated, kernels running, events created. Make sure that no other thread is using the device or streams, memory, kernels, events associated with the current device.

	Return
	#hipSuccess

	See
	hipDeviceSynchronize

hipSetDevice

	
hipError_t hipSetDevice(int deviceId)

	Set default device to be used for subsequent hip API calls from this thread.

Sets

device as the default device for the calling host thread. Valid device id’s are 0… (hipGetDeviceCount()-1).
	Parameters
	
	[in] deviceId: Valid device in range 0…hipGetDeviceCount().

Many HIP APIs implicitly use the “default device” :

	Any device memory subsequently allocated from this host thread (using hipMalloc) will be allocated on device.

	Any streams or events created from this host thread will be associated with device.

	Any kernels launched from this host thread (using hipLaunchKernelGGL) will be executed on device (unless a specific stream is specified, in which case the device associated with that stream will be used).

This function may be called from any host thread. Multiple host threads may use the same device. This function does no synchronization with the previous or new device, and has very little runtime overhead. Applications can use hipSetDevice to quickly switch the default device before making a HIP runtime call which uses the default device.

The default device is stored in thread-local-storage for each thread. Thread-pool implementations may inherit the default device of the previous thread. A good practice is to always call hipSetDevice at the start of HIP coding sequency to establish a known standard device.

	Return
	#hipSuccess, #hipErrorInvalidDevice, #hipErrorDeviceAlreadyInUse

	See
	hipGetDevice, hipGetDeviceCount

hipGetDevice

	
hipError_t hipGetDevice(int *deviceId)

	Return the default device id for the calling host thread.

HIP maintains an default device for each thread using thread-local-storage. This device is used implicitly for HIP runtime APIs called by this thread. hipGetDevice returns in *

device the default device for the calling host thread.
	Parameters
	
	[out] device: *device is written with the default device

	Return
	#hipSuccess

	See
	hipSetDevice, hipGetDevicesizeBytes

hipGetDeviceCount

	
hipError_t hipGetDeviceCount(int *count)

	Return number of compute-capable devices.

Returns in

*count the number of devices that have ability to run compute commands. If there are no such devices, then hipGetDeviceCount will return #hipErrorNoDevice. If 1 or more devices can be found, then hipGetDeviceCount returns #hipSuccess.
	Return
	#hipSuccess, #hipErrorNoDevice

	Parameters
	
	[output]: count Returns number of compute-capable devices.

hipDeviceGetAttribute

	
hipError_t hipDeviceGetAttribute(int *pi, hipDeviceAttribute_t attr, int deviceId)

	Query for a specific device attribute.

	Return
	#hipSuccess, #hipErrorInvalidDevice, #hipErrorInvalidValue

	Parameters
	
	[out] pi: pointer to value to return

	[in] attr: attribute to query

	[in] deviceId: which device to query for information

hipGetDeviceProperties

	
hipError_t hipGetDeviceProperties(hipDeviceProp_t *prop, int deviceId)

	Returns device properties.

	
Bug:

	HCC always returns 0 for maxThreadsPerMultiProcessor

HCC always returns 0 for regsPerBlock

HCC always returns 0 for l2CacheSize

	Return
	#hipSuccess, #hipErrorInvalidDevice

	Parameters
	
	[out] prop: written with device properties

	[in] deviceId: which device to query for information

Populates hipGetDeviceProperties with information for the specified device.

hipDeviceSetCacheConfig

	
hipError_t hipDeviceSetCacheConfig(hipFuncCache_t cacheConfig)

	Set L1/Shared cache partition.

	Return
	#hipSuccess, #hipErrorInitializationError Note: AMD devices and some Nvidia GPUS do not support reconfigurable cache. This hint is ignored on those architectures.

	Parameters
	
	[in] cacheConfig:

hipDeviceGetCacheConfig

	
hipError_t hipDeviceGetCacheConfig(hipFuncCache_t *cacheConfig)

	Set Cache configuration for a specific function.

	Return
	#hipSuccess, #hipErrorInitializationError Note: AMD devices and some Nvidia GPUS do not support reconfigurable cache. This hint is ignored on those architectures.

	Parameters
	
	[in] cacheConfig:

hipDeviceGetLimit

	
hipError_t hipDeviceGetLimit(size_t *pValue, enum hipLimit_t limit)

	Get Resource limits of current device.

	Return
	#hipSuccess, #hipErrorUnsupportedLimit, #hipErrorInvalidValue Note: Currently, only hipLimitMallocHeapSize is available

	Parameters
	
	[out] pValue:

	[in] limit:

hipFuncSetCacheConfig

	
hipError_t hipFuncSetCacheConfig(const void *func, hipFuncCache_t config)

	Set Cache configuration for a specific function.

	Return
	#hipSuccess, #hipErrorInitializationError Note: AMD devices and some Nvidia GPUS do not support reconfigurable cache. This hint is ignored on those architectures.

	Parameters
	
	[in] config;:

hipDeviceGetSharedMemConfig

	
hipError_t hipDeviceGetSharedMemConfig(hipSharedMemConfig *pConfig)

	Returns bank width of shared memory for current device.

Note: AMD devices and some Nvidia GPUS do not support shared cache banking, and the hint is ignored on those architectures.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInitializationError

	Parameters
	
	[out] pConfig:

hipDeviceSetSharedMemConfig

	
hipError_t hipDeviceSetSharedMemConfig(hipSharedMemConfig config)

	The bank width of shared memory on current device is set.

Note: AMD devices and some Nvidia GPUS do not support shared cache banking, and the hint is ignored on those architectures.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInitializationError

	Parameters
	
	[in] config:

hipSetDeviceFlags

	
hipError_t hipSetDeviceFlags(unsigned flags)

	The current device behavior is changed according the flags passed.

hipDeviceMapHost : Allow mapping host memory. On ROCM, this is always allowed and the flag is ignored. hipDeviceLmemResizeToMax :

	Warning
	ROCm silently ignores this flag.

	Return
	#hipSuccess, #hipErrorInvalidDevice, #hipErrorSetOnActiveProcess

	Parameters
	
	[in] flags: The schedule flags impact how HIP waits for the completion of a command running on a device. hipDeviceScheduleSpin : HIP runtime will actively spin in the thread which submitted the work until the command completes. This offers the lowest latency, but will consume a CPU core and may increase power. hipDeviceScheduleYield : The HIP runtime will yield the CPU to system so that other tasks can use it. This may increase latency to detect the completion but will consume less power and is friendlier to other tasks in the system. hipDeviceScheduleBlockingSync : On ROCm platform, this is a synonym for hipDeviceScheduleYield. hipDeviceScheduleAuto : Use a hueristic to select between Spin and Yield modes. If the number of HIP contexts is greater than the number of logical processors in the system, use Spin scheduling. Else use Yield scheduling.

hipChooseDevice

	
hipError_t hipChooseDevice(int *device, const hipDeviceProp_t *prop)

	Device which matches hipDeviceProp_t is returned.

	Return
	#hipSuccess, #hipErrorInvalidValue

	Parameters
	
	[out] device: ID

	[in] device: properties pointer

Error Handling

Error Handling types and functions.

hipGetLastError

	
hipError_t hipGetLastError(void)

	Return last error returned by any HIP runtime API call and resets the stored error code to #hipSuccess.

Returns the last error that has been returned by any of the runtime calls in the same host thread, and then resets the saved error to #hipSuccess.

	Return
	return code from last HIP called from the active host thread

	See
	hipGetErrorString, hipGetLastError, hipPeakAtLastError, hipError_t

hipPeekAtLastError

	
hipError_t hipPeekAtLastError(void)

	Return last error returned by any HIP runtime API call.

Returns the last error that has been returned by any of the runtime calls in the same host thread. Unlike hipGetLastError, this function does not reset the saved error code.

	Return
	#hipSuccess

	See
	hipGetErrorString, hipGetLastError, hipPeakAtLastError, hipError_t

hipGetErrorName

	
const char *hipGetErrorName(hipError_t hip_error)

	Return name of the specified error code in text form.

	Return
	const char pointer to the NULL-terminated error name

	See
	hipGetErrorString, hipGetLastError, hipPeakAtLastError, hipError_t

	Parameters
	
	hip_error: Error code to convert to name.

hipGetErrorString

	
const char *hipGetErrorString(hipError_t hipError)

	Return handy text string message to explain the error which occurred.

	Return
	const char pointer to the NULL-terminated error string

	Warning
	: on HCC, this function returns the name of the error (same as hipGetErrorName)

	See
	hipGetErrorName, hipGetLastError, hipPeakAtLastError, hipError_t

	Parameters
	
	hipError: Error code to convert to string.

Event Management

hipEventCreateWithFlags

	
hipError_t hipEventCreateWithFlags(hipEvent_t *event, unsigned flags)

	Create an event with the specified flags.

hipEventDefault : Default flag. The event will use active synchronization and will support timing. Blocking synchronization provides lowest possible latency at the expense of dedicating a CPU to poll on the eevent. hipEventBlockingSync : The event will use blocking synchronization : if hipEventSynchronize is called on this event, the thread will block until the event completes. This can increase latency for the synchroniation but can result in lower power and more resources for other CPU threads. hipEventDisableTiming : Disable recording of timing information. On ROCM platform, timing information is always recorded and this flag has no performance benefit.
	Parameters
	
	[inout] event: Returns the newly created event.

	[in] flags: Flags to control event behavior. Valid values are hipEventDefault, hipEventBlockingSync, hipEventDisableTiming, hipEventInterprocess

	Warning
	On HCC platform, hipEventInterprocess support is under development. Use of this flag will return an error.

	Return
	#hipSuccess, #hipErrorInitializationError, #hipErrorInvalidValue, #hipErrorLaunchFailure, #hipErrorMemoryAllocation

	See
	hipEventCreate, hipEventSynchronize, hipEventDestroy, hipEventElapsedTime

hipEventCreate

	
hipError_t hipEventCreate(hipEvent_t *event)

	Create an event.

	Return
	#hipSuccess, #hipErrorInitializationError, #hipErrorInvalidValue, #hipErrorLaunchFailure, #hipErrorMemoryAllocation

	See
	hipEventCreateWithFlags, hipEventRecord, hipEventQuery, hipEventSynchronize, hipEventDestroy, hipEventElapsedTime

	Parameters
	
	[inout] event: Returns the newly created event.

hipEventRecord

	
hipError_t hipEventRecord(hipEvent_t event, hipStream_t stream)

	Record an event in the specified stream.

hipEventQuery() or hipEventSynchronize() must be used to determine when the event transitions from “recording” (after hipEventRecord() is called) to “recorded” (when timestamps are set, if requested).
	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInitializationError, #hipErrorInvalidResourceHandle, #hipErrorLaunchFailure

	Parameters
	
	[in] event: event to record.

	[in] stream: stream in which to record event.

Events which are recorded in a non-NULL stream will transition to from recording to “recorded” state when they reach the head of the specified stream, after all previous commands in that stream have completed executing.

If hipEventRecord() has been previously called on this event, then this call will overwrite any existing state in event.

If this function is called on a an event that is currently being recorded, results are undefined
	either outstanding recording may save state into the event, and the order is not guaranteed.

	See
	hipEventCreate, hipEventCreateWithFlags, hipEventQuery, hipEventSynchronize, hipEventDestroy, hipEventElapsedTime

hipEventDestroy

	
hipError_t hipEventDestroy(hipEvent_t event)

	Destroy the specified event.

Releases memory associated with the event. If the event is recording but has not completed recording when

hipEventDestroy() is called, the function will return immediately and the completion_future resources will be released later, when the hipDevice is synchronized.
	Return
	#hipSuccess, #hipErrorInitializationError, #hipErrorInvalidValue, #hipErrorLaunchFailure

	Parameters
	
	[in] event: Event to destroy.

	See
	hipEventCreate, hipEventCreateWithFlags, hipEventQuery, hipEventSynchronize, hipEventRecord, hipEventElapsedTime

	Return
	#hipSuccess

hipEventSynchronize

	
hipError_t hipEventSynchronize(hipEvent_t event)

	Wait for an event to complete.

This function will block until the event is ready, waiting for all previous work in the stream specified when event was recorded with hipEventRecord().

If hipEventRecord() has not been called on event, this function returns immediately.

TODO-hcc - This function needs to support hipEventBlockingSync parameter.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInitializationError, #hipErrorInvalidResourceHandle, #hipErrorLaunchFailure

	See
	hipEventCreate, hipEventCreateWithFlags, hipEventQuery, hipEventDestroy, hipEventRecord, hipEventElapsedTime

	Parameters
	
	[in] event: Event on which to wait.

hipEventElapsedTime

	
hipError_t hipEventElapsedTime(float *ms, hipEvent_t start, hipEvent_t stop)

	Return the elapsed time between two events.

Computes the elapsed time between two events. Time is computed in ms, with a resolution of approximately 1 us.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorNotReady, #hipErrorInvalidResourceHandle, #hipErrorInitializationError, #hipErrorLaunchFailure

	Parameters
	
	[out] ms: : Return time between start and stop in ms.

	[in] start: : Start event.

	[in] stop: : Stop event.

Events which are recorded in a NULL stream will block until all commands on all other streams complete execution, and then record the timestamp.

Events which are recorded in a non-NULL stream will record their timestamp when they reach the head of the specified stream, after all previous commands in that stream have completed executing. Thus the time that the event recorded may be significantly after the host calls hipEventRecord().

If hipEventRecord() has not been called on either event, then #hipErrorInvalidResourceHandle is returned. If hipEventRecord() has been called on both events, but the timestamp has not yet been recorded on one or both events (that is, hipEventQuery() would return #hipErrorNotReady on at least one of the events), then #hipErrorNotReady is returned.

	See
	hipEventCreate, hipEventCreateWithFlags, hipEventQuery, hipEventDestroy, hipEventRecord, hipEventSynchronize

hipEventQuery S

	
hipError_t hipEventQuery(hipEvent_t event)

	Query event status.

Query the status of the specified event. This function will return #hipErrorNotReady if all commands in the appropriate stream (specified to

hipEventRecord()) have completed. If that work has not completed, or if hipEventRecord() was not called on the event, then #hipSuccess is returned.
	Return
	#hipSuccess, #hipErrorNotReady, #hipErrorInvalidResourceHandle, #hipErrorInvalidValue, #hipErrorInitializationError, #hipErrorLaunchFailure

	Parameters
	
	[in] event: Event to query.

	See
	hipEventCreate, hipEventCreateWithFlags, hipEventRecord, hipEventDestroy, hipEventSynchronize, hipEventElapsedTime

Initialization and Version

hipInit

	
hipError_t hipInit(unsigned int flags)

	Explicitly initializes the HIP runtime.

Most HIP APIs implicitly initialize the HIP runtime. This API provides control over the timing of the initialization.

hipDeviceGet

	
hipError_t hipDeviceGet(hipDevice_t *device, int ordinal)

	Returns a handle to a compute device.

	Return
	#hipSuccess, #hipErrorInavlidDevice

	Parameters
	
	[out] device:

	[in] ordinal:

hipDeviceComputeCapability

	
hipError_t hipDeviceComputeCapability(int *major, int *minor, hipDevice_t device)

	Returns the compute capability of the device.

	Return
	#hipSuccess, #hipErrorInavlidDevice

	Parameters
	
	[out] major:

	[out] minor:

	[in] device:

hipDeviceGetName

	
hipError_t hipDeviceGetName(char *name, int len, hipDevice_t device)

	Returns an identifer string for the device.

	Return
	#hipSuccess, #hipErrorInavlidDevice

	Parameters
	
	[out] name:

	[in] len:

	[in] device:

hipDeviceGetPCIBusId

	
hipError_t hipDeviceGetPCIBusId(char *pciBusId, int len, int device)

	Returns a PCI Bus Id string for the device, overloaded to take int device ID.

	Return
	#hipSuccess, #hipErrorInavlidDevice

	Parameters
	
	[out] pciBusId:

	[in] len:

	[in] device:

hipDeviceGetByPCIBusId

	
hipError_t hipDeviceGetByPCIBusId(int *device, const char *pciBusId)

	Returns a handle to a compute device.

	Return
	#hipSuccess, #hipErrorInavlidDevice, #hipErrorInvalidValue

	Parameters
	
	[out] device: handle

	[in] PCI: Bus ID

hipDeviceTotalMem

	
hipError_t hipDeviceTotalMem(size_t *bytes, hipDevice_t device)

	Returns the total amount of memory on the device.

	Return
	#hipSuccess, #hipErrorInavlidDevice

	Parameters
	
	[out] bytes:

	[in] device:

hipDriverGetVersion

	
hipError_t hipDriverGetVersion(int *driverVersion)

	Returns the approximate HIP driver version.

	Return
	#hipSuccess, #hipErrorInavlidValue

	Warning
	The HIP feature set does not correspond to an exact CUDA SDK driver revision. This function always set *driverVersion to 4 as an approximation though HIP supports some features which were introduced in later CUDA SDK revisions. HIP apps code should not rely on the driver revision number here and should use arch feature flags to test device capabilities or conditional compilation.

	See
	hipRuntimeGetVersion

	Parameters
	
	[out] driverVersion:

hipRuntimeGetVersion

	
hipError_t hipRuntimeGetVersion(int *runtimeVersion)

	Returns the approximate HIP Runtime version.

	Return
	#hipSuccess, #hipErrorInavlidValue

	Warning
	On HIP/HCC path this function returns HIP runtime patch version however on HIP/NVCC path this function return CUDA runtime version.

	See
	hipDriverGetVersion

	Parameters
	
	[out] runtimeVersion:

hipModuleLoad

	
hipError_t hipModuleLoad(hipModule_t *module, const char *fname)

	Loads code object from file into a hipModule_t.

	Return
	hipSuccess, hipErrorInvalidValue, hipErrorInvalidContext, hipErrorFileNotFound, hipErrorOutOfMemory, hipErrorSharedObjectInitFailed, hipErrorNotInitialized

	Parameters
	
	[in] fname:

	[out] module:

hipModuleUnload

	
hipError_t hipModuleUnload(hipModule_t module)

	Frees the module.

	Return
	hipSuccess, hipInvalidValue module is freed and the code objects associated with it are destroyed

	Parameters
	
	[in] module:

hipModuleGetFunction

	
hipError_t hipModuleGetFunction(hipFunction_t *function, hipModule_t module, const char *kname)

	Function with kname will be extracted if present in module.

	Return
	hipSuccess, hipErrorInvalidValue, hipErrorInvalidContext, hipErrorNotInitialized, hipErrorNotFound,

	Parameters
	
	[in] module:

	[in] kname:

	[out] function:

hipModuleGetGlobal

	
hipError_t hipModuleGetGlobal(hipDeviceptr_t *dptr, size_t *bytes, hipModule_t hmod, const char *name)

	returns device memory pointer and size of the kernel present in the module with symbol name

	Return
	hipSuccess, hipErrorInvalidValue, hipErrorNotInitialized

	Parameters
	
	[out] dptr:

	[out] bytes:

	[in] hmod:

	[in] name:

hipModuleLoadData

	
hipError_t hipModuleLoadData(hipModule_t *module, const void *image)

	builds module from code object which resides in host memory.

Image is pointer to that location.

	Return
	hipSuccess, hipErrorNotInitialized, hipErrorOutOfMemory, hipErrorNotInitialized

	Parameters
	
	[in] image:

	[out] module:

hipModuleLoadDataEx

	
hipError_t hipModuleLoadDataEx(hipModule_t *module, const void *image, unsigned int numOptions, hipJitOption *options, void **optionValues)

	builds module from code object which resides in host memory.

Image is pointer to that location. Options are not used. hipModuleLoadData is called.

	Return
	hipSuccess, hipErrorNotInitialized, hipErrorOutOfMemory, hipErrorNotInitialized

	Parameters
	
	[in] image:

	[out] module:

	[in] number: of options

	[in] options: for JIT

	[in] option: values for JIT

hipModuleLaunchKernel

	
hipError_t hipModuleLaunchKernel(hipFunction_t f, unsigned int gridDimX, unsigned int gridDimY, unsigned int gridDimZ, unsigned int blockDimX, unsigned int blockDimY, unsigned int blockDimZ, unsigned int sharedMemBytes, hipStream_t stream, void **kernelParams, void **extra)

	launches kernel f with launch parameters and shared memory on stream with arguments passed to kernelparams or extra

	Return
	hipSuccess, hipInvalidDevice, hipErrorNotInitialized, hipErrorInvalidValue

	Warning
	kernellParams argument is not yet implemented in HIP. Please use extra instead. Please refer to hip_porting_driver_api.md for sample usage.

	Parameters
	
	[in] f: Kernel to launch.

	[in] gridDimX: X grid dimension specified as multiple of blockDimX.

	[in] gridDimY: Y grid dimension specified as multiple of blockDimY.

	[in] gridDimZ: Z grid dimension specified as multiple of blockDimZ.

	[in] blockDimX: X block dimensions specified in work-items

	[in] blockDimY: Y grid dimension specified in work-items

	[in] blockDimZ: Z grid dimension specified in work-items

	[in] sharedMemBytes: Amount of dynamic shared memory to allocate for this kernel. The kernel can access this with HIP_DYNAMIC_SHARED.

	[in] stream: Stream where the kernel should be dispatched. May be 0, in which case th default stream is used with associated synchronization rules.

	[in] kernelParams:

	[in] extra: Pointer to kernel arguments. These are passed directly to the kernel and must be in the memory layout and alignment expected by the kernel.

Memory Management

hipPointerGetAttributes

	
hipError_t hipPointerGetAttributes(hipPointerAttribute_t *attributes, const void *ptr)

	Return attributes for the specified pointer.

	Return
	#hipSuccess, #hipErrorInvalidDevice, #hipErrorInvalidValue

	See
	hipGetDeviceCount, hipGetDevice, hipSetDevice, hipChooseDevice

	Parameters
	
	[out] attributes: for the specified pointer

	[in] pointer: to get attributes for

hipMalloc

	
hipError_t hipMalloc(void **ptr, size_t size)

	Allocate memory on the default accelerator.

If size is 0, no memory is allocated, *ptr returns nullptr, and hipSuccess is returned.

	Parameters
	
	[out] ptr: Pointer to the allocated memory

	[in] size: Requested memory size

	Return
	#hipSuccess, #hipErrorMemoryAllocation, #hipErrorInvalidValue (bad context, null *ptr)

	See
	hipMallocPitch, hipFree, hipMallocArray, hipFreeArray, hipMalloc3D, hipMalloc3DArray, hipHostFree, hipHostMalloc

hipHostMalloc

	
hipError_t hipHostMalloc(void **ptr, size_t size, unsigned int flags)

	Allocate device accessible page locked host memory.

If size is 0, no memory is allocated, *ptr returns nullptr, and hipSuccess is returned.

	Parameters
	
	[out] ptr: Pointer to the allocated host pinned memory

	[in] size: Requested memory size

	[in] flags: Type of host memory allocation

	Return
	#hipSuccess, #hipErrorMemoryAllocation

	See
	hipSetDeviceFlags, hipHostFree

hipHostGetDevicePointer

	
hipError_t hipHostGetDevicePointer(void **devPtr, void *hstPtr, unsigned int flags)

	Get Device pointer from Host Pointer allocated through hipHostMalloc.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryAllocation

	See
	hipSetDeviceFlags, hipHostMalloc

	Parameters
	
	[out] dstPtr: Device Pointer mapped to passed host pointer

	[in] hstPtr: Host Pointer allocated through hipHostMalloc

	[in] flags: Flags to be passed for extension

hipHostGetFlags

	
hipError_t hipHostGetFlags(unsigned int *flagsPtr, void *hostPtr)

	Return flags associated with host pointer.

	Return
	#hipSuccess, #hipErrorInvalidValue

	See
	hipHostMalloc

	Parameters
	
	[out] flagsPtr: Memory location to store flags

	[in] hostPtr: Host Pointer allocated through hipHostMalloc

hipHostRegister

	
hipError_t hipHostRegister(void *hostPtr, size_t sizeBytes, unsigned int flags)

	Register host memory so it can be accessed from the current device.

Flags:

	hipHostRegisterDefault Memory is Mapped and Portable

	hipHostRegisterPortable Memory is considered registered by all contexts. HIP only supports one context so this is always assumed true.

	hipHostRegisterMapped Map the allocation into the address space for the current device. The device pointer can be obtained with hipHostGetDevicePointer.

	Parameters
	
	[out] hostPtr: Pointer to host memory to be registered.

	[in] sizeBytes: size of the host memory

	[in] flags.: See below.

After registering the memory, use hipHostGetDevicePointer to obtain the mapped device pointer. On many systems, the mapped device pointer will have a different value than the mapped host pointer. Applications must use the device pointer in device code, and the host pointer in device code.

On some systems, registered memory is pinned. On some systems, registered memory may not be actually be pinned but uses OS or hardware facilities to all GPU access to the host memory.

Developers are strongly encouraged to register memory blocks which are aligned to the host cache-line size. (typically 64-bytes but can be obtains from the CPUID instruction).

If registering non-aligned pointers, the application must take care when register pointers from the same cache line on different devices. HIP’s coarse-grained synchronization model does not guarantee correct results if different devices write to different parts of the same cache block - typically one of the writes will “win” and overwrite data from the other registered memory region.

	Return
	#hipSuccess, #hipErrorMemoryAllocation

	See
	hipHostUnregister, hipHostGetFlags, hipHostGetDevicePointer

hipHostUnregister

	
hipError_t hipHostUnregister(void *hostPtr)

	Un-register host pointer.

	Return
	Error code

	See
	hipHostRegister

	Parameters
	
	[in] hostPtr: Host pointer previously registered with hipHostRegister

hipMallocPitch

	
hipError_t hipMallocPitch(void **ptr, size_t *pitch, size_t width, size_t height)

	Allocates at least width (in bytes) * height bytes of linear memory Padding may occur to ensure alighnment requirements are met for the given row The change in width size due to padding will be returned in *pitch.

Currently the alignment is set to 128 bytes

If size is 0, no memory is allocated, *ptr returns nullptr, and hipSuccess is returned.

	Parameters
	
	[out] ptr: Pointer to the allocated device memory

	[out] pitch: Pitch for allocation (in bytes)

	[in] width: Requested pitched allocation width (in bytes)

	[in] height: Requested pitched allocation height

	Return
	Error code

	See
	hipMalloc, hipFree, hipMallocArray, hipFreeArray, hipHostFree, hipMalloc3D, hipMalloc3DArray, hipHostMalloc

hipFree

	
hipError_t hipFree(void *ptr)

	Free memory allocated by the hcc hip memory allocation API.

This API performs an implicit hipDeviceSynchronize() call. If pointer is NULL, the hip runtime is initialized and hipSuccess is returned.

	Return
	#hipSuccess

	Return
	#hipErrorInvalidDevicePointer (if pointer is invalid, including host pointers allocated with hipHostMalloc)

	See
	hipMalloc, hipMallocPitch, hipMallocArray, hipFreeArray, hipHostFree, hipMalloc3D, hipMalloc3DArray, hipHostMalloc

	Parameters
	
	[in] ptr: Pointer to memory to be freed

hipMemcpy

	
hipError_t hipMemcpy(void *dst, const void *src, size_t sizeBytes, hipMemcpyKind kind)

	Copy data from src to dst.

It supports memory from host to device, device to host, device to device and host to host The src and dst must not overlap.

For hipMemcpy, the copy is always performed by the current device (set by hipSetDevice). For multi-gpu or peer-to-peer configurations, it is recommended to set the current device to the device where the src data is physically located. For optimal peer-to-peer copies, the copy device must be able to access the src and dst pointers (by calling hipDeviceEnablePeerAccess with copy agent as the current device and src/dest as the peerDevice argument. if this is not done, the hipMemcpy will still work, but will perform the copy using a staging buffer on the host.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryFree, #hipErrorUnknowni

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

	[in] copyType: Memory copy type

hipMemcpyHtoD

	
hipError_t hipMemcpyHtoD(hipDeviceptr_t dst, void *src, size_t sizeBytes)

	Copy data from Host to Device.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyDtoH

	
hipError_t hipMemcpyDtoH(void *dst, hipDeviceptr_t src, size_t sizeBytes)

	Copy data from Device to Host.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyDtoD

	
hipError_t hipMemcpyDtoD(hipDeviceptr_t dst, hipDeviceptr_t src, size_t sizeBytes)

	Copy data from Device to Device.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyHtoDAsync

	
hipError_t hipMemcpyHtoDAsync(hipDeviceptr_t dst, void *src, size_t sizeBytes, hipStream_t stream)

	Copy data from Host to Device asynchronously.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyDtoHAsync

	
hipError_t hipMemcpyDtoHAsync(void *dst, hipDeviceptr_t src, size_t sizeBytes, hipStream_t stream)

	Copy data from Device to Host asynchronously.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyDtoDAsync

	
hipError_t hipMemcpyDtoDAsync(hipDeviceptr_t dst, hipDeviceptr_t src, size_t sizeBytes, hipStream_t stream)

	Copy data from Device to Device asynchronously.

	Return
	#hipSuccess, #hipErrorDeInitialized, #hipErrorNotInitialized, #hipErrorInvalidContext, #hipErrorInvalidValue

	See
	hipArrayCreate, hipArrayDestroy, hipArrayGetDescriptor, hipMemAlloc, hipMemAllocHost, hipMemAllocPitch, hipMemcpy2D, hipMemcpy2DAsync, hipMemcpy2DUnaligned, hipMemcpyAtoA, hipMemcpyAtoD, hipMemcpyAtoH, hipMemcpyAtoHAsync, hipMemcpyDtoA, hipMemcpyDtoD, hipMemcpyDtoDAsync, hipMemcpyDtoH, hipMemcpyDtoHAsync, hipMemcpyHtoA, hipMemcpyHtoAAsync, hipMemcpyHtoDAsync, hipMemFree, hipMemFreeHost, hipMemGetAddressRange, hipMemGetInfo, hipMemHostAlloc, hipMemHostGetDevicePointer

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

hipMemcpyToSymbolAsync

	
hipError_t hipMemcpyToSymbolAsync (const void *symbolName, const void *src, size_t sizeBytes, size_t offset, hipMemcpyKind kind, hipStream_t stream __dparm(0))

	Copies sizeBytes bytes from the memory area pointed to by src to the memory area pointed to by offset bytes from the start of symbol symbol.

The memory areas may not overlap. Symbol can either be a variable that resides in global or constant memory space, or it can be a character string, naming a variable that resides in global or constant memory space. Kind can be either hipMemcpyHostToDevice or hipMemcpyDeviceToDevice hipMemcpyToSymbolAsync() is asynchronous with respect to the host, so the call may return before copy is complete. TODO: cudaErrorInvalidSymbol and cudaErrorInvalidMemcpyDirection is not supported, use hipErrorUnknown for now.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryFree, #hipErrorUnknown

	See
	hipMemcpy, hipMemcpy2D, hipMemcpyToArray, hipMemcpy2DToArray, hipMemcpyFromArray, hipMemcpy2DFromArray, hipMemcpyArrayToArray, hipMemcpy2DArrayToArray, hipMemcpyFromSymbol, hipMemcpyAsync, hipMemcpy2DAsync, hipMemcpyToArrayAsync, hipMemcpy2DToArrayAsync, hipMemcpyFromArrayAsync, hipMemcpy2DFromArrayAsync, hipMemcpyToSymbolAsync, hipMemcpyFromSymbolAsync

	Parameters
	
	[in] symbolName: - Symbol destination on device

	[in] src: - Data being copy from

	[in] sizeBytes: - Data size in bytes

	[in] offset: - Offset from start of symbol in bytes

	[in] kind: - Type of transfer

hipMemcpyFromSymbol

	
hipError_t hipMemcpyFromSymbol (void *dst, const void *symbolName, size_t sizeBytes, size_t offset __dparm(0), hipMemcpyKind kind __dparm(hipMemcpyDeviceToHost))

	

hipMemcpyAsync

	
hipError_t hipMemcpyAsync (void *dst, const void *src, size_t sizeBytes, hipMemcpyKind kind, hipStream_t stream __dparm(0))

	Copy data from src to dst asynchronously.

For multi-gpu or peer-to-peer configurations, it is recommended to use a stream which is a attached to the device where the src data is physically located. For optimal peer-to-peer copies, the copy device must be able to access the src and dst pointers (by calling hipDeviceEnablePeerAccess with copy agent as the current device and src/dest as the peerDevice argument. if this is not done, the hipMemcpy will still work, but will perform the copy using a staging buffer on the host.

	Warning
	If host or dest are not pinned, the memory copy will be performed synchronously. For best performance, use hipHostMalloc to allocate host memory that is transferred asynchronously.

	Warning
	on HCC hipMemcpyAsync does not support overlapped H2D and D2H copies. For hipMemcpy, the copy is always performed by the device associated with the specified stream.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryFree, #hipErrorUnknown

	See
	hipMemcpy, hipMemcpy2D, hipMemcpyToArray, hipMemcpy2DToArray, hipMemcpyFromArray, hipMemcpy2DFromArray, hipMemcpyArrayToArray, hipMemcpy2DArrayToArray, hipMemcpyToSymbol, hipMemcpyFromSymbol, hipMemcpy2DAsync, hipMemcpyToArrayAsync, hipMemcpy2DToArrayAsync, hipMemcpyFromArrayAsync, hipMemcpy2DFromArrayAsync, hipMemcpyToSymbolAsync, hipMemcpyFromSymbolAsync

	Parameters
	
	[out] dst: Data being copy to

	[in] src: Data being copy from

	[in] sizeBytes: Data size in bytes

	[in] accelerator_view: Accelerator view which the copy is being enqueued

hipMemset

	
hipError_t hipMemset(void *dst, int value, size_t sizeBytes)

	Fills the first sizeBytes bytes of the memory area pointed to by dest with the constant byte value value.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorNotInitialized

	Parameters
	
	[out] dst: Data being filled

	[in] constant: value to be set

	[in] sizeBytes: Data size in bytes

hipMemsetD8

	
hipError_t hipMemsetD8(hipDeviceptr_t dest, unsigned char value, size_t sizeBytes)

	Fills the first sizeBytes bytes of the memory area pointed to by dest with the constant byte value value.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorNotInitialized

	Parameters
	
	[out] dst: Data ptr to be filled

	[in] constant: value to be set

	[in] sizeBytes: Data size in bytes

hipMemsetAsync

	
hipError_t hipMemsetAsync (void *dst, int value, size_t sizeBytes, hipStream_t stream __dparm(0))

	Fills the first sizeBytes bytes of the memory area pointed to by dev with the constant byte value value.

hipMemsetAsync() is asynchronous with respect to the host, so the call may return before the memset is complete. The operation can optionally be associated to a stream by passing a non-zero stream argument. If stream is non-zero, the operation may overlap with operations in other streams.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryFree

	Parameters
	
	[out] dst: Pointer to device memory

	[in] value: - Value to set for each byte of specified memory

	[in] sizeBytes: - Size in bytes to set

	[in] stream: - Stream identifier

hipMemset2D

	
hipError_t hipMemset2D(void *dst, size_t pitch, int value, size_t width, size_t height)

	Fills the memory area pointed to by dst with the constant value.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorMemoryFree

	Parameters
	
	[out] dst: Pointer to device memory

	[in] pitch: - data size in bytes

	[in] value: - constant value to be set

	[in] width:

	[in] height:

hipMemGetInfo

	
hipError_t hipMemGetInfo(size_t *free, size_t *total)

	Query memory info.

Return snapshot of free memory, and total allocatable memory on the device.

Returns in *free a snapshot of the current free memory.
	Return
	#hipSuccess, #hipErrorInvalidDevice, #hipErrorInvalidValue

	Warning
	On HCC, the free memory only accounts for memory allocated by this process and may be optimistic.

hipMemPtrGetInfo

	
hipError_t hipMemPtrGetInfo(void *ptr, size_t *size)

	

hipMallocArray

	
hipError_t hipMallocArray (hipArray **array, const hipChannelFormatDesc *desc, size_t width, size_t height __dparm(0), unsigned int flags __dparm(hipArrayDefault))

	Allocate an array on the device.

	Return
	#hipSuccess, #hipErrorMemoryAllocation

	See
	hipMalloc, hipMallocPitch, hipFree, hipFreeArray, hipHostMalloc, hipHostFree

	Parameters
	
	[out] array: Pointer to allocated array in device memory

	[in] desc: Requested channel format

	[in] width: Requested array allocation width

	[in] height: Requested array allocation height

	[in] flags: Requested properties of allocated array

hipFreeArray

	
hipError_t hipFreeArray(hipArray *array)

	Frees an array on the device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInitializationError

	See
	hipMalloc, hipMallocPitch, hipFree, hipMallocArray, hipHostMalloc, hipHostFree

	Parameters
	
	[in] array: Pointer to array to free

hipMalloc3DArray

	
hipError_t hipMalloc3DArray(hipArray **array, const struct hipChannelFormatDesc *desc, struct hipExtent extent, unsigned int flags)

	Allocate an array on the device.

	Return
	#hipSuccess, #hipErrorMemoryAllocation

	See
	hipMalloc, hipMallocPitch, hipFree, hipFreeArray, hipHostMalloc, hipHostFree

	Parameters
	
	[out] array: Pointer to allocated array in device memory

	[in] desc: Requested channel format

	[in] extent: Requested array allocation width, height and depth

	[in] flags: Requested properties of allocated array

hipMemcpy2D

	
hipError_t hipMemcpy2D(void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, hipMemcpyKind kind)

	Copies data between host and device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidPitchValue, #hipErrorInvalidDevicePointer, #hipErrorInvalidMemcpyDirection

	See
	hipMemcpy, hipMemcpyToArray, hipMemcpy2DToArray, hipMemcpyFromArray, hipMemcpyToSymbol, hipMemcpyAsync

	Parameters
	
	[in] dst: Destination memory address

	[in] dpitch: Pitch of destination memory

	[in] src: Source memory address

	[in] spitch: Pitch of source memory

	[in] width: Width of matrix transfer (columns in bytes)

	[in] height: Height of matrix transfer (rows)

	[in] kind: Type of transfer

hipMemcpy2DAsync

	
hipError_t hipMemcpy2DAsync (void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, hipMemcpyKind kind, hipStream_t stream __dparm(0))

	Copies data between host and device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidPitchValue, #hipErrorInvalidDevicePointer, #hipErrorInvalidMemcpyDirection

	See
	hipMemcpy, hipMemcpyToArray, hipMemcpy2DToArray, hipMemcpyFromArray, hipMemcpyToSymbol, hipMemcpyAsync

	Parameters
	
	[in] dst: Destination memory address

	[in] dpitch: Pitch of destination memory

	[in] src: Source memory address

	[in] spitch: Pitch of source memory

	[in] width: Width of matrix transfer (columns in bytes)

	[in] height: Height of matrix transfer (rows)

	[in] kind: Type of transfer

	[in] stream: Stream to use

hipMemcpy2DToArray

	
hipError_t hipMemcpy2DToArray(hipArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, hipMemcpyKind kind)

	Copies data between host and device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidPitchValue, #hipErrorInvalidDevicePointer, #hipErrorInvalidMemcpyDirection

	See
	hipMemcpy, hipMemcpyToArray, hipMemcpy2D, hipMemcpyFromArray, hipMemcpyToSymbol, hipMemcpyAsync

	Parameters
	
	[in] dst: Destination memory address

	[in] dpitch: Pitch of destination memory

	[in] src: Source memory address

	[in] spitch: Pitch of source memory

	[in] width: Width of matrix transfer (columns in bytes)

	[in] height: Height of matrix transfer (rows)

	[in] kind: Type of transfer

hipMemcpyToArray

	
hipError_t hipMemcpyToArray(hipArray *dst, size_t wOffset, size_t hOffset, const void *src, size_t count, hipMemcpyKind kind)

	Copies data between host and device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidPitchValue, #hipErrorInvalidDevicePointer, #hipErrorInvalidMemcpyDirection

	See
	hipMemcpy, hipMemcpy2DToArray, hipMemcpy2D, hipMemcpyFromArray, hipMemcpyToSymbol, hipMemcpyAsync

	Parameters
	
	[in] dst: Destination memory address

	[in] dpitch: Pitch of destination memory

	[in] src: Source memory address

	[in] spitch: Pitch of source memory

	[in] width: Width of matrix transfer (columns in bytes)

	[in] height: Height of matrix transfer (rows)

	[in] kind: Type of transfer

hipMemcpy3D

	
hipError_t hipMemcpy3D(const struct hipMemcpy3DParms *p)

	Copies data between host and device.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidPitchValue, #hipErrorInvalidDevicePointer, #hipErrorInvalidMemcpyDirection

	See
	hipMemcpy, hipMemcpy2DToArray, hipMemcpy2D, hipMemcpyFromArray, hipMemcpyToSymbol, hipMemcpyAsync

	Parameters
	
	[in] p: 3D memory copy parameters

Stream Management

hipStreamCreate

	
hipError_t hipStreamCreate(hipStream_t *stream)

	Create an asynchronous stream.

Create a new asynchronous stream.

stream returns an opaque handle that can be used to reference the newly created stream in subsequent hipStream* commands. The stream is allocated on the heap and will remain allocated even if the handle goes out-of-scope. To release the memory used by the stream, applicaiton must call hipStreamDestroy.
	Return
	#hipSuccess, #hipErrorInvalidValue

	Parameters
	
	[inout] stream: Valid pointer to hipStream_t. This function writes the memory with the newly created stream.

	Return
	#hipSuccess, #hipErrorInvalidValue

	See
	hipStreamCreateWithFlags, hipStreamCreateWithPriority, hipStreamSynchronize, hipStreamWaitEvent, hipStreamDestroy

hipStreamCreateWithFlags

	
hipError_t hipStreamCreateWithFlags(hipStream_t *stream, unsigned int flags)

	Create an asynchronous stream.

Create a new asynchronous stream.

stream returns an opaque handle that can be used to reference the newly created stream in subsequent hipStream* commands. The stream is allocated on the heap and will remain allocated even if the handle goes out-of-scope. To release the memory used by the stream, applicaiton must call hipStreamDestroy. Flags controls behavior of the stream. See hipStreamDefault, hipStreamNonBlocking.
	Return
	#hipSuccess, #hipErrorInvalidValue

	Parameters
	
	[inout] stream: Pointer to new stream

	[in] flags: to control stream creation.

	See
	hipStreamCreate, hipStreamCreateWithPriority, hipStreamSynchronize, hipStreamWaitEvent, hipStreamDestroy

hipStreamCreateWithPriority

	
hipError_t hipStreamCreateWithPriority(hipStream_t *stream, unsigned int flags, int priority)

	Create an asynchronous stream with the specified priority.

Create a new asynchronous stream with the specified priority.

stream returns an opaque handle that can be used to reference the newly created stream in subsequent hipStream* commands. The stream is allocated on the heap and will remain allocated even if the handle goes out-of-scope. To release the memory used by the stream, applicaiton must call hipStreamDestroy. Flags controls behavior of the stream. See hipStreamDefault, hipStreamNonBlocking.
	Return
	#hipSuccess, #hipErrorInvalidValue

	Parameters
	
	[inout] stream: Pointer to new stream

	[in] flags: to control stream creation.

	[in] priority: of the stream. Lower numbers represent higher priorities.

	See
	hipStreamCreate, hipStreamSynchronize, hipStreamWaitEvent, hipStreamDestroy

hipDeviceGetStreamPriorityRange

	
hipError_t hipDeviceGetStreamPriorityRange(int *leastPriority, int *greatestPriority)

	Returns numerical values that correspond to the least and greatest stream priority.

Returns in *leastPriority and *greatestPriority the numerical values that correspond to the least and greatest stream priority respectively. Stream priorities follow a convention where lower numbers imply greater priorities. The range of meaningful stream priorities is given by [*greatestPriority, *leastPriority]. If the user attempts to create a stream with a priority value that is outside the the meaningful range as specified by this API, the priority is automatically clamped to within the valid range.

	Parameters
	
	[inout] leastPriority: pointer in which value corresponding to least priority is returned.

	[inout] greatestPriority: pointer in which value corresponding to greatest priority is returned.

hipStreamDestroy

	
hipError_t hipStreamDestroy(hipStream_t stream)

	Destroys the specified stream.

Destroys the specified stream.

	Return
	#hipSuccess #hipErrorInvalidResourceHandle

	Parameters
	
	[inout] stream: Valid pointer to hipStream_t. This function writes the memory with the newly created stream.

If commands are still executing on the specified stream, some may complete execution before the queue is deleted.

The queue may be destroyed while some commands are still inflight, or may wait for all commands queued to the stream before destroying it.

	See
	hipStreamCreate, hipStreamCreateWithFlags, hipStreamCreateWithPriority, hipStreamQuery, hipStreamWaitEvent, hipStreamSynchronize

hipStreamQuery

	
hipError_t hipStreamQuery(hipStream_t stream)

	Return #hipSuccess if all of the operations in the specified stream have completed, or #hipErrorNotReady if not.

This is thread-safe and returns a snapshot of the current state of the queue. However, if other host threads are sending work to the stream, the status may change immediately after the function is called. It is typically used for debug.

	Return
	#hipSuccess, #hipErrorNotReady, #hipErrorInvalidResourceHandle

	Parameters
	
	[in] stream: stream to query

	See
	hipStreamCreate, hipStreamCreateWithFlags, hipStreamCreateWithPriority, hipStreamWaitEvent, hipStreamSynchronize, hipStreamDestroy

hipStreamSynchronize

	
hipError_t hipStreamSynchronize(hipStream_t stream)

	Wait for all commands in stream to complete.

This command is host-synchronous : the host will block until the specified stream is empty.

	Return
	#hipSuccess, #hipErrorInvalidResourceHandle

	Parameters
	
	[in] stream: stream identifier.

This command follows standard null-stream semantics. Specifically, specifying the null stream will cause the command to wait for other streams on the same device to complete all pending operations.

This command honors the hipDeviceLaunchBlocking flag, which controls whether the wait is active or blocking.

	See
	hipStreamCreate, hipStreamCreateWithFlags, hipStreamCreateWithPriority, hipStreamWaitEvent, hipStreamDestroy

hipStreamWaitEvent

	
hipError_t hipStreamWaitEvent(hipStream_t stream, hipEvent_t event, unsigned int flags)

	Make the specified compute stream wait for an event.

This function inserts a wait operation into the specified stream. All future work submitted to

stream will wait until event reports completion before beginning execution.
	Return
	#hipSuccess, #hipErrorInvalidResourceHandle

	Parameters
	
	[in] stream: stream to make wait.

	[in] event: event to wait on

	[in] flags: control operation [must be 0]

This function only waits for commands in the current stream to complete. Notably,, this function does not impliciy wait for commands in the default stream to complete, even if the specified stream is created with hipStreamNonBlocking = 0.

	See
	hipStreamCreate, hipStreamCreateWithFlags, hipStreamCreateWithPriority, hipStreamSynchronize, hipStreamDestroy

hipStreamGetFlags

	
hipError_t hipStreamGetFlags(hipStream_t stream, unsigned int *flags)

	Return flags associated with this stream.

Return flags associated with this stream in *

flags.
	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidResourceHandle

	Return
	#hipSuccess #hipErrorInvalidValue #hipErrorInvalidResourceHandle

	Parameters
	
	[in] stream: stream to be queried

	[inout] flags: Pointer to an unsigned integer in which the stream’s flags are returned

	See
	hipStreamCreateWithFlags

hipStreamGetPriority

	
hipError_t hipStreamGetPriority(hipStream_t stream, int *priority)

	Query the priority of a stream.

Query the priority of a stream. The priority is returned in in priority.

	Return
	#hipSuccess, #hipErrorInvalidValue, #hipErrorInvalidResourceHandle

	Return
	#hipSuccess #hipErrorInvalidValue #hipErrorInvalidResourceHandle

	Parameters
	
	[in] stream: stream to be queried

	[inout] priority: Pointer to an unsigned integer in which the stream’s priority is returned

	See
	hipStreamCreateWithFlags

hipStreamAddCallback

	
hipError_t hipStreamAddCallback(hipStream_t stream, hipStreamCallback_t callback, void *userData, unsigned int flags)

	Adds a callback to be called on the host after all currently enqueued items in the stream have completed.

For each cudaStreamAddCallback call, a callback will be executed exactly once. The callback will block later work in the stream until it is finished.
	Return
	#hipSuccess, #hipErrorInvalidResourceHandle, #hipErrorNotSupported

	See
	hipStreamCreate, hipStreamCreateWithFlags, hipStreamQuery, hipStreamSynchronize, hipStreamWaitEvent, hipStreamDestroy, hipStreamCreateWithPriority

	Parameters
	
	[in] stream: - Stream to add callback to

	[in] callback: - The function to call once preceding stream operations are complete

	[in] userData: - User specified data to be passed to the callback function

	[in] flags: - Reserved for future use, must be 0

 Slidecast: For AMD, It’s Time to ROCm!
https://youtu.be/LUAu4eywK5g

Video: AMD ROC – Radeon Open Compute Platform
https://youtu.be/dnKDFci2x2Q

 Foo

ROCm Code Object Format

	Introduction

	Finalizer, Code Object, Executable and Loader

	Kernel dispatch

	Hardware registers setup

	Initial kernel register state

	Kernel prolog code

	Global/Readonly/Kernarg segments

	Scratch memory swizzling

	Flat addressing

	Flat Scratch

	M0 Register

	Dynamic call stack

	
	Memory model
	
	Memory model Overview

	Memory operation constraints for global segment

	Memory operation constraints for group segment

	Memory fence constraints

	Instruction set architecture

	
	AMD Kernel Code
	
	AMD Kernel Code Object amd_kernel_code_t

	Compute shader program settings 1 amd_compute_pgm_rsrc1_t

	Compute shader program settings 2 amd_compute_pgm_rsrc2_t

	AMD Machine Kind amd_machine_kind_t

	Float Round Mode amd_float_round_mode_t

	Denorm Mode amd_float_denorm_mode_t

	PCIe Gen3 Atomic Operations

	
	AMD Queue
	
	HSA AQL Queue Object hsa_queue_t

	AMD AQL Queue Object amd_queue_t

	Queue-operations

	
	Signals
	
	Signals overview

	Signal kind amd_signal_kind_t

	Signal object amd_signal_t

	Signal kernel machine code

	Debugtrap

	References

Introduction

This specification defines the application binary interface (ABI) provided by the AMD implementation of the HSA runtime for AMD GPU architecture agents. The AMD GPU architecture is a family of GPU agents which differ in machine code encoding and functionality.

Finalizer, Code Object, Executable and Loader

Finalizer, Code Object, Executable and Loader are defined in “HSA Programmer Reference Manual Specification”. AMD Code Object uses ELF format. In this document, Finalizer is any compiler producing code object, including kernel machine code.

Kernel dispatch

The HSA Architected Queuing Language (AQL) defines a user space memory interface, an AQL Queue, to an agent that can be used to control the dispatch of kernels, using AQL Packets, in an agent independent way. All AQL packets are 64 bytes and are defined in “HSA Platform System Architecture Specification”. The packet processor of a kernel agent is responsible for detecting and dispatching kernels from the AQL Queues associated with it. For AMD GPUs the packet processor is implemented by the Command Processor (CP).

The AMD HSA runtime allocates the AQL Queue object. It uses the AMD Kernel Fusion Driver (KFD) to initialize and register the AQL Queue with CP. Refer to “AMD Queue” for more information.

A kernel dispatch is initiated with the following sequence defined in “HSA System Architecture Specification” (it may occur on CPU host agent from a host program, or from an HSA kernel agent such as a GPU from another kernel):

	A pointer to an AQL Queue for the kernel agent on which the kernel is to be executed is obtained.

	A pointer to the amd_kernel_code_t object of the kernel to execute is obtained. It must be for a kernel that was loaded on the kernel agent with which the AQL Queue is associated.

	Space is allocated for the kernel arguments using the HSA runtime allocator for a memory region with the kernarg property for the kernel agent that will execute the kernel, and the values of the kernel arguments are assigned. This memory corresponds to the backing memory for the kernarg segment within the kernel being called. Its layout is defined in “HSA Programmer Reference Manual Specification”. For AMD the kernel execution directly uses the backing memory for the kernarg segment as the kernarg segment.

	Queue operations is used to reserve space in the AQL queue for the packet.

	The packet contents are set up, including information about the actual dispatch, such as grid and work-group size, together with information from the code object about the kernel, such as segment sizes.

	The packet is assigned to packet processor by changing format field from INVALID to KERNEL_DISPATCH. Atomic memory operation must be used.

	A doorbell signal for the queue is signaled to notify packet processor.

At some point, CP performs actual kernel execution:

	CP detects a packet on AQL queue.

	CP executes micro-code for setting up the GPU and wavefronts for a kernel dispatch.

	CP ensures that when a wavefront starts executing the kernel machine code, the scalar general purpose registers (SGPR) and vector general purpose registers (VGPR) are set up based on flags in amd_kernel_code_t (see “Initial kernel register state”).

	When a wavefront start executing the kernel machine code, the prolog (see “Kernel prolog code”) sets up the machine state as necessary.

	When the kernel dispatch has completed execution, CP signals the completion signal specified in the kernel dispatch packet if not 0.

Hardware registers setup

SH_MEM_CONFIG register:

	DEFAULT_MTYPE = 1 (MTYPE_NC)

	ALIGNMENT_MODE = 3 (SH_MEM_ALIGNMENT_MODE_UNALIGNED)

	PTR32 = 1 in 32-bit mode and 0 in 64-bit mode

Initial kernel register state

Prior to start of every wavefront execution, CP/SPI sets up the register state based on enable_sgpr_* and enable_vgpr_* flags in amd_kernel_code_t object:

	SGPRs before the Work-Group Ids are set by CP using the 16 User Data registers.

	Work-group Id registers X, Y, Z are set by SPI which supports any combination including none.

	Scratch Wave Offset is also set by SPI which is why its value cannot be added into the value Flat Scratch Offset (which would avoid the Finalizer generated prolog having to do the add).

	The VGPRs are set by SPI which only supports specifying either (X), (X, Y) or (X, Y, Z).

SGPR register numbers used for enabled registers are dense starting at SGPR0: the first enabled register is SGPR0, the next enabled register is SGPR1 etc.; disabled registers do not have an SGPR number. Because of hardware constraints, the initial SGPRs comprise up to 16 User SRGPs that are set up by CP and apply to all waves of the grid. It is possible to specify more than 16 User SGPRs using the enable_sgpr_* bit fields, in which case only the first 16 are actually initialized. These are then immediately followed by the System SGPRs that are set up by ADC/SPI and can have different values for each wave of the grid dispatch.

The number of enabled registers must match value in compute_pgm_rsrc2.user_sgpr (the total count of SGPR user data registers enabled). The enableGridWorkGroupCount* is currently not implemented in CP and should always be 0.

The following table defines SGPR registers that can be enabled and their order.

	SGPR Order

	Number
of Registers

	Name

	Description

	First

	4

	
Private Segment Buffer

(enable_sgpr_private_segment_buffer)

	V# that can be used, together with Scratch Wave Offset as an
offset, to access the Private/Spill/Arg segments using a segment address. CP uses the value from
amd_queue_t.scratch_resource_descriptor.

	then

	2

	Dispatch Ptr
(enable_sgpr_dispatch_ptr)

	64 bit address of AQL dispatch packet for kernel actually
executing.

	then

	2

	Queue Ptr
(enable_sgpr_queue_ptr)

	64 bit address of amd_queue_t object for AQL queue on which the
dispatch packet was queued.

	then

	2

	Kernarg Segment Ptr

	64 bit address of Kernarg segment. This is directly copied (enable_sgpr_kernarg_segment_ptr) from the kernarg_address in the kernel dispatch packet. Having CP load it once avoids loading it at the beginning of every wavefront.

	then

	2

	Dispatch Id
(enable_sgpr_dispatch_id)

	64 bit Dispatch ID of the dispatch packet being executed.

	then

	2

	Flat Scratch Init
(enable_sgpr_flat_scratch_init)

	
	Value used for FLAT_SCRATCH register initialization. Refer to
	Flat scratch for more information.

	then

	1

	Private Segment Size
(enable_sgpr_private_segment_size)

	The 32 bit byte size of a single work-items scratch memory
allocation. This is the value from the kernel dispatch packet Private Segment Byte Size rounded up by CP to a multiple of WORD. Having CP load it once avoids loading it at the beginning of every wavefront. Not used for GFX7/GFX8 since it is the same value as the second SGPR of Flat Scratch Init.

	then

	1

	Grid Work-Group Count X

	32 bit count of the number of work-groups in the X dimension (enable_sgpr_grid_workgroup_count_X) for the grid being executed. Computed from the fields in the kernel dispatch packet as ((grid_size.x + workgroup_size.x - 1) /workgroup_size.x).

	then

	1

	Grid Work-Group Count Y

	32 bit count of the number of work-groups in the Y dimension (enable_sgpr_grid_workgroup_count_Y for the grid being executed. Computed from the fields in the && less than 16 previous SGPRs) kernel dispatch packet as ((grid_size.y + workgroup_size.1) / workgroupSize.y). Only initialized if <16 previous SGPRs initialized.

	then

	1

	Grid Work-Group Count Z
(enable_sgpr_grid_workgroup_count_Z
&& less than 16 previous SGPRs)

	32 bit count of the number of work-groups in the Z dimension
for the grid being executed. Computed from the fields in the
kernel dispatch packet as ((grid_size.z + workgroup_size.z - 1) / workgroupSize.z). Only initialized if <16 previous SGPRs initialized.

	then

	1

	Work-Group Id X
(enable_sgpr_workgroup_id_X)

	32 bit work group id in X dimension of grid for wavefront.
Always present.

	then

	1

	Work-Group Id Y
(enable_sgpr_workgroup_id_Y)

	32 bit work group id in Y dimension of grid for wavefront.

	then

	1

	Work-Group Id Z
(enable_sgpr_workgroup_id_Z)

	32 bit work group id in Z dimension of grid for wavefront. If present then Work-group Id Y will also be present.

	then

	1

	Work-Group Info
(enable_sgpr_workgroup_info)

	{first_wave, 14b0000, ordered_append_term[10:0],
threadgroup_size_in_waves[5:0]}

	then

	1

	
Private Segment Wave Byte Offset

	
32 bit byte offset from base of scratch base of queue the | (enable_sgpr_private_segment_wave executing kernel dispatch. Must be used as an offset with | _byte_offset) Private/Spill/Arg segment address when using Scratch Segment

Buffer. It must be added to Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.

VGPR register numbers used for enabled registers are dense starting at VGPR0: the first enabled register is VGPR0, the next enabled register is VGPR1 etc.; disabled registers do not have a VGPR number.

The following table defines VGPR registers that can be enabled and their order.

	VGPR Order

	No.Registers

	Name

	Description

	First

	1

	Work-Item Id X (Always initialized)

	32 bit work item id in X dimension of work-group for wavefront lane.

	then

	1

	Work-Item Id Y (enable_vgpr_workitem_id > 0)

	32 bit work item id in Y dimension of work-group for wavefront lane.

	then

	1

	Work-Item Id Z (enable_vgpr_workitem_id > 1)

	32 bit work item id in Z dimension of work-group for wavefront lane.

Kernel prolog code

For certain features, kernel is expected to perform initialization actions, normally done in kernel prologue. This is only needed if kernel uses those features.

Global/Readonly/Kernarg segments

Global segment can be accessed either using flat or buffer operations. Buffer operations cannot be used for large machine model for GFX7 and later as V# support for 64 bit addressing is not available.

If buffer operations are used then the Global Buffer used to access Global/Readonly/Kernarg (combined) segments using a segment address is not passed into the kernel code by CP since its base address is always 0. The prolog code initializes 4 SGPRs with a V# that has the following properties, and then uses that in the buffer instructions:

	base address of 0

	no swizzle

	ATC: 1 if IOMMU present (such as APU)

	MTYPE set to support memory coherence specified in amd_kernel_code_t.global_memory_coherence

If buffer operations are used to access Kernarg segment, Kernarg address must be added. It is available in dispatch packet (kernarg_address field) or as Kernarg Segment Ptr SGPR. Alternatively, scalar loads can be used if the kernarg offset is uniform, as the kernarg segment is constant for the duration of the kernel dispatch execution.

For GFX9, global segment can be accessed with new GLOBAL_* instructions.

Scratch memory swizzling

Scratch memory may be used for private/spill/stack segment. Hardware will interleave (swizzle) scratch accesses of each lane of a wavefront by interleave (swizzle) element size to ensure each work-item gets a distinct memory location. Interleave size must be 2, 4, 8 or 16. The value used must match the value that the runtime configures the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE).

For GFX8 and earlier, all load and store operations done to scratch buffer must not exceed this size. For example, if the element size is 4 (32-bits or dword) and a 64-bit value must be loaded, it must be split into two 32-bit loads. This ensures that the interleaving will get the work-item specific dword for both halves of the 64-bit value. If it just did a 64-bit load then it would get one dword which belonged to its own work-item, but the second dword would belong to the adjacent lane work-item since the interleaving is in dwords.

AMD HSA Runtime Finalizer uses value 4.

Flat addressing

Flat address can be used in FLAT instructions and can access global, private (scratch) and group (lds) memory.

Flat access to scratch requires hardware aperture setup and setup in kernel prologue (see Flat scratch).

For GFX7/GFX8, flat access to lds requires hardware aperture setup and M0 register setup (see M0 register).

Address operations for group/private segment may use fields from amd_queue_t, the address of which can be obtained with Queue Ptr SGPR.

	To obtain null address value for a segment (nullptr HSAIL instruction),
	
	For global, readonly and flat segment use value 0.

	For group, private and kernarg segments, use value -1 (32-bit).

	To convert segment address to flat address (stof HSAIL instruction),
	
	For global segment, use the same value.

	For kernarg segment, add Kernarg Segment Ptr. For small model, this is a 32-bit add. For large model, this is 32-bit add to 64-bit base address.

	
	For group segment,
	
	for large model, combine group_segment_aperture_base_hi (upper half) and segment address (lower half),

	for small model, add group_segment_aperture_base_hi and segment address.

	
	For private/spill/arg segment,
	
	for large model, combine private_segment_aperture_base_hi (upper half) and segment address (lower half),

	for small model, add private_segment_aperture_base_hi and segment address.

	If flat address may be null, kernarg, group and private/spill arg segment machine code must have additional sequence (use V_CMP and V_CNDMASK).

To convert flat address to segment address (ftos HSAIL instruction),

	For global segment, use the same value.

	For kernarg segment, subtract Kernarg Segment Ptr. For small model, this is a 32-bit subtract. For large model, this is 32-bit subtract from lower half of the 64-bit flat address.

	
	For group segment,
	
	for large model, use low half of the flat address,

	for small model, subtract group_segment_aperture_base_hi.

	
	For private/spill/arg segment,
	
	for large model, use low half of the flat address,

	for small model, subtract private_segment_aperture_base_hi.

	If segment address may be null, kernarg, group and private/spill arg segment machine code must have additional sequence (use V_CMP and V_CNDMASK).

To determine if given flat address lies within a segment (segmentp HSAIL instruction),

	For global segment, check that address does not lie in group/private segments

	
	For group segment, check if address lies in group segment aperture
	
	for large model, check that upper half of 64-bit address == group_segment_aperture_base_hi,

	for small model, check that most significant 16 bits of 32-bit address (address & ~0xFFFF) == group_segment_aperture_base_hi.

	
	For private segment, check if address lies in private segment aperture
	
	for large model, check that upper half of 64-bit address == private_segment_aperture_base_hi,

	for small model, check that most significant 16 bits of 32-bit address (address & ~0xFFFF) == group_segment_aperture_base_hi.

	If flat address may be null, machine code must have additional sequence (use V_CMP).

Flat scratch

If kernel may use flat operations to access scratch memory, the prolog code must set up FLAT_SCRATCH register pair (FLAT_SCRATCH_LO/FLAT_SCRATCH_HI or SGPRn-4/SGPRn-3).

For GFX7/GFX8, initialization uses Flat Scratch Init and Scratch Wave Offset sgpr registers (see Initial kernel register state):

	The low word of Flat Scratch Init is 32 bit byte offset from SH_HIDDEN_PRIVATE_BASE_VIMID to base of memory for scratch for the queue executing the kernel dispatch. This is the lower 32 bits of amd_queue_t.scratch_backing_memory_location and is the same offset used in computing the Scratch Segment Buffer base address. The prolog must add the value of Scratch Wave Offset to it, shift right by 8 (offset is in 256-byte units) and move to FLAT_SCRATCH_LO for use as the FLAT SCRATCH BASE in flat memory instructions.

	The second word of Flat Scratch Init is 32 bit byte size of a single work-items scratch memory usage. This is directly loaded from the kernel dispatch packet Private Segment Byte Size and rounded up to a multiple of DWORD. Having CP load it once avoids loading it at the beginning of every wavefront. The prolog must move it to FLAT_SCRATCH_LO for use as FLAT SCRATCH SIZE.

For GFX9, Flat Scrath Init contains 64-bit address of scratch backing memory. The initialization sequence for FLAT_SCRATCH does 64-bit add of Flat Scratch Init and Scratch Wave Offset.

M0 Register

For GF7/GFX8, M0 register must be initialized with total LDS size if kernel may access LDS via DS or flat operations. Total LDS size is available in dispatch packet. For M0, it is also possible to use maximum possible value of LDS for given target.

Dynamic call stack

In certain cases, Finalizer cannot compute the total private segment size at compile time. This can happen if calls are implemented using a call stack and recursion, alloca or calls to indirect functions are present. In this case, workitem_private_segment_byte_size field in code object only specifies the statically known private segment size. When performing actual kernel dispatch, private_segment_size_bytes field in dispatch packet will contain static private segment size plus additional space for the call stack.

Memory model

Memory model Overview

A memory model describes the interactions of threads through memory and their shared use of the data. Many modern programming languages implement a memory model. This section describes the mapping of common memory model constructs onto AMD GPU architecture.

Through this section, definitions and constraints from “HSA Platform System Architecture Specification 1.0” are used as reference, although similar notions exist elsewhere (for example, in C99 or C++ 11).

The following memory scopes are defined:

	Work-item (wi)

	Wavefront (wave)

	Work-group (wg)

	Agent (agent)

	System (system)

The following memory orders are defined:

	scacq: sequentially consistent acquire

	screl: sequentially consistent release

	scar: sequentially consistent acquire and release

	rlx: relaxed

The following memory operations are defined:

	Ordinary Load/Store (non-synchronizing operations)

	Atomic Load/Atomic Store (synchronizing operations)

	Atomic RMW (Read-Modify-Write: add, sub, max, min, and, or, xor, wrapinc, wrapdec, exch, cas (synchronizing operations)

	Memory Fence (synchronizing operation)

Sometimes derived notation is used. For example, agent+ means agent and system scopes, wg- means work-group, wavefront and work-item scopes.

In the following sections, a combination of memory segment, operation, order and scope is assigned a machine code sequence. Note that if s_waitcnt vmcnt(0) is used to enforce a completion of earlier memory operations in same workitem, it can be omitted if it is also enforced using some other mechanism or proven by compiler (for example, if there are no preceding synchronizing memory operations). Similiarily, if s_waitcnt vmcnt(0) is used to enforce completion of this memory operation before the following memory operations, sometimes it can be omitted (for example, if there are no following synchronizing memory operations).

For a flat memory operation, if it may affect either global or group segment, group constraints must be applied to flat operations as well.

Memory operation constraints for global segment

For global segment, the following machine code instructions may be used (see Global/Readonly/Kernarg segments):

	Ordinary Load/Store: BUFFER_LOAD/BUFFER_STORE or FLAT_LOAD/FLAT_STORE

	Atomic Load/Store: BUFFER_LOAD/BUFFER_STORE or FLAT_LOAD/FLAT_STORE

	Atomic RMW: BUFFER_ATOMIC or FLAT_ATOMIC

	Operation

	Memory order

	Memory scope

	Machine code sequence

	Ordinary Load

	
	

	
	

	load with glc=0

	Atomic Load

	rlx,scacq

	wg-

	load with glc=0

	Atomic Load

	rlx

	agent+

	load with glc=1

	Atomic Load

	scacq

	agent+

	load with glc=1; s_waitcnt vmcnt(0); buffer_wbinv_vol

	Ordinary Store

	
	

	
	

	store with glc=0

	Atomic Store

	rlx,screl

	wg-

	store with glc=0

	Atomic Store

	rlx

	agent+

	store with glc=0

	Atomic Store

	screl

	agent+

	s_waitcnt vmcnt(0); store with glc=0; s_waitcnt vmcnt(0)

	Atomic RMW

	rlx,scacq, screl, scar

	wg-

	atomic

	Atomic RMW

	rlx

	agent+

	atomic

	Atomic RMW

	scacq

	agent+

	atomic; s_waitcnt vmcnt(0); buffer_wbinv_vol

	Atomic RMW

	screl

	agent+

	s_waitcnt vmcnt(0); atomic

	Atomic RMW

	scar

	agent+

	s_waitcnt vmcnt(0); atomic; s_waitcnt vmcnt(0); buffer_wbinv_vol

Memory operation constraints for group segment

For group segment, the following machine code instructions are used:

	Ordinary Load/Store: DS_READ/DS_WRITE

	Atomic Load/Store: DS_READ/DS_WRITE

	Atomic RMW: DS_ADD, DS_SUB, DS_MAX, DS_MIN, DS_AND, DS_OR, DS_XOR, DS_INC, DS_DEC, DS_WRXCHG, DS_CMPST (and corresponding RTN variants)

AMD LDS hardware is sequentially consistent. This means that it is not necessary to use lgkmcnt to enforce ordering in single work-item for group segment synchronization. s_waitcnt lgkmcnt(0) should still be used to enforce data dependencies, for example, after a load into a register and before use of that register (same applies to non-synchronizing operations).

The current model (and HSA) requires that global and group segments are coherent. This is why synchronizing group segment operations and memfence also use s_waitcnt vmcnt(0).

	Operation

	Memory order

	Memory scope

	Machine code sequence

	Ordinary Load

	
	

	
	

	load

	Atomic Load

	rlx

	wg-

	load

	Atomic Load

	scacq

	wg-

	s_waitcnt vmcnt(0); load; buffer_wbinvl1_vol

	Ordinary Store

	
	

	
	

	store

	Atomic Store

	rlx

	wg-

	store

	Atomic Store

	screl

	wg-

	s_waitcnt vmcnt(0); store

	Atomic RMW

	scacq

	wg-

	s_waitcnt vmcnt(0); atomic; buffer_wbinvl1_vol

	Atomic RMW

	screl

	wg-

	s_waitcnt vmcnt(0); atomic

	Atomic RMW

	scacq

	wg-

	s_waitcnt vmcnt(0); atomic; buffer_wbinvl1_vol

Memory fence constraints

Memory fence is currently applied to all segments (cross-segment synchronization). In machine code, memory fence does not have separate instruction and maps to s_waitcnt and buffer_wbinvl1_vol instructions. In addition, memory fence must not be moved in machine code with respect to other synchronizing operations. In the following table, ‘memfence’ refers to conceptual memory fence location.

	Operation

	Memory order

	Memory scope

	Machine code sequence

	Memory Fence

	scacq,screl,scar

	wg-

	memfence (no additional constraints)

	Memory Fence

	scacq

	agent+

	memfence; s_waitcnt 0; buffer_wbinvl1_vol

	Memory Fence

	screl

	agent+

	s_waitcnt 0; memfence

	Memory Fence

	scar

	agent +

	memfence; s_waitcnt 0; buffer_wbinvl1_vol

Instruction set architecture

AMDGPU ISA specifies instruction set architecture and capabilities used by machine code. It consists of several fields:

	Vendor (“AMD”)

	Architecture (“AMDGPU”)

	Major (GFXIP), minor and stepping versions

These fields may be combined to form one defining string, for example, “AMD:AMDGPU:8:0:1”.

	Vendor

	Architecture

	Major

	Minor

	Stepping

	Comments

	Products

	AMD

	AMDGPU

	7

	0

	0

	Legacy, GFX7, 1/16 double FP

	A10-7400 series APU

	AMD

	AMDGPU

	7

	0

	1

	GFX7, 1/2 double FP

	FirePro W8100, W9100, S9150, S9170; Radeon R9 290, R9 290x, R390,R390x

	AMD

	AMDGPU

	8

	0

	0

	Legacy, GFX8, SPI register
limitation,

	XNACK FirePro S7150, S7100, W7100; Radeon R285,
R9 380, R9 385; Mobile FirePro M7170

	AMD

	AMDGPU

	8

	0

	1

	GFX8, XNACK enabled

	A10-8700 series APU

	AMD

	AMDGPU

	8

	0

	2

	GFX8, SPI register limitation
XNACK disabled,
PCIe Gen3 atomics

	
	FirePro S7150, S7100, W7100; Radeon R285, R9 380,
	R9 385; Mobile FirePro M7170

	AMD

	AMDGPU

	8

	0

	3

	
	GFX8, XNACK disabled,
	PCIe Gen3 atomics

	Radeon R9 Nano, R9 Fury, R9 FuryX, Pro Duo, RX 460,
RX 470, RX 480; FirePro S9300x2

	AMD

	AMDGPU

	8

	0

	4

	GFX8, -XNACK Legacy,

	
	Radeon R9 Nano, R9 Fury, R9 FuryX, Pro Duo,
	RX 460, RX 470, RX 480; FirePro S9300x2

	AMD

	AMDGPU

	9

	0

	0

	GFX9, -XNACK

	

	AMD

	AMDGPU

	9

	0

	1

	GFX9, +XNACK

	

AMD Kernel Code

AMD Kernel Code object is used by AMD GPU CP to set up the hardware to execute a kernel dispatch and consists of the meta data needed to initiate the execution of a kernel, including the entry point address of the machine code that implements

AMD Kernel Code Object amd_kernel_code_t

	Bits

	Size

	Field Name

	Description

	31:0

	4 bytes

	amd_code_version_major

	The AMD major version. Must be the value AMD_KERNEL_CODE_VERSION_MAJOR. Major versions are not backwards compatible.

	63:32

	4 bytes

	amd_code_version_minor

	The AMD minor version. Must be the value AMD_CODE_VERSION_MINOR. Minor versions with the same major version must be backward compatible.

	79:64

	2 bytes

	amd_machine_kind

	Machine kind.

	95:80

	2 bytes

	amd_machine_version_major

	Instruction set architecture: major

	111:96

	2 bytes

	amd_machine_version_minor

	Instruction set architecture: minor

	127:112

	2 bytes

	amd_machine_version_stepping

	Instruction set architecture: stepping

	191:128

	8 bytes

	kernel_code_entry_byte_offset

	Byte offset (possibly negative) from start of amd_kernel_code_t object to kernel’s entry point instruction. The actual code for the kernel is required to be 256 byte aligned to match hardware requirements (SQ cache line is 16;
entry point config register only holds bits 47:8 of the address). The Finalizer should endeavor to allocate all kernel machine code in contiguous memory pages so that a device pre-fetcher will tend to only pre-fetch Kernel Code objects,
improving cache performance. The AMD HA Runtime Finalizer generates position independent code (PIC) to avoid using relocation records and give runtime more flexibility in copying code to discrete GPU device memory.

	255:192

	8 bytes

	kernel_code_prefetch_byte_offset

	Range of bytes to consider prefetching expressed as a signed offset and unsigned size. The (possibly negative) offset is from the start of amd_kernel_code_t object.
Set both to 0 if no prefetch information is available.

	319:256

	8 bytes

	kernel_code_prefetch_byte_size

	

	383:320

	8 bytes

	max_scratch_backing_memory_byte_size

	Number of bytes of scratch backing memory required for full occupancy of target chip. This takes into account the number of bytes of scratch per work-item, the wavefront size, the maximum number of wavefronts per CU, and the number of CUs.
This is an upper limit on scratch. If the grid being dispatched is small it may only need less than this. If the kernel uses no scratch, or the Finalizer has not computed this value, it must be 0.

	415:384

	4 bytes

	compute_pgm_rsrc1

	Compute Shader (CS) program settings 1 amd_compute_pgm_rsrc1

	447:416

	4 bytes

	compute_pgm_rsrc2

	Compute Shader (CS) program settings 2 amd_compute_pgm_rsrc2

	448

	1 bit

	enable_sgpr_private_segment_buffer

	Enable the setup of Private Segment Buffer

	449

	1 bit

	enable_sgpr_dispatch_ptr

	Enable the setup of Dispatch Ptr

	450

	1 bit

	enable_sgpr_queue_ptr

	Enable the setup of Queue Ptr

	451

	1 bit

	enable_sgpr_kernarg_segment_ptr

	Enable the setup of Kernarg Segment Ptr

	452

	1 bit

	enable_sgpr_dispatch_id

	Enable the setup of Dispatch Id

	453

	1 bit

	enable_sgpr_flat_scratch_init

	Enable the setup of Flat Scratch Init

	454

	1 bit

	enable_sgpr_private_segment_size

	Enable the setup of Private Segment Size

	455

	1 bit

	enable_sgpr_grid_workgroup_count_X

	Enable the setup of Grid Work-Group Count X

	456

	1 bit

	enable_sgpr_grid_workgroup_count_Y

	Enable the setup of Grid Work-Group Count Y

	457

	1 bit

	enable_sgpr_grid_workgroup_count_Z

	Enable the setup of Grid Work-Group Count Z

	463:458

	6 bits

	
	Reserved. Must be 0.

	464

	1 bit

	enable_ordered_append_gds

	Control wave ID base counter for GDS ordered-append. Used to set COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL.

	466:465

	2 bits

	private_element_size

	Interleave (swizzle) element size in bytes.

	467

	1 bit

	is_ptr64

	1 if global memory addresses are 64 bits, otherwise 0. Must match SH_MEM_CONFIG.PTR32 (GFX7), SH_MEM_CONFIG.ADDRESS_MODE (GFX8+).

	468

	1 bit

	is_dynamic_call_stack

	Indicates if the generated machine code is using dynamic call stack.

	469

	1 bit

	is_debug_enabled

	Indicates if the generated machine code includes code required by the debugger.

	470

	1 bit

	is_xnack_enabled

	Indicates if the generated machine code uses conservative XNACK register allocation.

	479:471

	9 bits

	reserved

	Reserved. Must be 0.

	511:480

	4 bytes

	workitem_private_segment_byte_size

	The amount of memory required for the static combined private, spill and arg segments for a work-item in bytes.

	543:512

	4 bytes

	workgroup_group_segment_byte_size

	The amount of group segment memory required by a work-group in bytes. This does not include any dynamically allocated group segment memory that may be added when the kernel is dispatched.

	575:544

	4 bytes

	gds_segment_byte_size

	Number of byte of GDS required by kernel dispatch. Must be 0 if not using GDS.

	639:576

	8 bytes

	kernarg_segment_byte_size

	The size in bytes of the kernarg segment that holds the values of the arguments to the kernel. This could be used by CP to prefetch the kernarg segment pointed to by the kernel dispatch packet.

	671:640

	4 bytes

	workgroup_fbarrier_count

	Number of fbarrier’s used in the kernel and all functions it calls. If the implementation uses group memory to allocate the fbarriers then that amount must already be included in the workgroup_group_segment_byte_size total.

	687:672

	2 bytes

	wavefront_sgpr_count

	
	Number of scalar registers used by a wavefront. This includes the special SGPRs for VCC, Flat Scratch (Base, Size) and XNACK (for GFX8 (VI)+).
	It does not include the 16 SGPR added if a trap handler is enabled. Must match compute_pgm_rsrc1.sgprs used to set COMPUTE_PGM_RSRC1.SGPRS.

	703:688

	2 bytes

	workitem_vgpr_count

	Number of vector registers used by each work-item. Must match compute_pgm_rsrc1.vgprs used to set COMPUTE_PGM_RSRC1.VGPRS.

	719:704

	2 bytes

	reserved_vgpr_first

	If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the first fixed VGPR number reserved.

	735:720

	2 bytes

	reserved_vgpr_count

	The number of consecutive VGPRs reserved by the client. If is_debug_supported then this count includes VGPRs reserved for debugger use.

	751:736

	2 bytes

	reserved_sgpr_first

	If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the first fixed SGPR number reserved.

	767:752

	2 bytes

	reserved_sgpr_count

	
	The number of consecutive SGPRs reserved by the client.
	If is_debug_supported then this count includes SGPRs reserved for debugger use.

	783:768

	2 bytes

	debug_wavefront_private_segment_offset_sgpr

	If is_debug_supported is 0 then must be 0. Otherwise, this is the fixed SGPR number used to hold the wave scratch offset for the entire kernel execution, or uint16_t(-1) if the register is not used or not known.

	799:784

	2 bytes

	debug_private_segment_buffer_sgpr

	If is_debug_supported is 0 then must be 0. Otherwise, this is the fixed SGPR number of the first of 4 SGPRs used to hold the scratch V# used for the entire kernel execution, or uint16_t(-1) if the registers are not used or not known.

	807:800

	1 byte

	kernarg_segment_alignment

	The maximum byte alignment of variables used by the kernel in the specified memory segment. Expressed as a power of two as defined in Table 37. Must be at least HSA_POWERTWO_16.

	815:808

	1 byte

	group_segment_alignment

	

	823:816

	1 byte

	private_segment_alignment

	

	831:824

	1 byte

	wavefront_size

	Wavefront size expressed as a power of two. Must be a power of 2 in range 1..256 inclusive. Used to support runtime query that obtains wavefront size, which may be used by application to allocated dynamic group memory and set the dispatch work-group size.

	863:832

	4 bytes

	call_convention

	Call convention used to produce the machine code for the kernel. This specifies the function call convention ABI used for indirect functions.
If the application specified that the Finalizer should select the call convention, then this value must be the value selected, not the -1 specified to the Finalizer. If the code object does not support indirect functions, then the value must be 0xffffffff.

	960:864

	12 bytes

	
	Reserved. Must be 0.

	1023:960

	8 bytes

	runtime_loader_kernel_symbol

	A pointer to the loaded kernel symbol. This field must be 0 when amd_kernel_code_t is created. The HSA Runtime loader initializes this field once the code object is loaded to reference the loader symbol for the kernel.
This field is used to allow the debugger to locate the debug information for the kernel. The definition of the loaded kernel symbol is located in hsa/runtime/executable.hpp.

	2047:1024

	128 bytes

	control_directive

	Control directives for this kernel used in generating the machine code. The values are intended to reflect the constraints that the code actually requires to correctly execute, not the values that were actually specified at finalize time.
If the finalizer chooses to ignore a control directive, and not generate constrained code, then the control directive should not be marked as enabled.

	2048

	
	
	Total size 256 bytes.

Compute shader program settings 1 amd_compute_pgm_rsrc1_t

	Bits

	Size

	Field Name

	Description

	5:0

	6 bits

	granulated_workitem_vgpr_count

	
Granulated number of vector registers used by each work-item minus | 1(i.e. if granulated number of vector registers is 2, then 1 is | stored in this field). Granularity is device specific.

	9:6

	4 bits

	granulated_wavefront_sgpr_count

	
Granulated number of scalar registers used by a wavefront minus 1 | (i.e. if granulated number of scalar registers is 4, then 3 is | stored in this field). Granularity is device specific. This | includes the special SGPRs for VCC, Flat Scratch (Base, and Size) | and XNACK (for GFX8 (VI)+). It does not include the 16 SGPR added | if a trap handler is enabled.

	11:10

	2 bits

	priority

	Drives spi_priority in spi_sq newWave cmd.

	13:12

	2 bits

	float_mode_round_32

	Wavefront initial float round mode for single precision floats (32 bit).

	15:14

	2 bits

	float_mode_round_16_64

	
Wavefront initial float round mode for double/half precision floats | (64/16 bit).

	17:16

	2 bits

	float_mode_denorm_32

	
Wavefront initial denorm mode for single precision floats (32 bit).

	19:18

	2 bits

	float_mode_denorm_16_64

	
Wavefront initial denorm mode for double/half precision floats | (64/16 bit).

	20

	1 bit

	priv

	
Drives priv in spi_sq newWave cmd. This field is set to 0 by the | Finalizer and must be filled in by CP.

	21

	1 bit

	enable_dx10_clamp

	
Wavefront starts execution with DX10 clamp mode enabled. Used by | the vector ALU to force DX-10 style treatment of NaN’s (when set, | clamp NaN to zero, otherwise pass NaN through). Used by CP to set | up COMPUTE_PGM_RSRC1.DX10_CLAMP.

	22

	1 bit

	debug_mode

	
Drives debug in spi_sq newWave cmd. This field is set to 0 by the | Finalizer and must be filled in by CP.

	23

	1 bit

	enable_ieee_mode

	
Wavefront starts execution with IEEE mode enabled. Floating point | opcodes that support exception flag gathering will quiet and | propagate signaling-NaN inputs per IEEE 754-2008. Min_dx10 and | max_dx10 become IEEE 754-2008 compliant due to signaling-NaN | propagation and quieting. Used by CP to set up | COMPUTE_PGM_RSRC1.IEEE_MODE.

	24

	1 bit

	bulky

	
Only one such work-group is allowed to be active on any given | Compute Unit. Only one such work-group is allowed to be active on | any given CU. This field is set to 0 by the Finalizer and must be | filled in by CP.

	25

	1 bit

	cdbg_user

	
This field is set to 0 by the Finalizer and must be filled in by CP.

	31:26

	6 bits

	reserved

	Reserved. Must be 0.

	32

	
	
	Total size 4 bytes.

Compute shader program settings 2 amd_compute_pgm_rsrc2_t

	Bits

	Size

	Field Name

	Description

	0

	1 bit

	enable_sgpr_private_segment_wave_byte_offset

	Enable the setup of the SGPR wave scratch offset system register (see 2.9.8). Used by CP to set up COMPUTE_PGM_RSRC2.SCRATCH_EN.

	5:1

	5 bit

	user_sgpr_count

	The total number of SGPR user data registers requested. This number must match the number of user data registers enabled.

	6

	1 bit

	enable_trap_handler

	Code contains a TRAP instruction which requires a trap hander to be enabled. Used by CP to set up COMPUTE_PGM_RSRC2.TRAP_PRESENT. Note that CP shuld set COMPUTE_PGM_RSRC2.TRAP_PRESENT if either this field is 1 or if amd_queue.enable_trap_handler is 1 for the queue executing the kernel dispatch.

	7

	1 bit

	enable_sgpr_workgroup_id_x

	Enable the setup of Work-Group Id X. Also used by CP to set up COMPUTE_PGM_RSRC2.TGID_X_EN.

	8

	1 bit

	enable_sgpr_workgroup_id_y

	Enable the setup of Work-Group Id Y. Also used by CP to set up COMPUTE_PGM_RSRC2.TGID_Y_EN, TGID_Z_EN.

	9

	1 bit

	enable_sgpr_workgroup_id_z

	Enable the setup of Work-Group Id Z. Also used by CP to set up COMPUTE_PGM_RSRC2. TGID_Z_EN.

	10

	1 bit

	enable_sgpr_workgroup_info

	Enable the setup of Work-Group Info.

	12:11

	2 bit

	enable_vgpr_workitem_id

	Enable the setup of Work-Item Id X, Y, Z. Also used by CP to set up COMPUTE_PGM_RSRC2.TIDIG_CMP_CNT.

	13

	1 bit

	enable_exception_address_watch

	Wavefront starts execution with specified exceptions enabled. Used by CP to set up COMPUTE_PGM_RSRC2.EXCP_EN_MSB (composed from following bits). Address Watch - TC (L1) has witnessed a thread access an “address of interest”.

	14

	1 bit

	enable_exception_memory_violation

	Memory Violation - a memory violation has occurred for this wave from L1 or LDS (write-to-read-only-memory, mis-aligned atomic, LDS address out of range, illegal address, etc.).

	23:15

	9bits

	granulated_lds_size

	Amount of group segment (LDS) to allocate for each work-group. Granularity is device specific. CP should use the rounded value from the dispatch packet, not this value, as the dispatch may contain dynamically allocated group segment memory. This field is set to 0 by the Finalizer and CP will write directly to COMPUTE_PGM_RSRC2.LDS_SIZE.

	24

	1 bit

	enable_exception_ieee_754_fp_invalid_

	Enable IEEE 754 FP Invalid Operation exception at start of wavefront operation execution. enable_exception flags are used by CP to set up COMPUTE_PGM_RSRC2.EXCP_EN (set from bits 0..6), EXCP_EN_MSB (set from bits 7..8).

	25

	1 bit

	enable_exception_fp_denormal_source

	Enable FP Denormal exception at start of wavefront execution.

	26

	1 bit

	enable_exception_ieee_754_fp_division_by_zero

	Enable IEEE 754 FP Division by Zero exception at start of wavefront execution.

	27

	1 bit

	enable_exception_ieee_754_fp_overflow

	Enable IEEE 754 FP FP Overflow exception at start of wavefront execution.

	28

	1 bit

	enable_exception_ieee_754_fp_underflow

	Enable IEEE 754 FP Underflow exception at start of wavefront execution.

	29

	1 bit

	enable_exception_ieee_754_fp_inexact

	Enable IEEE 754 FP Inexact exception at start of wavefront execution.

	30

	1 bit

	enable_exception_int_divide_by_zero

	Enable Integer Division by Zero (rcp_iflag_f32 instruction only) exception at start of wavefront execution.

	31

	1 bit

	
	Reserved. Must be 0.

	32

	
	
	Total size 4 bytes.

AMD Machine Kind amd_machine_kind_t

	Enumeration Name

	Value

	Description

	AMD_MACHINE_KIND_UNDEFINED

	0

	Machine kind is undefined.

	AMD_MACHINE_KIND_AMDGPU

	1

	Machine kind is AMD GPU. Corresponds to AMD GPU ISA architecture of AMDGPU.

Float Round Mode amd_float_round_mode_t

	Enumeration Name

	Value

	Description

	AMD_FLOAT_ROUND_MODE_NEAR_EVEN

	0

	Round Ties To Even

	AMD_FLOAT_ROUND_MODE_PLUS_INFINITY

	1

	Round Toward +infinity

	AMD_FLOAT_ROUND_MODE_MINUS_INFINITY

	2

	Round Toward -infinity

	AMD_FLOAT_ROUND_MODE_ZERO

	3

	Round Toward 0

Denorm Mode amd_float_denorm_mode_t

	Enumeration Name

	Value

	Description

	AMD_FLOAT_DENORM_MODE_FLUSH_SRC_DST

	0

	Flush Source and Destination Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_DST

	1

	Flush Output Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_SRC

	2

	Flush Source Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_NONE

	3

	No Flush

PCIe Gen3 Atomic Operations

PCI Express Gen3 defines 3 PCIe transactions, each of which carries out a specific Atomic Operation:

	FetchAdd (Fetch and Add)

	Swap (Unconditional Swap)

	CAS (Compare and Swap)

For compute capabilities supporting PCIe Gen3 atomics, system scope atomic operations use the following sequences:

	Atomic Load/Store: FLAT_LOAD_DWORD* / FLAT_STORE_DWORD* / TLP MRd / MWr

	Atomic add: FLAT_ATOMIC_ADD / TLP FetchAdd

	Atomic sub: FLAT_ATOMIC_ADD + negate/ TLP FetchAdd

	Atomic swap: FLAT_ATOMIC_SWAP / TLP Swap

	Atomic compare-and-swap: FLAT_ATOMIC_CMPSWAP / TLP CAS

	Other Atomic RMW operations: (max, min, and, or, xor, wrapinc, wrapdec): CAS loop

PCIe Gen3 atomics are only supported on certain hardware configurations, for example, Haswell system.

AMD Queue

HSA AQL Queue Object hsa_queue_t

HSA Queue Object is defined in “HSA Platform System Architecture Specification”. AMD HSA Queue handle is a pointer to amd_queue_t.

AMD AQL Queue Object amd_queue_t

The AMD HSA Runtime implementation uses the AMD Queue object (amd_queue_t) to implement AQL queues. It begins with the HSA Queue object, and then has additional information contiguously afterwards that is AMD device specific. The AMD device specific information is accessible by the AMD HSA Runtime, CP and kernel machine code.

The AMD Queue object must be allocated on 64 byte alignment. This allows CP microcode to fetch fields using cache line addresses. The entire AMD Queue object must not span a 4GiB boundary. This allows CP to save a few instructions when calculating the base address of amd_queue_t from &(amd_queue_t.read_dispatch_id) and amd_queue_t.read_dispatch_id_field_base_offset.

For GFX8 and earlier systems, only HSA Queue type SINGLE is supported.

	Bits

	Size

	Name

	Description

	319:0

	40 bytes

	hsa_queue

	HSA Queue object

	447:320

	16 bytes

	
	
Unused. Allows hsa_queue_t to expand but still keeps

write_dispatch_id, which is written by the producer

often the host CPU), in the same cache line. Must be 0.

	511:448

	8 bytes

	write_dispatch_id

	
64-bit index of the next packet to be allocated by

application or user-level runtime. Initialized to 0 at

queue creation time.

	512

	
	
	Start of cache line for fields accessed by kernel machine code isa.

	543:512

	4 bytes

	group_segment_aperture_base_hi

	
For HSA64, the most significant 32 bits of the 64 bit group

segment flat address aperture base. This is the same value

{SH_MEM_BASES:PRIVATE_BASE[15:13],For HSA32, the 32 bits of the 32

bit group segment flat address aperture.This is the same value as

{SH_MEM_BASES:SHARED_BASE[15:0], 16b0}.

	575:544

	4 bytes

	private_segment_aperture_base_hi

	
For HSA64, the most significant 32 bits of the 64 bit private

segment flat address aperture base.This is the same value as

{SH_MEM_BASES:PRIVATE_BASE[15:13], 28b0, 1b1} For HSA32,

the 32 bits of the 32 bit private segment flat address aperture

base This is the same value as {SH_MEM_BASES:PRIVATE_BASE[15:0],

16b0}.

	607:576

	4 bytes

	max_cu_id

	
The number of compute units on the agent to which the queue is

associated.

	639:608

	4 bytes

	max_wave_id

	
The number of wavefronts that can be executed on a single compute

unit of the device to which the queue is associated.

	703:640

	8 bytes

	max_legacy_doorbell_dispatch_id_plus_1

	
For AMD_SIGNAL_KIND_LEGACY_DOORBELL maximum value of

write_dispatch_id signaled for the queue. the This value is always

64-bit and never decreases.

	735:704

	4 bytes

	legacy_doorbell_lock

	
For AMD_SIGNAL_KIND_LEGACY_DOORBELL, atomic variable used to

protect critical section which updates the doorbell related fields

Initialized to 0, and set to 1 to lock the critical section

	1023:736

	36 bytes

	
	Padding to next cache line. Unused and must be 0.

	1024

	
	
	
Start of cache line for fields accessed by the packet processor (CP

micro code).

	1087:
1024

	8 bytes

	read_dispatch_id

	
64-bit index of the next packet to be consumed by compute unit

hardware. Initialized to 0 at queue creation time.Queue operations

	1119:
1088

	4 bytes

	read_dispatch_id_field_base_byte_offset

	
Byte offset from the base of hsa_queue_t to the read_dispatch_id

field.when amd_kernel_code_t.enable_sgpr_dispatch_ptr is set.

This field must immediately follow read_dispatch_id.This allows the

layout above the read_dispatch_id field to change, and still be

able to get the base of the hsa_queue_t, which is needed to return

if amd_kernel_code_t.enable_sgpr_queue_ptr is requested. These

fields are defined by HSA Foundation and so could change. CP only

uses fields below read_dispatch_id which are defined by AMD.

	1536

	
	
	
Start of next cache line for fields not accessed under normal

conditions by the packet processor (CP micro code). These are kept

in a single cache line to minimize memory accesses performed by CP

micro code.

	2048

	
	
	
Total size 256 bytes.

Queue-operations

A queue has an associated set of high-level operations defined in “HSA Runtime Specification” (API functions in host code) and “HSA Programmer Reference Manual Specification” (kernel code).

The following is informal description of AMD implementation of queue operations (all use memory scope system, memory order applies):

	Load Queue Write Index: Atomic load of read_dispatch_id field

	Store Queue Write Index: Atomic store of read_dispatch_id field

	Load Queue Read Index: Atomic load of write_dispatch_id field

	Store Queue Read Index: Atomic store of read_dispatch_id field

	Add Queue Write Index: Atomic add of write_dispatch_id field

	Compare-And-Swap Queue Write Index: Atomic CAS of write_dispatch_id field

Signals

Signals overview

Signal handle is 8 bytes. AMD signal handle is a pointer to AMD Signal Object (amd_signal_t).

The following operations are defined on HSA Signals:

	
	Signal Load
	
	Read the of the current value of the signal

	Optional acquire semantics on the signal value

	
	Signal Wait on a condition
	
	Blocks the thread until the requested condition on the signal value is observed

	Condition: equals, not-equals, greater, greater-equals, lesser, lesser-equals

	Optional acquire semantics on the signal value

	Returns the value of the signal that caused it to wake

	
	Signal Store
	
	Optional release semantics on the signal value

	
	Signal Read-Modify-Write Atomics (add, sub, increment, decrement, min, max, and, or, xor, exch, cas)
	
	These happen immediately and atomically

	Optional acquire-release semantics on the signal value

Signal kind amd_signal_kind_t

	ID

	Name

	Description

	0

	AMD_SIGNAL_KIND_INVALID

	An invalid signal.

	1

	AMD_SIGNAL_KIND_USER

	A regular signal

	-1

	AMD_SIGNAL_KIND_DOORBELL

	Doorbell signal with hardware support

	-2

	AMD_SIGNAL_KIND_LEGACY_DOORBELL

	Doorbell signal with hardware support, legacy (GFX7/GFX8)

Signal object amd_signal_t

	Bits

	Size

	Name

	Description

	63:0

	8 bytes

	kind

	Signal kind

	127:64

	8 bytes

	value

	For AMD_SIGNAL_KIND_USER: signal payload value. In small machine model only the lower 32 bits is used, in large machine model all 64 bits are used.

	127:64

	8 bytes

	legacy_hardware_doorbell_ptr

	For AMD_SIGNAL_KIND_LEGACY_DOORBELL: pointer to the doorbell IOMMU memory (write-only). Used for hardware notification in Signal Store.

	127:64

	8 bytes

	hardware_doorbell_ptr

	For AMD_SIGNAL_KIND_DOORBELL: pointer to the doorbell IOMMU memory (write-only). Used for hardware notification in Signal Store.

	191:128

	8 bytes

	event_mailbox_ptr

	For AMD_SIGNAL_KIND_USER: mailbox address for event notification in Signal operations.

	223:192

	4 bytes

	event_id

	For AMD_SIGNAL_KIND_USER: event id for event notification in Signal operations.

	255:224

	4 bytes

	
	Padding. Must be 0.

	319:256

	8 bytes

	start_ts

	Start of the AQL packet timestamp, when profiled.

	383:320

	8 bytes

	end_ts

	End of the AQL packet timestamp, when profiled.

	448:384

	8 bytes

	queue_ptr

	For AMD_SIGNAL_KIND_*DOORBELL: the address of the associated amd_queue_t, otherwise reserved and must be 0.

	511:448

	8 bytes

	
	Padding to 64 byte size. Must be 0.

	512

	
	
	Total size 64 bytes

Signal kernel machine code

As signal kind is determined by kind field of amd_signal_t, instruction sequence for signal operation must branch on signal kind.

The following is informal description of signal operations:

	
	For AMD_SIGNAL_KIND_USER kind:
	
	Signal Load uses atomic load from value field of corresponding amd_signal_t (memory order applies, memory scope system).

	
	Signal Wait
	
	Uses poll loop on signal value.

	s_sleep ISA instruction provides hint to the SQ to not to schedule the wave for a specified time.

	s_memtime/s_memrealtime instruction is used to measure time (as signal wait is required to time out in reasonable time interval even if condition is not met).

	
	Signal Store/Signal Atomic uses the following sequence:
	
	Corresponding atomic operation on signal value (memory scope system, memory order applies).

	Load mailbox address from event_mailbox_ptr field.

	
	If mailbox address is not zero:
	
	load event id from event_id field.

	atomic store of event id to mailbox address (memory scope system, memory order release).

	s_sendmsg with argument equal to lower 8 bits of event_id.

	
	For AMD_SIGNAL_KIND_LEGACY_DOORBELL:
	
	
	Signal Store uses the following sequence:
	
	Load queue address from queue_ptr field

	
	Acquire spinlock protecting the legacy doorbell of the queue.
	
	Load address of the spinlock from legacy_doorbell_lock field of amd_queue_t.

	Compare-and-swap atomic loop, previous value 0, value to set 1 (memory order acquire, memory scope system).

	s_sleep ISA instruction provides hint to the SQ to not to schedule the wave for a specified time.

	Use value+1 as next packet index and initial value for legacy dispatch id. GFX7/GFX8 hardware expects packet index to point beyond the last packet to be processed.

	Atomic store of next packet index (value+1) to max_legacy_doorbell_dispatch_id_plus_1 field (memory order relaxed, memory scope system).

	
	For small machine model:
	
	legacy_dispatch_id = min(write_dispatch_id, read_dispatch_id + hsa_queue.size)

	
	For GFX7:
	
	Load queue size from hsa_queue.size field of amd_queue_t.

	Wrap packet index to a point within the ring buffer (ring buffer size is twice the size of the HSA queue).

	Convert legacy_dispatch_id to DWORD count by multiplying by 64/4 = 16.

	legacy_dispatch_id = (legacy_dispatch_id & ((hsa_queue.size << 1)-1)) << 4;

	
	Store legacy dispatch id to the hardware MMIO doorbell.
	
	Address of the doorbell is in legacy_hardware_doorbell_ptr field of amd_signal_t.

	Release spinlock protecting the legacy doorbell of the queue. Atomic store of value 0.

	Signal Load/Signal Wait/Signal Read-Modify-Write Atomics are not supported. Instruction sequence for these operations and this signal kind is empty.

	
	For AMD_SIGNAL_KIND_DOORBELL:
	
	
	Signal Store uses the following sequence:
	
	Atomic store of value to the hardware MMIO doorbell.

	Signal Load/Signal Wait/Signal Read-Modify-Write Atomics are not supported. Instruction sequence for these operations and this signal kind is empty.

Debugtrap

Debugtrap halts execution of the wavefront and generates debug exception. For more information, refer to “HSA Programmer Reference Manual Specification”. debugtrap accepts 32-bit unsigned value as an argument.

The following is a description of debugtrap sequence:

	v0 contains 32-bit argument of debugtrap

	s[0:1] contains Queue Ptr for the dispatch

	s_trap 0x1

References

	HSA Standards and Specifications [http://www.hsafoundation.com/standards/]

	HSA Platform System Architecture Specification 1.0

	HSA Programmer Reference Manual Specification 1.01

	HSA Runtime Specification 1.0

	
	AMD ISA Documents
	
	AMD GCN3 Instruction Set Architecture (2015) [https://github.com/tpn/pdfs/blob/master/AMD%20-%20GCN3%20Instruction%20Set%20Architecture%20-%20Graphics%20Core%20Next%20Architecture%2C%20Generation%203%20(Revision%201.0%2C%20March%202015).pdf].

	AMD_Southern_Islands_Instruction_Set_Architecture [http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/07/AMD_Southern_Islands_Instruction_Set_Architecture1.pdf]

	
	ROCR Runtime sources [https://github.com/RadeonOpenCompute/ROCR-Runtime]
	
	amd_hsa_kernel_code.h [https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/src/inc/amd_hsa_kernel_code.h]

	amd_hsa_queue.h [https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/src/inc/amd_hsa_queue.h]

	amd_hsa_signal.h [https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/src/inc/amd_hsa_signal.h]

	amd_hsa_common.h [https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/src/inc/amd_hsa_common.h]

	PCI Express Atomic Operations [https://pcisig.com/specifications/pciexpress/specifications/ECN_Atomic_Ops_080417.pdf]

Compiler SDK

GCN Native ISA LLVM Code Generator

	GCN Native ISA LLVM Code Generator

ROCm Code Object Format

	ROCm Code Object Format

ROCm Device Library

Overview

This repository contains the following libraries:

	Name

	Comments

	Dependencies

	oclc*

	Open Compute library controls [https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/master/doc/OCML.md]

	

	ocml

	Open Compute Math library [https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/master/doc/OCML.md]

	oclc*

	ockl

	Open Compute Kernel library [https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/master/doc/OCKL.md]

	oclc*

	opencl

	OpenCL built-in library

	ocml,ockl,oclc*

	hip

	HIP built in library

	ocml,ockl,oclc*

	hc

	Heterogeneous Compute built-in library

	ocml,ockl,oclc*

Building

The library sources should be compiled using a clang compiler built from sources in the amd-stg-open branch of AMD-modified llvm-project repository.
Use the following commands:

git clone https://github.com/RadeonOpenCompute/llvm-project.git -b amd-stg-open llvm_amd
cd llvm_amd
mkdir -p build
cd build
cmake \
 -DCMAKE_BUILD_TYPE=Release \
 -DCMAKE_INSTALL_PREFIX=/opt/rocm/llvm \
 -DLLVM_ENABLE_PROJECTS="clang;lld" \
 -DLLVM_TARGETS_TO_BUILD="AMDGPU;X86" \
 ../llvm
make

To build the library bitcodes, clone the amd_stg_open branch of this repository.
Run the following commands:

	::
	git clone https://github.com/RadeonOpenCompute/ROCm-Device-Libs.git -b amd-stg-open

and from its top level run the following commands:

mkdir -p build
cd build
export LLVM_BUILD=... (path to LLVM build directory created above)
CC=$LLVM_BUILD/bin/clang cmake -DLLVM_DIR=$LLVM_BUILD ..
make

It is also possible to use compiler that only has AMDGPU target enabled if you build prepare-builtins separately with host compiler and pass explicit target option to CMake:

export LLVM_BUILD=... (path to LLVM build)
Build prepare-builtins
cd utils
mkdir build
cd build
cmake -DLLVM_DIR=$LLVM_BUILD ..
make
Build bitcode libraries
cd ../..
mkdir build
cd build
CC=$LLVM_BUILD/bin/clang cmake -DLLVM_DIR=$LLVM_BUILD -DAMDHSACOD=$HSA_DIR/bin/x86_64/amdhsacod -DCMAKE_C_FLAGS="-target amdgcn--amdhsa" DCMAKE_CXX_FLAGS="-target amdgcn--amdhsa" -DPREPARE_BUILTINS=`cd ../utils/build/prepare-builtins/; pwd`/prepare-builtins ..

To install artifacts: make install

To create packages for the libraray: make package

Using Bitcode Libraries

The ROCm language runtimes automatically add the required bitcode files during the LLVM linking stage invoked during the process of creating a code object. There are options to display the exact commands excecuted, but an approximation of the command the OpenCL runtime might use is as follows:

$LLVM_BUILD/bin/clang -x cl -Xclang -finclude-default-header \
 -target amdgcn-amd-amdhsa -mcpu=gfx900 \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/opencl/opencl.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/ocml/ocml.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/ockl/ockl.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_correctly_rounded_sqrt_off.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_daz_opt_off.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_finite_only_off.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_unsafe_math_off.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_wavefrontsize64_off.amdgcn.bc \
 -Xclang -mlink-bitcode-file -Xclang /srv/git/ROCm-Device-Libs/build/oclc/oclc_isa_version_900.amdgcn.bc \
 test.cl -o test.so

Using from Cmake

The bitcode libraries are exported as CMake targets, organized in a CMake package. You can depend on this package using find_package(AMDDeviceLibs REQUIRED CONFIG) after ensuring the CMAKE_PREFIX_PATH includes either the build directory or install prefix of the bitcode libraries. The package defines a variable AMD_DEVICE_LIBS_TARGETS containing a list of the exported CMake targets.

ROCr Runtime

Github link of ROCr Runtime check Here [https://github.com/RadeonOpenCompute/ROCR-Runtime]

HSA Runtime API and runtime for ROCm

This repository includes the user-mode API interfaces and libraries necessary for host applications to launch compute kernels to available HSA ROCm kernel agents. Reference source code for the core runtime is also available.
Initial target platform requirements

	CPU: Intel Haswell or newer, Core i5, Core i7, Xeon E3 v4 & v5; Xeon E5 v3

	GPU: Fiji ASIC (AMD R9 Nano, R9 Fury and R9 Fury X)

	GPU: Polaris ASIC (AMD RX480)

Source code

The HSA core runtime source code for the ROCR runtime is located in the src subdirectory. Please consult the associated README.md file for contents and build instructions.

Binaries for Ubuntu & Fedora and installation instructions

Pre-built binaries are available for installation from the ROCm package repository. For ROCR, they include:

Core runtime package:

	HSA include files to support application development on the HSA runtime for the ROCR runtime

	A 64-bit version of AMD’s HSA core runtime for the ROCR runtime

Runtime extension package:

	A 64-bit version of AMD’s runtime tools library

	A 64-bit version of AMD’s runtime image library, which supports the HSAIL image implementation only.

The contents of these packages are installed in /opt/rocm/hsa and /opt/rocm by default. The core runtime package depends on the hsakmt-roct-dev package

Installation instructions can be found in the ROCm Documentation [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html]

Infrastructure

The HSA runtime is a thin, user-mode API that exposes the necessary interfaces to access and interact with graphics hardware driven by the AMDGPU driver set and the ROCK kernel driver. Together they enable programmers to directly harness the power of AMD discrete graphics devices by allowing host applications to launch compute kernels directly to the graphics hardware.

The capabilities expressed by the HSA Runtime API are:

	Error handling

	Runtime initialization and shutdown

	System and agent information

	Signals and synchronization

	Architected dispatch

	Memory management

	HSA runtime fits into a typical software architecture stack.

The HSA runtime provides direct access to the graphics hardware to give the programmer more control of the execution. An example of low level hardware access is the support of one or more user mode queues provides programmers with a low-latency kernel dispatch interface, allowing them to develop customized dispatch algorithms specific to their application.

The HSA Architected Queuing Language is an open standard, defined by the HSA Foundation, specifying the packet syntax used to control supported AMD/ATI Radeon (c) graphics devices. The AQL language supports several packet types, including packets that can command the hardware to automatically resolve inter-packet dependencies (barrier AND & barrier OR packet), kernel dispatch packets and agent dispatch packets.

In addition to user mode queues and AQL, the HSA runtime exposes various virtual address ranges that can be accessed by one or more of the system’s graphics devices, and possibly the host. The exposed virtual address ranges either support a fine grained or a coarse grained access. Updates to memory in a fine grained region are immediately visible to all devices that can access it, but only one device can have access to a coarse grained allocation at a time. Ownership of a coarse grained region can be changed using the HSA runtime memory APIs, but this transfer of ownership must be explicitly done by the host application.

Programmers should consult the HSA Runtime Programmer’s Reference Manual for a full description of the HSA Runtime APIs, AQL and the HSA memory policy.

Known issues

	Each HSA process creates an internal DMA queue, but there is a system-wide limit of four DMA queues. When the limit is reached HSA processes will use internal kernels for copies.

Disclaimer

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale.

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Copyright (c) 2014-2017 Advanced Micro Devices, Inc. All rights reserved.

GCN Native ISA LLVM Code Generator

	Introduction

	
	LLVM
	
	Target Triples

	Processors

	Target Features

	Address Spaces

	Memory Scopes

	AMDGPU Intrinsics

	AMDGPU Attributes

	
	Code Object
	
	Header

	Sections

	Note Records

	Symbols

	Relocation Records

	
	DWARF
	
	Address Space Mapping

	Register Mapping

	Source Text

	
	Code Conventions
	
	
	AMDHSA
	
	Code Object Metadata

	Kernel Dispatch

	Memory Spaces

	Image and Samplers

	HSA Signals

	HSA AQL Queue

	Kernel Descriptor

	Kernel Descriptor for GFX6-GFX9

	Initial Kernel Execution State

	
	Kernel Prolog
	
	M0

	Flat Scratch

	Memory Model

	Trap Handler ABI

	
	AMDPAL
	
	User Data

	Compute User Data

	Graphics User Data

	Global Internal Table

	
	Unspecified OS
	
	Trap Handler ABI

	
	Source Languages
	
	OpenCL

	HCC

	
	Assembler
	
	Instructions

	Operands

	Modifers

	
	Instruction Examples
	
	DS

	FLAT

	MUBUF

	SMRD/SMEM

	SOP1

	SOP2

	SOPC

	SOPP

	VALU

	
	Code Object V2 Predefined Symbols (-mattr=-code-object-v3)
	
	.option.machine_version_major

	.option.machine_version_minor

	.option.machine_version_stepping

	.kernel.vgpr_count

	.kernel.sgpr_count

	
	Code Object V2 Directives (-mattr=-code-object-v3)
	
	.hsa_code_object_version major, minor

	.hsa_code_object_isa [major, minor, stepping, vendor, arch]

	.amdgpu_hsa_kernel (name)

	.amd_kernel_code_t

	Code Object V2 Example Source Code (-mattr=-code-object-v3)

	
	Code Object V3 Predefined Symbols (-mattr=+code-object-v3)
	
	.amdgcn.gfx_generation_number

	.amdgcn.gfx_generation_minor

	.amdgcn.gfx_generation_stepping

	.amdgcn.next_free_vgpr

	.amdgcn.next_free_sgpr

	
	Code Object V3 Directives (-mattr=+code-object-v3)
	
	.amdgcn_target <target>

	.amdhsa_kernel <name>

	.amdgpu_metadata

	Code Object V3 Example Source Code (-mattr=+code-object-v3)

	Additional Documentation

Introduction

The AMDGPU backend provides ISA code generation for AMD GPUs, starting with the R600 family up until the current GCN families. It lives in the lib/Target/AMDGPU directory.

LLVM

Target Triples

Use the clang -target <Architecture>-<Vendor>-<OS>-<Environment> option to specify the target triple:

AMDGPU Architectures

	Architecture

	Description

	r600

	AMD GPUs HD2XXX-HD6XXX for graphics and compute shaders

	amdgcn

	AMD GPUs GCN GFX6 onwards for graphics and compute shaders

AMDGPU Vendors
============== ==

Vendor Description

	amd

	can be used for all AMD GPU usage.

	mesa3d

	can be used if the OS is mesa3d.

AMDGPU Operating Systems
============== ==

OS Description

	<empty>

	Defaults to the unknown OS.

	amdhsa

	Compute kernels executed on HSA [HSA] compatible runtimes such as AMD’s ROCm [AMD-ROCm].

	amdpal

	Graphic shaders and compute kernels executed on AMD PAL runtime.

	mesa3d

	Graphic shaders and compute kernels executed on Mesa 3D runtime.

AMDGPU Environments

	Environment

	Description

	<empty>

	Default.

Processors

Use the clang -mcpu <Processor> option to specify the AMD GPU processor. The names from both the Processor and Alternative Processor can be used.

AMDGPU Processors

	Processor

	Alternative
Processor

	Target
Triple
Architecture

	dGPU/
APU

	Target
Features
Supported
[Default]

	ROCm
Support

	Example
Products

	Radeon HD 2000/3000 Series (R600)

	r600

	
	R600

	dGPU

	
	
	

	r630

	
	R600

	dGPU

	
	
	

	rs880

	
	R600

	dGPU

	
	
	

	rv670

	
	R600

	dGPU

	
	
	

	Radeon HD 4000 Series (R700)

	rv710

	
	r600

	dGPU

	
	
	

	rv730

	
	r600

	dGPU

	
	
	

	rv770

	
	r600

	dGPU

	
	
	

	Radeon HD 5000 Series (Evergreen)

	cedar

	
	r600

	dGPU

	
	
	

	cypress

	
	r600

	dGPU

	
	
	

	juniper

	
	r600

	dGPU

	
	
	

	redwood

	
	r600

	dGPU

	
	
	

	sumo

	
	r600

	dGPU

	
	
	

	Radeon HD 6000 Series (Northern Islands)

	barts

	
	r600

	dGPU

	
	
	

	calcos

	
	r600

	dGPU

	
	
	

	cayman

	
	r600

	dGPU

	
	
	

	turks

	
	r600

	dGPU

	
	
	

	GCN GFX6 (Southern Islands (SI))

	gfx600

	tahiti

	amdgcn

	dGPU

	
	
	

	gfx601

	hainan
oland
pitcairn
verde

	amdgcn

	dGPU

	
	
	

	GCN GFX7 (Sea Islands (CI))

	gfx700

	kaveri

	amdgcn

	APU

	
	
	A6-7000
A6 Pro-7050B
A8-7100
A8 Pro-7150B
A10-7300
A10 Pro-7350B
FX-7500
A8-7200P
A10-7400P
FX-7600P

	gfx701

	hawaii

	amdgcn

	dGPU

	
	ROCm

	FirePro W8100
FirePro W9100
FirePro S9150
FirePro S9170

	gfx702

	
	amdgcn

	dGPU

	
	ROCm

	Radeon R9 290
Radeon R9 290x
Radeon R390
Radeon R390x

	gfx703

	kabini
mullins

	amdgcn

	APU

	
	
	E1-2100
E1-2200
E1-2500
E2-3000
E2-3800
A4-5000
A4-5100
A6-5200
A4 Pro-3340B

	gfx704

	bonaire

	amdgcn

	dGPU

	
	
	Radeon HD 7790
Radeon HD 8770
R7 260
R7 260X

	GCN GFX8 (Volcanic Islands (VI))

	gfx801

	carrizo

	amdgcn

	APU

	xnack
[on]

	
	A6-8500P
Pro A6-8500B
A8-8600P
Pro A8-8600B
FX-8800P
pro A12-8800B

	
	
	amdgcn

	APU

	xnack
[on]

	ROCm

	A10-8700P
Pro A10-8700B
A10-8780P

	
	
	amdgcn

	APU

	xnack
[on]

	
	A10-9600P
A10-9630P
A12-9700P
A12-9730P
FX-9800P
FX-9830P

	
	
	amdgcn

	APU

	xnack
[on]

	
	E2-9010
A6-9210
A9-9410

	gfx802

	iceland
tonga

	amdgcn

	dGPU

	xnack
[off]

	ROCm

	FirePro S7150
FirePro S7100
FirePro W7100
Radeon R285
Radeon R9 380
Radeon R9 385
Mobile FirePro
M7170

	gfx803

	fiji

	amdgcn

	dGPU

	xnack
[off]

	ROCm

	Radeon R9 Nano
Radeon R9 Fury
Radeon R9 FuryX
Radeon Pro Duo
FirePro S9300x2
Radeon Instinct MI8

	
	polaris10

	amdgcn

	dGPU

	xnack
[off]

	ROCm

	Radeon RX 470
Radeon RX 480
Radeon Instinct MI6

	
	polaris11

	amdgcn

	dGPU

	xnack
[off]

	ROCm

	Radeon RX 460

	gfx810

	stoney

	amdgcn

	APU

	xnack
[on]

	
	

	GCN GFX9

	gfx900

	
	amdgcn

	dGPU

	xnack
[off]

	ROCm

	Radeon Vega
Frontier Edition
Radeon RX Vega 56
Radeon RX Vega 64
Radeon RX Vega 64
Liquid
Radeon Instinct MI25

	gfx902

	
	amdgcn

	APU

	xnack
[on]

	
	Ryzen 3 2200G
Ryzen 5 2400G

	gfx904

	
	amdgcn

	dGPU

	xnack[off]

	
	

	gfx906

	
	amdgcn

	dGPU

	xnack[off]

	
	Radeon Instinct MI50

Radeon Instinct MI6

	gfx908

	
	amdgcn

	dGPU

	xnack
[off]
sram-ecc
[on]

	
	

	gfx909

	
	amdgcn

	APU

	xnack[on]

	
	

	GCN GFX10

	gfx1010

	
	amdgcn

	dGPU

	xnack
[off]
wavefrontsize64
[off]
cumode
[off]

	
	

	gfx1011

	
	amdgcn

	dGPU

	xnack
[off]
wavefrontsize64
[off]
cumode
[off]

	
	

	gfx1012

	
	amdgcn

	dGPU

	xnack
[off]
wavefrontsize64
[off]
cumode
[off]

	
	

Target Features

Target features control how code is generated to support certain processor specific features. Not all target features are supported by all processors. The runtime must ensure that the features supported by the device used to execute the code match the features enabled when generating the code. A mismatch of features may result in incorrect execution, or a reduction in performance.

The target features supported by each processor, and the default value used if not specified explicitly, is listed in AMDGPU Processors.

Use the clang -m[no-]<TargetFeature> option to specify the AMD GPU target features.

For example:

	-mxnack

	Enable the xnack feature.

	-mno-xnack

	
Disable the xnack feature.

AMDGPU Target Features

	Target Feature

	Description

	-m[no-]xnack

	Enable/disable generating code that has memory clauses that are compatible
with having XNACK replay enabled.
This is used for demand paging and page migration. If XNACK replay is
enabled in the device, then if a page fault occurs the code may execute
incorrectly if the xnack feature is not enabled. Executing code that has
the feature enabled on a device that does not have XNACK replay enabled will
execute correctly, but may be less performant than code with the feature
disabled.

	-m[no-]sram-ecc

	Enable/disable generating code that assumes SRAM ECC is enabled/disabled.

	-m[no-]wavefront

	

	size64

	Control the default wavefront size used when generating code for kernels.
When disabled native wavefront size 32 is used, when enabled wavefront
size 64 is used.

	-m[no-]cumode

	Control the default wavefront execution mode used when generating code
for kernels. When disabled native WGP wavefront execution mode is used,
when enabled CU wavefront execution mode is used (see Memory Model).

Address Spaces

The AMDGPU backend uses the following address space mappings.

The memory space names used in the table, aside from the region memory space, is from the OpenCL standard.

LLVM Address Space number is used throughout LLVM (for example, in LLVM IR).

Address Space Mapping

	LLVM Address Space

	Memory Space

	0

	Generic (Flat)

	1

	Global

	2

	Region (GDS)

	3

	Local (group/LDS)

	4

	Constant

	5

	Private (Scratch)

	6

	Constant 32-bit

	7

	Buffer Fat Pointer
(experimental)

The buffer fat pointer is an experimental address space that is currently unsupported in the backend. It exposes a non-integral pointer that is in future intended to support the modelling of 128-bit buffer descriptors + a 32-bit offset into the buffer descriptor (in total encapsulating a 160-bit ‘pointer’), allowing us to use normal LLVM load/store/atomic operations to model the buffer descriptors used heavily in graphics workloads targeting the backend.

Memory Scopes

This section provides LLVM memory synchronization scopes supported by the AMDGPU backend memory model when the target triple OS is amdhsa (see Memory Model and Target Triples).

The memory model supported is based on the HSA memory model which is based in turn on HRF-indirect with scope inclusion. The happens-before relation is transitive over the synchonizes-with relation independent of scope, and synchonizes-with allows the memory scope instances to be inclusive (see table AMDHSA LLVM Sync Scopes for AMDHSA).

This is different to the OpenCL memory model which does not have scope inclusion and requires the memory scopes to exactly match. However, this is conservatively correct for OpenCL.

AMDHSA LLVM Sync Scopes

	LLVM Sync Scope

	Description

	none

	The default: system.
Synchronizes with, and participates in modification and seq_cst total orderings with, other operations (except image operations) for all address spaces (except private, or generic that accesses private) provided the other operation’s sync scope is:

	system.

	agent and executed by a thread on the same agent.

	workgroup and executed by a thread in the same workgroup.

	wavefront and executed by a thread in the same wavefront.

	agent

	
	Synchronizes with, and participates in modification and seq_cst total orderings with, other operations (except image operations) for all address spaces (except private, or generic that accesses private) provided the other operation’s sync scope is:
	
	system or agent and executed by a thread on the same agent.

	workgroup and executed by a thread in the same workgroup.

	wavefront and executed by a thread in the same wavefront.

	workgroup

	
	Synchronizes with, and participates in modification and seq_cst total orderings with, other operations (except image operations) for all address spaces (except private, or generic that accesses private) provided the other operation’s sync scope is:
	
	system, agent or workgroup and executed by a thread in the same workgroup.

	wavefront and executed by a thread in the same wavefront.

	wavefront

	
	Synchronizes with, and participates in modification and seq_cst total orderings with, other operations (except image operations) for all address spaces (except private, or generic that accesses private) provided the other operation’s sync scope is:
	
	system, agent, workgroup or wavefront and executed by a thread in the same wavefront.

	singlethread

	Only synchronizes with, and participates in modification and seq_cst total orderings with, other operations (except image operations) running in the same thread for all address spaces (for example, in signal handlers).

	one-as

	Same as system but only synchronizes with other operations within the same address space

AMDGPU Intrinsics

The AMDGPU backend implements the following intrinsics.

This section is WIP.

AMDGPU Attributes

The AMDGPU backend supports the following LLVM IR attributes.

AMDGPU LLVM IR Attributes

	LLVM Attribute

	Description

	“amdgpu-flat-work-group-size”=”min,max”

	Specify the minimum and maximum flat work group sizes that will be specified
when the kernel is dispatched. Generated by the amdgpu_flat_work_group_size
CLANG attribute.

	“amdgpu-implicitarg-num-bytes”=”n”

	Number of kernel argument bytes to add to the kernel argument block size
for the implicit arguments. This varies by OS and language

	“amdgpu-num-sgpr”=”n”

	Specifies the number of SGPRs to use. Generated by the amdgpu_num_sgpr CLANG attribute

	“amdgpu-num-vgpr”=”n”

	Specifies the number of VGPRs to use. Generated by the amdgpu_num_vgpr CLANG attribute

	“amdgpu-waves-per-eu”=”m,n”

	Specify the minimum and maximum number of waves per execution unit.
Generated by the amdgpu_waves_per_eu CLANG attribute

	“amdgpu-ieee” true/false.

	Specify whether the function expects the IEEE field of the mode register to
be set on entry. Overrides the default for the calling convention.

	“amdgpu-dx10-clamp” true/false.

	Specify whether the function expects the DX10_CLAMP field of the mode
register to be set on entry. Overrides the default for the calling convention.

Code Object

The AMDGPU backend generates a standard ELF [ELF] relocatable code object that can be linked by lld to produce a standard ELF shared code object which can be loaded and executed on an AMDGPU target.

Header

The AMDGPU backend uses the following ELF header:

AMDGPU ELF Header

	Field

	Value

	e_ident[EI_CLASS]

	ELFCLASS64

	e_ident[EI_DATA]

	ELFDATA2LSB

	e_ident[EI_OSABI]

	ELFOSABI_AMDGPU_HSA

	e_ident[EI_ABIVERSION]

	ELFABIVERSION_AMDGPU_HSA

	e_type

	ET_REL or ET_DYN

	e_machine

	EM_AMDGPU

	e_entry

	0

	e_flags

	0

AMDGPU ELF Header Enumeration Values

	Name

	Value

	EM_AMDGPU

	224

	LFOSABI_AMDGPU_HSA

	64

	ELFABIVERSION_AMDGPU_HSA

	1

	e_ident[EI_CLASS]
	The ELF class is always ELFCLASS64. The AMDGPU backend only supports 64 bit applications.

	e_ident[EI_DATA]
	All AMDGPU targets use ELFDATA2LSB for little-endian byte ordering.

	e_ident[EI_OSABI]
	The AMD GPU architecture specific OS ABI of ELFOSABI_AMDGPU_HSA is used to specify that the code object conforms to the AMD HSA runtime ABI [HSA].

	e_ident[EI_ABIVERSION]
	The AMD GPU architecture specific OS ABI version of ELFABIVERSION_AMDGPU_HSA is used to specify the version of AMD HSA runtime ABI to which the code object conforms.

e_type

Can be one of the following values:
ET_REL

The type produced by the AMD GPU backend compiler as it is relocatable code object.

	ET_DYN
	The type produced by the linker as it is a shared code object.

The AMD HSA runtime loader requires a ET_DYN code object.

	e_machine
	The value EM_AMDGPU is used for the machine for all members of the AMD GPU architecture family. The specific member is specified in the NT_AMD_AMDGPU_ISA entry in the .note section (see Note Records).

	e_entry
	The entry point is 0 as the entry points for individual kernels must be selected in order to invoke them through AQL packets.

	e_flags
	The value is 0 as no flags are used.

Sections

An AMDGPU target ELF code object has the standard ELF sections which include:

AMDGPU ELF Sections

	Name

	Type

	Attributes

	.bss

	SHT_NOBITS

	SHF_ALLOC + SHF_WRITE

	.data

	SHT_PROGBITS

	SHF_ALLOC + SHF_WRITE

	.debug_*

	SHT_PROGBITS

	none

	.dynamic

	SHT_DYNAMIC

	SHF_ALLOC

	.dynstr

	SHT_PROGBITS

	SHF_ALLOC

	.dynsym

	SHT_PROGBITS

	SHF_ALLOC

	.got

	SHT_PROGBITS

	SHF_ALLOC + SHF_WRITE

	.hash

	SHT_HASH

	SHF_ALLOC

	.note

	SHT_NOTE

	none

	.relaname

	SHT_RELA

	none

	.rela.dyn

	SHT_RELA

	none

	.rodata

	SHT_PROGBITS

	SHF_ALLOC

	.shstrtab

	SHT_STRTAB

	none

	.strtab

	SHT_STRTAB

	none

	.symtab

	SHT_SYMTAB

	none

	.text

	SHT_PROGBITS

	SHF_ALLOC + SHF_EXECINSTR

These sections have their standard meanings and are only generated if needed.

	.debug*
	The standard DWARF sections. See DWARF for information on the DWARF produced by the AMDGPU backend.

	.dynamic, .dynstr, .dynsym, .hash
	The standard sections used by a dynamic loader.

	.note
	See Note Records for the note records supported by the AMDGPU backend.

	.relaname, .rela.dyn
	For relocatable code objects, name is the name of the section that the relocation records apply. For example, .rela.text is the section name for relocation records associated with the .text section.
For linked shared code objects, .rela.dyn contains all the relocation records from each of the relocatable code object’s .relaname sections.
See Relocation Records for the relocation records supported by the AMDGPU backend.

	.text
	The executable machine code for the kernels and functions they call. Generated as position independent code. See Code Conventions for information on conventions used in the isa generation.

Note Records

As required by ELFCLASS64, minimal zero byte padding must be generated after the name field to ensure the desc field is 4 byte aligned. In addition, minimal zero byte padding must be generated to ensure the desc field size is a multiple of 4 bytes. The sh_addralign field of the .note section must be at least 4 to indicate at least 8 byte alignment.

The AMDGPU backend code object uses the following ELF note records in the .note section. The Description column specifies the layout of the note record’s desc field. All fields are consecutive bytes. Note records with variable size strings have a corresponding *_size field that specifies the number of bytes, including the terminating null character, in the string. The string(s) come immediately after the preceding fields.

Additional note records can be present.

AMDGPU ELF Note Records

	Name

	Type

	Description

	“AMD”

	NT_AMD_AMDGPU_HSA_METADATA

	<metadata null terminated string>

	“AMD”

	NT_AMD_AMDGPU_ISA

	<isa name null terminated string>

AMDGPU ELF Note Record Enumeration Values

	Name

	Value

	reserved

	0-9

	NT_AMD_AMDGPU_HSA_METADATA

	10

	NT_AMD_AMDGPU_ISA

	11

NT_AMD_AMDGPU_ISA

Specifies the instruction set architecture used by the machine code contained in the code object.

This note record is required for code objects containing machine code for processors matching the amdgcn architecture in table Processors.

The null terminated string has the following syntax:

architecture-vendor-os-environment-processor

where:

	architecture
	The architecture from table AMDGPU Target Triples.
This is always amdgcn when the target triple OS is amdhsa (see Target Triples).

	vendor
	The vendor from table AMDGPU Target Triples.
For the AMDGPU backend this is always amd.

	OS
	The OS from table AMDGPU Target Triples.

	environment
	An environment from table AMDGPU Target Triples, or blank if the environment has no affect on the execution of the code object.
For the AMDGPU backend this is currently always blank.

	processor
	The processor from table AMDGPU Processors.

For example:

amdgcn-amd-amdhsa--gfx901

NT_AMD_AMDGPU_HSA_METADATA

Specifies extensible metadata associated with the code objects executed on HSA [HSA] compatible runtimes such as AMD’s ROCm [AMD-ROCm]. It is required when the target triple OS is amdhsa (see Target Triples). See Code Object Metadata for the syntax of the code object metadata string.

Symbols

Symbols include the following:

AMDGPU ELF Symbols

	Name

	Type

	Section

	Description

	link-name

	STT_OBJECT

	
	.data

	.rodata

	.bss

	Global variable

	link-name@kd

	STT_OBJECT

	
	.rodata

	Kernel descriptor

	link-name

	STT_FUNC

	
	.text

	Kernel entry point

Global variable

Global variables both used and defined by the compilation unit.

If the symbol is defined in the compilation unit then it is allocated in the appropriate section according to if it has initialized data or is readonly.

If the symbol is external then its section is STN_UNDEF and the loader will resolve relocations using the definition provided by another code object or explicitly defined by the runtime.

All global symbols, whether defined in the compilation unit or external, are accessed by the machine code indirectly through a GOT table entry. This allows them to be preemptable. The GOT table is only supported when the target triple OS is amdhsa (see Target Triples).

Kernel descriptor

Every HSA kernel has an associated kernel descriptor. It is the address of the kernel descriptor that is used in the AQL dispatch packet used to invoke the kernel, not the kernel entry point. The layout of the HSA kernel descriptor is defined in Kernel Descriptor.

Kernel entry point

Every HSA kernel also has a symbol for its machine code entry point.

Relocation Records

AMDGPU backend generates Elf64_Rela relocation records. Supported relocatable fields are:

	word32
	This specifies a 32-bit field occupying 4 bytes with arbitrary byte alignment. These values use the same byte order as other word values in the AMD GPU architecture.

	word64
	This specifies a 64-bit field occupying 8 bytes with arbitrary byte alignment. These values use the same byte order as other word values in the AMD GPU architecture.

Following notations are used for specifying relocation calculations:

	A
	Represents the addend used to compute the value of the relocatable field.

	G
	Represents the offset into the global offset table at which the relocation entry’s symbol will reside during execution.

	GOT
	Represents the address of the global offset table.

	P
	Represents the place (section offset for et_rel or address for et_dyn) of the storage unit being relocated (computed using r_offset).

	S
	Represents the value of the symbol whose index resides in the relocation entry.

The following relocation types are supported:

AMDGPU ELF Relocation Records

	Relocation Type

	Value

	Field

	Calculation

	R_AMDGPU_NONE

	0

	none

	none

	R_AMDGPU_ABS32_LO

	1

	word32

	(S + A) & 0xFFFFFFFF

	R_AMDGPU_ABS32_HI

	2

	word32

	(S + A) >> 32

	R_AMDGPU_ABS64

	3

	word64

	S + A

	R_AMDGPU_REL32

	4

	word32

	S + A - P

	R_AMDGPU_REL64

	5

	word64

	S + A - P

	R_AMDGPU_ABS32

	6

	word32

	S + A

	R_AMDGPU_GOTPCREL

	7

	word32

	G + GOT + A - P

	R_AMDGPU_GOTPCREL32_LO

	8

	word32

	(G + GOT + A - P) & 0xFFFFFFFF

	R_AMDGPU_GOTPCREL32_HI

	9

	word32

	(G + GOT + A - P) >> 32

	R_AMDGPU_REL32_LO

	10

	word32

	(S + A - P) & 0xFFFFFFFF

	R_AMDGPU_REL32_HI

	11

	word32

	(S + A - P) >> 32

DWARF

Standard DWARF [DWARF] Version 2 sections can be generated. These contain information that maps the code object executable code and data to the source language constructs. It can be used by tools such as debuggers and profilers.

Address Space Mapping

The following address space mapping is used:

AMDGPU DWARF Address Space Mapping

	DWARF Address Space

	Memory Space

	1

	Private (Scratch)

	2

	Local (group/LDS)

	omitted

	lobal

	omitted

	Constant

	omitted

	Generic (Flat)

	not supported

	Region (GDS)

See Address Spaces for information on the memory space terminology used in the table.

An address_class attribute is generated on pointer type DIEs to specify the DWARF address space of the value of the pointer when it is in the private or local address space. Otherwise the attribute is omitted.

An XDEREF operation is generated in location list expressions for variables that are allocated in the private and local address space. Otherwise no XDREF is omitted.

Register Mapping

This section is WIP.

Source Text

This section is WIP.

Code Conventions

This section provides code conventions used for each supported target triple OS (see Target Triples).

AMDHSA

This section provides code conventions used when the target triple OS is amdhsa (see Target Triples).

Code Object Metadata

The code object metadata specifies extensible metadata associated with the code objects executed on HSA [HSA] compatible runtimes such as AMD’s ROCm [AMD-ROCm]. It is specified by the NT_AMD_AMDGPU_HSA_METADATA note record (see Note Records) and is required when the target triple OS is amdhsa (see Target Triples). It must contain the minimum information necessary to support the ROCM kernel queries. For example, the segment sizes needed in a dispatch packet. In addition, a high level language runtime may require other information to be included. For example, the AMD OpenCL runtime records kernel argument information.

The metadata is specified as a YAML formatted string (see [YAML] and YAML I/O).

The metadata is represented as a single YAML document comprised of the mapping defined in table AMDHSA Code Object Metadata Mapping and referenced tables.

For boolean values, the string values of false and true are used for false and true respectively.

Additional information can be added to the mappings. To avoid conflicts, any non-AMD key names should be prefixed by “vendor-name.”.

AMDHSA Code Object Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“Version”

	sequence of 2 integers

	Required

	
	The first integer is the major version. Currently 1.

	The second integer is the minor version. Currently 0.

	“Printf”

	sequence of strings

	
	Each string is encoded information about a printf function call.
The encoded information is organized as fields separated by colon

(‘:’):ID:N:S[0]:S[1]:…:S[N-1]:FormatString

where:
ID

A 32 bit integer as a unique id for each printf function call

	N
	A 32 bit integer equal to the number of arguments of printf function call minus 1

	S[i] (where i = 0, 1, …, N-1)
	32 bit integers for the size in bytes of the i-th FormatString argument of the printf function call

FormatString
The format string passed to the printf function call.

	“Kernels”

	sequence of mapping

	Required

	Sequence of the mappings for each kernel in the code object. See AMDHSA Code Object Kernel Metadata Mapping for the definition of the mapping.

AMDHSA Code Object Kernel Metadata Mapping

	String Key

	value Type

	Required?

	Description

	“Name”

	string

	Required

	Source name of the kernel.

	“SymbolName”

	string

	Required

	Name of the kernel descriptor ELF symbol.

	“Language”

	string

	
	Source language of the kernel. Values include:
* “OpenCL C”
* “OpenCL C++”
* “HCC”
* “OpenMP”

	“LanguageVersion”

	sequence of 2 integers

	
	
	The first integer is the major version.

	The second integer is the minor version.

	“Attrs”

	mapping

	
	Mapping of kernel attributes. See AMDHSA Code Object Kernel Attribute Metadata Mapping for the mapping definition.

	“Arguments”

	sequence of mapping

	
	Sequence of mappings of the kernel arguments. See AMDHSA Code Object Kernel Argument Metadata Mapping for the definition of the mapping.

	“CodeProps”

	mapping

	
	Mapping of properties related to the kernel code. See AMDHSA Code Object Kernel Code Properties Metadata Mapping for the mapping definition.

	“DebugProps”

	mapping

	
	Mapping of properties related to the kernel debugging. See AMDHSA Code Object Kernel Debug Properties Metadata Mapping for the mapping definition.

AMDHSA Code Object Kernel Attribute Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“ReqdWorkGroupSize”

	sequence of 3 integers

	
	The dispatch work-group size X,Y,Z must correspond to the specified values.
Corresponds to the OpenCL reqd_work_group_size attribute.

	“WorkGroupSizeHint”

	sequence of 3 integers

	
	The dispatch work-group size X,Y,Z is likely to be the specified values.
Corresponds to the OpenCL work_group_size_hint attribute.

	“VecTypeHint”

	string

	
	The name of a scalar or vector type.
Corresponds to the OpenCL vec_type_hint attribute.

AMDHSA Code Object Kernel Argument Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“Name”

	string

	
	Kernel argument name.

	“TypeName”

	string

	
	Kernel argument type name.

	“Size”

	integer

	Required

	Kernel argument size in bytes.

	“Align”

	integer

	Required

	Kernel argument alignment in bytes. Must be a power of two.

	“ValueKind”

	string

	Required

	
	Kernel argument kind that specifies how to set up the corresponding argument. Values include :
	
	“ByValue”
	The argument is copied directly into the kernarg.

	“GlobalBuffer”
	A global address space pointer to the buffer data is passed in the kernarg.

	“DynamicSharedPointer”
	A group address space pointer to dynamically allocated LDS is passed in the kernarg.

	“Sampler”
	A global address space pointer to a S# is passed in the kernarg.

	“Image”
	A global address space pointer to a T# is passed in the kernarg.

	“Pipe”
	A global address space pointer to an OpenCL pipe is passed in the kernarg.

	“Queue”
	A global address space pointer to an OpenCL device enqueue queue is passed in the kernarg.

	“HiddenGlobalOffsetX”
	The OpenCL grid dispatch global offset for the X dimension is passed in the kernarg.

	“HiddenGlobalOffsetY”
	The OpenCL grid dispatch global offset for the Y dimension is passed in the kernarg.

	“HiddenGlobalOffsetZ”
	The OpenCL grid dispatch global offset for the Z dimension is passed in the kernarg.

	“HiddenNone”
	An argument that is not used by the kernel. Space needs to be left for it, but it does not need to be set up.

	“HiddenPrintfBuffer”
	A global address space pointer to the runtime printf buffer is passed in kernarg.

	“HiddenDefaultQueue”
	A global address space pointer to the OpenCL device enqueue queue that should be used by the kernel by default is passed in the kernarg.

	“HiddenCompletionAction”
	TBD

	“ValueType”

	Value Type

	Required

	
	Kernel argument value type. Only present if “ValueKind” is “ByValue”. For vector data types, the value is for the element type.Values include:
	
	“Struct”

	“I8”

	“U8”

	“I16”

	“U16”

	“F16”

	“I32”

	“U32”

	“F32”

	“I64”

	“U64”

	“F64”

	“PointeeAlign”

	integer

	
	Alignment in bytes of pointee type for pointer type kernel argument. Must be a power of 2. Only present if “ValueKind” is “DynamicSharedPointer”.

	“AddrSpaceQual”

	string

	
	
	Kernel argument address space qualifier. Only present if “ValueKind” is “GlobalBuffer” or “DynamicSharedPointer”.Values are :
	
	“Private”

	“Global”

	“Constant”

	“Local”

	“Generic”

	“Region”

	“AccQual”

	string

	
	
	Kernel argument access qualifier. Only present if “ValueKind” is “Image” or “Pipe”. Values are :
	
	“ReadOnly”

	“WriteOnly”

	“ReadWrite”

	“ActualAcc”

	string

	
	
	The actual memory accesses performed by the kernel on the kernel argument.Only present if “ValueKind” is “GlobalBuffer”, “Image”, or “Pipe”. This may be more restrictive than indicated by “AccQual” to reflect what the kernel actual does.If not present then the runtime must assume what is implied by “AccQual” and “IsConst”. Values are :
	
	“ReadOnly”

	“WriteOnly”

	“ReadWrite”

	“IsConst”

	boolean

	
	Indicates if the kernel argument is const qualified. Only present if “ValueKind” is “GlobalBuffer”.

	“IsRestrict”

	boolean

	
	Indicates if the kernel argument is restrict qualified. Only present if “ValueKind” is “GlobalBuffer”.

	“IsVolatile”

	boolean

	
	Indicates if the kernel argument is volatile qualified. Only present if “ValueKind” is “GlobalBuffer”.

	“IsPipe”

	boolean

	
	Indicates if the kernel argument is pipe qualified. Only present if “ValueKind” is “Pipe”.

AMDHSA Code Object Kernel Code Properties Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“KernargSegmentSize”

	integer

	Required

	The size in bytes of the kernarg segment that holds the values of the arguments to the kernel.

	“GroupSegmentFixedSize”

	integer

	Required

	The amount of group segment memory required by a work-group in bytes.
This does not include any dynamically allocated group segment memory that may be added when the kernel is dispatched.

	“PrivateSegmentFixedSize”

	integer

	Required

	
	The amount of fixed private address space memory required for a work-item in bytes.
	If IsDynamicCallstack is 1 then additional space must be added to this value for the call stack.

	“KernargSegmentAlign”

	integer

	Required

	The maximum byte alignment of arguments in the kernarg segment. Must be a power of 2.

	“WavefrontSize”

	integer

	Required

	Wavefront size. Must be a power of 2.

	“NumSGPRs”

	integer

	
	Number of scalar registers used by a wavefront for GFX6-GFX9.
This includes the special SGPRs for VCC, Flat Scratch (GFX7-GFX9) and XNACK (for GFX8-GFX9).

It does not include the 16 SGPR added if a trap handler is enabled. It is not rounded up to the allocation granularity.

	“NumVGPRs”

	integer

	
	Number of vector registers used by each work-item for GFX6-GFX9

	“MaxFlatWorkgroupSize”

	integer

	
	Maximum flat work-group size supported by the kernel in work-items.

	“IsDynamicCallStack”

	boolean

	
	Indicates if the generated machine code is using a dynamically sized call stack.

	“IsXNACKEnabled”

	boolean

	
	Indicates if the generated machine code is capable of supporting XNACK.

AMDHSA Code Object Kernel Debug Properties Metadata Mapping

	String Key

	Value Type

	Required?

	Description

	“DebuggerABIVersion”

	string

	
	

	“ReservedNumVGPRs”

	integer

	
	

	“ReservedFirstVGPR”

	integer

	
	

	“PrivateSegmentBufferSGPR”

	integer

	
	

	“WavefrontPrivateSegmentOffsetSGPR”

	integer

	
	

Kernel Dispatch

The HSA architected queuing language (AQL) defines a user space memory interface that can be used to control the dispatch of kernels, in an agent independent way. An agent can have zero or more AQL queues created for it using the ROCm runtime, in which AQL packets (all of which are 64 bytes) can be placed. See the HSA Platform System Architecture Specification [HSA] for the AQL queue mechanics and packet layouts.

The packet processor of a kernel agent is responsible for detecting and dispatching HSA kernels from the AQL queues associated with it. For AMD GPUs the packet processor is implemented by the hardware command processor (CP), asynchronous dispatch controller (ADC) and shader processor input controller (SPI).

The ROCm runtime can be used to allocate an AQL queue object. It uses the kernel mode driver to initialize and register the AQL queue with CP.

To dispatch a kernel the following actions are performed. This can occur in the CPU host program, or from an HSA kernel executing on a GPU.

	A pointer to an AQL queue for the kernel agent on which the kernel is to be executed is obtained.

	A pointer to the kernel descriptor (see Kernel Descriptor) of the kernel to execute is obtained. It must be for a kernel that is contained in a code object that that was loaded by the ROCm runtime on the kernel agent with which the AQL queue is associated.

	Space is allocated for the kernel arguments using the ROCm runtime allocator for a memory region with the kernarg property for the kernel agent that will execute the kernel. It must be at least 16 byte aligned.

	Kernel argument values are assigned to the kernel argument memory allocation. The layout is defined in the HSA Programmer’s Language Reference [HSA]. For AMDGPU the kernel execution directly accesses the kernel argument memory in the same way constant memory is accessed. (Note that the HSA specification allows an implementation to copy the kernel argument contents to another location that is accessed by the kernel.)

	An AQL kernel dispatch packet is created on the AQL queue. The ROCm runtime api uses 64 bit atomic operations to reserve space in the AQL queue for the packet. The packet must be set up, and the final write must use an atomic store release to set the packet kind to ensure the packet contents are visible to the kernel agent. AQL defines a doorbell signal mechanism to notify the kernel agent that the AQL queue has been updated. These rules, and the layout of the AQL queue and kernel dispatch packet is defined in the HSA System Architecture Specification [HSA].

	A kernel dispatch packet includes information about the actual dispatch, such as grid and work-group size, together with information from the code object about the kernel, such as segment sizes. The ROCm runtime queries on the kernel symbol can be used to obtain the code object values which are recorded in the Code Object Metadata.

	CP executes micro-code and is responsible for detecting and setting up the GPU to execute the wavefronts of a kernel dispatch.

	CP ensures that when the a wavefront starts executing the kernel machine code, the scalar general purpose registers (SGPR) and vector general purpose registers (VGPR) are set up as required by the machine code. The required setup is defined in the Kernel Descriptor. The initial register state is defined in Initial Kernel Execution State.

	The prolog of the kernel machine code (see Kernel Prolog) sets up the machine state as necessary before continuing executing the machine code that corresponds to the kernel.

	When the kernel dispatch has completed execution, CP signals the completion signal specified in the kernel dispatch packet if not 0.

Memory Spaces

The memory space properties are:

AMDHSA Memory Spaces Memory Space

	Name

	HSA Segment Name

	Hardware Name

	Address Size

	NULL Value

	Private

	private

	scratch

	32

	0x00000000

	Local

	group

	LDS

	32

	0xFFFFFFFF

	Global

	global

	global

	64

	0x0000000000000000

	Constant

	constant

	same as global

	64

	0x0000000000000000

	Generic

	flat

	flat

	64

	0x0000000000000000

	Region

	N/A

	GDS

	32

	not implemented for AMDHSA

The global and constant memory spaces both use global virtual addresses, which are the same virtual address space used by the CPU. However, some virtual addresses may only be accessible to the CPU, some only accessible by the GPU, and some by both.

Using the constant memory space indicates that the data will not change during the execution of the kernel. This allows scalar read instructions to be used. The vector and scalar L1 caches are invalidated of volatile data before each kernel dispatch execution to allow constant memory to change values between kernel dispatches.

The local memory space uses the hardware Local Data Store (LDS) which is automatically allocated when the hardware creates work-groups of wavefronts, and freed when all the wavefronts of a work-group have terminated. The data store (DS) instructions can be used to access it.

The private memory space uses the hardware scratch memory support. If the kernel uses scratch, then the hardware allocates memory that is accessed using wavefront lane dword (4 byte) interleaving. The mapping used from private address to physical address is:

wavefront-scratch-base + (private-address * wavefront-size * 4) + (wavefront-lane-id * 4)

There are different ways that the wavefront scratch base address is determined by a wavefront (see Initial Kernel Execution State). This memory can be accessed in an interleaved manner using buffer instruction with the scratch buffer descriptor and per wave scratch offset, by the scratch instructions, or by flat instructions. If each lane of a wavefront accesses the same private address, the interleaving results in adjacent dwords being accessed and hence requires fewer cache lines to be fetched. Multi-dword access is not supported except by flat and scratch instructions in GFX9.

The generic address space uses the hardware flat address support available in GFX7-GFX9. This uses two fixed ranges of virtual addresses (the private and local appertures), that are outside the range of addressible global memory, to map from a flat address to a private or local address.

FLAT instructions can take a flat address and access global, private (scratch) and group (LDS) memory depending in if the address is within one of the apperture ranges. Flat access to scratch requires hardware aperture setup and setup in the kernel prologue (see Flat Scratch). Flat access to LDS requires hardware aperture setup and M0 (GFX7-GFX8) register setup (see M0).

To convert between a segment address and a flat address the base address of the appertures address can be used. For GFX7-GFX8 these are available in the HSA AQL Queue the address of which can be obtained with Queue Ptr SGPR (see Initial Kernel Execution State). For GFX9 the appature base addresses are directly available as inline constant registers SRC_SHARED_BASE/LIMIT and SRC_PRIVATE_BASE/LIMIT. In 64 bit address mode the apperture sizes are 2^32 bytes and the base is aligned to 2^32 which makes it easier to convert from flat to segment or segment to flat.

Image and Samplers

Image and sample handles created by the ROCm runtime are 64 bit addresses of a hardware 32 byte V# and 48 byte S# object respectively. In order to support the HSA query_sampler operations two extra dwords are used to store the HSA BRIG enumeration values for the queries that are not trivially deducible from the S# representation.

HSA Signals

HSA signal handles created by the ROCm runtime are 64 bit addresses of a structure allocated in memory accessible from both the CPU and GPU. The structure is defined by the ROCm runtime and subject to change between releases (see [AMD-ROCm-github]).

HSA AQL Queue

The HSA AQL queue structure is defined by the ROCm runtime and subject to change between releases (see [AMD-ROCm-github]). For some processors it contains fields needed to implement certain language features such as the flat address aperture bases. It also contains fields used by CP such as managing the allocation of scratch memory.

Kernel Descriptor

A kernel descriptor consists of the information needed by CP to initiate the execution of a kernel, including the entry point address of the machine code that implements the kernel.

Kernel Descriptor for GFX6-GFX9

CP microcode requires the Kernel descritor to be allocated on 64 byte alignment.

Kernel Descriptor for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	31:0

	4 bytes

	group_segment_fixed_size

	The amount of fixed local address space memory required for a work-group in bytes. This does not include any dynamically allocated local address space memory that may be added when the kernel is dispatched.

	63:32

	4 bytes

	private_segment_fixed_size

	The amount of fixed private address space memory required for a work-item in bytes. If is_dynamic_callstack is 1 then additional space must be added to this value for the call stack.

	95:64

	4 bytes

	max_flat_workgroup_size

	Maximum flat work-group size supported by the kernel in work-items.

	96

	1 bit

	is_dynamic_call_stack

	Indicates if the generated machine code is using a dynamically sized call stack.

	97

	1 bit

	is_xnack_enabled

	Indicates if the generated machine code is capable of suppoting XNACK.

	127:98

	30 bits

	
	Reserved. Must be 0.

	191:128

	8 bytes

	kernel_code_entry_byte_offset

	Byte offset (possibly negative) from base address of kernel descriptor to kernel’s entry point instruction which must be 256 byte aligned.

	383:192

	24 bytes

	
	Reserved. Must be 0.

	415:384

	4 bytes

	compute_pgm_rsrc1

	Compute Shader (CS) program settings used by CP to set up COMPUTE_PGM_RSRC1 configuration register. See compute_pgm_rsrc1 for GFX6-GFX9.

	447:416

	4 bytes

	compute_pgm_rsrc2

	Compute Shader (CS) program settings used by CP to set up COMPUTE_PGM_RSRC2 configuration register. See compute_pgm_rsrc2 for GFX6-GFX9.

	448

	1 bit

	enable_sgpr_private_segment _buffer

	Enable the setup of the SGPR user data registers (see Initial Kernel Execution State).

The total number of SGPR user data registers requested must not exceed 16 and match value in compute_pgm_rsrc2.user_sgpr.user_sgpr_count. Any requests beyond 16 will be ignored.

	449

	1 bit

	enable_sgpr_dispatch_ptr

	see above

	450

	1 bit

	enable_sgpr_queue_ptr

	see above

	451

	1 bit

	enable_sgpr_kernarg_segment_ptr

	see above

	452

	1 bit

	enable_sgpr_dispatch_id

	see above

	453

	1 bit

	enable_sgpr_flat_scratch_init

	see above

	454

	1 bit

	enable_sgpr_private_segment _size

	see above

	455

	1 bit

	enable_sgpr_grid_workgroup _count_X

	Not implemented in CP and should always be 0.

	456

	1 bit

	enable_sgpr_grid_workgroup _count_Y

	Not implemented in CP and should always be 0.

	457

	1 bit

	enable_sgpr_grid_workgroup _count_Z

	Not implemented in CP and should always be 0.

	463:458

	6 bits

	
	Reserved. Must be 0.

	511:464

	4 bytes

	
	Reserved. Must be 0.

	512

	Total size 64 bytes.

	
	

compute_pgm_rsrc1 for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	5:0

	6 bits

	granulated_workitem_vgpr_count

	
	Number of vector registers used by each work-item, granularity is device specific:
	
	GFX6-9 roundup
	((max-vgpg + 1) / 4) - 1

Used by CP to set up COMPUTE_PGM_RSRC1.VGPRS.

	9:6

	4 bits

	granulated_wavefront_sgpr_count

	Number of scalar registers used by a wavefront, granularity is device specific:
GFX6-8 roundup

((max-sgpg + 1) / 8) - 1

	GFX9 roundup
	((max-sgpg+1)/16) - 1

Includes the special SGPRs for VCC, Flat Scratch (for GFX7 onwards) and XNACK (for GFX8 onwards).
It does not include the 16 SGPR added if a trap handler is enabled.

Used by CP to set up COMPUTE_PGM_RSRC1.SGPRS.

	11:10

	2 bits

	priority

	Must be 0.
Start executing wavefront at the specified priority.

CP is responsible for filling in COMPUTE_PGM_RSRC1.PRIORITY.

	13:12

	2 bits

	float_mode_round_32

	
	Wavefront starts execution with specified rounding mode for single (32 bit) floating point precision floating point operations.
	Floating point rounding mode values are defined in Floating Point Rounding Mode Enumeration Values.

Used by CP to set up COMPUTE_PGM_RSRC1.FLOAT_MODE.

	15:14

	2 bits

	float_mode_round_16_64

	Wavefront starts execution with specified rounding denorm mode for half/double (16 and 64 bit) floating point precision floating point operations.
Floating point rounding mode values are defined in Floating Point Rounding Mode Enumeration Values.Used by CP to set up COMPUTE_PGM_RSRC1.FLOAT_MODE.

	17:16

	2 bits

	float_mode_denorm_32

	Wavefront starts execution with specified denorm mode for single (32 bit) floating point precision floating point operations.
Floating point denorm mode values are defined in Floating Point Denorm Mode Enumeration Values.
Used by CP to set up COMPUTE_PGM_RSRC1.FLOAT_MODE.

	19:18

	2 bits

	float_mode_denorm_16_64

	Wavefront starts execution with specified denorm mode for half/double (16 and 64 bit) floating point precision floating point operations.
Floating point denorm mode values are defined in Floating Point Denorm Mode Enumeration Values.
Used by CP to set up COMPUTE_PGM_RSRC1.FLOAT_MODE.

	20

	1 bit

	priv

	Must be 0.
Start executing wavefront in privilege trap handler mode.
CP is responsible for filling in COMPUTE_PGM_RSRC1.PRIV.

	21

	1 bit

	enable_dx10_clamp

	Wavefront starts execution with DX10 clamp mode enabled.
Used by the vector ALU to force DX-10 style treatment of NaN’s (when set, clamp NaN to zero, otherwise pass NaN through).
Used by CP to set up`` COMPUTE_PGM_RSRC1.DX10_CLAMP.``

	22

	1 bit

	debug_mode

	Must be 0.
Start executing wavefront in single step mode.
CP is responsible for filling in COMPUTE_PGM_RSRC1.DEBUG_MODE.

	23

	1 bit

	enable_ieee_mode

	Wavefront starts execution with IEEE mode enabled. Floating point opcodes that support exception flag gathering will quiet and propagate signaling-NaN inputs per IEEE 754-2008. Min_dx10 and max_dx10 become IEEE 754-2008 compliant due to signaling-NaN propagation and quieting.
Used by CP to set up COMPUTE_PGM_RSRC1.IEEE_MODE.

	24

	1 bit

	bulky

	Must be 0.
Only one work-group allowed to execute on a compute unit.
CP is responsible for filling in COMPUTE_PGM_RSRC1.BULKY.

	25

	1 bit

	cdbg_user

	Must be 0.
Flag that can be used to control debugging code.
CP is responsible for filling in COMPUTE_PGM_RSRC1.CDBG_USER.

	31:26

	6 bits

	
	Reserved. Must be 0.

	32

	Total size 4 bytes

	
	

compute_pgm_rsrc2 for GFX6-GFX9

	Bits

	Size

	Field Name

	Description

	0

	1 bit

	enable_sgpr_private_segment _wave_offset

	Enable the setup of the SGPR wave scratch offset system register (see Initial Kernel Execution State).
Used by CP to set up COMPUTE_PGM_RSRC2.SCRATCH_EN.

	5:1

	5 bits

	user_sgpr_count

	The total number of SGPR user data registers requested.
This number must match the number of user data registers enabled.

Used by CP to set up COMPUTE_PGM_RSRC2.USER_SGPR.

	6

	1 bit

	enable_trap_handler

	Set to 1 if code contains a TRAP instruction which requires a trap handler to be enabled.
CP sets COMPUTE_PGM_RSRC2.TRAP_PRESENT if the runtime has installed a trap handler regardless of the setting of this field.

	7

	1 bit

	enable_sgpr_workgroup_id_x

	Enable the setup of the system SGPR register for the work-group id in the X dimension (see Initial Kernel Execution State).Used by CP to set up COMPUTE_PGM_RSRC2.TGID_X_EN.

	8

	1 bit

	enable_sgpr_workgroup_id_y

	
	Enable the setup of the system SGPR register for the work-group id in the Y dimension
	(see Initial Kernel Execution State).Used by CP to set up COMPUTE_PGM_RSRC2.TGID_Y_EN.

	9

	1 bit

	enable_sgpr_workgroup_id_z

	Enable the setup of the system SGPR register for the work-group id in the Z dimension
(see Initial Kernel Execution State).

Used by CP to set up COMPUTE_PGM_RSRC2.TGID_Z_EN.

	10

	1 bit

	enable_sgpr_workgroup_info

	Enable the setup of the system SGPR register for work-group information (see Initial Kernel Execution State).
Used by CP to set up COMPUTE_PGM_RSRC2.TGID_SIZE_EN.

	12:11

	2 bits

	enable_vgpr_workitem_id

	Enable the setup of the VGPR system registers used for the work-item ID.

System VGPR Work-Item ID Enumeration Values defines the values.
Used by CP to set up COMPUTE_PGM_RSRC2.TIDIG_CMP_CNT.

	13

	1 bit

	enable_exception_address_watch

	Must be 0.
Wavefront starts execution with address watch exceptions enabled which are generated when L1 has witnessed a thread access an address of interest.
CP is responsible for filling in the address watch bit in COMPUTE_PGM_RSRC2.EXCP_EN_MSB according to what the runtime requests.

	14

	1 bit

	enable_exception_memory

	Must be 0.
Wavefront starts execution with memory violation exceptions exceptions enabled
which are generated when a memory violation has occurred for this wave from L1 or LDS
(write-to-read-only-memory, mis-aligned atomic, LDS address out of range, illegal address, etc.).
CP sets the memory violation bit in COMPUTE_PGM_RSRC2.EXCP_EN_MSB according to what the runtime requests.

	23:15

	9 bits

	granulated_lds_size

	Must be 0.
CP uses the rounded value from the dispatch packet, not this value, as the dispatch may contain dynamically allocated group segment memory. CP writes directly to COMPUTE_PGM_RSRC2.LDS_SIZE.
Amount of group segment (LDS) to allocate for each work-group. Granularity is device specific:

	GFX6:
	roundup(lds-size / (64 * 4))

	GFX7-GFX9:
	roundup(lds-size / (128 * 4))

	24

	1 bit

	enable_exception_ieee_754_fp _invalid_operation

	Wavefront starts execution with specified exceptions enabled.
Used by CP to set up COMPUTE_PGM_RSRC2.EXCP_EN (set from bits 0..6).
IEEE 754 FP Invalid Operation

	25

	1 bit

	enable_exception_fp_denormal _source

	FP Denormal one or more input operands is a denormal number

	26

	1 bit

	enable_exception_ieee_754_fp _division_by_zero

	IEEE 754 FP Division by Zero

	27

	1 bit

	enable_exception_ieee_754_fp _overflow

	IEEE 754 FP FP Overflow

	28

	1 bit

	enable_exception_ieee_754_fp _underflow

	IEEE 754 FP Underflow

	29

	1 bit

	enable_exception_ieee_754_fp _inexact

	IEEE 754 FP Inexact

	30

	1 bit

	enable_exception_int_divide_by _zero

	Integer Division by Zero (rcp_iflag_f32 instruction only)

	31

	1 bit

	
	Reserved. Must be 0.

	32

	Total size 4 bytes.

	
	

Floating Point Rounding Mode Enumeration Values

	Enumeration Name

	Value

	Description

	AMD_FLOAT_ROUND_MODE_NEAR_EVEN

	0

	Round Ties To Even

	AMD_FLOAT_ROUND_MODE_PLUS_INFINITY

	1

	Round Toward +infinity

	AMD_FLOAT_ROUND_MODE_MINUS_INFINITY

	2

	Round Toward -infinity

	AMD_FLOAT_ROUND_MODE_ZERO

	3

	Round Toward 0

Floating Point Denorm Mode

	Enumeration Values Enumeration Name

	Value

	Description

	AMD_FLOAT_DENORM_MODE_FLUSH_SRC_DST

	0

	Flush Source and Destination Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_DST

	1

	Flush Output Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_SRC

	2

	Flush Source Denorms

	AMD_FLOAT_DENORM_MODE_FLUSH_NONE

	3

	No Flush

System VGPR Work-Item ID

	Enumeration Values Enumeration Name

	Value

	Description

	AMD_SYSTEM_VGPR_WORKITEM_ID_X

	0

	Set work-item X dimension ID.

	AMD_SYSTEM_VGPR_WORKITEM_ID_X_Y

	1

	Set work-item X and Y dimensions ID.

	AMD_SYSTEM_VGPR_WORKITEM_ID_X_Y_Z

	2

	Set work-item X, Y and Z dimensions ID.

	AMD_SYSTEM_VGPR_WORKITEM_ID_UNDEFINED

	3

	Undefined.

Initial Kernel Execution State

This section defines the register state that will be set up by the packet processor prior to the start of execution of every wavefront. This is limited by the constraints of the hardware controllers of CP/ADC/SPI.

The order of the SGPR registers is defined, but the compiler can specify which ones are actually setup in the kernel descriptor using the enable_sgpr_* bit fields (see Kernel Descriptor). The register numbers used for enabled registers are dense starting at SGPR0: the first enabled register is SGPR0, the next enabled register is SGPR1 etc.; disabled registers do not have an SGPR number.

The initial SGPRs comprise up to 16 User SRGPs that are set by CP and apply to all waves of the grid. It is possible to specify more than 16 User SGPRs using the enable_sgpr_* bit fields, in which case only the first 16 are actually initialized. These are then immediately followed by the System SGPRs that are set up by ADC/SPI and can have different values for each wave of the grid dispatch.

SGPR register initial state is defined in SGPR Register Set Up Order.

SGPR Register Set Up Order

	SGPR Order

	Name (kernel descriptor enable field)

	Number of SGPRs

	Description

	First

	Private Segment Buffer (enable_sgpr_private _segment_buffer)

	4

	V# that can be used, together with Scratch Wave Offset as an offset, to access the private memory space using a segment address.
CP uses the value provided by the runtime.

	then

	Dispatch Ptr (enable_sgpr_dispatch_ptr)

	2

	64 bit address of AQL dispatch packet for kernel dispatch actually executing.

	then

	Queue Ptr (enable_sgpr_queue_ptr)

	2

	64 bit address of amd_queue_t object for AQL queue on which the dispatch packet was queued.

	then

	Kernarg Segment Ptr (enable_sgpr_kernarg _segment_ptr)

	2

	64 bit address of Kernarg segment. This is directly copied from the kernarg_address in the kernel dispatch packet.

Having CP load it once avoids loading it at the beginning of every wavefront.

	then

	Dispatch Id (enable_sgpr_dispatch_id)

	2

	64 bit Dispatch ID of the dispatch packet being executed.

	then

	Flat Scratch Init (enable_sgpr_flat_scratch _init)

	2

	
	This is 2 SGPRs:
	
	GFX6
	Not supported.

GFX7-GFX8
The first SGPR is a 32 bit byte offset from SH_HIDDEN_PRIVATE_BASE_VIMID to per SPI base of memory for scratch for the queue executing the kernel dispatch. CP obtains this from the runtime.
(The Scratch Segment Buffer base address is SH_HIDDEN_PRIVATE_BASE_VIMID plus this offset.) The value of Scratch Wave Offset must be added to this offset by the kernel machine code, right shifted by 8, and moved to the FLAT_SCRATCH_HI SGPR register.
FLAT_SCRATCH_HI corresponds to SGPRn-4 on GFX7, and SGPRn-6 on GFX8 (where SGPRn is the highest numbered SGPR allocated to the wave).
FLAT_SCRATCH_HI is multiplied by 256 (as it is in units of 256 bytes) and added to SH_HIDDEN_PRIVATE_BASE_VIMID to calculate the per wave FLAT SCRATCH BASE in flat memory instructions that access the scratch apperture.

The second SGPR is 32 bit byte size of a single work-item’s scratch memory usage.
CP obtains this from the runtime, and it is always a multiple of DWORD. CP checks that the value in the kernel dispatch packet Private Segment Byte Size is not larger, and requests the runtime to increase the queue’s scratch size if necessary.
The kernel code must move it to FLAT_SCRATCH_LO which is SGPRn-3 on GFX7 and SGPRn-5 on GFX8. FLAT_SCRATCH_LO is used as the FLAT SCRATCH SIZE in flat memory instructions.
Having CP load it once avoids loading it at the beginning of every wavefront. GFX9 This is the 64 bit base address of the per SPI scratch backing memory managed by SPI for the queue executing the kernel dispatch. CP obtains this from the runtime
(and divides it if there are multiple Shader Arrays each with its own SPI).
The value of Scratch Wave Offset must be added by the kernel machine code and the result moved to the FLAT_SCRATCH SGPR which is SGPRn-6 and SGPRn-5.
It is used as the FLAT SCRATCH BASE in flat memory instructions. then Private Segment Size 1 The 32 bit byte size of a (enable_sgpr_private single work-item’s scratch_segment_size) memory allocation.
This is the value from the kernel dispatch packet Private Segment Byte Size rounded up by CP to a multiple of DWORD.
Having CP load it once avoids loading it at the beginning of every wavefront.

This is not used for GFX7-GFX8 since it is the same value as the second SGPR of Flat Scratch Init.
However, it may be needed for GFX9 which changes the meaning of the Flat Scratch Init value.

	then

	Grid Work-Group Count X (enable_sgpr_grid _workgroup_count_X)

	1

	32 bit count of the number of work-groups in the X dimension for the grid being executed.
Computed from the fields in the kernel dispatch packet as ((grid_size.x + workgroup_size.x - 1) / workgroup_size.x).

	then

	Grid Work-Group Count Y (enable_sgpr_grid _workgroup_count_Y && less than 16 previous SGPRs)

	1

	32 bit count of the number of work-groups in the Y dimension for the grid being executed.
Computed from the fields in the kernel dispatch packet as ((grid_size.y + workgroup_size.y - 1) / workgroupSize.y).
Only initialized if <16 previous SGPRs initialized.

	then

	Grid Work-Group Count Z (enable_sgpr_grid _workgroup_count_Z && less than 16 previous SGPRs)

	1

	32 bit count of the number of work-groups in the Z dimension for the grid being executed.
Computed from the fields in the kernel dispatch packet as ((grid_size.z + workgroup_size.z - 1) / workgroupSize.z).
Only initialized if <16 previous SGPRs initialized.

	then

	Work-Group Id X (enable_sgpr_workgroup_id _X)

	1

	32 bit work-group id in X dimension of grid for wavefront.

	then

	Work-Group Id Y (enable_sgpr_workgroup_id _Y)

	1

	32 bit work-group id in Y dimension of grid for wavefront.

	then

	Work-Group Id Z (enable_sgpr_workgroup_id _Z)

	1

	32 bit work-group id in Z dimension of grid for wavefront.

	then

	Work-Group Info (enable_sgpr_workgroup _info)

	1

	{first_wave, 14’b0000, ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}

	then

	Scratch Wave Offset (enable_sgpr_private _segment_wave_offset)

	1

	32 bit byte offset from base of scratch base of queue executing the kernel dispatch.
Must be used as an offset with Private segment address when using Scratch Segment Buffer.
It must be used to set up FLAT SCRATCH for flat addressing (see Flat Scratch).

The order of the VGPR registers is defined, but the compiler can specify which ones are actually setup in the kernel descriptor using the enable_vgpr* bit fields (see Kernel Descriptor). The register numbers used for enabled registers are dense starting at VGPR0: the first enabled register is VGPR0, the next enabled register is VGPR1 etc.; disabled registers do not have a VGPR number.

VGPR register initial state is defined in VGPR Register Set Up Order.

VGPR Register Set Up Order

	VGPR Order

	Name (kernel descriptor enable field)

	Number of VGPRs

	Description

	First

	Work-Item Id X (Always initialized)

	1

	32 bit work item id in X dimension of work-group for wavefront lane.

	then

	Work-Item Id Y (enable_vgpr_workitem_id > 0)

	1

	32 bit work item id in Y dimension of work-group for wavefront lane.

	then

	Work-Item Id Z (enable_vgpr_workitem_id > 1)

	1

	32 bit work item id in Z dimension of work-group for wavefront lane.

The setting of registers is is done by GPU CP/ADC/SPI hardware as follows:

	SGPRs before the Work-Group Ids are set by CP using the 16 User Data registers.

	Work-group Id registers X, Y, Z are set by ADC which supports any combination including none.

	Scratch Wave Offset is set by SPI in a per wave basis which is why its value cannot included with the flat scratch init value which is per queue.

	The VGPRs are set by SPI which only supports specifying either (X), (X, Y) or (X, Y, Z).

Flat Scratch register pair are adjacent SGRRs so they can be moved as a 64 bit value to the hardware required SGPRn-3 and SGPRn-4 respectively.

The global segment can be accessed either using buffer instructions (GFX6 which has V# 64 bit address support), flat instructions (GFX7-9), or global instructions (GFX9).

If buffer operations are used then the compiler can generate a V# with the following properties:

	base address of 0

	no swizzle

	ATC: 1 if IOMMU present (such as APU)

	ptr64: 1

	MTYPE set to support memory coherence that matches the runtime (such as CC for APU and NC for dGPU).

Kernel Prolog

M0

	GFX6-GFX8
	The M0 register must be initialized with a value at least the total LDS size if the kernel may access LDS via DS or flat operations. Total LDS size is available in dispatch packet. For M0, it is also possible to use maximum possible value of LDS for given target (0x7FFF for GFX6 and 0xFFFF for GFX7-GFX8).

	GFX9
	The M0 register is not used for range checking LDS accesses and so does not need to be initialized in the prolog.

Flat Scratch

If the kernel may use flat operations to access scratch memory, the prolog code must set up FLAT_SCRATCH register pair (FLAT_SCRATCH_LO/FLAT_SCRATCH_HI which are in SGPRn-4/SGPRn-3). Initialization uses Flat Scratch Init and Scratch Wave Offset SGPR registers (see Initial Kernel Execution State):

	GFX6
	Flat scratch is not supported.

	GFX7-8
	
	The low word of Flat Scratch Init is 32 bit byte offset from SH_HIDDEN_PRIVATE_BASE_VIMID to the base of scratch backing memory being managed by SPI for the queue executing the kernel dispatch. This is the same value used in the Scratch Segment Buffer V# base address. The prolog must add the value of Scratch Wave Offset to get the wave’s byte scratch backing memory offset from SH_HIDDEN_PRIVATE_BASE_VIMID. Since FLAT_SCRATCH_LO is in units of 256 bytes, the offset must be right shifted by 8 before moving into FLAT_SCRATCH_LO.

	The second word of Flat Scratch Init is 32 bit byte size of a single work-items scratch memory usage. This is directly loaded from the kernel dispatch packet Private Segment Byte Size and rounded up to a multiple of DWORD. Having CP load it once avoids loading it at the beginning of every wavefront. The prolog must move it to FLAT_SCRATCH_LO for use as FLAT SCRATCH SIZE.

	GFX9
	The Flat Scratch Init is the 64 bit address of the base of scratch backing memory being managed by SPI for the queue executing the kernel dispatch. The prolog must add the value of Scratch Wave Offset and moved to the FLAT_SCRATCH pair for use as the flat scratch base in flat memory instructions.

Memory Model

This section describes the mapping of LLVM memory model onto AMDGPU machine code (see Memory Model for Concurrent Operations). The implementation is WIP.

The AMDGPU backend supports the memory synchronization scopes specified in Memory Scopes.

The code sequences used to implement the memory model are defined in table AMDHSA Memory Model Code Sequences GFX6-GFX9.

The sequences specify the order of instructions that a single thread must execute. The s_waitcnt and buffer_wbinvl1_vol are defined with respect to other memory instructions executed by the same thread. This allows them to be moved earlier or later which can allow them to be combined with other instances of the same instruction, or hoisted/sunk out of loops to improve performance. Only the instructions related to the memory model are given; additional s_waitcnt instructions are required to ensure registers are defined before being used. These may be able to be combined with the memory model s_waitcnt instructions as described above.

The AMDGPU memory model supports both the HSA [HSA] memory model, and the OpenCL [OpenCL] memory model. The HSA memory model uses a single happens-before relation for all address spaces (see Address Spaces). The OpenCL memory model which has separate happens-before relations for the global and local address spaces, and only a fence specifying both global and local address space joins the relationships. Since the LLVM memfence instruction does not allow an address space to be specified the OpenCL fence has to convervatively assume both local and global address space was specified. However, optimizations can often be done to eliminate the additional s_waitcnt instructions when there are no intervening corresponding ds/flat_load/store/atomic memory instructions. The code sequences in the table indicate what can be omitted for the OpenCL memory. The target triple environment is used to determine if the source language is OpenCL (see OpenCL).

ds/flat_load/store/atomic instructions to local memory are termed LDS operations.

buffer/global/flat_load/store/atomic instructions to global memory are termed vector memory operations.

For GFX6-GFX9:

	Each agent has multiple compute units (CU).

	Each CU has multiple SIMDs that execute wavefronts.

	The wavefronts for a single work-group are executed in the same CU but may be executed by different SIMDs.

	Each CU has a single LDS memory shared by the wavefronts of the work-groups executing on it.

	All LDS operations of a CU are performed as wavefront wide operations in a global order and involve no caching. Completion is reported to a wavefront in execution order.

	The LDS memory has multiple request queues shared by the SIMDs of a CU. Therefore, the LDS operations performed by different waves of a work-group can be reordered relative to each other, which can result in reordering the visibility of vector memory operations with respect to LDS operations of other wavefronts in the same work-group. A s_waitcnt lgkmcnt(0) is required to ensure synchronization between LDS operations and vector memory operations between waves of a work-group, but not between operations performed by the same wavefront.

	The vector memory operations are performed as wavefront wide operations and completion is reported to a wavefront in execution order. The exception is that for GFX7-9 flat_load/store/atomic instructions can report out of vector memory order if they access LDS memory, and out of LDS operation order if they access global memory.

	The vector memory operations access a vector L1 cache shared by all wavefronts on a CU. Therefore, no special action is required for coherence between wavefronts in the same work-group. A buffer_wbinvl1_vol is required for coherence between waves executing in different work-groups as they may be executing on different CUs.

	The scalar memory operations access a scalar L1 cache shared by all wavefronts on a group of CUs. The scalar and vector L1 caches are not coherent. However, scalar operations are used in a restricted way so do not impact the memory model. See Memory Spaces.

	The vector and scalar memory operations use an L2 cache shared by all CUs on the same agent.

	The L2 cache has independent channels to service disjoint ranges of virtual addresses.

	Each CU has a separate request queue per channel. Therefore, the vector and scalar memory operations performed by waves executing in different work-groups (which may be executing on different CUs) of an agent can be reordered relative to each other. A s_waitcnt vmcnt(0) is required to ensure synchronization between vector memory operations of different CUs. It ensures a previous vector memory operation has completed before executing a subsequent vector memory or LDS operation and so can be used to meet the requirements of acquire and release.

	The L2 cache can be kept coherent with other agents on some targets, or ranges of virtual addresses can be set up to bypass it to ensure system coherence.

Private address space uses buffer_load/store using the scratch V# (GFX6-8), or scratch_load/store (GFX9). Since only a single thread is accessing the memory, atomic memory orderings are not meaningful and all accesses are treated as non-atomic.

Constant address space uses buffer/global_load instructions (or equivalent scalar memory instructions). Since the constant address space contents do not change during the execution of a kernel dispatch it is not legal to perform stores, and atomic memory orderings are not meaningful and all access are treated as non-atomic.

A memory synchronization scope wider than work-group is not meaningful for the group (LDS) address space and is treated as work-group.

The memory model does not support the region address space which is treated as non-atomic.

Acquire memory ordering is not meaningful on store atomic instructions and is treated as non-atomic.

Release memory ordering is not meaningful on load atomic instructions and is treated a non-atomic.

Acquire-release memory ordering is not meaningful on load or store atomic instructions and is treated as acquire and release respectively.

AMDGPU backend only uses scalar memory operations to access memory that is proven to not change during the execution of the kernel dispatch. This includes constant address space and global address space for program scope const variables. Therefore the kernel machine code does not have to maintain the scalar L1 cache to ensure it is coherent with the vector L1 cache. The scalar and vector L1 caches are invalidated between kernel dispatches by CP since constant address space data may change between kernel dispatch executions. See Memory Spaces.

The one execption is if scalar writes are used to spill SGPR registers. In this case the AMDGPU backend ensures the memory location used to spill is never accessed by vector memory operations at the same time. If scalar writes are used then a s_dcache_wb is inserted before the s_endpgm and before a function return since the locations may be used for vector memory instructions by a future wave that uses the same scratch area, or a function call that creates a frame at the same address, respectively. There is no need for a s_dcache_inv as all scalar writes are write-before-read in the same thread.

Scratch backing memory (which is used for the private address space) is accessed with MTYPE NC_NV (non-coherenent non-volatile). Since the private address space is only accessed by a single thread, and is always write-before-read, there is never a need to invalidate these entries from the L1 cache. Hence all cache invalidates are done as *_vol to only invalidate the volatile cache lines.

On dGPU the kernarg backing memory is accessed as UC (uncached) to avoid needing to invalidate the L2 cache. This also causes it to be treated as non-volatile and so is not invalidated by *_vol. On APU it is accessed as CC (cache coherent) and so the L2 cache will coherent with the CPU and other agents.

AMDHSA Memory Model Code Sequences GFX6-GFX9

	LLVM Instr

	LLVM Memory Ordering

	LLVM Memory Sync Scope

	AMDGPU Address Space

	AMDGPU Machine Code

	Non-Atomic

	Load

	none

	none

	
	global

	generic

	
	non-volatile
	
	buffer/global/flat_load

	volatile
	
	buffer/global/flat_load glc=1

	Load

	none

	none

	
	Local

	
	ds_load

	store

	none

	none

	
	global

	generic

	
	buffer/global/flat_store

	store

	none

	none

	
	local

	
	ds_store

	Unordered Atomic

	load atomic

	unordered

	any

	any

	Same as non-atomic

	store atomic

	unordered

	any

	any

	Same as non-atomic

	atomicrmw

	unordered

	any

	any

	Same as monotonic atomic.

	Monotonic Atomic

	load atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	global

	generic

	
	buffer/global/flat_load

	load atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_load

	load atomic

	monotonic

	
	agent

	system

	
	global

	generic

	
	buffer/global/flat_load glc=1

	store atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	agent

	system

	
	global

	generic

	
	buffer/global/flat_store

	store atomic

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_store

	atomicrmw

	monotonic

	
	singlethread

	wavefront

	workgroup

	agent

	system

	
	global

	generic

	
	buffer/global/flat_atomic

	atomicrmw

	monotonic

	
	singlethread

	wavefront

	workgroup

	
	local

	
	ds_atomic

	Acquire Atomic

	load atomic

	acquire

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_load

	load atomic

	acquire

	
	workgroup

	
	global

	
	buffer/global_load

	load atomic

	acquire

	
	workgroup

	
	local

	generic

	
	ds/flat_load

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures any following global data read is no older than the load atomic value being acquired.

	load atomic

	acquire

	
	agent

	system

	
	global

	
	buffer/global_load glc=1

	s_waitcnt vmcnt(0)

	Must happen before following buffer_wbinvl1_vol.

	Ensures the load has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	load atomic

	acquire

	
	agent

	system

	
	generic

	
	flat_load glc=1

	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL omit lgkmcnt(0).

	Must happen before following buffer_wbinvl1_vol.

	Ensures the flat_load has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data

	atomicrmw

	acquire

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	acquire

	
	workgroup

	
	global

	
	buffer/global_atomic

	atomicrmw

	acquire

	
	workgroup

	
	local

*generic

	
	ds/flat_atomic

	waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures any following global data read is no older than the atomicrmw value being acquired.

	atomicrmw

	acquire

	
	agent

	system

	
	global

	
	buffer/global_atomic

	s_waitcnt vmcnt(0)

	Must happen before following buffer_wbinvl1_vol.

	Ensures the atomicrmw has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	atomicrmw

	acquire

	
	agent

	system

	
	generic

	
	flat_atomic

	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Must happen before following buffer_wbinvl1_vol.

	Ensures the atomicrmw has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	fence

	acquire

	
	singlethread

	wavefront

	none

	none

	fence

	acquire

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	
	If OpenCL and address space is not generic, omit waitcnt.
	However, since LLVM currently has no address space on the fence need to conservatively always generate.
If fence had an address space then set to address space of OpenCL fence flag, or to generic if both local and global flags are specified.

	Must happen after any preceding local/generic load atomic/atomicrmw with
an equal or wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic).

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures any following global data read is no older than the value read by the fence-paired-atomic.

	fence

	acquire

	
	agent

	system

	none

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL and address space is not generic, omit lgkmcnt(0).
However, since LLVM currently has no address space on the fence need to conservatively always generate (see comment for previous fence).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load atomic/atomicrmw with
an equal or wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic).

	s_waitcnt lgkmcnt(0) must happen after any preceding group/generic load atomic/atomicrmw with an equal or
wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic).

	Must happen before the following buffer_wbinvl1_vol.

	Ensures that the fence-paired atomic has completed before invalidating the cache.
Therefore any following locations read must be no older than the value read by the fence-paired-atomic.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	Release Atomic

	store atomic

	release

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_store

	store atomic

	release

	
	workgroup

	
	global

	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following store.

	Ensures that all memory operations to local have completed before performing the store that is being released.

	buffer/global/flat_store

	store atomic

	release

	
	workgroup

	
	local

	
	ds_store

	store atomic

	release

	
	agent

	system

	
	global

	generic

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following store.

	Ensures that all memory operations to global have completed before performing the store that is being released.

	buffer/global/ds/flat_store

	atomicrmw

	release

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	release

	
	workgroup

	
	global

	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to local have completed before performing the atomicrmw that is being released.

	buffer/global/flat_atomic

	atomicrmw

	release

	
	workgroup

	
	local

	
	ds_atomic

	atomicrmw

	release

	
	agent

	system

	
	global

	generic

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to global and local have completed before performing the atomicrmw that is being released.

	buffer/global/ds/flat_atomic*

	fence

	release

	
	singlethread

	wavefront

	none

	none

	fence

	release

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	If OpenCL and address space is not generic, omit waitcnt.
However, since LLVM currently has no address space on the fence need to conservatively always generate (see comment for previous fence).

	Must happen after any preceding local/generic load/load atomic/store/store atomic/atomicrmw.

	Must happen before any following store atomic/atomicrmw with an equal or
wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic).

	Ensures that all memory operations to local have completed before performing the following fence-paired-atomic.

	fence

	release

	
	agent

	system

	none

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL and address space is not generic, omit lgkmcnt(0).
However, since LLVM currently has no address space on the fence need to conservatively always generate (see comment for previous fence).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	
	Must happen before any following store atomic/atomicrmw with an equal or wider sync scope and memory ordering stronger than unordered
	(this is termed the fence-paired-atomic).

	Ensures that all memory operations to global have completed before performing the following fence-paired-atomic.

	Acquire-Release Atomic

	atomicrmw

	acq_rel

	
	singlethread

	wavefront

	
	global

	local

	generic

	
	buffer/global/ds/flat_atomic

	atomicrmw

	acq_rel

	
	workgroup

	
	global

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to local have completed before performing the atomicrmw that is being released.

	buffer/global_atomic

	atomicrmw

	acq_rel

	
	workgroup

	
	local

	
	ds_atomic

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures any following global data read is no older than the load atomic value being acquired.

	atomicrmw

	acq_rel

	*workgroup

	
	generic

	
	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to local have completed before performing the atomicrmw that is being released.

	flat_atomic

	s_waitcnt lgkmcnt(0)

	If OpenCL, omit waitcnt.

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures any following global data read is no older than the load atomic value being acquired.

	atomicrmw

	acq_rel

	
	agent

	system

	
	global

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to global have completed before performing the atomicrmw that is being released.

	buffer/global_atomic

	s_waitcnt vmcnt(0)

	Must happen before following buffer_wbinvl1_vol.

	Ensures the atomicrmw has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	atomicrmw

	acq_rel

	
	agent

	system

	
	generic

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following atomicrmw.

	Ensures that all memory operations to global have completed before performing the atomicrmw that is being released.

	flat_atomic

	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL, omit lgkmcnt(0).

	Must happen before following buffer_wbinvl1_vol.

	Ensures the atomicrmw has completed before invalidating the cache.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/atomicrmw.

	Ensures that following loads will not see stale global data.

	fence

	acq_rel

	
	singlethread

	wavefront

	none

	none

	fence

	acq_rel

	
	workgroup

	none

	
	s_waitcnt lgkmcnt(0)

	If OpenCL and address space is not generic, omit waitcnt.
However, since LLVM currently has no address space on the fence need to conservatively always generate (see comment for previous fence).

	Must happen after any preceding local/generic load/load atomic/store/store atomic/atomicrmw.

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures that all memory operations to local have completed before performing any following global memory operations.

	Ensures that the preceding local/generic load atomic/atomicrmw with an equal or wider sync scope and memory ordering stronger than unordered
(this is termed the fence-paired-atomic) has completed before following global memory operations.This satisfies the requirements of acquire.

	Ensures that all previous memory operations have completed before a following local/generic store atomic/atomicrmw with an equal or
wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic). This satisfies the requirements of release.

	fence

	acq_rel

	
	agent

	system

	none

	
	s_waitcnt vmcnt(0) & lgkmcnt(0)

	If OpenCL and address space is not generic, omit lgkmcnt(0).
However, since LLVM currently has no address space on the fence need to conservatively always generate (see comment for previous fence).

	Could be split into separate s_waitcnt vmcnt(0) and s_waitcnt lgkmcnt(0) to allow them to be independently moved according to the following rules.

	s_waitcnt vmcnt(0) must happen after any preceding global/generic load/store/load atomic/store atomic/atomicrmw.

	s_waitcnt lgkmcnt(0) must happen after any preceding local/generic load/store/load atomic/store atomic/atomicrmw.

	Must happen before the following buffer_wbinvl1_vol.

	
	Ensures that the preceding global/local/generic load atomic/atomicrmw with an equal or wider sync scope and
	memory ordering stronger than unordered (this is termed the fence-paired-atomic) has completed before invalidating the cache.
This satisfies the requirements of acquire.

	Ensures that all previous memory operations have completed before a following global/local/generic store atomic/atomicrmw with
an equal or wider sync scope and memory ordering stronger than unordered (this is termed the fence-paired-atomic).This satisfies the requirements of release.

	buffer_wbinvl1_vol

	Must happen before any following global/generic load/load atomic/store/store atomic/atomicrmw.

	Ensures that following loads will not see stale global data. This satisfies the requirements of acquire.

	Sequential Consistent Atomic

	load atomic

	seq_cst

	
	singlethread

	wavefront

	workgroup

	*global
* local
* generic

	Same as corresponding load atomic acquire.

	load atomic

	seq_cst

	
	agent

	system

	
	global

	local

	generic

	
	s_waitcnt vmcnt(0)

	Must happen after preceding global/generic load atomic/store atomic/atomicrmw with memory ordering of seq_cst and with equal or wider sync scope.
(Note that seq_cst fences have their own s_waitcnt vmcnt(0) and so do not need to be considered.)

	Ensures any preceding sequential consistent global memory instructions have completed before executing this sequentially consistent instruction.
This prevents reordering a seq_cst store followed by a seq_cst load (Note that seq_cst is stronger than acquire/release as the reordering of load acquire
followed by a store release is prevented by the waitcnt vmcnt(0) of the release, but there is nothing preventing a store release followed by load acquire from competing out of order.)

2.Following instructions same as corresponding load atomic acquire.

	store atomic

	seq_cst

	
	singlethread

	wavefront

	workgroup

	
	global

	local

	generic

	Same as corresponding store atomic release.

	store atomic

	seq_cst

	
	agent

	system

	
	global

	generic

	Sameas corresponding store atomic release.

	atomicrmw

	seq_cst

	
	singlethread

	wavefront

	workgroup

	
	global

	local

	generic

	Same as corresponding atomicrmw acq_rel.

	atomicrmw

	seq_cst

	
	agent

	system

	
	global

	generic

	Same as corresponding atomicrmw acq_rel.

	fence

	seq_cst

	
	singlethread

	wavefront

	workgroup

	agent

	system

	none

	Same as corresponding fence acq_rel.

The memory order also adds the single thread optimization constrains defined in table AMDHSA Memory Model Single Thread Optimization Constraints GFX6-GFX9.

AMDHSA Memory Model Single Thread Optimization Constraints GFX6-GFX9

	LLVM Memory

	Optimization Constraints

	Ordering

	

	unordered

	none

	monotonic

	none

	acquire

	
	If a load atomic/atomicrmw then no following load/load atomic/store/ store atomic/atomicrmw/fence instruction can be moved before the acquire.

	If a fence then same as load atomic, plus no preceding associated fence-paired-atomic can be moved after the fence.

	release

	
	If a store atomic/atomicrmw then no preceding load/load atomic/store/ store atomic/atomicrmw/fence instruction can be moved after the release.

	If a fence then same as store atomic, plus no following associated fence-paired-atomic can be moved before the fence.

	acq_rel

	Same constraints as both acquire and release.

	seq_cst

	
	If a load atomic then same constraints as acquire, plus no preceding sequentially consistent load atomic/store atomic/atomicrmw/fence instruction can be moved after the seq_cst.

	If a store atomic then the same constraints as release, plus no following sequentially consistent load atomic/store atomic/atomicrmw/fence instruction can be moved before the seq_cst.

	If an atomicrmw/fence then same constraints as acq_rel.

Trap Handler ABI

For code objects generated by AMDGPU backend for HSA [HSA] compatible runtimes (such as ROCm [AMD-ROCm]), the runtime installs a trap handler that supports the s_trap instruction with the following usage:

AMDGPU Trap Handler for AMDHSA OS

	Usage

	Code Sequence

	Trap Handler Inputs

	Description

	reserved

	s_trap 0x00

	
	Reserved by hardware.

	debugtrap(arg)

	s_trap 0x01

	SGPR0-1:
queue_ptr
VGPR0:
arg

	Reserved for HSA debugtrap intrinsic (not implemented).

	llvm.trap

	s_trap 0x02

	SGPR0-1:
queue_ptr

	Causes dispatch to be terminated and its associated queue put into the error state.

	llvm.debugtrap

	s_trap 0x03

	
	If debugger not installed then behaves as a no-operation. The trap handler is entered and immediately returns to continue execution of the wavefront.
If the debugger is installed, causes the debug trap to be reported by the debugger and the wavefront is put in the halt state until resumed by debugger.

	reserved

	s_trap 0x04

	
	Reserved

	reserved

	s_trap 0x05

	
	Reserved

	reserved

	s_trap 0x06

	
	Reserved

	debugger breakpoint

	s_trap 0x07

	
	Reserved for debugger breakpoints.

	reserved

	s_trap 0x08

	
	Reserved

	reserved

	s_trap 0xfe

	
	Reserved

	reserved

	s_trap 0xff

	
	Reserved

AMDPAL

This section provides code conventions used when the target triple OS is amdpal (see Target Triples) for passing runtime parameters from the application/runtime to each invocation of a hardware shader. These parameters include both generic, application-controlled parameters called user data as well as system-generated parameters that are a product of the draw or dispatch execution.

User Data

Each hardware stage has a set of 32-bit user data registers which can be written from a command buffer and then loaded into SGPRs when waves are launched via a subsequent dispatch or draw operation. This is the way most arguments are passed from the application/runtime to a hardware shader.

Compute User Data

Compute shader user data mappings are simpler than graphics shaders, and have a fixed mapping.

Note that there are always 10 available user data entries in registers - entries beyond that limit must be fetched from memory (via the spill table pointer) by the shader.

PAL Compute Shader User Data Registers

	User Register

	Description

	0

	Global Internal Table (32-bit pointer)

	1

	Per-Shader Internal Table (32-bit pointer)

	2 - 11

	Application-Controlled User Data (10 32-bit values)

	12

	Spill Table (32-bit pointer)

	13 - 14

	Thread Group Count (64-bit pointer)

	15

	GDS Range

Graphics User Data

Graphics pipelines support a much more flexible user data mapping:

PAL Graphics Shader User Data Registers

	User Register

	Description

	0

	Global Internal Table (32-bit pointer)
Per-Shader Internal Table (32-bit pointer)

	1-15

	Application Controlled User Data (1-15 Contiguous 32-bit Values in Registers)
Spill Table (32-bit pointer)
Draw Index (First Stage Only)
Vertex Offset (First Stage Only)
Instance Offset (First Stage Only)

The placement of the global internal table remains fixed in the first user data SGPR register. Otherwise all parameters are optional, and can be mapped to any desired user data SGPR register, with the following regstrictions:

	Draw Index, Vertex Offset, and Instance Offset can only be used by the first activehardware stage in a graphics pipeline (i.e. where the API vertex shader runs).

	Application-controlled user data must be mapped into a contiguous range of user data registers.

	The application-controlled user data range supports compaction remapping, so only entries that are actually consumed by the shader must be assigned to corresponding registers. Note that in order to support an efficient runtime implementation, the remapping must pack registers in the same order as entries, with unused entries removed.

Global Internal Table

The global internal table is a table of shader resource descriptors (SRDs) that define how certain engine-wide, runtime-managed resources should be accessed from a shader. The majority of these resources have HW-defined formats, and it is up to the compiler to write/read data as required by the target hardware.

The following table illustrates the required format:

	PAL Global Internal Table
	

	Offset

	Description

	0-3

	Graphics Scratch SRD

	4-7

	Compute Scratch SRD

	8-11

	ES/GS Ring Output SRD

	12-15

	ES/GS Ring Input SRD

	16-19

	GS/VS Ring Output #0

	20-23

	GS/VS Ring Output #1

	24-27

	GS/VS Ring Output #2

	28-31

	GS/VS Ring Output #3

	32-35

	GS/VS Ring Input SRD

	36-39

	Tessellation Factor Buffer SRD

	40-43

	Off-Chip LDS Buffer SRD

	44-47

	Off-Chip Param Cache Buffer SRD

	48-51

	Sample Position Buffer SRD

	52

	vaRange::ShadowDescriptorTable High Bits

The pointer to the global internal table passed to the shader as user data is a 32-bit pointer. The top 32 bits should be assumed to be the same as the top 32 bits of the pipeline, so the shader may use the program counter’s top 32 bits.

Unspecified OS

This section provides code conventions used when the target triple OS is empty (see Target Triples).

Trap Handler ABI

For code objects generated by AMDGPU backend for non-amdhsa OS, the runtime does not install a trap handler. The llvm.trap and llvm.debugtrap instructions are handled as follows:

AMDGPU Trap Handler for Non-AMDHSA OS

	Usage

	Code Sequence

	Description

	llvm.trap

	s_endpgm

	Causes wavefront to be terminated.

	llvm.debugtrap

	none

	Compiler warning given that there is no trap handler installed.

Source Languages

OpenCL

When the language is OpenCL the following differences occur:

	The OpenCL memory model is used (see Memory Model).

	The AMDGPU backend adds additional arguments to the kernel’s explicit arguments for the AMDHSA OS.

	Additional metadata is generated (see Code Object Metadata).

OpenCL kernel implicit arguments appended for AMDHSA OS

	Position

	Byte Size

	Byte Alignment

	Description

	1

	8

	8

	OpenCL Global Offset X

	2

	8

	8

	OpenCL Global Offset Y

	3

	8

	8

	OpenCL Global Offset Z

	4

	8

	8

	OpenCL address of printf buffer

	5

	8

	8

	OpenCL address of virtual queue used by enqueue_kernel

	6

	8

	8

	OpenCL address of AqlWrap struct used by enqueue_kernel

	7

	8

	8

	Pointer argument used for Multi-gird synchronization

HCC

When the language is OpenCL the following differences occur:

	The HSA memory model is used (see Memory Model).

Assembler

AMDGPU backend has LLVM-MC based assembler which is currently in development. It supports AMDGCN GFX6-GFX8.

This section describes general syntax for instructions and operands.

Instructions

An instruction has the following syntax [http://releases.llvm.org/8.0.1/docs/AMDGPUInstructionSyntax.html]:

<opcode> <operand0>, <operand1>,… <modifier0> <modifier1>…

Operands [http://releases.llvm.org/8.0.1/docs/AMDGPUOperandSyntax.html] are normally comma-separated while modifiers [http://releases.llvm.org/8.0.1/docs/AMDGPUModifierSyntax.html] are space-separated.

The order of operands and modifiers is fixed. Most modifiers are optional and may be omitted.

See detailed instruction syntax description for GFX7 [http://releases.llvm.org/8.0.1/docs/AMDGPU/AMDGPUAsmGFX7.html], GFX8 [http://releases.llvm.org/8.0.1/docs/AMDGPU/AMDGPUAsmGFX8.html] and GFX9 [http://releases.llvm.org/8.0.1/docs/AMDGPU/AMDGPUAsmGFX9.html].

Note that features under development are not included in this description.

For more information about instructions, their semantics and supported combinations of operands, refer to one of instruction set architecture manuals [AMD-GCN-GFX6], [AMD-GCN-GFX7], [AMD-GCN-GFX8] and [AMD-GCN-GFX9] here :ref: Additional Documentation.

Operands

The following syntax for register operands is supported:

	SGPR registers: s0, … or s[0], …

	VGPR registers: v0, … or v[0], …

	TTMP registers: ttmp0, … or ttmp[0], …

	Special registers: exec (exec_lo, exec_hi), vcc (vcc_lo, vcc_hi), flat_scratch (flat_scratch_lo, flat_scratch_hi)

	Special trap registers: tba (tba_lo, tba_hi), tma (tma_lo, tma_hi)

	Register pairs, quads, etc: s[2:3], v[10:11], ttmp[5:6], s[4:7], v[12:15], ttmp[4:7], s[8:15], …

	Register lists: [s0, s1], [ttmp0, ttmp1, ttmp2, ttmp3]

	Register index expressions: v[2*2], s[1-1:2-1]

	‘off’ indicates that an operand is not enabled

The following extra operands are supported:

	offset, offset0, offset1

	idxen, offen bits

	glc, slc, tfe bits

	waitcnt: integer or combination of counter values

	
	VOP3 modifiers:
	
	abs (| |), neg (-)

	
	DPP modifiers:
	
	row_shl, row_shr, row_ror, row_rol

	row_mirror, row_half_mirror, row_bcast

	wave_shl, wave_shr, wave_ror, wave_rol, quad_perm

	row_mask, bank_mask, bound_ctrl

	
	SDWA modifiers:
	
	dst_sel, src0_sel, src1_sel (BYTE_N, WORD_M, DWORD)

	dst_unused (UNUSED_PAD, UNUSED_SEXT, UNUSED_PRESERVE)

	abs, neg, sext

Detailed description of operands may be found here [http://releases.llvm.org/8.0.1/docs/AMDGPUOperandSyntax.html].

Modifers

Detailed description of modifers may be found here [http://releases.llvm.org/8.0.1/docs/AMDGPUModifierSyntax.html]

Instruction Examples

DS

ds_add_u32 v2, v4 offset:16
ds_write_src2_b64 v2 offset0:4 offset1:8
ds_cmpst_f32 v2, v4, v6
ds_min_rtn_f64 v[8:9], v2, v[4:5]

For full list of supported instructions, refer to “LDS/GDS instructions” in ISA Manual.

FLAT

flat_load_dword v1, v[3:4]
flat_store_dwordx3 v[3:4], v[5:7]
flat_atomic_swap v1, v[3:4], v5 glc
flat_atomic_cmpswap v1, v[3:4], v[5:6] glc slc
flat_atomic_fmax_x2 v[1:2], v[3:4], v[5:6] glc

For full list of supported instructions, refer to “FLAT instructions” in ISA Manual.

MUBUF

buffer_load_dword v1, off, s[4:7], s1
buffer_store_dwordx4 v[1:4], v2, ttmp[4:7], s1 offen offset:4 glc tfe
buffer_store_format_xy v[1:2], off, s[4:7], s1
buffer_wbinvl1
buffer_atomic_inc v1, v2, s[8:11], s4 idxen offset:4 slc

For full list of supported instructions, refer to “MUBUF Instructions” in ISA Manual.

SMRD/SMEM

s_load_dword s1, s[2:3], 0xfc
s_load_dwordx8 s[8:15], s[2:3], s4
s_load_dwordx16 s[88:103], s[2:3], s4
s_dcache_inv_vol
s_memtime s[4:5]

For full list of supported instructions, refer to “Scalar Memory Operations” in ISA Manual.

SOP1

s_mov_b32 s1, s2
s_mov_b64 s[0:1], 0x80000000
s_cmov_b32 s1, 200
s_wqm_b64 s[2:3], s[4:5]
s_bcnt0_i32_b64 s1, s[2:3]
s_swappc_b64 s[2:3], s[4:5]
s_cbranch_join s[4:5]

For full list of supported instructions, refer to “SOP1 Instructions” in ISA Manual.

SOP2

s_add_u32 s1, s2, s3
s_and_b64 s[2:3], s[4:5], s[6:7]
s_cselect_b32 s1, s2, s3
s_andn2_b32 s2, s4, s6
s_lshr_b64 s[2:3], s[4:5], s6
s_ashr_i32 s2, s4, s6
s_bfm_b64 s[2:3], s4, s6
s_bfe_i64 s[2:3], s[4:5], s6
s_cbranch_g_fork s[4:5], s[6:7]

For full list of supported instructions, refer to “SOP2 Instructions” in ISA Manual.

SOPC

s_cmp_eq_i32 s1, s2
s_bitcmp1_b32 s1, s2
s_bitcmp0_b64 s[2:3], s4
s_setvskip s3, s5

For full list of supported instructions, refer to “SOPC Instructions” in ISA Manual.

SOPP

s_barrier
s_nop 2
s_endpgm
s_waitcnt 0 ; Wait for all counters to be 0
s_waitcnt vmcnt(0) & expcnt(0) & lgkmcnt(0) ; Equivalent to above
s_waitcnt vmcnt(1) ; Wait for vmcnt counter to be 1.
s_sethalt 9
s_sleep 10
s_sendmsg 0x1
s_sendmsg sendmsg(MSG_INTERRUPT)
s_trap 1

For full list of supported instructions, refer to “SOPP Instructions” in ISA Manual.

Unless otherwise mentioned, little verification is performed on the operands of SOPP Instructions, so it is up to the programmer to be familiar with the range or acceptable values.

VALU

For vector ALU instruction opcodes (VOP1, VOP2, VOP3, VOPC, VOP_DPP, VOP_SDWA), the assembler will automatically use optimal encoding based on its operands. To force specific encoding, one can add a suffix to the opcode of the instruction:

	_e32 for 32-bit VOP1/VOP2/VOPC

	_e64 for 64-bit VOP3

	_dpp for VOP_DPP

	_sdwa for VOP_SDWA

VOP1/VOP2/VOP3/VOPC examples

v_mov_b32 v1, v2
v_mov_b32_e32 v1, v2
v_nop
v_cvt_f64_i32_e32 v[1:2], v2
v_floor_f32_e32 v1, v2
v_bfrev_b32_e32 v1, v2
v_add_f32_e32 v1, v2, v3
v_mul_i32_i24_e64 v1, v2, 3
v_mul_i32_i24_e32 v1, -3, v3
v_mul_i32_i24_e32 v1, -100, v3
v_addc_u32 v1, s[0:1], v2, v3, s[2:3]
v_max_f16_e32 v1, v2, v3

VOP_DPP examples

v_mov_b32 v0, v0 quad_perm:[0,2,1,1]
v_sin_f32 v0, v0 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_mov_b32 v0, v0 wave_shl:1
v_mov_b32 v0, v0 row_mirror
v_mov_b32 v0, v0 row_bcast:31
v_mov_b32 v0, v0 quad_perm:[1,3,0,1] row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_add_f32 v0, v0, |v0| row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0
v_max_f16 v1, v2, v3 row_shl:1 row_mask:0xa bank_mask:0x1 bound_ctrl:0

VOP_SDWA examples

v_mov_b32 v1, v2 dst_sel:BYTE_0 dst_unused:UNUSED_PRESERVE src0_sel:DWORD
v_min_u32 v200, v200, v1 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:DWORD
v_sin_f32 v0, v0 dst_unused:UNUSED_PAD src0_sel:WORD_1
v_fract_f32 v0, |v0| dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:WORD_1
v_cmpx_le_u32 vcc, v1, v2 src0_sel:BYTE_2 src1_sel:WORD_0

For full list of supported instructions, refer to “Vector ALU instructions”.

Code Object V2 Predefined Symbols (-mattr=-code-object-v3)

Warning

Code Object V2 is not the default code object version emitted by this version of LLVM. For a description of the predefined symbols
available with the default configuration (Code Object V3) see :ref:`Code Object V3 Predefined Symbols (-mattr=+code-object-v3)`.

The AMDGPU assembler defines and updates some symbols automatically. These symbols do not affect code generation.

.option.machine_version_major

Set to the GFX major generation number of the target being assembled for. For example, when assembling for a “GFX9” target this will be set to the integer value “9”. The possible GFX major generation numbers are presented in Processors.

.option.machine_version_minor

Set to the GFX minor generation number of the target being assembled for. For example, when assembling for a “GFX810” target this will be set to the integer value “1”. The possible GFX minor generation numbers are presented in Processors.
.option.machine_version_stepping

Set to the GFX stepping generation number of the target being assembled for. For example, when assembling for a “GFX704” target this will be set to the integer value “4”. The possible GFX stepping generation numbers are presented in Processors.

.option.machine_version_stepping

Set to the GFX stepping generation number of the target being assembled for. For example, when assembling for a “GFX704” target this will be set to the integer value “4”. The possible GFX stepping generation numbers are presented in Processors.

.kernel.vgpr_count

Set to zero each time a .amdgpu_hsa_kernel (name) directive is encountered. At each instruction, if the current value of this symbol is less than or equal to the maximum VPGR number explicitly referenced within that instruction then the symbol value is updated to equal that VGPR number plus one.

.kernel.sgpr_count

Set to zero each time a .amdgpu_hsa_kernel (name) directive is encountered. At each instruction, if the current value of this symbol is less than or equal to the maximum VPGR number explicitly referenced within that instruction then the symbol value is updated to equal that SGPR number plus one.

Code Object V2 Directives (-mattr=-code-object-v3)

Warning

Code Object V2 is not the default code object version emitted by this version of LLVM. For a description of the directives supported
with the default configuration (Code Object V3) see :ref:`Code Object V3 Directives (-mattr=+code-object-v3)`.

AMDGPU ABI defines auxiliary data in output code object. In assembly source, one can specify them with assembler directives.

.hsa_code_object_version major, minor

major and minor are integers that specify the version of the HSA code object that will be generated by the assembler.

.hsa_code_object_isa [major, minor, stepping, vendor, arch]

major, minor, and stepping are all integers that describe the instruction set architecture (ISA) version of the assembly program.

vendor and arch are quoted strings. vendor should always be equal to “AMD” and arch should always be equal to “AMDGPU”.

By default, the assembler will derive the ISA version, vendor, and arch from the value of the -mcpu option that is passed to the assembler.

.amdgpu_hsa_kernel (name)

This directives specifies that the symbol with given name is a kernel entry point (label) and the object should contain corresponding symbol of type STT_AMDGPU_HSA_KERNEL.

.amd_kernel_code_t

This directive marks the beginning of a list of key / value pairs that are used to specify the amd_kernel_code_t object that will be emitted by the assembler. The list must be terminated by the .end_amd_kernel_code_t directive. For any amd_kernel_code_t values that are unspecified a default value will be used. The default value for all keys is 0, with the following exceptions:

	amd_code_version_major defaults to 1.

	amd_kernel_code_version_minor defaults to 2.

	amd_machine_kind defaults to 1.

	amd_machine_version_major, machine_version_minor, and amd_machine_version_stepping are derived from the value of the -mcpu option that is passed to the assembler.

	kernel_code_entry_byte_offset defaults to 256.

	wavefront_size defaults 6 for all targets before GFX10. For GFX10 onwards defaults to 6 if target feature wavefrontsize64 is enabled, otherwise 5. Note that wavefront size is specified as a power of two, so a value of n means a size of 2^ n.

	call_convention defaults to -1.

	kernarg_segment_alignment, group_segment_alignment, and private_segment_alignment default to 4. Note that alignments are specified as a power of 2, so a value of n means an alignment of 2^ n.

	enable_wgp_mode defaults to 1 if target feature cumode is disabled for GFX10 onwards.

	enable_mem_ordered defaults to 1 for GFX10 onwards.

The .amd_kernel_code_t directive must be placed immediately after the function label and before any instructions.

For a full list of amd_kernel_code_t keys, refer to AMDGPU ABI document, comments in lib/Target/AMDGPU/AmdKernelCodeT.h and test/CodeGen/AMDGPU/hsa.s.

Code Object V2 Example Source Code (-mattr=-code-object-v3)

Warning

Code Object V2 is not the default code object version emitted by this version of LLVM. For a description of the predefined symbols
available with the default configuration (Code Object V3).

Here is an example of a minimal assembly source file, defining one HSA kernel:

.hsa_code_object_version 1,0
.hsa_code_object_isa
.hsatext
.globl hello_world
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

 .amd_kernel_code_t
 enable_sgpr_kernarg_segment_ptr = 1
 is_ptr64 = 1
 compute_pgm_rsrc1_vgprs = 0
 compute_pgm_rsrc1_sgprs = 0
 compute_pgm_rsrc2_user_sgpr = 2
 compute_pgm_rsrc1_wgp_mode = 0
 compute_pgm_rsrc1_mem_ordered = 0
 compute_pgm_rsrc1_fwd_progress = 1
.end_amd_kernel_code_t

s_load_dwordx2 s[0:1], s[0:1] 0x0
v_mov_b32 v0, 3.14159
s_waitcnt lgkmcnt(0)
v_mov_b32 v1, s0
v_mov_b32 v2, s1
flat_store_dword v[1:2], v0
s_endpgm
.Lfunc_end0:
 .size hello_world, .Lfunc_end0-hello_world

Code Object V3 Predefined Symbols (-mattr=+code-object-v3)

The AMDGPU assembler defines and updates some symbols automatically. These symbols do not affect code generation.

.amdgcn.gfx_generation_number

Set to the GFX major generation number of the target being assembled for. For example, when assembling for a “GFX9” target this will be set to the integer value “9”. The possible GFX major generation numbers are presented in Processors.

.amdgcn.gfx_generation_minor

Set to the GFX minor generation number of the target being assembled for. For example, when assembling for a “GFX810” target this will be set to the integer value “1”. The possible GFX minor generation numbers are presented in Processors.

.amdgcn.gfx_generation_stepping

Set to the GFX stepping generation number of the target being assembled for. For example, when assembling for a “GFX704” target this will be set to the integer value “4”. The possible GFX stepping generation numbers are presented in Processors.

.amdgcn.next_free_vgpr

Set to zero before assembly begins. At each instruction, if the current value of this symbol is less than or equal to the maximum VGPR number explicitly referenced within that instruction then the symbol value is updated to equal that VGPR number plus one.

May be used to set the .amdhsa_next_free_vpgr directive in AMDHSA Kernel Assembler Directives.

May be set at any time, e.g. manually set to zero at the start of each kernel.

.amdgcn.next_free_sgpr

Set to zero before assembly begins. At each instruction, if the current value of this symbol is less than or equal the maximum SGPR number explicitly referenced within that instruction then the symbol value is updated to equal that SGPR number plus one.

May be used to set the .amdhsa_next_free_spgr directive in AMDHSA Kernel Assembler Directives.

May be set at any time, e.g. manually set to zero at the start of each kernel.

Code Object V3 Directives (-mattr=+code-object-v3)

Directives which begin with .amdgcn are valid for all amdgcn architecture processors, and are not OS-specific. Directives which begin with .amdhsa are specific to amdgcn architecture processors when the amdhsa OS is specified. See Target Triples and Processors.

.amdgcn_target <target>

Optional directive which declares the target supported by the containing assembler source file. Valid values are described in Code Object Target Identification. Used by the assembler to validate command-line options such as -triple, -mcpu, and those which specify target features.

.amdhsa_kernel <name>

Creates a correctly aligned AMDHSA kernel descriptor and a symbol, <name>.kd, in the current location of the current section. Only valid when the OS is amdhsa. <name> must be a symbol that labels the first instruction to execute, and does not need to be previously defined.

Marks the beginning of a list of directives used to generate the bytes of a kernel descriptor, as described in Kernel Descriptor. Directives which may appear in this list are described in AMDHSA Kernel Assembler Directives. Directives may appear in any order, must be valid for the target being assembled for, and cannot be repeated. Directives support the range of values specified by the field they reference in Kernel Descriptor. If a directive is not specified, it is assumed to have its default value, unless it is marked as “Required”, in which case it is an error to omit the directive. This list of directives is terminated by an .end_amdhsa_kernel directive.

AMDHSA Kernel Assembler Directives

	Directive

	Default

	Supported On

	Description

	.amdhsa_group_segment_fixed_size

	0

	GFX6-GFX9

	Controls GROUP_SEGMENT_FIXED_SIZE in Kernel Descriptor for GFX6 GFX6-GFX9.

	.amdhsa_private_segment_fixed_size

	0

	GFX6-GFX9

	Controls PRIVATE_SEGMENT_FIXED_SIZE in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_private_segment_buffer

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_dispatch_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_DISPATCH_PTR in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_queue_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_QUEUE_PTR in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_kernarg_segment_ptr

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_KERNARG_SEGMENT_PTR in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_dispatch_id

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_DISPATCH_ID in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_flat_scratch_init

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_FLAT_SCRATCH_INIT in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_user_sgpr_private_segment_size

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_SIZE in Kernel Descriptor for GFX6-GFX9.

	.amdhsa_system_sgpr_private_segment_wavefront_offset

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_PRIVATE_SEGMENT_WAVEFRONT_OFFSET in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_x

	1

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_X in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_y

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_Y in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_id_z

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_ID_Z in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_sgpr_workgroup_info

	0

	GFX6-GFX9

	Controls ENABLE_SGPR_WORKGROUP_INFO in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_system_vgpr_workitem_id

	0

	GFX6-GFX9

	Controls ENABLE_VGPR_WORKITEM_ID in compute_pgm_rsrc2 for GFX6-GFX9. Possible values are defined in System VGPR Work-Item ID Enumeration Values.

	.amdhsa_next_free_vgpr Required

	
	GFX6-GFX9

	Maximum VGPR number explicitly referenced, plus one. Used to calculate GRANULATED_WORKITEM_VGPR_COUNT in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_next_free_sgpr Required

	
	GFX6-GFX9

	Maximum SGPR number explicitly referenced, plus one. Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_vcc

	1

	GFX6-GFX9

	Whether the kernel may use the special VCC SGPR. Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_flat_scratch

	1

	GFX7-GFX9

	Whether the kernel may use flat instructions to access scratch memory. Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_reserve_xnack_mask

	Target
Feature
Specific
(+xnack)

	GFX8-GFX9

	Whether the kernel may trigger XNACK replay. Used to calculate GRANULATED_WAVEFRONT_SGPR_COUNT in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_float_round_mode_32

	0

	GFX6-GFX9

	Controls FLOAT_ROUND_MODE_32 in compute_pgm_rsrc1 for GFX6-GFX9. Possible values are defined in Floating Point Rounding Mode Enumeration Values.

	.amdhsa_float_round_mode_16_64

	0

	GFX6-GFX9

	Controls FLOAT_ROUND_MODE_16_64 in compute_pgm_rsrc1 for GFX6-GFX9. Possible values are defined in Floating Point Rounding Mode Enumeration Values.

	.amdhsa_float_denorm_mode_32

	0

	GFX6-GFX9

	Controls FLOAT_DENORM_MODE_32 in compute_pgm_rsrc1 for GFX6-GFX9. Possible values are defined in Floating Point Denorm Mode Enumeration Values.

	.amdhsa_float_denorm_mode_16_64

	3

	GFX6-GFX9

	Controls FLOAT_DENORM_MODE_16_64 in compute_pgm_rsrc1 for GFX6-GFX9. Possible values are defined in Floating Point Denorm Mode Enumeration Values.

	.amdhsa_dx10_clamp

	1

	GFX6-GFX9

	Controls ENABLE_DX10_CLAMP in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_ieee_mode

	1

	GFX6-GFX9

	Controls ENABLE_IEEE_MODE in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_fp16_overflow

	0

	GFX9

	Controls FP16_OVFL in compute_pgm_rsrc1 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_invalid_op

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_INVALID_OPERATION in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_denorm_src

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_FP_DENORMAL_SOURCE in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_div_zero

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_DIVISION_BY_ZERO in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_overflow

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_OVERFLOW in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_underflow

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_UNDERFLOW in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_fp_ieee_inexact

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_IEEE_754_FP_INEXACT in compute_pgm_rsrc2 for GFX6-GFX9.

	.amdhsa_exception_int_div_zero

	0

	GFX6-GFX9

	Controls ENABLE_EXCEPTION_INT_DIVIDE_BY_ZERO in compute_pgm_rsrc2 for GFX6-GFX9.

.amdgpu_metadata

Optional directive which declares the contents of the NT_AMDGPU_METADATA note record.

The contents must be in the [YAML] markup format, with the same structure and semantics described in Code Object V3 Metadata (-mattr=+code-object-v3).

This directive is terminated by an .end_amdgpu_metadata directive.

Code Object V3 Example Source Code (-mattr=+code-object-v3)

Here is an example of a minimal assembly source file, defining one HSA kernel:

.amdgcn_target "amdgcn-amd-amdhsa--gfx900+xnack" // optional
.text
.globl hello_world
.p2align 8
.type hello_world,@function
hello_world:
 s_load_dwordx2 s[0:1], s[0:1] 0x0
 v_mov_b32 v0, 3.14159
 s_waitcnt lgkmcnt(0)
 v_mov_b32 v1, s0
 v_mov_b32 v2, s1
 flat_store_dword v[1:2], v0
 s_endpgm
.Lfunc_end0:
 .size hello_world, .Lfunc_end0-hello_world

.rodata
.p2align 6
.amdhsa_kernel hello_world
 .amdhsa_user_sgpr_kernarg_segment_ptr 1
 .amdhsa_next_free_vgpr .amdgcn.next_free_vgpr
 .amdhsa_next_free_sgpr .amdgcn.next_free_sgpr
.end_amdhsa_kernel

.amdgpu_metadata

amdhsa.version:
 - 1
 - 0

	amdhsa.kernels:
	

	.name: hello_world
.symbol: hello_world.kd
.kernarg_segment_size: 48
.group_segment_fixed_size: 0
.private_segment_fixed_size: 0
.kernarg_segment_align: 4
.wavefront_size: 64
.sgpr_count: 2
.vgpr_count: 3
.max_flat_workgroup_size: 256

…
.end_amdgpu_metadata

If an assembly source file contains multiple kernels and/or functions, the .amdgcn.next_free_vgpr and .amdgcn.next_free_sgpr symbols may be reset using the .set <symbol>, <expression> directive. For example, in the case of two kernels, where function1 is only called from kernel1 it is sufficient to group the function with the kernel that calls it and reset the symbols between the two connected components:

.amdgcn_target "amdgcn-amd-amdhsa--gfx900+xnack" // optional
// gpr tracking symbols are implicitly set to zero
.text
.globl kern0
.p2align 8
.type kern0,@function
kern0:
 // ...
 s_endpgm
.Lkern0_end:
 .size kern0, .Lkern0_end-kern0
.rodata
.p2align 6
.amdhsa_kernel kern0
 // ...
 .amdhsa_next_free_vgpr .amdgcn.next_free_vgpr
 .amdhsa_next_free_sgpr .amdgcn.next_free_sgpr
.end_amdhsa_kernel
// reset symbols to begin tracking usage in func1 and kern1
.set .amdgcn.next_free_vgpr, 0
.set .amdgcn.next_free_sgpr, 0

.text
.hidden func1
.global func1
.p2align 2
.type func1,@function
func1:
 // ...
 s_setpc_b64 s[30:31]
.Lfunc1_end:
.size func1, .Lfunc1_end-func1
.globl kern1
.p2align 8
.type kern1,@function
kern1:
 // ...
 s_getpc_b64 s[4:5]
 s_add_u32 s4, s4, func1@rel32@lo+4
 s_addc_u32 s5, s5, func1@rel32@lo+4
 s_swappc_b64 s[30:31], s[4:5]
 // ...
 s_endpgm
.Lkern1_end:
 .size kern1, .Lkern1_end-kern1

.rodata
.p2align 6
.amdhsa_kernel kern1
 // ...
 .amdhsa_next_free_vgpr .amdgcn.next_free_vgpr
 .amdhsa_next_free_sgpr .amdgcn.next_free_sgpr

.end_amdhsa_kernel

These symbols cannot identify connected components in order to automatically track the usage for each kernel. However, in some cases careful organization of the kernels and functions in the source file means there is minimal additional effort required to accurately calculate GPR usage.

Additional Documentation

[AMD-RADEON-HD-2000-3000] [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id3] AMD R6xx shader ISA [http://developer.amd.com/wordpress/media/2012/10/R600_Instruction_Set_Architecture.pdf]

[AMD-RADEON-HD-4000] [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id4] AMD R7xx shader ISA [http://developer.amd.com/wordpress/media/2012/10/R700-Family_Instruction_Set_Architecture.pdf]

[AMD-RADEON-HD-5000] [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id5] AMD Evergreen shader ISA [http://developer.amd.com/wordpress/media/2012/10/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf]

[AMD-RADEON-HD-6000] <http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id6>`_ AMD Cayman/Trinity shader ISA [http://developer.amd.com/wordpress/media/2012/10/AMD_HD_6900_Series_Instruction_Set_Architecture.pdf]

[AMD-GCN-GFX6] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id7], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id39]) AMD Southern Islands Series ISA [http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf]

[AMD-GCN-GFX7] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id8], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id40]) AMD Sea Islands Series ISA [http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture.pdf]

[AMD-GCN-GFX8] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id9], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id41]) AMD GCN3 Instruction Set Architecture [http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf]

[AMD-GCN-GFX9] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id10], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id42]) AMD “Vega” Instruction Set Architecture [http://developer.amd.com/wordpress/media/2013/12/Vega_Shader_ISA_28July2017.pdf]

[AMD-ROCm] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id2], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id21], 3 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id26], 4 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id37]) ROCm: Open Platform for Development, Discovery and Education Around GPU Computing [http://gpuopen.com/compute-product/rocm/]

[AMD-ROCm-github](1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id32], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id33]) ROCm github [http://github.com/RadeonOpenCompute]

[HSA] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id1], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id11], 3 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id20], 4 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id25], 5 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id29], 6 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id30], 7 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id31], 8 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id34], 9 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id36]) Heterogeneous System Architecture (HSA) Foundation [http://www.hsafoundation.com/]

[DWARF [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id24]] DWARF Debugging Information Format [http://dwarfstd.org/]

[YAML] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id27], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id43]) YAML Ain’t Markup Language (YAML™) Version 1.2 [http://www.yaml.org/spec/1.2/spec.html]

[MsgPack] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id22], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id23], 3 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id28]) Message Pack [http://www.msgpack.org/]

[OpenCL] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id13], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id35]) The OpenCL Specification Version 2.0 [http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf]

[HRF [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id12]]`Heterogeneous-race-free Memory Models <http://benedictgaster.org/wp-content/uploads/2014/01/asplos269-FINAL.pdf>`_

[CLANG-ATTR] (1 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id14], 2 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id15], 3 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id16], 4 [http://releases.llvm.org/8.0.1/docs/AMDGPUUsage.html#id17]) Attributes in Clang [http://clang.llvm.org/docs/AttributeReference.html]

 Foo

documentation

OCML User Guide

What Is OCML

OCML is an LLVM-IR bitcode library designed to relieve language compiler and runtime implementers of the burden of implementing efficient and accurate mathematical functions. It is essentially a “libm” in intermediate representation with a fixed, simple API that can be linked in to supply the implementations of most standard low-level mathematical functions provided by the language.

Using OCML

Standard Usage

OCML is expected to be used in a standard LLVM compilation flow as follows:

	Compile source modules to LLVM-IR bitcode (clang)

	Link program bitcode, “wrapper” bitcode, OCML bitcode, and OCML control functions (llvm-link)

	Generic optimizations (opt)

	Code generation (llc)

Here, “wrapper” bitcode denotes a thin library responsible for mapping mangled built-in function calls as produced by clang to the OCML API. An example in C might look like

inline float sqrt(float x) { return __ocml_sqrt_f32(x); }

The next section describes OCML controls and how to make them.

Controls

OCML supports a number of controls that are provided by linking in specifically named inline functions. These functions are inlined at optimization time and result in specific paths taken with no control flow overhead. These functions all have the form (in C)

__attribute__((always_inline, const)) int
__oclc_control(void)
{ return 1; } // or 0 to disable

The currently supported control are

finite_only_opt - floating point Inf and NaN are never expected to be consumed or produced
unsafe_math_opt - lower accuracy results may be produced with higher performance
daz_opt - subnormal values consumed and produced may be flushed to zero
correctly_rounded_sqrt32 - float square root must be correctly rounded
ISA_version - an integer representation of the ISA version of the target device

Versioning

OCML ships as a single LLVM-IR bitcode file named

ocml-{LLVM rev}-{OCLM rev}.bc

where {LLVM rev} is the version of LLVM used to create the file, of the form X.Y, e.g. 3.8, and {OCML rev} is the OCML library version of the form X.Y, currently 0.9.

Tables

Some OCML functions require access to tables of constants. These tables are currently named with the prefix __ocmltbl_ and are placed in LLVM address space 2.

Naming convention

OCML functions follow a simple naming convention:

__ocml_{function}_{type suffix}

where {function} is generally the familiar libm name of the function, and {type suffix} indicates the type of the floating point arguments or results, and is one of

f16 – 16 bit floating point (half precision)
f32 – 32 bit floating point (single precision)
f64 – 64 bit floating point (double precision)

For example, __ocml_sqrt_f32 is the name of the OCML single precision square root function.

OCML does not currently support higher than double precision due to the lack of support on most devices.

Supported functions

The following table contains a list of {function} currently supported by OCML, a brief description of each, and the maximum relative error in ULPs for each floating point type. A “c” in the last 3 columns indicates that the function is required to be correctly rounded.

	{function}

	Description

	f32 max err

	f64 max err

	f16 max err

	acos

	arc cosine

	4

	4

	2

	acosh

	arc hyperbolic cosine

	4

	4

	2

	acospi

	arc cosine / π

	5

	5

	2

	add_{rm}

	add with specific rounding mode

	c

	c

	c

	asin

	arc sine

	4

	4

	2

	asinh

	arc hyperbolic sin

	4

	4

	2

	asinpi

	arc sine / pi

	5

	5

	2

	atan2

	two argument arc tangent

	6

	6

	2

	atan2pi

	two argument arc tangent / pi

	6

	6

	2

	atan

	single argument arc tangent

	5

	5

	2

	atanh

	arc hyperbolic tangent

	5

	5

	2

	atanpi

	single argument arc tangent / pi

	5

	5

	2

	cbrt

	cube root

	2

	2

	2

	ceil

	round upwards to integer

	c

	c

	c

	copysign

	copy sign of second argument to absolute value of first

	0

	0

	0

	cos

	cosine

	4

	4

	2

	cosh

	hyperbolic cosine

	4

	4

	2

	cospi

	cosine of argument times pi

	4

	4

	2

	div_{rm}

	correctly rounded division with specific rounding mode

	c

	c

	c

	erf

	error function

	16

	16

	4

	erfc

	complementary error function

	16

	16

	4

	erfcinv

	inverse complementary error function

	7

	8

	3

	erfcx

	scaled error function

	6

	6

	2

	erfinv

	inverse error function

	3

	8

	2

	exp10

	10x

	3

	3

	2

	exp2

	2x

	3

	3

	2

	exp

	ex

	3

	3

	2

	expm1

	ex - 1, accurate at 0

	3

	3

	2

	fabs

	absolute value

	0

	0

	0

	fdim

	positive difference

	c

	c

	c

	floor

	round downwards to integer

	c

	c

	c

	fma[_{rm}]

	fused (i.e. singly rounded) multiply-add, with optional specific rounding

	c

	c

	c

	fmax

	maximum, avoids NaN

	0

	0

	0

	fmin

	minimum, avoids NaN

	0

	0

	0

	fmod

	floating point remainder

	0

	0

	0

	fpclassify

	classify floating point

	
	

	
	

	
	

	fract

	fractional part

	c

	c

	c

	frexp

	extract significand and exponent

	0

	0

	0

	hypot

	length, with overflow control

	4

	4

	2

	i0

	modified Bessel function of the first kind, order 0, I0

	6

	6

	2

	i1

	modified Bessel function of the first kind, order 1, I1

	6

	6

	2

	ilogb

	extract exponent

	0

	0

	0

	isfinite

	tests finiteness

	
	

	
	

	
	

	isinf

	test for Inf

	
	

	
	

	
	

	isnan

	test for NaN

	
	

	
	

	
	

	isnormal

	test for normal

	
	

	
	

	
	

	j0

	Bessel function of the first kind, order 0, J0

	6 (<12)

	6 (<12)

	2 (<12)

	j1

	Bessel function of the first kind, order 1, J1

	6 (<12)

	6 (<12)

	2 (<12)

	ldexp

	multiply by 2 raised to an integral power

	c

	c

	c

	len3

	three argument hypot

	2

	2

	2

	len4

	four argument hypot

	2

	2

	2

	lgamma

	log Γ function

	6(>0)

	4(>0)

	3(>0)

	lgamma_r

	log Γ function with sign

	6(>0)

	4(>0)

	3(>0)

	log10

	log base 10

	3

	3

	2

	log1p

	log base e accurate near 1

	2

	2

	2

	log2

	log base 2

	3

	3

	2

	log

	log base e

	3

	3

	2

	logb

	extract exponent

	0

	0

	0

	mad

	multiply-add, implementation defined if fused

	c

	c

	c

	max

	maximum without special NaN handling

	0

	0

	0

	maxmag

	maximum magnitude

	0

	0

	0

	min

	minimum without special NaN handling

	0

	0

	0

	minmag

	minimum magnitude

	0

	0

	0

	modf

	extract integer and fraction

	0

	0

	0

	mul_{rm}

	multiply with specific rounding mode

	c

	c

	c

	nan

	produce a NaN with a specific payload

	0

	0

	0

	ncdf

	standard normal cumulateive distribution function

	16

	16

	4

	ncdfinv

	inverse standard normal cumulative distribution function

	16

	16

	4

	nearbyint

	round to nearest integer (see also rint)

	0

	0

	0

	nextafter

	next closest value above or below

	0

	0

	0

	pow

	general power

	16

	16

	4

	pown

	power with integral exponent

	16

	16

	4

	powr

	power with positive floating point exponent

	16

	16

	4

	rcbrt

	reciprocal cube root

	2

	2

	2

	remainder

	floating point remainder

	0

	0

	0

	remquo

	floating point remainder and lowest integral quotient bits

	0

	0

	0

	rhypot

	reciprocal hypot

	2

	2

	2

	rint

	round to nearest integer

	c

	c

	c

	rlen3

	reciprocal len3

	2

	2

	2

	rlen4

	reciprocal len4

	2

	2

	2

	rootn

	nth root

	16

	16

	4

	round

	round to integer, always away from 0

	c

	c

	c

	rsqrt

	reciprocal square root

	2

	2

	1

	scalb

	multiply by 2 raised to a power

	c

	c

	c

	scalbn

	multiply by 2 raised to an integral power (see also ldexp)

	c

	c

	c

	signbit

	nonzero if argument has sign bit set

	
	

	
	

	
	

	sin

	sine function

	4

	4

	2

	sincos

	simultaneous sine and cosine evaluation

	4

	4

	2

	sincospi

	sincos function of argument times pi

	4

	4

	2

	sinh

	hyperbolic sin

	4

	4

	2

	sinpi

	sine of argument times pi

	4

	4

	2

	sqrt

	square root

	3/c

	3/c

	c

	sub_{rm}

	subtract with specific rounding mode

	c

	c

	c

	tan

	tangent

	5

	5

	2

	tanh

	hyperbolic tangent

	5

	5

	2

	tanpi

	tangent of argument times pi

	6

	6

	2

	tgamma

	true Γ function

	16

	16

	4

	trunc

	round to integer, towards zero

	c

	c

	c

	y0

	Bessel function of the second kind, order 0, Y0

	2 (<12)

	6 (<12)

	6 (<12)

	y1

	Bessel function of the second kind, order 1, Y1

	2 (<12)

	6 (<12)

	6 (<12)

For the functions supporting specific roundings, the rounding mode {rm} can be one of

	rte – round towards nearest even

	rtp – round towards positive infinity

	rtn – round towards negative infinity

	rtz – round towards zero

ROCm Glossary

host, host cpu : Executes the HIP runtime API and is capable of initiating kernel launches to one or more devices.

default device : Each host thread maintains a default device. Most HIP runtime APIs (including memory allocation, copy commands, kernel launches) do not use accept an explicit device argument but instead implicitly use the default device. The default device can be set with hipSetDevice.

active host thread - the thread which is running the HIP APIs

completion_future becomes ready, “Completes”.

HIP-Clang - Heterogeneous AMDGPU Compiler, with its capability to compile HIP programs on AMD platform (https://github.com/RadeonOpenCompute/llvm-project).

ROCclr- a virtual device interface that compute runtimes interact with different backends such as ROCr on Linux or PAL on Windows.

	The ROCclr (https://github.com/ROCm-Developer-Tools/ROCclr) is an abstraction layer allowing runtimes to work on both OSes without much
	effort.

hipify tools - tools to convert CUDA(R) code to portable C++ code (https://github.com/ROCm-Developer-Tools/HIPIFY).

hipconfig - tool to report various configuration properties of the target platform.

nvcc - nvcc compiler, do not capitalize.

ROCr ROCm runtime
The HSA runtime is a thin, user-mode API that exposes the necessary interfaces to access and interact with graphics hardware driven by the AMDGPU driver set and the ROCK kernel driver. Together they enable programmers to directly harness the power of AMD discrete graphics devices by allowing host applications to launch compute kernels directly to the graphics hardware.

HCC (Heterogeneous Compute Compiler) :
HCC is an Open Source, Optimizing C++ Compiler for Heterogeneous Compute. It supports heterogeneous offload to AMD APUs and discrete GPUs via HSA enabled runtimes and drivers.It is based on Clang, the LLVM Compiler Infrastructure and the ‘libc++’ C++ standard library.The goal is to implement a compiler that takes a program that conforms to a parallel programming standard such as C++ AMP, HC, C++ 17 ParallelSTL, or OpenMP, and transforms it into the AMD GCN ISA.

In the AMD ROCM v3.5 release, the HCC compiler is deprecated and HIP-Clang compiler is introduced for compiling HIP programs

(https://github.com/RadeonOpenCompute/hcc)

	Accelerator Modes Supported:
	
	HC C++ API

	HIP

	C++AMP

	C++ Parallel STL

	OpenMP

HIP (Heterogeneous Interface for Portability) :
Heterogeneous Interface for Portability is a C++ runtime API and kernel language that allows developers to create portable applications that can run on AMD and other GPU’s. It provides a C-style API and a C++ kernel language. The first big feature available in the HIP is porting apps that use the CUDA Driver API.

OpenCL :
Open Computing Language (OpenCL) is a framework for writing programs that execute across heterogeneous platforms consisting of central processing units (CPUs), graphics processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs) and other processors or hardware accelerators. OpenCL provides a standard interface for parallel computing using task- and data-based parallelism.The programming language that is used to write compute kernels is called OpenCL C and is based on C99,[16] but adapted to fit the device model in OpenCL. OpenCL consists of a set of headers and a shared object that is loaded at runtime. As of 2016 OpenCL runs on Graphics processing units, CPUs with SIMD instructions, FPGAs, Movidius Myriad 2, Adapteva epiphany and DSPs.

PCIe Platform Atomics :
PCI Express (PCIe) was developed as the next generation I/O system interconnect after PCI, designed to enable advanced performance and features in connected devices while remaining compatible with the PCI software environment. Today, atomic transactions are supported for synchronization without using an interrupt mechanism. In emerging applications where math co-processing, visualization and content processing are required, enhanced synchronization would enable higher performance.

Queue :
A Queue is a runtime-allocated resource that contains a packet buffer and is associated with a packet processor. The packet processor tracks which packets in the buffer have already been processed. When it has been informed by the application that a new packet has been enqueued, the packet processor is able to process it because the packet format is standard and the packet contents are self-contained – they include all the necessary information to run a command. A queue has an associated set of high-level operations defined in “HSA Runtime Specification” (API functions in host code) and “HSA Programmer Reference Manual Specification” (kernel code).

HSA (Heterogeneous System Architecture) :
HSA provides a unified view of fundamental computing elements. HSA allows a programmer to write applications that seamlessly integrate CPUs (called latency compute units) with GPUs (called throughput compute units), while benefiting from the best attributes ofeach. HSA creates an improved processor design that exposes the benefits and capabilities of mainstream programmable compute elements, working together seamlessly.HSA is all about delivering new, improved user experiences through advances in computing architectures that deliver improvements across all four key vectors: improved power efficiency; improved performance; improved programmability; and broad portability across computing devices.For more on HSA [http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf].

AQL Architectured Queueing Language :
The Architected Queuing Language (AQL) is a standard binary interface used to describe commands such as a kernel dispatch. An AQL packet is a user-mode buffer with a specific format that encodes one command. AQL allows agents to build and enqueue their own command packets, enabling fast, low-power dispatch. AQL also provides support for kernel agent queue submissions: the kernel agent kernel can write commands in AQL format.

hcRNG

hCRNG has been deprecated and has been replaced by rocRAND [https://github.com/ROCmSoftwarePlatform/rocRAND]

Introduction

The hcRNG library is an implementation of uniform random number generators targeting the AMD heterogeneous hardware via HCC compiler runtime. The computational resources of underlying AMD heterogenous compute gets exposed and exploited through the HCC C++ frontend. Refer here [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#hcc] for more details on HCC compiler.

The following list enumerates the current set of RNG generators that are supported so far.

	MRG31k3p

	MRG32k3a

	LFSR113

	Philox-4x32-10

Examples

Random number generator Mrg31k3p example:

file: Randomarray.cpp

#!c++

//This example is a simple random array generation and it compares host output with device output
//Random number generator Mrg31k3p
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include <hcRNG/mrg31k3p.h>
#include <hcRNG/hcRNG.h>
#include <hc.hpp>
#include <hc_am.hpp>
using namespace hc;

int main()
{
 hcrngStatus status = HCRNG_SUCCESS;
 bool ispassed = 1;
 size_t streamBufferSize;
 // Number oi streams
 size_t streamCount = 10;
 //Number of random numbers to be generated
 //numberCount must be a multiple of streamCount
 size_t numberCount = 100;
 //Enumerate the list of accelerators
 std::vector<hc::accelerator>acc = hc::accelerator::get_all();
 accelerator_view accl_view = (acc[1].create_view());
 //Allocate memory for host pointers
 float *Random1 = (float*) malloc(sizeof(float) * numberCount);
 float *Random2 = (float*) malloc(sizeof(float) * numberCount);
 float *outBufferDevice = hc::am_alloc(sizeof(float) * numberCount, acc[1], 0);

 //Create streams
 hcrngMrg31k3pStream *streams = hcrngMrg31k3pCreateStreams(NULL, streamCount, &streamBufferSize, NULL);
 hcrngMrg31k3pStream *streams_buffer = hc::am_alloc(sizeof(hcrngMrg31k3pStream) * streamCount, acc[1], 0);
 accl_view.copy(streams, streams_buffer, streamCount* sizeof(hcrngMrg31k3pStream));

 //Invoke random number generators in device (here strean_length and streams_per_thread arguments are default)
 status = hcrngMrg31k3pDeviceRandomU01Array_single(accl_view, streamCount, streams_buffer, numberCount, outBufferDevice);

 if(status) std::cout << "TEST FAILED" << std::endl;
 accl_view.copy(outBufferDevice, Random1, numberCount * sizeof(float));

 //Invoke random number generators in host
 for (size_t i = 0; i < numberCount; i++)
 Random2[i] = hcrngMrg31k3pRandomU01(&streams[i % streamCount]);
 // Compare host and device outputs
 for(int i =0; i < numberCount; i++) {
 if (Random1[i] != Random2[i]) {
 ispassed = 0;
 std::cout <<" RANDDEVICE[" << i<< "] " << Random1[i] << "and RANDHOST[" << i <<"] mismatches"<< Random2[i] << std::endl;
 break;
 }
 else
 continue;
 }
 if(!ispassed) std::cout << "TEST FAILED" << std::endl;

 //Free host resources
 free(Random1);
 free(Random2);
 //Release device resources
 hc::am_free(outBufferDevice);
 hc::am_free(streams_buffer);
 return 0;
}

	Compiling the example code:

/opt/hcc/bin/clang++ /opt/hcc/bin/hcc-config –cxxflags –ldflags -lhc_am -lhcrng Randomarray.cpp

Installation

Installation steps

The following are the steps to use the library

	ROCM 2.7 Kernel, Driver and Compiler Installation (if not done until now)

	Library installation.

ROCM 2.7 Installation

To Know more about ROCM refer here [https://rocm-documentation.readthedocs.io/en/latest/Current_Release_Notes/Current-Release-Notes.html]

a. Installing Debian ROCM repositories

Before proceeding, make sure to completely uninstall any pre-release ROCm packages.

Refer Here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#removing-pre-release-packages] for instructions to remove pre-release ROCM packages

Follow Steps to install rocm package

wget -qO - https://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] https://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'
sudo apt-get update
sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

sudo vi /etc/default/grub
sudo update-grub

and Reboot the system

b. Verifying the Installation

Once Reboot, to verify that the ROCm stack completed successfully you can execute HSA vector_copy sample application:

cd /opt/rocm/hsa/sample
make
./vector_copy

Library Installation

a. Install using Prebuilt debian

wget https://github.com/ROCmSoftwarePlatform/hcRNG/blob/master/pre-builds/hcrng-master-184472e-Linux.deb
sudo dpkg -i hcrng-master-184472e-Linux.deb

b. Build debian from source

git clone https://github.com/ROCmSoftwarePlatform/hcRNG.git && cd hcRNG
chmod +x build.sh && ./build.sh

build.sh execution builds the library and generates a debian under build directory.

Key Features

	Support for 4 commonly used uniform random number generators.

	Single and Double precision.

	Multiple streams, created on the host and generates random numbers either on the host or on computing devices.

Prerequisites

This section lists the known set of hardware and software requirements to build this library

Hardware

	CPU: mainstream brand, Better if with >=4 Cores Intel Haswell based CPU

	System Memory >= 4GB (Better if >10GB for NN application over multiple GPUs)

	Hard Drive > 200GB (Better if SSD or NVMe driver for NN application over multiple GPUs)

	Minimum GPU Memory (Global) > 2GB

GPU cards supported

	dGPU: AMD R9 Fury X, R9 Fury, R9 Nano

	APU: AMD Kaveri or Carrizo

AMD Driver and Runtime

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

System software

	Ubuntu 14.04 trusty and later

	GCC 4.6 and later

	CPP 4.6 and later (come with GCC package)

	python 2.7 and later

	python-pip

	BeautifulSoup4 (installed using python-pip)

	HCC 0.9 from here

Tools and Misc

	git 1.9 and later

	cmake 2.6 and later (2.6 and 2.8 are tested)

	firewall off

	root privilege or user account in sudo group

Ubuntu Packages

	libc6-dev-i386

	liblapack-dev

	graphicsmagick

	libblas-dev

Tested Environments

Driver versions

	
	Boltzmann Early Release Driver + dGPU
	
	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

	Traditional HSA driver + APU (Kaveri)

GPU Cards

	Radeon R9 Nano

	Radeon R9 FuryX

	Radeon R9 Fury

	Kaveri and Carizo APU

Server System

	Supermicro SYS 2028GR-THT 6 R9 NANO

	Supermicro SYS-1028GQ-TRT 4 R9 NANO

	Supermicro SYS-7048GR-TR Tower 4 R9 NANO

Unit testing

a) Automated testing:

Follow these steps to start automated testing:

cd ~/hcRNG/
./build.sh --test=on

b) Manual testing:

(i) Google testing (GTEST) with Functionality check

cd ~/hcRNG/build/test/unit/bin/

All functions are tested against google test.

hipeigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

For more information go to http://eigen.tuxfamily.org/.

Installation instructions for ROCm

The ROCm Platform brings a rich foundation to advanced computing by seamlessly integrating the CPU and GPU with the goal of solving real-world problems.

To insatll rocm, please follow:

Installing from AMD ROCm repositories

AMD is hosting both debian and rpm repositories for the ROCm 2.7 packages. The packages in both repositories have been signed to ensure package integrity. Directions for each repository are given below:

	Debian repository - apt-get

	Add the ROCm apt repository

Complete installation steps of ROCm can be found Here [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html]

or

For Debian based systems, like Ubuntu, configure the Debian ROCm repository as follows:

wget -qO - https://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'

The gpg key might change, so it may need to be updated when installing a new release.

Install or Update

Next, update the apt-get repository list and install/update the rocm package:

Warning

Before proceeding, make sure to completely uninstall any pre-release ROCm packages

sudo apt-get update
sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

sudo vi /etc/default/grub
sudo update-grub

Once complete, reboot your system.

We recommend you verify your installation to make sure everything completed successfully.

Installation instructions for Eigen

Explanation before starting

Eigen consists only of header files, hence there is nothing to compile before you can use it. Moreover, these header files do not depend on your platform, they are the same for everybody.

Method 1. Installing without using CMake

You can use right away the headers in the Eigen/ subdirectory. In order to install, just copy this Eigen/ subdirectory to your favorite location. If you also want the unsupported features, copy the unsupported/ subdirectory too.

Method 2. Installing using CMake

Let’s call this directory ‘source_dir’ (where this INSTALL file is). Before starting, create another directory which we will call ‘build_dir’.

Do:

cd build_dir
cmake source_dir
make install

The make install step may require administrator privileges.

You can adjust the installation destination (the “prefix”) by passing the -DCMAKE_INSTALL_PREFIX=myprefix option to cmake, as is explained in the message that cmake prints at the end.

Build and Run hipeigen direct tests

To build the direct tests for hipeigen:

cd build_dir
make check -j $(nproc)

Note: All direct tests should pass with ROCm 2.7

clFFT

For Github Repository clFFT [https://github.com/clMathLibraries/clFFT]

clFFT is a software library containing FFT functions written in OpenCL. In addition to GPU devices, the library also supports running on CPU devices to facilitate debugging and heterogeneous programming.

Pre-built binaries are available here [https://github.com/clMathLibraries/clFFT/releases].

What’s New

	Support for powers of 11&13 size transforms

	Support for 1D large size transforms with no extra memory allocation requirement with environment flag CLFFT_REQUEST_LIB_NOMEMALLOC=1 for complex FFTs of powers of 2,3,5,10 sizes

Note

	clFFT requires platform/runtime that supports OpenCL 1.2

Introduction to clFFT

The FFT is an implementation of the Discrete Fourier Transform (DFT) that makes use of symmetries in the FFT definition to reduce the mathematical intensity required from O(N^2) to O(N log2(N)) when the sequence length N is the product of small prime factors. Currently, there is no standard API for FFT routines. Hardware vendors usually provide a set of high-performance FFTs optimized for their systems: no two vendors employ the same interfaces for their FFT routines. clFFT provides a set of FFT routines that are optimized for AMD graphics processors, but also are functional across CPU and other compute devices.

The clFFT library is an open source OpenCL library implementation of discrete Fast Fourier Transforms. The library:

	provides a fast and accurate platform for calculating discrete FFTs.

	works on CPU or GPU backends.

	supports in-place or out-of-place transforms.

	supports 1D, 2D, and 3D transforms with a batch size that can be greater than 1.

	supports planar (real and complex components in separate arrays) and interleaved (real and complex components as a pair contiguous in memory) formats.

	supports dimension lengths that can be any combination of powers of 2, 3, 5, 7, 11 and 13.

	Supports single and double precision floating point formats.

clFFT library user documentation

Library and API documentation [http://clmathlibraries.github.io/clFFT/] for developers is available online as a GitHub Pages website

API semantic versioning

Good software is typically the result of the loop of feedback and iteration; software interfaces no less so. clFFT follows the semantic [http://semver.org/] versioning guidelines. The version number used is of the form MAJOR.MINOR.PATCH.

clFFT Wiki

The project wiki [https://github.com/clMathLibraries/clFFT/wiki] contains helpful documentation, including a build primer [https://github.com/clMathLibraries/clFFT/wiki/Build]

Contributing code

Please refer to and read the Contributing [https://github.com/clMathLibraries/clFFT/blob/master/CONTRIBUTING.md] document for guidelines on how to contribute code to this open source project. The code in the /master branch is considered to be stable, and all pull-requests must be made against the /develop branch.

License

The source for clFFT is licensed under the Apache License [http://www.apache.org/licenses/LICENSE-2.0] , Version 2.0

Example

The following simple example shows how to use clFFT to compute a simple 1D forward transform

#include <stdlib.h>

/* No need to explicitely include the OpenCL headers */
#include <clFFT.h>

int main(void)
{
 cl_int err;
 cl_platform_id platform = 0;
 cl_device_id device = 0;
 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
 cl_context ctx = 0;
 cl_command_queue queue = 0;
 cl_mem bufX;
 float *X;
 cl_event event = NULL;
 int ret = 0;
 size_t N = 16;

 /* FFT library realted declarations */
 clfftPlanHandle planHandle;
 clfftDim dim = CLFFT_1D;
 size_t clLengths[1] = {N};

 /* Setup OpenCL environment. */
 err = clGetPlatformIDs(1, &platform, NULL);
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 props[1] = (cl_context_properties)platform;
 ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
 queue = clCreateCommandQueue(ctx, device, 0, &err);

 /* Setup clFFT. */
 clfftSetupData fftSetup;
 err = clfftInitSetupData(&fftSetup);
 err = clfftSetup(&fftSetup);

 /* Allocate host & initialize data. */
 /* Only allocation shown for simplicity. */
 X = (float *)malloc(N * 2 * sizeof(*X));

 /* Prepare OpenCL memory objects and place data inside them. */
 bufX = clCreateBuffer(ctx, CL_MEM_READ_WRITE, N * 2 * sizeof(*X), NULL, &err);

 err = clEnqueueWriteBuffer(queue, bufX, CL_TRUE, 0,
 N * 2 * sizeof(*X), X, 0, NULL, NULL);

 /* Create a default plan for a complex FFT. */
 err = clfftCreateDefaultPlan(&planHandle, ctx, dim, clLengths);

 /* Set plan parameters. */
 err = clfftSetPlanPrecision(planHandle, CLFFT_SINGLE);
 err = clfftSetLayout(planHandle, CLFFT_COMPLEX_INTERLEAVED, CLFFT_COMPLEX_INTERLEAVED);
 err = clfftSetResultLocation(planHandle, CLFFT_INPLACE);

 /* Bake the plan. */
 err = clfftBakePlan(planHandle, 1, &queue, NULL, NULL);

 /* Execute the plan. */
 err = clfftEnqueueTransform(planHandle, CLFFT_FORWARD, 1, &queue, 0, NULL, NULL, &bufX, NULL, NULL);

 /* Wait for calculations to be finished. */
 err = clFinish(queue);

 /* Fetch results of calculations. */
 err = clEnqueueReadBuffer(queue, bufX, CL_TRUE, 0, N * 2 * sizeof(*X), X, 0, NULL, NULL);

 /* Release OpenCL memory objects. */
 clReleaseMemObject(bufX);

 free(X);

 /* Release the plan. */
 err = clfftDestroyPlan(&planHandle);

 /* Release clFFT library. */
 clfftTeardown();

 /* Release OpenCL working objects. */
 clReleaseCommandQueue(queue);
 clReleaseContext(ctx);

 return ret;
 }

Build dependencies

Library for Windows

To develop the clFFT library code on a Windows operating system, ensure to install the following packages on your system:

	Windows® 7/8.1

	Visual Studio 2012 or later

	Latest CMake

	An OpenCL SDK, such as APP SDK 3.0

Library for Linux

To develop the clFFT library code on a Linux operating system, ensure to install the following packages on your system:

	GCC 4.6 and onwards

	Latest CMake

	An OpenCL SDK, such as APP SDK 3.0

Library for Mac OSX

To develop the clFFT library code on a Mac OS X, it is recommended to generate Unix makefiles with cmake.

Test infrastructure

To test the developed clFFT library code, ensure to install the following packages on your system:

	Googletest v1.6

	Latest FFTW

	Latest Boost

Performance infrastructure

To measure the performance of the clFFT library code, ensure that the Python package is installed on your system.

clBLAS

For Github repository clBLAS [https://github.com/clMathLibraries/clBLAS]

This repository houses the code for the OpenCL™ BLAS portion of clMath. The complete set of BLAS level 1, 2 & 3 routines is implemented. Please see Netlib BLAS for the list of supported routines. In addition to GPU devices, the library also supports running on CPU devices to facilitate debugging and multicore programming. APPML 1.12 is the most current generally available pre-packaged binary version of the library available for download for both Linux and Windows platforms.

The primary goal of clBLAS is to make it easier for developers to utilize the inherent performance and power efficiency benefits of heterogeneous computing. clBLAS interfaces do not hide nor wrap OpenCL interfaces, but rather leaves OpenCL state management to the control of the user to allow for maximum performance and flexibility. The clBLAS library does generate and enqueue optimized OpenCL kernels, relieving the user from the task of writing, optimizing and maintaining kernel code themselves.

clBLAS update notes 01/2017

v2.12 is a bugfix release as a rollup of all fixes in /develop branch
Thanks to @pavanky, @iotamudelta, @shahsan10, @psyhtest, @haahh, @hughperkins, @tfauck @abhiShandy, @IvanVergiliev, @zougloub, @mgates3 for contributions to clBLAS v2.12
Summary of fixes available to read on the releases tab

clBLAS library user documentation

Library and API documentation [http://clmathlibraries.github.io/clBLAS/] for developers is available online as a GitHub Pages website

clBLAS Wiki

The project wiki [https://github.com/clMathLibraries/clBLAS/wiki] contains helpful documentation, including a build primer [https://github.com/clMathLibraries/clBLAS/wiki]

Contributing code

Please refer to and read the Contributing document [https://github.com/clMathLibraries/clBLAS/blob/master/CONTRIBUTING.md] for guidelines on how to contribute code to this open source project. The code in the /master branch is considered to be stable, and all pull-requests should be made against the /develop branch.

License

The source for clBLAS is licensed under the Apache License, Version 2.0

Example

The simple example below shows how to use clBLAS to compute an OpenCL accelerated SGEMM

#include <sys/types.h>
#include <stdio.h>

/* Include the clBLAS header. It includes the appropriate OpenCL headers */
#include <clBLAS.h>

/* This example uses predefined matrices and their characteristics for
 * simplicity purpose.
*/

#define M 4
#define N 3
#define K 5

static const cl_float alpha = 10;

static const cl_float A[M*K] = {
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35,
41, 42, 43, 44, 45,
};
static const size_t lda = K; /* i.e. lda = K */

static const cl_float B[K*N] = {
11, 12, 13,
21, 22, 23,
31, 32, 33,
41, 42, 43,
51, 52, 53,
};
static const size_t ldb = N; /* i.e. ldb = N */

static const cl_float beta = 20;

static cl_float C[M*N] = {
 11, 12, 13,
 21, 22, 23,
 31, 32, 33,
 41, 42, 43,
};
static const size_t ldc = N; /* i.e. ldc = N */

static cl_float result[M*N];

int main(void)
{
cl_int err;
cl_platform_id platform = 0;
cl_device_id device = 0;
cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
cl_context ctx = 0;
cl_command_queue queue = 0;
cl_mem bufA, bufB, bufC;
cl_event event = NULL;
int ret = 0;

/* Setup OpenCL environment. */
err = clGetPlatformIDs(1, &platform, NULL);
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

props[1] = (cl_context_properties)platform;
ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
queue = clCreateCommandQueue(ctx, device, 0, &err);

/* Setup clBLAS */
err = clblasSetup();

/* Prepare OpenCL memory objects and place matrices inside them. */
bufA = clCreateBuffer(ctx, CL_MEM_READ_ONLY, M * K * sizeof(*A),
 NULL, &err);
bufB = clCreateBuffer(ctx, CL_MEM_READ_ONLY, K * N * sizeof(*B),
 NULL, &err);
bufC = clCreateBuffer(ctx, CL_MEM_READ_WRITE, M * N * sizeof(*C),
 NULL, &err);

err = clEnqueueWriteBuffer(queue, bufA, CL_TRUE, 0,
 M * K * sizeof(*A), A, 0, NULL, NULL);
err = clEnqueueWriteBuffer(queue, bufB, CL_TRUE, 0,
 K * N * sizeof(*B), B, 0, NULL, NULL);
err = clEnqueueWriteBuffer(queue, bufC, CL_TRUE, 0,
 M * N * sizeof(*C), C, 0, NULL, NULL);

 /* Call clBLAS extended function. Perform gemm for the lower right sub-matrices */
 err = clblasSgemm(clblasRowMajor, clblasNoTrans, clblasNoTrans,
 M, N, K,
 alpha, bufA, 0, lda,
 bufB, 0, ldb, beta,
 bufC, 0, ldc,
 1, &queue, 0, NULL, &event);

/* Wait for calculations to be finished. */
err = clWaitForEvents(1, &event);

/* Fetch results of calculations from GPU memory. */
err = clEnqueueReadBuffer(queue, bufC, CL_TRUE, 0,
 M * N * sizeof(*result),
 result, 0, NULL, NULL);

/* Release OpenCL memory objects. */
clReleaseMemObject(bufC);
clReleaseMemObject(bufB);
clReleaseMemObject(bufA);

/* Finalize work with clBLAS */
clblasTeardown();

/* Release OpenCL working objects. */
clReleaseCommandQueue(queue);
clReleaseContext(ctx);

return ret;
}

Build dependencies

Library for Windows

	Windows® 7/8

	Visual Studio 2010 SP1, 2012

	An OpenCL SDK, such as APP SDK 2.8

	Latest CMake

Library for Linux

	GCC 4.6 and onwards

	An OpenCL SDK, such as APP SDK 2.9

	Latest CMake

Library for Mac OSX

	Recommended to generate Unix makefiles with cmake

Test infrastructure

	Googletest v1.6

	Latest Boost

	CPU BLAS

	Netlib CBLAS (recommended) Ubuntu: install by “apt-get install libblas-dev” Windows: download & install lapack-3.6.0 which comes with CBLAS

	or ACML on windows/linux; Accelerate on Mac OSX

Performance infrastructure

Python

clSPARSE

For Github repository clSPARSE [https://github.com/clMathLibraries/clSPARSE]

an OpenCL™ library implementing Sparse linear algebra routines. This project is a result of a collaboration between AMD Inc. [http://www.amd.com/en] and Vratis Ltd. [http://www.vratis.com/].

What’s new in clSPARSE v0.10.1

	
	bug fix release
	
	Fixes for travis builds

	Fix to the matrix market reader in the cuSPARSE benchmark to synchronize with the regular MM reader

	Replace cl.hpp with cl2.hpp (thanks to arrayfire)

	
	Fixes for the Nvidia platform; tested 352.79
	
	Fixed buffer overruns in CSR-Adaptive kernels

	Fix invalid memory access on Nvidia GPUs in CSR-Adaptive SpMV kernel

Build Status

Pre-built binaries are available on our releases page [https://github.com/clMathLibraries/clSPARSE/releases]

clSPARSE features

	Sparse Matrix - dense Vector multiply (SpM-dV)

	Sparse Matrix - dense Matrix multiply (SpM-dM)

	Sparse Matrix - Sparse Matrix multiply Sparse Matrix Multiply(SpGEMM) - Single Precision

	Iterative conjugate gradient solver (CG)

	Iterative biconjugate gradient stabilized solver (BiCGStab)

	Dense to CSR conversions (& converse)

	COO to CSR conversions (& converse)

	Functions to read matrix market files in COO or CSR format

True in spirit with the other clMath libraries, clSPARSE exports a “C” interface to allow projects to build wrappers around clSPARSE in any language they need. A great deal of thought and effort went into designing the API’s to make them less ‘cluttered’ compared to the older clMath libraries. OpenCL state is not explicitly passed through the API, which enables the library to be forward compatible when users are ready to switch from OpenCL 1.2 to OpenCL 2.0 3

API semantic versioning

Good software is typically the result of iteration and feedback. clSPARSE follows the semantic [http://semver.org/] versioning guidelines, and while the major version number remains ‘0’, the public API should not be considered stable. We release clSPARSE as beta software (0.y.z) early to the community to elicit feedback and comment. This comes with the expectation that with feedback, we may incorporate breaking changes to the API that might require early users to recompile, or rewrite portions of their code as we iterate on the design.

clSPARSE Wiki

The project wiki [https://github.com/clMathLibraries/clSPARSE/wiki] contains helpful documentation.
A build primer [https://github.com/clMathLibraries/clSPARSE/wiki/Build] is available, which describes how to use cmake to generate platforms specific build files

Samples

clSPARSE contains a directory of simple OpenCL samples [https://github.com/clMathLibraries/clSPARSE/tree/master/samples] that demonstrate the use of the API in both C and C++. The superbuild [https://blog.kitware.com/wp-content/uploads/2016/01/kitware_quarterly1009.pdf] script for clSPARSE also builds the samples as an external project, to demonstrate how an application would find and link to clSPARSE with cmake.

clSPARSE library documentation

API documentation is available at http://clmathlibraries.github.io/clSPARSE/. The samples give an excellent starting point to basic library operations.

Contributing code

Please refer to and read the Contributing [https://github.com/clMathLibraries/clSPARSE/blob/master/CONTRIBUTING.md] document for guidelines on how to contribute code to this open source project. Code in the /master branch is considered to be stable and new library releases are made when commits are merged into /master. Active development and pull-requests should be made to the develop branch.

License

clSPARSE is licensed under the Apache License [http://www.apache.org/licenses/LICENSE-2.0], Version 2.0

Compiling for Windows

	Windows® 7/8

	Visual Studio 2013 and above

	CMake 2.8.12 (download from Kitware [http://www.cmake.org/download/])

	Solution (.sln) or

	Nmake makefiles

	An OpenCL SDK, such as APP SDK 3.0

Compiling for Linux

	GCC 4.8 and above

	CMake 2.8.12 (install with distro package manager)

	
	Unix makefiles or
	
	KDevelop or

	QT Creator

	An OpenCL SDK, such as APP SDK 3.0

Compiling for Mac OSX

	CMake 2.8.12 (install via brew)

	Unix makefiles or

	XCode

	An OpenCL SDK (installed via xcode-select –install)

Bench & Test infrastructure dependencies

	Googletest v1.7

	Boost v1.58

	Footnotes

[1]: Changed to reflect CppCoreGuidelines: F.21 [http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#a-namerf-out-multia-f21-to-return-multiple-out-values-prefer-returning-a-tuple-or-struct]

[2]: Changed to reflect CppCoreGuidelines: NL.8 [http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#a-namerl-namea-nl8-use-a-consistent-naming-style]

[3]: OpenCL 2.0 support is not yet fully implemented; only the interfaces have been designed

clRNG

For Github repository clRNG [https://github.com/clMathLibraries/clRNG]

A library for uniform random number generation in OpenCL.

Streams of random numbers act as virtual random number generators. They can be created on the host computer in unlimited numbers, and then used either on the host or on computing devices by work items to generate random numbers. Each stream also has equally-spaced substreams, which are occasionally useful. The API is currently implemented for four different RNGs, namely the MRG31k3p, MRG32k3a, LFSR113 and Philox-4×32-10 generators.

What’s New

Libraries related to clRNG, for probability distributions and quasi-Monte Carlo methods, are available:

	clProbDist [https://github.com/umontreal-simul/clProbDist]

	clQMC [https://github.com/umontreal-simul/clQMC]

Releases

The first public version of clRNG is v1.0.0 beta. Please go to releases [https://github.com/clMathLibraries/clRNG/releases] for downloads.

Building

	
	Install the runtime dependency:
	
	An OpenCL SDK, such as APP SDK.

	Install the build dependencies:

	The CMake cross-platform build system. Visual Studio users can use CMake Tools for Visual Studio.

	A recent C compiler, such as GCC 4.9 [https://gcc.gnu.org/] , or Visual Studio 2013.

	Get the clRNG source code.

	Configure the project using CMake [https://cmake.org/] (to generate standard makefiles) or CMake Tools for Visual Studio [https://cmaketools.codeplex.com/] (to generate solution and project files).

	Build the project.

	Install the project (by default, the library will be installed in the package directory under the build directory).

	Point the environment variable CLRNG_ROOT to the installation directory, i.e., the directory under which include/clRNG can be found. This step is optional if the library is installed under /usr, which is the default.

	In order to execute the example programs (under the bin subdirectory of the installation directory) or to link clRNG into other software, the dynamic linker must be informed where to find the clRNG shared library. The name and location of the shared library generally depend on the platform.

	Optionally run the tests.

Example Instructions for Linux

On a 64-bit Linux platform, steps 3 through 9 from above, executed in a Bash-compatible shell, could consist of:

git clone https://github.com/clMathLibraries/clRNG.git
mkdir clRNG.build; cd clRNG.build; cmake ../clRNG/src
make
make install
export CLRNG_ROOT=$PWD/package
export LD_LIBRARY_PATH=$CLRNG_ROOT/lib64:$LD_LIBRARY_PATH
$CLRNG_ROOT/bin/CTest

Examples

Examples can be found in src/client. The compiled client program examples can be found under the bin subdirectory of the installation package ($CLRNG_ROOT/bin under Linux). Note that the examples expect an OpenCL GPU device to be available.

Simple example

The simple example below shows how to use clRNG to generate random numbers by directly using device side headers (.clh) in your OpenCL kernel.

#include <stdlib.h>
#include <string.h>

#include "clRNG/clRNG.h"
#include "clRNG/mrg31k3p.h"

int main(void)
{
 cl_int err;
 cl_platform_id platform = 0;
 cl_device_id device = 0;
 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
 cl_context ctx = 0;
 cl_command_queue queue = 0;
 cl_program program = 0;
 cl_kernel kernel = 0;
 cl_event event = 0;
 cl_mem bufIn, bufOut;
 float *out;
 char *clrng_root;
 char include_str[1024];
 char build_log[4096];
 size_t i = 0;
 size_t numWorkItems = 64;
 clrngMrg31k3pStream *streams = 0;
 size_t streamBufferSize = 0;
 size_t kernelLines = 0;

 /* Sample kernel that calls clRNG device-side interfaces to generate random numbers */
 const char *kernelSrc[] = {
 " #define CLRNG_SINGLE_PRECISION \n",
 " #include <clRNG/mrg31k3p.clh> \n",
 " \n",
 " __kernel void example(__global clrngMrg31k3pHostStream *streams, \n",
 " __global float *out) \n",
 " { \n",
 " int gid = get_global_id(0); \n",
 " \n",
 " clrngMrg31k3pStream workItemStream; \n",
 " clrngMrg31k3pCopyOverStreamsFromGlobal(1, &workItemStream, \n",
 " &streams[gid]); \n",
 " \n",
 " out[gid] = clrngMrg31k3pRandomU01(&workItemStream); \n",
 " } \n",
 " \n",
 };

 /* Setup OpenCL environment. */
 err = clGetPlatformIDs(1, &platform, NULL);
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 props[1] = (cl_context_properties)platform;
 ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
 queue = clCreateCommandQueue(ctx, device, 0, &err);

 /* Make sure CLRNG_ROOT is specified to get library path */
 clrng_root = getenv("CLRNG_ROOT");
 if(clrng_root == NULL) printf("\nSpecify environment variable CLRNG_ROOT as described\n");
 strcpy(include_str, "-I ");
 strcat(include_str, clrng_root);
 strcat(include_str, "/include");

 /* Create sample kernel */
 kernelLines = sizeof(kernelSrc) / sizeof(kernelSrc[0]);
 program = clCreateProgramWithSource(ctx, kernelLines, kernelSrc, NULL, &err);
 err = clBuildProgram(program, 1, &device, include_str, NULL, NULL);
 if(err != CL_SUCCESS)
 {
 printf("\nclBuildProgram has failed\n");
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 4096, build_log, NULL);
 printf("%s", build_log);
 }
 kernel = clCreateKernel(program, "example", &err);

 /* Create streams */
 streams = clrngMrg31k3pCreateStreams(NULL, numWorkItems, &streamBufferSize, (clrngStatus *)&err);

 /* Create buffers for the kernel */
 bufIn = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, streamBufferSize, streams, &err);
 bufOut = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY, numWorkItems * sizeof(cl_float), NULL, &err);

 /* Setup the kernel */
 err = clSetKernelArg(kernel, 0, sizeof(bufIn), &bufIn);
 err = clSetKernelArg(kernel, 1, sizeof(bufOut), &bufOut);

 /* Execute the kernel and read back results */
 err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &numWorkItems, NULL, 0, NULL, &event);
 err = clWaitForEvents(1, &event);
 out = (float *)malloc(numWorkItems * sizeof(out[0]));
 err = clEnqueueReadBuffer(queue, bufOut, CL_TRUE, 0, numWorkItems * sizeof(out[0]), out, 0, NULL, NULL);

 /* Release allocated resources */
 clReleaseEvent(event);
 free(out);
 clReleaseMemObject(bufIn);
 clReleaseMemObject(bufOut);

 clReleaseKernel(kernel);
 clReleaseProgram(program);

 clReleaseCommandQueue(queue);
 clReleaseContext(ctx);

 return 0;
}

Building the documentation manually

The documentation can be generated by running make from within the doc directory. This requires Doxygen to be installed.

hcFFT

hcFFT has been deprecated and has been replaced by rocFFT [https://github.com/ROCmSoftwarePlatform/rocFFT]

Installation

The following are the steps to use the library

	ROCM 2.7 Kernel, Driver and Compiler Installation (if not done until now)

	Library installation.

ROCM 2.7 Installation

To Know more about ROCM refer
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md

a. Installing Debian ROCM repositories

Before proceeding, make sure to completely uninstall any pre-release ROCm packages.

Refer https://github.com/RadeonOpenCompute/ROCm#removing-pre-release-packages for instructions to remove pre-release ROCM packages.

Steps to install rocm package are,

wget -qO - http://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -

sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'

sudo apt-get update

sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

sudo vi /etc/default/grub

sudo update-grub

and Reboot the system

b. Verifying the Installation

Once Reboot, to verify that the ROCm stack completed successfully you can execute HSA vector_copy sample application:

	cd /opt/rocm/hsa/sample

	make

	./vector_copy

Library Installation

a. Install using Prebuilt debian

wget https://github.com/ROCmSoftwarePlatform/hcFFT/blob/master/pre-builds/hcfft-master-87a37f5-Linux.deb
sudo dpkg -i hcfft-master-87a37f5-Linux.deb

b. Build debian from source

git clone https://github.com/ROCmSoftwarePlatform/hcFFT.git && cd hcFFT

chmod +x build.sh && ./build.sh

build.sh execution builds the library and generates a debian under build directory.

c. Install CPU based FFTW3 library

sudo apt-get install fftw3 fftw3-dev pkg-config

Introduction

This repository hosts the HCC based FFT Library, that targets GPU acceleration of FFT routines on AMD devices. To know what HCC compiler features, refer here [https://github.com/RadeonOpenCompute/hcc].

The following are the sub-routines that are implemented

	R2C : Transforms Real valued input in Time domain to Complex valued output in Frequency domain.

	C2R : Transforms Complex valued input in Frequency domain to Real valued output in Real domain.

	C2C : Transforms Complex valued input in Frequency domain to Complex valued output in Real domain or vice versa

KeyFeature

	Support 1D, 2D and 3D Fast Fourier Transforms

	Supports R2C, C2R, C2C, D2Z, Z2D and Z2Z Transforms

	Support Out-Of-Place data storage

	Ability to Choose desired target accelerator

	Single and Double precision

Prerequisites

This section lists the known set of hardware and software requirements to build this library

Hardware

	CPU: mainstream brand, Better if with >=4 Cores Intel Haswell based CPU

	System Memory >= 4GB (Better if >10GB for NN application over multiple GPUs)

	Hard Drive > 200GB (Better if SSD or NVMe driver for NN application over multiple GPUs)

	Minimum GPU Memory (Global) > 2GB

GPU cards supported

	dGPU: AMD R9 Fury X, R9 Fury, R9 Nano

	APU: AMD Kaveri or Carrizo

AMD Driver and Runtime

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

System software

	Ubuntu 14.04 trusty and later

	GCC 4.6 and later

	CPP 4.6 and later (come with GCC package)

	python 2.7 and later

	python-pip

	BeautifulSoup4 (installed using python-pip)

	HCC 0.9 from here

Tools and Misc

	git 1.9 and later

	cmake 2.6 and later (2.6 and 2.8 are tested)

	firewall off

	root privilege or user account in sudo group

Ubuntu Packages

	libc6-dev-i386

	liblapack-dev

	graphicsmagick

	libblas-dev

Examples

FFT 1D R2C example:

file: hcfft_1D_R2C.cpp

#!c++

#include <iostream>
#include <cstdlib>
#include "hcfft.h"
#include "hc_am.hpp"
#include "hcfftlib.h"

int main(int argc, char* argv[]) {
 int N = argc > 1 ? atoi(argv[1]) : 1024;
 // HCFFT work flow
 hcfftHandle plan;
 hcfftResult status = hcfftPlan1d(&plan, N, HCFFT_R2C);
 assert(status == HCFFT_SUCCESS);
 int Rsize = N;
 int Csize = (N / 2) + 1;
 hcfftReal* input = (hcfftReal*)calloc(Rsize, sizeof(hcfftReal));
 int seed = 123456789;
 srand(seed);

 // Populate the input
 for(int i = 0; i < Rsize ; i++) {
 input[i] = rand();
 }

 hcfftComplex* output = (hcfftComplex*)calloc(Csize, sizeof(hcfftComplex));

 std::vector<hc::accelerator> accs = hc::accelerator::get_all();
 assert(accs.size() && "Number of Accelerators == 0!");
 hc::accelerator_view accl_view = accs[1].get_default_view();

 hcfftReal* idata = hc::am_alloc(Rsize * sizeof(hcfftReal), accs[1], 0);
 accl_view.copy(input, idata, sizeof(hcfftReal) * Rsize);
 hcfftComplex* odata = hc::am_alloc(Csize * sizeof(hcfftComplex), accs[1], 0);
 accl_view.copy(output, odata, sizeof(hcfftComplex) * Csize);
 status = hcfftExecR2C(plan, idata, odata);
 assert(status == HCFFT_SUCCESS);
 accl_view.copy(odata, output, sizeof(hcfftComplex) * Csize);
 status = hcfftDestroy(plan);
 assert(status == HCFFT_SUCCESS);
 free(input);
 free(output);
 hc::am_free(idata);
 hc::am_free(odata);
}

	Compiling the example code:

Assuming the library and compiler installation is followed as in installation.

/opt/rocm/hcc/bin/clang++ /opt/rocm/hcc/bin/hcc-config –cxxflags –ldflags -lhc_am -lhcfft -I../lib/include -L../build/lib/src hcfft_1D_R2C.cpp

Tested Environments

This sections enumerates the list of tested combinations of Hardware and system softwares.

Driver versions

	
	Boltzmann Early Release Driver + dGPU
	
	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

	Traditional HSA driver + APU (Kaveri)

GPU Cards

	Radeon R9 Nano

	Radeon R9 FuryX

	Radeon R9 Fury

	Kaveri and Carizo APU

Server System

	Supermicro SYS 2028GR-THT 6 R9 NANO

	Supermicro SYS-1028GQ-TRT 4 R9 NANO

	Supermicro SYS-7048GR-TR Tower 4 R9 NANO

Building hipSPARSE

	For instructions to build hipSPARSE library and clients, see hipsbuild [https://sep5.readthedocs.io/en/latest/ROCm_Libraries/hipsparse_wiki.html#build] hipSPARSE libraries and verification code

	For an example using hipSPARSE see example [https://sep5.readthedocs.io/en/latest/ROCm_Libraries/hipsparse_wiki.html#example-c-code] C code.

	For instructions on how to run/use the client code, see Running.

Functionality

hipSPARSE exports the following Exported sparse BLAS functions sparse BLAS-like functions at this time.

Platform: rocSPARSE or cuSPARSE

hipSPARSE is a marshalling library, so it runs with either rocSPARSE [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id51] or cuSPARSE [https://developer.nvidia.com/cusparse] configured as the backend SPARSE library, chosen at cmake configure time.

CUDA unit test failures

There are a some library unit tests failing with cuSPARSE; we believe these failures are benign and can be ignored. Our unit tests are testing with negative sizes and edge cases which are handled differently between the two libraries, and our unit tests do not account for these differences.

Build

Build dependencies and library (no client) using install.sh

The install.sh script can be used to build the dependencies and the hipSPARSE library. Common uses of install.sh are in the table below.

Build library and client using install.sh

The install.sh script can be used to build the hipSPARSE library and client. The client contains executables in the table below.

	executable name

	description

	hipsparse-test

	run Google Tests to test the library

	example-coomv

	example C code calling hipsparseDcoomv function

	example-csrmv

	example C code calling hipsparseDcsrmv function

	example-ellmv

	example C code calling hipsparseDellmv function

	example-hybmv

	example C code calling hipsparseDhybmv function

	example-handle

	example C code creating and destroying a hipSPARSE handle

Note that the client requires additional dependencies not needed by the library. These include googletest. Below are common uses of install.sh to build the dependencies, library, and client

Note: Adding the –cuda flag will run the script using cuSPARSE backend.

Dependencies For Building Library

CMake 3.5 or later

The build infrastructure for hipSPARSE is based on Cmake [https://cmake.org/] v3.5. This is the version of cmake available on ROCm supported platforms. If you are on a headless machine without X system, we recommend using ccmake; if you have access to X, we recommend using cmake-gui.

Install one-liners cmake:

Ubuntu: sudo apt install cmake-qt-gui
Fedora: sudo dnf install cmake-gui

rocSPARSE (HIP)

HIP backend of hipSPARSE is based on rocSPARSE [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id51]. Currently, while rocSPARSE is not available in the public ROCm repositories, you will have to install the package manually.

cuSPARSE (NVCC)

NVCC backend of hipSPARSE is based on cuSPARSE [https://developer.nvidia.com/cusparse]. You can install it using

	Ubuntu: sudo apt install cuda-cusparse-<ver>

	Fedora: currently not supported

Configure and build steps

Example steps to build hipSPARSE:

mkdir -p [HIPSPARSE_BUILD_DIR]/release
cd [HIPSPARSE_BUILD_DIR]/release
Default install location is in /opt/rocm, define -DCMAKE_INSTALL_PREFIX=<path> to specify other
Default build config is 'Release', define -DCMAKE_BUILD_TYPE=<config> to specify other
cmake [HIPSPARSE_SOURCE]
make -j$(nproc)
sudo make install # sudo required if installing into system directory such as /opt/rocm

Additional dependencies only necessary for hipSPARSE clients

The unit tests and benchmarking applications in the client introduce the following dependencies:

	googletest [https://github.com/google/googletest]

Unfortunately, googletest is not as easy to install. Many distros do not provide a googletest package with pre-compiled libraries. hipSPARSE provides a cmake script that builds the above dependencies from source. This is an optional step; users can provide their own builds of these dependencies and help cmake find them by setting the CMAKE_PREFIX_PATH definition. The following is a sequence of steps to build dependencies and install them to the cmake default /usr/local.

(optional, one time only)

mkdir -p [HIPSPARSE_BUILD_DIR]/release/deps
cd [HIPSPARSE_BUILD_DIR]/release/deps
ccmake -DBUILD_BOOST=OFF [HIPSPARSE_SOURCE]/deps
make -j$(nproc) install

Build Library + Tests + Benchmarks + Samples Using Individual Commands

Once dependencies are available on the system, it is possible to configure the clients to build. This requires a few extra cmake flags to the library cmake configure script. If the dependencies are not installed into system defaults (e.g. /usr/local), the user should pass the CMAKE_PREFIX_PATH to cmake to help finding them.

-DCMAKE_PREFIX_PATH="<semicolon separated paths>"
Default install location is in /opt/rocm, use -DCMAKE_INSTALL_PREFIX=<path> to specify other
cmake -DBUILD_CLIENTS_TESTS=ON -DBUILD_CLIENTS_BENCHMARKS=ON -DBUILD_CLIENTS_SAMPLES=ON [HIPSPARSE_SOURCE]
make -j$(nproc)
sudo make install # sudo required if installing into system directory such as /opt/rocm

Common build problems

	Issue: Could not find a package configuration file provided by “rocSPARSE” with any of the following names:

ROCSPARSEConfig.cmake

rocsparse-config.cmake

Solution: Install rocSPARSE [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id51]

Issue: Could not find a package configuration file provided by “ROCM” with any of the following names:

ROCMConfig.cmake

rocm-config.cmake

Solution: Install ROCm cmake modules [https://github.com/RadeonOpenCompute/rocm-cmake]

Example C code

#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <math.h>
#include <hipsparse.h>

using namespace std;

int main()
 {
 int N = 10240;
 int nnz = 256;
 float alpha = 10.0f;
 float tolerance = 1e-8f;

 vector<int> hx_ind(nnz);
 vector<float> hx_val(nnz);
 vector<float> hy(N);

 // Allocate memory on the device
 int* dx_ind;
 float* dx_val;
 float* dy;

 hipMalloc(&dx_ind, nnz * sizeof(int));
 hipMalloc(&dx_val, nnz * sizeof(float));
 hipMalloc(&dy, N * sizeof(float));

 // Initial Data on CPU,
 srand(1);

 for(int i = 0; i < nnz; ++i)
 {
 hx_ind[i] = i * 40;
 hx_val[i] = rand() % 10 + 1; // Generate an integer number between [1, 10]
 }

 for(int i = 0; i < N; ++i)
 {
 hy[i] = rand() % 10 + 1; // Generate an integer number between [1, 10]
 }

 // Copy data to device
 hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice);
 hipMemcpy(dx_val, hx_val.data(), sizeof(float) * nnz, hipMemcpyHostToDevice);
 hipMemcpy(dy, hy.data(), sizeof(float) * N, hipMemcpyHostToDevice);

 // Initialize rocSPARSE
 hipsparseHandle_t handle;
 hipsparseCreate(&handle);

 // Run saxpyi on device
 hipsparseSaxpyi(handle, nnz, &alpha, dx_val, dx_ind, dy, HIPSPARSE_INDEX_BASE_ZERO);

 // Copy output from device memory to host memory
 vector<float> result(N);
 hipMemcpy(result.data(), dy, sizeof(float) * N, hipMemcpyDeviceToHost);

 // Verify hipsparseSaxpyi result
 for(int i = 0; i < nnz; ++i)
 {
 hy[hx_ind[i]] += alpha * hx_val[i];
 }

 float error;
 for(int i = 0; i < N; ++i)
 {
 error = fabs(hy[i] - result[i]);
 if(error > tolerance)
 {
 fprintf(stderr, "Error in element %d: CPU=%f, GPU=%f\n", i, hy[i], result[i]);
 break;
 }
 }

 if(error > tolerance)
 {
 printf("axpyi test failed!\n");
 }
 else
 {
 printf("axpyi test passed!\n");
 }

 hipFree(dx_ind);
 hipFree(dx_val);
 hipFree(dy);

 hipsparseDestroy(handle);

 return 0;
 }

Compiling hipSPARSE example

First, paste above code into a file hipsparseSaxpyi_example.cpp. To compile hipsparseSaxpyi_example.cpp, a standard C++ compiler can be used (e.g. g++):

g++ -O3 -o hipsparseSaxpyi_example hipsparseSaxpyi_example.cpp -D__HIP_PLATFORM_HCC__ -I/opt/rocm/include -L/opt/rocm/lib -lhipsparse -lhip_hcc

Exported sparse BLAS functions

hipSPARSE includes the following auxiliary functions

	Function name

	hipsparseCreate

	hipsparseDestroy

	hipsparseGetVersion

	hipsparseSetStream

	hipsparseGetStream

	hipsparseSetPointerMode

	hipsparseGetPointerMode

	hipsparseCreateMatDescr

	hipsparseDestroyMatDescr

	hipsparseCopyMatDescr

	hipsparseSetMatIndexBase

	hipsparseGetMatIndexBase

	hipsparseSetMatType

	hipsparseGetMatType

	hipsparseSetMatFillMode

	hipsparseGetMatFillMode

	hipsparseSetMatDiagType

	hipsparseGetMatDiagType

	hipsparseCreateHybMatrix

	hipsparseDestroyHybMatrix

	hipsparseCreateCsrsv2Info

	hipsparseDestroyCsrsv2Info

	hipsparseCreateCsrilu02Info

	hipsparseCreateCsrilu02Info

hipSPARSE includes the following Level 1, 2 and conversion functions

Level 1

	Function

	single

	double

	single complex

	double complex

	half

	hipsparseXaxpyi

	x

	x

	
	
	

	hipsparseXdoti

	x

	x

	
	
	

	hipsparseXgthr

	x

	x

	
	
	

	hipsparseXgthrz

	x

	x

	
	
	

	hipsparseXroti

	x

	x

	
	
	

	hipsparseXsctr

	x

	x

	
	
	

Level 2

	Function

	single

	double

	single complex

	double complex

	half

	hipsparseXcsrmv

	x

	x

	
	
	

	hipsparseXcsrsv2_bufferSize

	x

	x

	
	
	

	hipsparseXcsrsv2_bufferSizeExt

	x

	x

	
	
	

	hipsparseXcsrsv2_analysis

	x

	x

	
	
	

	hipsparseXcsrsv2_solve

	x

	x

	
	
	

	hipsparseXhybmv

	x

	x

	
	
	

Level 3

	Function

	single

	double

	single complex

	double complex

	half

	hipsparseXcsrmm

	x

	x

	
	
	

	hipsparseXcsrmm2

	x

	x

	
	
	

Extra

	Function

	single

	double

	single complex

	double complex

	halfy

	hipsparseXcsrgemmNnz

	
	
	
	
	

	hipsparseXcsrgemm

	x

	x

	
	
	

	hipsparseXcsrgemm2_bufferSizeExt

	
	
	
	
	

	hipsparseXcsrgemm2Nnz

	
	
	
	
	

	hipsparseXcsrgemm2

	
	
	
	
	

Preconditioners

	Function

	single

	double

	single complex

	double complex

	half

	hipsparseXcsrilu02_bufferSize

	x

	x

	
	
	

	hipsparseXcsrilu02_bufferSizeExt

	x

	x

	
	
	

	hipsparseXcsrilu02_analysis

	x

	x

	
	
	

	hipsparseXcsrilu02

	x

	x

	
	
	

Conversion

	Function

	single

	double

	single complex

	double complex

	half

	hipsparseXcsr2coo

	
	
	
	
	

	hipsparseXcsr2csc

	x

	x

	
	
	

	hipsparseXcsr2hyb

	x

	x

	
	
	

	hipsparseXcoo2csr

	
	
	
	
	

	hipsparseCreateIdentityPermutation

	
	
	
	
	

	hipsparseXcsrsort_bufferSizeExt

	
	
	
	
	

	hipsparseXcsrsort

	
	
	
	
	

	hipsparseXcoosort_bufferSizeExt

	
	
	
	
	

	hipsparseXcoosortByRow

	
	
	
	
	

	hipsparseXcoosortByColumn

	
	
	
	
	

Additional notes

	hipSPARSE supports 0 and 1 based indexing. The index base is selected by hipsparseIndexBase_t type, which is either passed as standalone parameter or part of the hipsparseMatDescr_t type.

	Dense vectors are represented with a 1D array stored linearly in memory.

	Sparse vectors are represented with a 1D data array stored linearly in memory that holds all non-zero elements and a 1D indexing array stored linearly in memory that holds the positions of the corresponding non-zero elements.

	The auxiliary functions hipsparseSetPointer and hipsparseGetPointer are used to set and get the value of the state variable hipsparsePointerMode_t. If hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_HOST, then scalar parameters must be allocated on the host. If hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_DEVICE, then scalar parameters must be allocated on the device.

There are two types of scalar parameter:

	Scaling parameters, such as alpha and beta used in e.g. csrmv, coomv, …

	Scalar results from functions such as doti, dotci, …

For scalar parameters such as alpha and beta, memory can be allocated on the host heap or stack, when hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_HOST. The kernel launch is asynchronous, and if the scalar parameter is on the heap, it can be freed after the return from the kernel launch. When hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_DEVICE, the scalar parameter must not be changed till the kernel completes.

For scalar results, when hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_HOST, then the function blocks the CPU till the GPU has copied the result back to the host. Using hipsparsePointerMode_t == HIPSPARSE_POINTER_MODE_DEVICE, the function will return after the asynchronous launch. Similarly to vector and matrix results, the scalar result is only available when the kernel has completed execution.

Running

Notice

Before reading this Wiki, it is assumed hipSPARSE with the client applications has been successfully built as described in Build hipSPARSE libraries and verification code

Samples

cd [BUILD_DIR]/example
./example-csrmv 1000

Example code that calls hipSPARSE csrmv routine.

Unit tests

Run tests with the following:

cd [BUILD_DIR]/clients/tests
./hipsparse-test

To run specific tests, use –gtest_filter=match where match is a ‘:’-separated list of wildcard patterns (called the positive patterns) optionally followed by a ‘-‘ and another ‘:’-separated pattern list (called the negative patterns). For example, run coo2csr tests with the following commands:

cd [BUILD_DIR]/clients/tests
./hipsparse-test --gtest_filter=*coo2csr*

Please note, that tests are only supported when configured with rocSPARSE backend.

rocSOLVER API

This section provides details of the rocSOLVER library API as in release
ROCm 2.10 [https://github.com/ROCmSoftwarePlatform/rocSOLVER/tree/master-rocm-2.10].

Types

Most rocSOLVER types are aliases of rocBLAS types.
See rocBLAS types here [https://rocblas.readthedocs.io/en/latest/api.html#types].

Definitions

rocsolver_int

Warning

doxygentypedef: Cannot find typedef “rocsolver_int” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Enums

rocsolver_handle

Warning

doxygentypedef: Cannot find typedef “rocsolver_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_operation

Warning

doxygentypedef: Cannot find typedef “rocsolver_operation” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_fill

Warning

doxygentypedef: Cannot find typedef “rocsolver_fill” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_diagonal

Warning

doxygentypedef: Cannot find typedef “rocsolver_diagonal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_side

Warning

doxygentypedef: Cannot find typedef “rocsolver_side” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_direct

Warning

doxygenenum: Cannot find enum “rocsolver_direct” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_storev

Warning

doxygenenum: Cannot find enum “rocsolver_storev” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_status

Warning

doxygentypedef: Cannot find typedef “rocsolver_status” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Auxiliary Functions

These are functions that support more advanced Lapack routines.

Matrix permutations and manipulations

rocsolver_<type>laswp()

Warning

doxygenfunction: Cannot find function “rocsolver_zlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_claswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Householder reflexions

rocsolver_<type>larfg()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larft()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larf()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larfb()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Orthonormal matrices

rocsolver_<type>org2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgl2()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orglq()

Warning

doxygenfunction: Cannot find function “rocsolver_dorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgbr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orm2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>ormqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Functions

Lapack routines solve complex Numerical Linear Algebra problems.

Special Matrix Factorizations

rocsolver_<type>potf2()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General Matrix Factorizations

rocsolver_<type>getf2()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General systems solvers

rocsolver_<type>getrs()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Auxiliaries

rocSOLVER auxiliary functions are aliases of rocBLAS auxiliary functions. See rocBLAS auxiliary functions
here [https://rocblas.readthedocs.io/en/latest/api.html#auxiliary].

rocSOLVER handle auxiliaries

rocsolver_create_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_create_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_destroy_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_destroy_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_add_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_add_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_set_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_get_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Other auxiliaries

rocsolver_set_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_set_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_get_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_set_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_get_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Introduction

rocSOLVER is a library of Lapack routines on top of AMD’s Radeon Open Compute Platform (ROCm) runtime and toolchains.
rocSOLVER is implemented in the HIP programming language and based on an optimized BLAS
implementation for AMD’s latest discrete GPUs.

For more information about rocBLAS, see rocBLAS [https://rocblas.readthedocs.io/en/latest/index.html].

Build and Install

Prerequisites

For installation, rocSOLVER requires cmake [https://cmake.org/install/]
and ROCm [https://rocm.github.io/install.html], including
hip [https://github.com/ROCm-Developer-Tools/HIP/blob/master/INSTALL.md] and
rocBLAS [https://github.com/ROCmSoftwarePlatform/rocBLAS]

Installation

Follow the instructions below to build and install rocSOLVER:

mkdir build && cd build
CXX=/opt/rocm/bin/hcc cmake ..
make
make install

About rocSolver

Note, the rocSOLVER library is in the early stages of active development. New features and functionality are being continuously added. You can find new and updated information about the library with each release of the AMD ROCm platform.

The following table summarizes the LAPACK functionality implemented in rocSOLVER’s latest release.

	Lapack Auxiliary Function

	single

	double

	single complex

	double complex

	rocsolver_laswp

	x

	x

	x

	x

	rocsolver_larfg

	x

	x

	
	

	rocsolver_larft

	x

	x

	
	

	rocsolver_larf

	x

	x

	
	

	rocsolver_larfb

	x

	x

	
	

	rocsolver_org2r

	x

	x

	
	

	rocsolver_orgqr

	x

	x

	
	

	rocsolver_orgl2

	x

	x

	
	

	rocsolver_orglq

	x

	x

	
	

	rocsolver_orgbr

	x

	x

	
	

	rocsolver_orm2r

	x

	x

	
	

	rocsolver_ormqr

	x

	x

	
	

	Lapack Function

	single

	double

	single complex

	double complex

	rocsolver_potf2

	x

	x

	
	

	rocsolver_potf2_batched

	x

	x

	
	

	rocsolver_potf2_strided_batched

	x

	x

	
	

	rocsolver_potrf

	x

	x

	
	

	rocsolver_potrf_batched

	x

	x

	
	

	rocsolver_potrf_strided_batched

	x

	x

	
	

	rocsolver_getf2

	x

	x

	x

	x

	rocsolver_getf2_batched

	x

	x

	x

	x

	rocsolver_getf2_strided_batched

	x

	x

	x

	x

	rocsolver_getrf

	x

	x

	x

	x

	rocsolver_getrf_batched

	x

	x

	x

	x

	rocsolver_getrf_strided_batched

	x

	x

	x

	x

	rocsolver_geqr2

	x

	x

	
	

	rocsolver_geqr2_batched

	x

	x

	
	

	rocsolver_geqr2_strided_batched

	x

	x

	
	

	rocsolver_geqrf

	x

	x

	
	

	rocsolver_geqrf_batched

	x

	x

	
	

	rocsolver_geqrf_strided_batched

	x

	x

	
	

	rocsolver_gelq2

	x

	x

	
	

	rocsolver_gelq2_batched

	x

	x

	
	

	rocsolver_gelq2_strided_batched

	x

	x

	
	

	rocsolver_gelqf

	x

	x

	
	

	rocsolver_gelqf_batched

	x

	x

	
	

	rocsolver_gelqf_strided_batched

	x

	x

	
	

	rocsolver_getrs

	x

	x

	x

	x

	rocsolver_getrs_batched

	x

	x

	x

	x

	rocsolver_getrs_strided_batched

	x

	x

	x

	x

Benchmarking and Testing

For testing and benchmarking, rocSOLVER has a basic/preliminary infrastructure similar to rocBLAS.

On a normal installation, clients are located in the directory <rocsolverDIR>/build/clients/staging.

rocsolver-test executes a suite of Google tests [https://github.com/google/googletest] (gtest) that verifies the correct
functioning of the library; the results computed by rocSOLVER, for random input data, are compared with the results computed by
NETLib LAPACK [http://www.netlib.org/lapack/] on the CPU.

Calling the rocSOLVER gtest client with the –help flag

./rocsolver-test --help

returns information on different flags that control the behavior of the gtests.

rocsolver-bench allows to run any rocSOLVER function with random data of the specified dimensions; it compares the computed results, and provides basic
performance information (as for now, execution times).

Similarly,

./rocsolver-bench --help

returns information on how to use the rocSOLVER benchmark client.

Welcome to rocSOLVER’s documentation!

rocSOLVER API - (Documentation in progress….)

This section provides details of the rocSOLVER library API as of Release
ROCm 2.10 [https://github.com/ROCmSoftwarePlatform/rocSOLVER/tree/master-rocm-2.10].

Types

Most rocSOLVER types are aliases of rocBLAS types.
See rocBLAS types here [https://rocblas.readthedocs.io/en/latest/api.html#types].

Definitions

rocsolver_int

Warning

doxygentypedef: Cannot find typedef “rocsolver_int” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Enums

rocsolver_handle

Warning

doxygentypedef: Cannot find typedef “rocsolver_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_operation

Warning

doxygentypedef: Cannot find typedef “rocsolver_operation” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_fill

Warning

doxygentypedef: Cannot find typedef “rocsolver_fill” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_diagonal

Warning

doxygentypedef: Cannot find typedef “rocsolver_diagonal” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_side

Warning

doxygentypedef: Cannot find typedef “rocsolver_side” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_direct

Warning

doxygenenum: Cannot find enum “rocsolver_direct” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_storev

Warning

doxygenenum: Cannot find enum “rocsolver_storev” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_status

Warning

doxygentypedef: Cannot find typedef “rocsolver_status” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Auxiliary Functions

These are functions that support more advanced Lapack routines.

Matrix permutations and manipulations

rocsolver_<type>laswp()

Warning

doxygenfunction: Cannot find function “rocsolver_zlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_claswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dlaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slaswp” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Householder reflexions

rocsolver_<type>larfg()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfg” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larft()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarft” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larf()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>larfb()

Warning

doxygenfunction: Cannot find function “rocsolver_dlarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_slarfb” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Orthonormal matrices

rocsolver_<type>org2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorg2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgl2()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgl2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orglq()

Warning

doxygenfunction: Cannot find function “rocsolver_dorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorglq” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orgbr()

Warning

doxygenfunction: Cannot find function “rocsolver_dorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorgbr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>orm2r()

Warning

doxygenfunction: Cannot find function “rocsolver_dorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sorm2r” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>ormqr()

Warning

doxygenfunction: Cannot find function “rocsolver_dormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sormqr” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Lapack Functions

Lapack routines solve complex Numerical Linear Algebra problems.

Special Matrix Factorizations

rocsolver_<type>potf2()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>potrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dpotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_spotrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General Matrix Factorizations

rocsolver_<type>getf2()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getf2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetf2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqr2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqr2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>geqrf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgeqrf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelq2_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelq2_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>gelqf_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_dgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgelqf_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

General systems solvers

rocsolver_<type>getrs()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_<type>getrs_strided_batched()

Warning

doxygenfunction: Cannot find function “rocsolver_zgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_cgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_dgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Warning

doxygenfunction: Cannot find function “rocsolver_sgetrs_strided_batched” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Auxiliaries

rocSOLVER auxiliary functions are aliases of rocBLAS auxiliary functions. See rocBLAS auxiliary functions
here [https://rocblas.readthedocs.io/en/latest/api.html#auxiliary].

rocSOLVER handle auxiliaries

rocsolver_create_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_create_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_destroy_handle()

Warning

doxygenfunction: Cannot find function “rocsolver_destroy_handle” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_add_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_add_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_set_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_stream()

Warning

doxygenfunction: Cannot find function “rocsolver_get_stream” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Other auxiliaries

rocsolver_set_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_set_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_vector()

Warning

doxygenfunction: Cannot find function “rocsolver_get_vector” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_set_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_set_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

rocsolver_get_matrix()

Warning

doxygenfunction: Cannot find function “rocsolver_get_matrix” in doxygen xml output for project “ReadTheDocs-Breathe” from directory: xml/

Welcome to rocSOLVER’s documentation!

Contents:

	Introduction
	Build and install

	Brief description and functionality

	Benchmarking and testing

	rocSOLVER API - (Documentation in progress….)
	Types
	Definitions
	rocsolver_int

	Enums
	rocsolver_handle

	rocsolver_operation

	rocsolver_fill

	rocsolver_diagonal

	rocsolver_side

	rocsolver_direct

	rocsolver_storev

	rocsolver_status

	Lapack Auxiliary Functions
	Matrix permutations and manipulations
	rocsolver_<type>laswp()

	Householder reflexions
	rocsolver_<type>larfg()

	rocsolver_<type>larft()

	rocsolver_<type>larf()

	rocsolver_<type>larfb()

	Orthonormal matrices
	rocsolver_<type>org2r()

	rocsolver_<type>orgqr()

	rocsolver_<type>orgl2()

	rocsolver_<type>orglq()

	rocsolver_<type>orgbr()

	rocsolver_<type>orm2r()

	rocsolver_<type>ormqr()

	Lapack Functions
	Special Matrix Factorizations
	rocsolver_<type>potf2()

	rocsolver_<type>potf2_batched()

	rocsolver_<type>potf2_strided_batched()

	rocsolver_<type>potrf()

	rocsolver_<type>potrf_batched()

	rocsolver_<type>potrf_strided_batched()

	General Matrix Factorizations
	rocsolver_<type>getf2()

	rocsolver_<type>getf2_batched()

	rocsolver_<type>getf2_strided_batched()

	rocsolver_<type>getrf()

	rocsolver_<type>getrf_batched()

	rocsolver_<type>getrf_strided_batched()

	rocsolver_<type>geqr2()

	rocsolver_<type>geqr2_batched()

	rocsolver_<type>geqr2_strided_batched()

	rocsolver_<type>geqrf()

	rocsolver_<type>geqrf_batched()

	rocsolver_<type>geqrf_strided_batched()

	rocsolver_<type>gelq2()

	rocsolver_<type>gelq2_batched()

	rocsolver_<type>gelq2_strided_batched()

	rocsolver_<type>gelqf()

	rocsolver_<type>gelqf_batched()

	rocsolver_<type>gelqf_strided_batched()

	General systems solvers
	rocsolver_<type>getrs()

	rocsolver_<type>getrs_batched()

	rocsolver_<type>getrs_strided_batched()

	Auxiliaries
	rocSOLVER handle auxiliaries
	rocsolver_create_handle()

	rocsolver_destroy_handle()

	rocsolver_add_stream()

	rocsolver_set_stream()

	rocsolver_get_stream()

	Other auxiliaries
	rocsolver_set_vector()

	rocsolver_get_vector()

	rocsolver_set_matrix()

	rocsolver_get_matrix()

Introduction

An implementation of Lapack routines on top of AMD’s Radeon Open Compute Platform (ROCm) runtime and toolchains.
rocSOLVER is implemented in the HIP programming language; it is based on rocBLAS, an optimized BLAS
implementation for AMD’s latest discrete GPUs. More information about rocBLAS can be found
here [https://rocblas.readthedocs.io/en/latest/index.html].

Build and install

rocSOLVER requires cmake [https://cmake.org/install/]
and ROCm [https://rocm.github.io/install.html], including
hip [https://github.com/ROCm-Developer-Tools/HIP/blob/master/INSTALL.md] and
rocBLAS [https://github.com/ROCmSoftwarePlatform/rocBLAS], to be installed.

Once these requirements are satisfied, the following
instructions will build and install rocSOLVER:

 mkdir build && cd build
CXX=/opt/rocm/bin/hcc cmake ..
make
make install

Brief description and functionality

rocSolver Library is in early stages of active development. New features and functionality is being continuosly added. New
functionality is documented at each release of the ROCm platform.

The following table summarizes the LAPACK functionality implemented in rocSOLVER’s last release.

	Lapack Auxiliary Function

	single

	double

	single complex

	double complex

	rocsolver_laswp

	x

	x

	x

	x

	rocsolver_larfg

	x

	x

	
	

	rocsolver_larft

	x

	x

	
	

	rocsolver_larf

	x

	x

	
	

	rocsolver_larfb

	x

	x

	
	

	rocsolver_org2r

	x

	x

	
	

	rocsolver_orgqr

	x

	x

	
	

	rocsolver_orgl2

	x

	x

	
	

	rocsolver_orglq

	x

	x

	
	

	rocsolver_orgbr

	x

	x

	
	

	rocsolver_orm2r

	x

	x

	
	

	rocsolver_ormqr

	x

	x

	
	

	Lapack Function

	single

	double

	single complex

	double complex

	rocsolver_potf2

	x

	x

	
	

	rocsolver_potf2_batched

	x

	x

	
	

	rocsolver_potf2_strided_batched

	x

	x

	
	

	rocsolver_potrf

	x

	x

	
	

	rocsolver_potrf_batched

	x

	x

	
	

	rocsolver_potrf_strided_batched

	x

	x

	
	

	rocsolver_getf2

	x

	x

	x

	x

	rocsolver_getf2_batched

	x

	x

	x

	x

	rocsolver_getf2_strided_batched

	x

	x

	x

	x

	rocsolver_getrf

	x

	x

	x

	x

	rocsolver_getrf_batched

	x

	x

	x

	x

	rocsolver_getrf_strided_batched

	x

	x

	x

	x

	rocsolver_geqr2

	x

	x

	
	

	rocsolver_geqr2_batched

	x

	x

	
	

	rocsolver_geqr2_strided_batched

	x

	x

	
	

	rocsolver_geqrf

	x

	x

	
	

	rocsolver_geqrf_batched

	x

	x

	
	

	rocsolver_geqrf_strided_batched

	x

	x

	
	

	rocsolver_gelq2

	x

	x

	
	

	rocsolver_gelq2_batched

	x

	x

	
	

	rocsolver_gelq2_strided_batched

	x

	x

	
	

	rocsolver_gelqf

	x

	x

	
	

	rocsolver_gelqf_batched

	x

	x

	
	

	rocsolver_gelqf_strided_batched

	x

	x

	
	

	rocsolver_getrs

	x

	x

	x

	x

	rocsolver_getrs_batched

	x

	x

	x

	x

	rocsolver_getrs_strided_batched

	x

	x

	x

	x

Benchmarking and testing

Additionally, rocSOLVER has a basic/preliminary infrastructure for testing and benchmarking similar to that of rocBLAS.

On a normal installation, clients should be located in the directory <rocsolverDIR>/build/clients/staging.

rocsolver-test executes a suite of Google tests [https://github.com/google/googletest] (gtest) that verifies the correct
functioning of the library; the results computed by rocSOLVER, for random input data, are compared with the results computed by
NETLib LAPACK [http://www.netlib.org/lapack/] on the CPU.

Calling the rocSOLVER gtest client with the –help flag

./rocsolver-test --help

returns information on different flags that control the behavior of the gtests.

rocsolver-bench allows to run any rocSOLVER function with random data of the specified dimensions; it compares the computed results, and provides basic
performance information (as for now, execution times).

Similarly,

./rocsolver-bench --help

returns information on how to use the rocSOLVER benchmark client.

 RDMA
OpenMPI
MPICH
GasNet
OpenSHEMM
Chapel
UPC++

HSA Runtime Queue Error Codes

	2

	Invalid Dimension

	4

	Invalid Group Memory

	8

	Invalid (or Null) Code

	32

	Invalid Format

	64

	Group is too large

	128

	Out of VGPR’s

	0x80000000

	Debug Trap

sysfs-class-kfd

What: /sys/class/kfd/

Date: may 2018

KernelVersion: 4.13

Description: It is a Sub-module of kfd, contains details of the file structures

sysfs-class-kfd-topology

What: /sys/class/kfd/topology/system_properties

Date: may 2018

KernelVersion: 4.13

Description: Gives the details of system platform

What: /sys/class/kfd/topology/platform_oem

Date: may 2018

KernelVersion: 4.13

description: This field gives the OEM(original equipment manufacturer) ID. Identifies HSA platform, reflects the OEMID in the CRAT

What: /sys/class/kfd/topology/platform_id

Date: may 2018

KernelVersion: 4.13

description: This field provides the HSA platform ID, reflects OEM TableID in the CRAT

What: /sys/class/kfd/topology/platform_rev

Date: may 2018

KernelVersion: 4.13

description: Provides HSA platform revision, reflects Platform Table Revision ID

sysfs-class-kfd-topology-nodes-N

What: /sys/class/kfd/topology/nodes/N/cpu_cores_count

Date: May 2018

KernelVersion: 4.13

Description: This field gives information about Number of latency (= CPU) cores present on this HSA node. This value is 0 for a node with no such cores, e.g a “discrete HSA GPU”.

What: /sys/class/kfd/topology/nodes/N/simd_count

Date: May 2018

KernelVersion: 4.13

Description: Here the number of smid (Single Instruction Multiple Data architecture) processes count is registered

What: /sys/class/kfd/topology/nodes/N/mem_banks_count

Date: May 2018

KernelVersion: 4.13

Description: This field gives the Number of discoverable memory bank affinity properties on this “H-NUMA” node

What: /sys/class/kfd/topology/nodes/N/caches_count

Date: May 2018

KernelVersion: 4.13

Description: Gives the Number of discoverable cache affinity properties on the “H-NUMA” node.

What: /sys/class/kfd/topology/nodes/N/io_links_count

Date: May 2018

KernelVersion: 4.13

Description: This field gives the number of discoverable IO link affinity properties of this node connecting to other nodes.

What: /sys/class/kfd/topology/nodes/N/cpu_cores_id

Date: May 2018

KernelVersion: 4.13

Description: Gives the CPU core id details corresponding to core count

What: /sys/class/kfd/topology/nodes/N/simd_id_base

Date: May 2018

KernelVersion: 4.13

Description: This field gives simd id value.

What: /sys/class/kfd/topology/nodes/N/max_waves_per_simd

Date: May 2018

KernelVersion: 4.13

Description: This identifies the maximum number of launched waves per SIMD. If NUmSIMDCores is 0, this value is ignored

What: /sys/class/kfd/topology/nodes/N/gds_size_in_kb

Date: May 2018

KernelVersion: 4.13

Description: This field gives the size of Global Data Store in Kilobytes shared across SIMD Wavefronts, typically 32 or 64

What: /sys/class/kfd/topology/nodes/N/wave_front_size

Date: May 2018

KernelVersion: 4.13

Description: wavefront is group of threads (work-item) that execute together for executing kernels and this field gives the size of the wavefront used. Usually 64or 32 or a different value for some HSA based architectures

What: /sys/class/kfd/topology/nodes/N/array_count

Date: May 2018

KernelVersion: 4.13

Description: This field give Number of SIMD Arrays per Engine

What: /sys/class/kfd/topology/nodes/N/simd_arrays_per_engine

Date: May 2018

KernelVersion: 4.13

Description: It gives the simd array count for every compute unite (stream engine)

What: /sys/class/kfd/topology/nodes/N/cu_per_simd_array

Date: May 2018

KernelVersion: 4.13

Description: Gives the Number of Compute Units (CU) per SIMD Array

What: /sys/class/kfd/topology/nodes/N/simd_per_cu

Date: May 2018

KernelVersion: 4.13

Description: Number of SIMD representing a Compute Unit (CU)

What: /sys/class/kfd/topology/nodes/N/max_slots_scratch_cu

Date: May 2018

KernelVersion: 4.13

Description: Bitmask of available CU slots, used for CU mask setup for the queues if assignment is desired by application necessary.

What: /sys/class/kfd/topology/nodes/N/vendor_id

Date: May 2018

KernelVersion: 4.13

Description: This field contains the GPU vendor id; 0 on CPU-only nodes

What: /sys/class/kfd/topology/nodes/N/device_id

Date: May 2018

KernelVersion: 4.13

Description: This field contains the GPU device id; 0 on CPU-only nodes

What: /sys/class/kfd/topology/nodes/N/location_id

Date: May 2018

KernelVersion: 4.13

Description: LocationId, 32bit value, equivalent to BDF_ID used by Linux tools especially (identifies device in the overall

system)
|
| What: /sys/class/kfd/topology/nodes/N/drm_render_minor
| Date: May 2018
| KernelVersion: 4.13
| Description: drm (Direct Rendering Manager) render data count is shown
|
| What: /sys/class/kfd/topology/nodes/N/max_engine_clk_ccompute
| Date: May 2018
| KernelVersion: 4.13
| Description: Maximum engine clock speed of the CPU
|

sysfs-class-kfd-topology-nodes-N-io_links-X

What: /sys/class/kfd/topology/nodes/N/io_links/X/type

Date: May 2018

KernelVersion: 4.13

Description: Type of Memory thats been used.

What: /sys/class/kfd/topology/nodes/N/io_links/X/version_major

Date: May 2018

KernelVersion: 4.13

Description: Major version of the Bus interface

What: /sys/class/kfd/topology/nodes/N/io_links/X/version_minor

Date: May 2018

KernelVersion: 4.13

Description: Minor version of the Bus interface

What: /sys/class/kfd/topology/nodes/N/io_links/X/node_from

Date: May 2018

KernelVersion: 4.13

Description: This is refering to the node where it is pointing to begining node

What: /sys/class/kfd/topology/nodes/N/io_links/X/node_to

Date: May 2018

KernelVersion: 4.13

Description: This refers to the Note it is pointing towards end point

What: /sys/class/kfd/topology/nodes/N/io_links/X/weight

Date: May 2018

KernelVersion: 4.13

Description: Thread count for the link, weight factor (derived from CDIT)

What: /sys/class/kfd/topology/nodes/N/io_links/X/min_latency

Date: May 2018

KernelVersion: 4.13

Description: mininum Cost of time to transfer, described in nanoseconds

What: /sys/class/kfd/topology/nodes/N/io_links/X/max_latency

Date: May 2018

KernelVersion: 4.13

Description: Maximum Cost of time to transfer, described in nanoseconds

What: /sys/class/kfd/topology/nodes/N/io_links/X/min_bandwidth

Date: May 2018

KernelVersion: 4.13

Description: Minimum interface Bandwidth in MB/s

What: /sys/class/kfd/topology/nodes/N/io_links/X/max_bandwidth

Date: May 2018

KernelVersion: 4.13

Description: Maximum interface Bandwidth in MB/s

What: /sys/class/kfd/topology/nodes/N/io_links/X/recommended_transfer_size

Date: May 2018

KernelVersion: 4.13

Description: Recommended transfer size to reach maximum interface bandwidth in Bytes

What: /sys/class/kfd/topology/nodes/N/io_links/X/flags

Date: May 2018

KernelVersion: 4.13

Description: Local use flags count used in CPU

sysfs-class-kfd-topology-nodes-N-membanks-X

What: sysfs/class/kfd/topology/nodes/N/mem_banks/heap_type

Date: May 2018

KernelVersion: 4.13

Description: Gives the information about type of memory used, see HSA_HEAPTYPE definition

What: sysfs/class/kfd/topology/nodes/N/mem_banks/size_in_bytes

Date: May 2018

KernelVersion: 4.13

Description: Size of Memory in bytes used in CPU

What: sysfs/class/kfd/topology/nodes/N/mem_banks/flags

Date: May 2018

KernelVersion: 4.13

Description: Local use flags count used in memory cache

What: sysfs/class/kfd/topology/nodes/N/mem_banks/width

Date: May 2018

KernelVersion: 4.13

Description: Total Width, in bits, of this memory device, including any check or error-correction bits.

What: sysfs/class/kfd/topology/nodes/N/mem_banks/mem_clk_max

Date: May 2018

KernelVersion: 4.13

Description: Indicates Maximum memory running speed in MHz

HCC-Native-GCN-ISA (Deprecated)

Hardware Requirements

See the “Target Platform Supported” section here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#system-requirement].

Note that the instructions on this wiki are for installing on a system with a Fiji GPU. If you are interested in learning how to setup hcc for other supported GPU targets, please file an Issue [https://github.com/RadeonOpenCompute/HCC-Native-GCN-ISA/issues].

Installing compiler packages:

If you want to install the latest stable version of the hcc compiler with native GCN ISA support, you should follow the instructions here. If you want to build from source, follow the directions below.

Building compiler from source:

Software Dependencies

Ubuntu

Follow the instructions found here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#] to setup the apt repository.

Installing on the ROC kernel, the development files of the thunk library and the runtime:

sudo apt-get install rocm-kernel hsakmt-roct-dev hsa-rocr-dev

Reboot the system with the new kernel and make sure the verify the installation with the vector copy sample [https://github.com/RadeonOpenCompute/ROCm#verify-installation].

If you have previously installed any version of the hcc compiler, then it is recommended to uninstall them:

sudo apt-get purge hcc_lc hcc_hsail

Then install all other dependencies in order to build HCC from source:

sudo apt-get install cmake git libelf-dev libc++abi-dev libc++-dev libdwarf-dev re2c libncurses5-dev patch wget file xz-utils libc6- dev-i386 python build-essential

CMake

If you are using Ubuntu 14.04, you would also need to upgrade to a newer version (>=3.0) of CMake as the version distributed by the distro is old for building clang/llvm.

Fedora

Follow the instructions found here [https://github.com/RadeonOpenCompute/ROCm#rpm-repository---dnf-yum] to setup the rpm repository.

Installing on the ROC kernel, the development files of the thunk library and the runtime:

sudo dnf install rocm-kernel hsakmt-roct-dev hsa-rocr-dev

Reboot the system with the new kernel and make sure the verify the installation with the vector copy sample [https://github.com/RadeonOpenCompute/ROCm#verify-installation].

If you have previously installed any version of the hcc compiler, thne it is recommended to uninstall them:

sudo dnf remove hcc_lc hcc_hsail

Then install all other dependencies in order to build HCC from source:

sudo dnf install cmake make git gcc-c++ libstdc++-devel libdwarf-devel elfutils-libelf-devel re2c ncurses-devel patch wget file tar xz glibc-devel.i686 python rpmdevtools

Install other development tools:

sudo dnf groupinstall "Development Tools"

libc++ & libc++abi

HCC has a dependency on libc++ and libc++abi; however, Fedora/RHEL/CentOS don’t provide a working binary package so you will to build them from source by following the instructions here [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#hcc]

CentOS/RHEL

Follow the instructions found here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-fedora] to setup the rpm repository.

Installing on the ROC kernel, the development files of the thunk library and the runtime:

sudo yum install rocm-kernel hsakmt-roct-dev hsa-rocr-dev

Reboot the system with the new kernel and make sure the verify the installation with the vector copy sample [https://github.com/RadeonOpenCompute/ROCm#verify-installation].

Then install

sudo yum install cmake make git gcc-c++ libstdc++-devel libdwarf-devel elfutils-libelf-devel re2c ncurses-devel patch wget file tar xz glibc-devel.i686 python rpmdevtools clang
sudo yum groupinstall "Development Tools"

CMake

The CMake version from CentOS 7 and RedHat 7 is too old and it doesn’t meet the minimum requirement for building LLVM and Clang. You’ll need to upgrade to newer verison of CMake [https://cmake.org/].

libc++ & libc++abi

On Ubuntu 14.04, HCC has a dependency on libc++; however, the current libc++ package from the distro has an unmet dependency on libc++abi. Users will have to build libc++ and libc++abi from source with Clang.

It is recommended to install the release_36 release of libc++ and libc++abi and here are the instructions:

git clone --branch release_36 https://github.com/llvm-mirror/llvm.git llvm
git clone --branch release_36 https://github.com/llvm-mirror/libcxx.git llvm/projects/libcxx
git clone --branch release_36 https://github.com/llvm-mirror/libcxxabi.git llvm/projects/libcxxabi
mkdir -p llvm/build
cd llvm/build
cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ ..
make
cd projects/libcxx
sudo make install
cd ../libcxxabi
sudo make install

Add the libc++ and libc++abi installation path to the library search paths
(i.e. export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib)

Getting the HCC Source Code

Fetching the HCC source code with the repo tool

Installing the repo tool

If you are unable to find a distribution package for repo, you can follow the installation instructions here.

Initialize the Workspace

Create a workspace for holding the code and all the repo metadata. Replace <_branch_> with a branch name selected from above.

mkdir hcc
cd hcc
repo init -u https://github.com/RadeonOpenCompute/HCC-Native-GCN-ISA.git

Fetch the source code

repo sync

Build Instructions

mkdir hcc/build
cd hcc/build

Substitute <_distro_> with ubuntu for Ubuntu or with fedora for Fedora/CentOS/RHEL
cmake .. \
-DDISTRO=<_distro_>

make

optional step to build binary packages for distribution
make package

cd ../..

Verifying the Build

To verify that you have set up your system correctly, run one of the C++ AMP conformance tests. If you have done things correctly, it should pass:

cd hcc/build
perl amp-conformance/test_one.pl ../amp-conformance/ ../amp-conformance/Tests/4_Basic_Data_Elmnts/4_1_index/4_1_2_c/Copy/Test.01/ test.cpp

You could also run the HCC’s sanity test

make test

Install the Compiler

sudo make install

Or alternatively, you could generate a .deb or .rpm package

make package

HCC WIKI (Deprecated)

HCC is an Open Source, Optimizing C++ Compiler for Heterogeneous Compute

HCC supports heterogeneous offload to AMD APUs and discrete GPUs via HSA enabled runtimes and drivers. It is an ISO compliant C++ 11/14 compiler. It is based on Clang, the LLVM Compiler Infrastructure and the “libc++” C++ standard library.

Accelerator Modes Supported

HC (Heterogeneous Compute) C++ API [https://scchan.github.io/hcc]

Inspired by C++ AMP and C++17, this is the default C++ compute API for the HCC compiler. HC has some important differences from C++ AMP including removing the “restrict” keyword, supporting additional data types in kernels, providing more control over synchronization and data movement, and providing pointer-based memory allocation. It is designed to expose cutting edge compute capabilities on Boltzmann and HSA devices to developers while offering the productivity and usability of C++.

HIP [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/hip-programming-guide.html]

HIP provides a set of tools and API for converting CUDA applications into a portable C++ API. An application using the HIP API could be compiled by hcc to target AMD GPUs. Please refer to HIP’s [https://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-programing-guide] repository for more information.

C++ AMP [http://download.microsoft.com/download/2/2/9/22972859-15C2-4D96-97AE-93344241D56C/CppAMPOpenSpecificationV12.pdf]

NOTE The supported for C++AMP is being deprecated. The ROCm 1.9 release is the last release of HCC supporting C++AMP.

Microsoft C++ AMP is a C++ accelerator API with support for GPU offload. This mode is compatible with Version 1.2 of the C++ AMP specification.

C++ Parallel STL [http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf]

HCC provides an initial implementation of the parallel algorithms described in the ISO C++ Extensions for Parallelism, which enables parallel acceleration for certain STL algorithms.

Platform Requirements

Accelerated applications could be run on Radeon discrete GPUs from the Fiji family (e.g R9 Nano, R9 Fury, R9 Fury X, FirePro S9300 x2, Polaris 10, Polaris 11) and from Vega10 family(e.g. Radeon RX Vega64, RX Vega56, RX Vega FE) paired with an AMD CPU with Zen cores or newer (e.g. Ryzen, Threadripper, Epyc) or an Intel Haswell CPU or newer.

HCC currently only works on Linux and with the open source ROCK kernel driver and the ROCR runtime (see Installation for details). It will not work with the closed source AMD graphics driver.

Compiler Backends

This backend compiles GPU kernels into native GCN ISA, which could be directly execute on the GPU hardware. It’s being actively developed by the Radeon Technology Group in LLVM.

Installation

Prerequisites

Before continuing with the installation, please make sure any previously installed hcc compiler has been removed from on your system.

Install ROCm [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide] and make sure it works correctly.

Ubuntu

Ubuntu 16.04 & 18.04

Follow the instruction here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide] to setup the ROCm apt repository and install the rocm-dkms or the rocm-dev meta-package

RHEL 7.4/CentOS 7

Follow the instruction here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide] to setup the ROCm yum rpm repository and install the rocm-dkms meta-package for CentOS/RHEL 7 Support.

Please follow steps to prepare devtoolset-7 environment [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#install-and-setup-devtoolset-7] which is needed for compiling HCC from source. This environment only requires to be installed once, but must enter the environment before compiling using command: scl enable devtoolset-7 bash

Note: CentOS 7 cmake is outdated, will need to use alternate cmake3.

openSUSE Leap 42.3

Currently, HCC support for openSUSE is experimental and the compiler has to be built from source.

Building HCC from Source

First, install the build dependencies:

Ubuntu 16.04 & 18.04
sudo apt-get install coreutils git cmake make g++ g++-multilib gcc-multilib python \

findutils libelf1 libpci3 file debianutils libunwind-dev pkg-config hsa-rocr-dev hsa-ext-rocr-dev hsakmt-roct-dev rocm-utils

Fedora 24

sudo dnf install coreutils git cmake make gcc-c++ python findutils elfutils-libelf pciutils-libs file pth rpm-build libunwind-devel hsa-rocr-dev hsa-ext-rocr-dev hsakmt-roct-dev pkgconfig rocm-utils

CentOS 7
sudo yum install coreutils git cmake3 make gcc-c++ devtoolset-7-gcc-c++ python findutils \

elfutils-libelf pciutils-libs file pth rpm-build redhat-lsb-core pkgconfig hsa-rocr-dev hsa-ext-rocr-dev hsakmt-roct-dev rocm-utils

openSUSE Leap 42.3
sudo zypper install coreutils git cmake make gcc-c++ python python-xml findutils elfutils pciutils-devel file rpm-build libunwind-devel pkg-config libpth-devel

install libc++ from OSB
sudo zypper addrepo \
-f http://download.opensuse.org/repositories/devel:/tools:/compiler/openSUSE_Leap_42.3/ devel_tools_compiler
sudo zypper update
sudo zypper install libc++-devel

Clone the HCC source tree:

automatically fetches all submodules
git clone --recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.git

Create a build directory and run cmake to configure the build:

mkdir build; cd build
cmake ../hcc

Compile HCC:

make -j [number of threads]

Install HCC:

sudo make install

Run the unit tests:

make test

Create an installer package (DEB or RPM file)

make package

How to use HCC

Here’s a simple saxpy example [https://gist.github.com/scchan/540d410456e3e2682dbf018d3c179008] written with the hc API.

Compiling Your First HCC Program

To compile and link in a single step:

Assume HCC is installed and added to PATH
hcc -hc saxpy.cpp -o saxpy

To build with separate compile and link steps:

Assume HCC is installed and added to PATH
Notice the the hcc-config command is between two backticks
hcc -hc saxpy.cpp -c -o saxpy.cpp.o
hcc -hc saxpy.cpp.o -o saxpy

Compiling for Different GPU Architectures

By default, HCC would auto-detect all the GPUs available to run on and set the correct GPU architectures. Users could use the –amdgpu-target=<GCN Version> option to compile for a specific architecture and to disable the auto-detection. The following table shows the different versions currently supported by HCC.

	GCN Version

	GPU/APU Family

	Examples of Radeon GPU

	gfx803 GFX8 R9 Fury, R9 Fury X, R9 Nano, FirePro S9300 x2, Radeon RX 480,
	Radeon RX 470, Radeon RX 460

gfx900 GFX9 Vega10

AOMP Developer README.md (Deprecated)

This feature is deprecated as of AMD ROCm v4.0. Refer to the documentation for OpenMP for more information at:

https://rocmdocs.amd.com/en/latest/Programming_Guides/openmp_support.html

AOMP is a scripted build of LLVM and supporting software. It has support for OpenMP target offload on amdgcn GPUs. This is the AOMP developer README stored at:

https://github.com/ROCm-Developer-Tools/aomp/blob/master/bin/README.md

The AOMP compiler supports OpenMP, clang-hip, clang-cuda, device OpenCL, and the offline kernel compilatino tool called cloc. It contains a recent version of the AMD Lightning compiler (llvm amdgcn backend) and the llvm nvptx backend. Except for clang-cuda, this compiler works for both Nvidia and AMD Radeon GPUs.

This bin directory contains scripts to build AOMP from source.

clone_aomp.sh - A script to make sure the necessary repos are up to date.
 See below for a list of these source repositories.
build_aomp.sh - Run all build and install scripts in the correct order.
build_roct.sh - Builds the hsa thunk library.
build_rocr.sh - Builds the ROCm runtime.
build_project.sh - Builds llvm, lld, and clang components.
build_libdevice.sh - Builds the rocdl device bc libraries from rocm-device-libs.
build_comgr.sh - Builds the code object manager (needs rocm-device-libs).
build_rocminfo.sh - Builds the rocminfo utilities to support hip.
build_hcc.sh - Builds the hcc compiler needed by hip.
build_hip.sh - Builds the hip host runtimes needed by aomp.
build_extras.sh - Builds hostcall, libm, and utils all stored in the aomp-extras repo
build_atmi.sh - Builds early release of ATMI for aomp.
build_openmp.sh - Builds the OpenMP libraries for aomp.
build_pgmath.sh - Builds the pgmath support for flang.
build_flang.sh - Builds the flang for aomp.
build_flang_runtime.sh - Builds the flang runtime for aomp.

These scripts install into $HOME/rocm/aomp (or $AOMP if set).

Repositories

The clone_aomp.sh script clones the necessary repositories and the correct branches into subdirectories of $HOME/git/aomp (or $AOMP_REPOS if set) The repositories needed by AOMP are shown in the following table. The first column is the AOMP component that uses the repositories.

	Component

	SUBDIRECTORY

	REPOSITORY LINKS

	roct

	$HOME/git/aomp/roct-thunk-interfaces

	roct-thunk-interfaces

	rocr

	$HOME/git/aomp/rocr-runtime

	rocr-runtime

	llvm-project

	$HOME/git/aomp/llvm-project

	llvm-project

	extras

	$HOME/git/aomp/aomp-extras

	aomp-extras

	hcc

	$HOME/git/aomp/hcc

	hcc

	comgr

	$HOME/git/aomp/rocm-compilersupport

	comgr

	hip

	$HOME/git/aomp/hip

	hip

	atmi

	$HOME/git/aomp/atmi

	atmi

	openmp

	$HOME/git/aomp/llvm-project/openmp

	llvm-project/openmp

	libdevice

	$HOME/git/aomp/rocm-device-libs

	rocm-device-libs

	flang

	$HOME/git/aomp/flang

	flang

	rocminfo

	$HOME/git/aomp/rocminfo
$HOME/git/aomp/openmpapps

	rocminfo
openmpapps

The scripts and example makefiles use these environment variables and these defaults if they are not set. This is not a complete list. See the script headers for other environment variables that you may override including repo names.

AOMP $HOME/rocm/aomp
CUDA /usr/local/cuda
AOMP_REPOS $HOME/git/aomp
BUILD_TYPE Release

Many other environment variables can be set. See the file aomp_common_vars [https://github.com/ROCm-Developer-Tools/aomp/blob/roc-3.0.0/bin/aomp_common_vars] that is sourced by all build scripts. This file has the names of the branches that make up the release that is in development. You can override the appropriate environment variable if you want to test your source build with a different release.

You can override the above by setting by setting values in your .bashrc or .bash_profile. Here is a sample for your .bash_profile

SUDO="disable"
AOMP=$HOME/install/aomp
BUILD_TYPE=Debug
NVPTXGPUS=30,35,50,60,61,70
export SUDO AOMP NVPTXGPUS BUILD_TYPE

The build scripts will build from the source directories identified by the environment variable AOMP_REPOS.

To set alternative installation path for the component INSTALL_ environment variable can be used, e.g. INSTALL_openmp

To build all components, first clone aomp repo and checkout the master branch to build our development repository.

git clone https://github.com/ROCm-Developer-Tools/aomp.git
git checkout master

To be sure you have the latest sources from the git repositories, run command.

./clone_aomp.sh

The first time you do this, It could take a long time to clone the repositories. Subsequent calls will pull the latest updates so you can run clone_aomp.sh anytime to be sure you are on the latest development sources.

WARNING: The script clone_aomp.sh does not pull updates for the aomp repository. You must pull aomp repository manually. So please run “clone_aomp.sh” and “cd $HOME/git/aomp/aomp; git pull” frequently to stay current with aomp development.

The Nvidia CUDA SDK is NOT required for a package install of AOMP. However, to build AOMP from source, you SHOULD have the Nvidia CUDA SDK version 10 installed because AOMP may be used to build applications for NVIDIA GPUs. The current default build list of Nvidia subarchs is “30,35,50,60,61,70”. For example, the default list will support application builds with –offload-arch=sm_30 and –offload-arch=sm_60 etc. This build list can be changed with the NVPTXGPUS environment variable. Set this before running build_aomp.sh.

export AOMP_BUILD_CUDA=1 //build AOMP with nvptx support

After you have all the source repositories and you have CUDA and all the dependencies installed, run this script to build aomp.

./build_aomp.sh

Through extensive use of RPATH, all dynamic runtime libraries that are built by any component of AOMP and then are referenced by another AOMP component will resolve the absolute location within the AOMP installation. This strategy significantly simplifies the AOMP test matrix. Libraries that may have been installed by a previous ROCm installation including roct and rocr, will not be used by AOMP.

Developers may update a component and then run these scripts in the folowing order:

./build_roct.sh
./build_roct.sh install

./build_rocr.sh
./build_rocr.sh install

./build_project.sh
./build_project.sh install

./build_libdevice.sh
./build_libdevice.sh install

./build_comgr.sh
./build_comgr.sh install

./build_rocminfo.sh
./build_rocminfo.sh install

./build_hcc.sh
./build_hcc.sh install

./build_hip.sh
./build_hip.sh install

./build_extras.sh
./build_extras.sh install

./build_atmi.sh
./build_atmi.sh install

./build_openmp.sh
./build_openmp.sh install

./build_pgmath.sh
./build_pgmath.sh install

./build_flang.sh
./build_flang.sh install

./build_flang_runtime.sh
./build_flang_runtime.sh install

For now, run this command for some minor fixups to the install.

./build_fixups.sh

Once you have a successful development build, individual components can be incrementally rebuilt without rebuilding the entire system or the entire component. For example, if you change a file in the llvm-project repository. Run this command to incrementally build llvm, clang, and lld and update your installation.

./build_project.sh install

The default out-of-source build directory for each component is $HOME/git/aomp/build/.

WARNING: When the build scripts are run with NO arguments (that is, you do not specify “install” or “nocmake”), the build scripts will rebuild the entire component by DELETING THE BUILD DIRECTORY before running cmake and make.

clBLAS

For Github repository clBLAS [https://github.com/clMathLibraries/clBLAS]

This repository houses the code for the OpenCL™ BLAS portion of clMath. The complete set of BLAS level 1, 2 & 3 routines is implemented. Please see Netlib BLAS for the list of supported routines. In addition to GPU devices, the library also supports running on CPU devices to facilitate debugging and multicore programming. APPML 1.12 is the most current generally available pre-packaged binary version of the library available for download for both Linux and Windows platforms.

The primary goal of clBLAS is to make it easier for developers to utilize the inherent performance and power efficiency benefits of heterogeneous computing. clBLAS interfaces do not hide nor wrap OpenCL interfaces, but rather leaves OpenCL state management to the control of the user to allow for maximum performance and flexibility. The clBLAS library does generate and enqueue optimized OpenCL kernels, relieving the user from the task of writing, optimizing and maintaining kernel code themselves.

clBLAS update notes 01/2017

v2.12 is a bugfix release as a rollup of all fixes in /develop branch
Thanks to @pavanky, @iotamudelta, @shahsan10, @psyhtest, @haahh, @hughperkins, @tfauck @abhiShandy, @IvanVergiliev, @zougloub, @mgates3 for contributions to clBLAS v2.12
Summary of fixes available to read on the releases tab

clBLAS library user documentation

Library and API documentation [http://clmathlibraries.github.io/clBLAS/] for developers is available online as a GitHub Pages website

Google Groups

Two mailing lists have been created for the clMath projects:

clmath@googlegroups.com - group whose focus is to answer questions on using the library or reporting issues

clmath-developers@googlegroups.com - group whose focus is for developers interested in contributing to the library code itself

clBLAS Wiki

The project wiki [https://github.com/clMathLibraries/clBLAS/wiki] contains helpful documentation, including a build primer [https://github.com/clMathLibraries/clBLAS/wiki]

Contributing code

Please refer to and read the Contributing document [https://github.com/clMathLibraries/clBLAS/blob/master/CONTRIBUTING.md] for guidelines on how to contribute code to this open source project. The code in the /master branch is considered to be stable, and all pull-requests should be made against the /develop branch.

License

The source for clBLAS is licensed under the Apache License, Version 2.0

Example

The simple example below shows how to use clBLAS to compute an OpenCL accelerated SGEMM

#include <sys/types.h>
#include <stdio.h>

/* Include the clBLAS header. It includes the appropriate OpenCL headers */
#include <clBLAS.h>

/* This example uses predefined matrices and their characteristics for
 * simplicity purpose.
*/

#define M 4
#define N 3
#define K 5

static const cl_float alpha = 10;

static const cl_float A[M*K] = {
11, 12, 13, 14, 15,
21, 22, 23, 24, 25,
31, 32, 33, 34, 35,
41, 42, 43, 44, 45,
};
static const size_t lda = K; /* i.e. lda = K */

static const cl_float B[K*N] = {
11, 12, 13,
21, 22, 23,
31, 32, 33,
41, 42, 43,
51, 52, 53,
};
static const size_t ldb = N; /* i.e. ldb = N */

static const cl_float beta = 20;

static cl_float C[M*N] = {
 11, 12, 13,
 21, 22, 23,
 31, 32, 33,
 41, 42, 43,
};
static const size_t ldc = N; /* i.e. ldc = N */

static cl_float result[M*N];

int main(void)
{
cl_int err;
cl_platform_id platform = 0;
cl_device_id device = 0;
cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
cl_context ctx = 0;
cl_command_queue queue = 0;
cl_mem bufA, bufB, bufC;
cl_event event = NULL;
int ret = 0;

/* Setup OpenCL environment. */
err = clGetPlatformIDs(1, &platform, NULL);
err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

props[1] = (cl_context_properties)platform;
ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
queue = clCreateCommandQueue(ctx, device, 0, &err);

/* Setup clBLAS */
err = clblasSetup();

/* Prepare OpenCL memory objects and place matrices inside them. */
bufA = clCreateBuffer(ctx, CL_MEM_READ_ONLY, M * K * sizeof(*A),
 NULL, &err);
bufB = clCreateBuffer(ctx, CL_MEM_READ_ONLY, K * N * sizeof(*B),
 NULL, &err);
bufC = clCreateBuffer(ctx, CL_MEM_READ_WRITE, M * N * sizeof(*C),
 NULL, &err);

err = clEnqueueWriteBuffer(queue, bufA, CL_TRUE, 0,
 M * K * sizeof(*A), A, 0, NULL, NULL);
err = clEnqueueWriteBuffer(queue, bufB, CL_TRUE, 0,
 K * N * sizeof(*B), B, 0, NULL, NULL);
err = clEnqueueWriteBuffer(queue, bufC, CL_TRUE, 0,
 M * N * sizeof(*C), C, 0, NULL, NULL);

 /* Call clBLAS extended function. Perform gemm for the lower right sub-matrices */
 err = clblasSgemm(clblasRowMajor, clblasNoTrans, clblasNoTrans,
 M, N, K,
 alpha, bufA, 0, lda,
 bufB, 0, ldb, beta,
 bufC, 0, ldc,
 1, &queue, 0, NULL, &event);

/* Wait for calculations to be finished. */
err = clWaitForEvents(1, &event);

/* Fetch results of calculations from GPU memory. */
err = clEnqueueReadBuffer(queue, bufC, CL_TRUE, 0,
 M * N * sizeof(*result),
 result, 0, NULL, NULL);

/* Release OpenCL memory objects. */
clReleaseMemObject(bufC);
clReleaseMemObject(bufB);
clReleaseMemObject(bufA);

/* Finalize work with clBLAS */
clblasTeardown();

/* Release OpenCL working objects. */
clReleaseCommandQueue(queue);
clReleaseContext(ctx);

return ret;
}

Build dependencies

Library for Windows

	Windows® 7/8

	Visual Studio 2010 SP1, 2012

	An OpenCL SDK, such as APP SDK 2.8

	Latest CMake

Library for Linux

	GCC 4.6 and onwards

	An OpenCL SDK, such as APP SDK 2.9

	Latest CMake

Library for Mac OSX

	Recommended to generate Unix makefiles with cmake

Test infrastructure

	Googletest v1.6

	Latest Boost

	CPU BLAS

	Netlib CBLAS (recommended) Ubuntu: install by “apt-get install libblas-dev” Windows: download & install lapack-3.6.0 which comes with CBLAS

	or ACML on windows/linux; Accelerate on Mac OSX

Performance infrastructure

Python

clFFT

For Github Repository clFFT [https://github.com/clMathLibraries/clFFT]

clFFT is a software library containing FFT functions written in OpenCL. In addition to GPU devices, the library also supports running on CPU devices to facilitate debugging and heterogeneous programming.

Pre-built binaries are available here.

What’s New

	Support for powers of 11&13 size transforms

	Support for 1D large size transforms with no extra memory allocation requirement with environment flag CLFFT_REQUEST_LIB_NOMEMALLOC=1 for complex FFTs of powers of 2,3,5,10 sizes

Note

	clFFT requires platform/runtime that supports OpenCL 1.2

Introduction to clFFT

The FFT is an implementation of the Discrete Fourier Transform (DFT) that makes use of symmetries in the FFT definition to reduce the mathematical intensity required from O(N^2) to O(N log2(N)) when the sequence length N is the product of small prime factors. Currently, there is no standard API for FFT routines. Hardware vendors usually provide a set of high-performance FFTs optimized for their systems: no two vendors employ the same interfaces for their FFT routines. clFFT provides a set of FFT routines that are optimized for AMD graphics processors, but also are functional across CPU and other compute devices.

The clFFT library is an open source OpenCL library implementation of discrete Fast Fourier Transforms. The library:

	provides a fast and accurate platform for calculating discrete FFTs.

	works on CPU or GPU backends.

	supports in-place or out-of-place transforms.

	supports 1D, 2D, and 3D transforms with a batch size that can be greater than 1.

	supports planar (real and complex components in separate arrays) and interleaved (real and complex components as a pair contiguous in memory) formats.

	supports dimension lengths that can be any combination of powers of 2, 3, 5, 7, 11 and 13.

	Supports single and double precision floating point formats.

clFFT library user documentation

Library and API documentation [http://clmathlibraries.github.io/clFFT/] for developers is available online as a GitHub Pages website

Google Groups

Two mailing lists exist for the clMath projects:

	clmath@googlegroups.com - group whose focus is to answer questions on using the library or reporting issues

	clmath-developers@googlegroups.com - group whose focus is for developers interested in contributing to the library code

API semantic versioning

Good software is typically the result of the loop of feedback and iteration; software interfaces no less so. clFFT follows the semantic [http://semver.org/] versioning guidelines. The version number used is of the form MAJOR.MINOR.PATCH.

clFFT Wiki

The project wiki [https://github.com/clMathLibraries/clFFT/wiki] contains helpful documentation, including a build primer [https://github.com/clMathLibraries/clFFT/wiki/Build]

Contributing code

Please refer to and read the Contributing [https://github.com/clMathLibraries/clFFT/blob/master/CONTRIBUTING.md] document for guidelines on how to contribute code to this open source project. The code in the /master branch is considered to be stable, and all pull-requests must be made against the /develop branch.

License

The source for clFFT is licensed under the Apache License [http://www.apache.org/licenses/LICENSE-2.0] , Version 2.0

Example

The following simple example shows how to use clFFT to compute a simple 1D forward transform

#include <stdlib.h>

/* No need to explicitely include the OpenCL headers */
#include <clFFT.h>

int main(void)
{
 cl_int err;
 cl_platform_id platform = 0;
 cl_device_id device = 0;
 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
 cl_context ctx = 0;
 cl_command_queue queue = 0;
 cl_mem bufX;
 float *X;
 cl_event event = NULL;
 int ret = 0;
 size_t N = 16;

 /* FFT library realted declarations */
 clfftPlanHandle planHandle;
 clfftDim dim = CLFFT_1D;
 size_t clLengths[1] = {N};

 /* Setup OpenCL environment. */
 err = clGetPlatformIDs(1, &platform, NULL);
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 props[1] = (cl_context_properties)platform;
 ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
 queue = clCreateCommandQueue(ctx, device, 0, &err);

 /* Setup clFFT. */
 clfftSetupData fftSetup;
 err = clfftInitSetupData(&fftSetup);
 err = clfftSetup(&fftSetup);

 /* Allocate host & initialize data. */
 /* Only allocation shown for simplicity. */
 X = (float *)malloc(N * 2 * sizeof(*X));

 /* Prepare OpenCL memory objects and place data inside them. */
 bufX = clCreateBuffer(ctx, CL_MEM_READ_WRITE, N * 2 * sizeof(*X), NULL, &err);

 err = clEnqueueWriteBuffer(queue, bufX, CL_TRUE, 0,
 N * 2 * sizeof(*X), X, 0, NULL, NULL);

 /* Create a default plan for a complex FFT. */
 err = clfftCreateDefaultPlan(&planHandle, ctx, dim, clLengths);

 /* Set plan parameters. */
 err = clfftSetPlanPrecision(planHandle, CLFFT_SINGLE);
 err = clfftSetLayout(planHandle, CLFFT_COMPLEX_INTERLEAVED, CLFFT_COMPLEX_INTERLEAVED);
 err = clfftSetResultLocation(planHandle, CLFFT_INPLACE);

 /* Bake the plan. */
 err = clfftBakePlan(planHandle, 1, &queue, NULL, NULL);

 /* Execute the plan. */
 err = clfftEnqueueTransform(planHandle, CLFFT_FORWARD, 1, &queue, 0, NULL, NULL, &bufX, NULL, NULL);

 /* Wait for calculations to be finished. */
 err = clFinish(queue);

 /* Fetch results of calculations. */
 err = clEnqueueReadBuffer(queue, bufX, CL_TRUE, 0, N * 2 * sizeof(*X), X, 0, NULL, NULL);

 /* Release OpenCL memory objects. */
 clReleaseMemObject(bufX);

 free(X);

 /* Release the plan. */
 err = clfftDestroyPlan(&planHandle);

 /* Release clFFT library. */
 clfftTeardown();

 /* Release OpenCL working objects. */
 clReleaseCommandQueue(queue);
 clReleaseContext(ctx);

 return ret;
 }

Build dependencies

Library for Windows

To develop the clFFT library code on a Windows operating system, ensure to install the following packages on your system:

	Windows® 7/8.1

	Visual Studio 2012 or later

	Latest CMake

	An OpenCL SDK, such as APP SDK 3.0

Library for Linux

To develop the clFFT library code on a Linux operating system, ensure to install the following packages on your system:

	GCC 4.6 and onwards

	Latest CMake

	An OpenCL SDK, such as APP SDK 3.0

Library for Mac OSX

To develop the clFFT library code on a Mac OS X, it is recommended to generate Unix makefiles with cmake.

Test infrastructure

To test the developed clFFT library code, ensure to install the following packages on your system:

	Googletest v1.6

	Latest FFTW

	Latest Boost

Performance infrastructure

To measure the performance of the clFFT library code, ensure that the Python package is installed on your system.

clRNG

For Github repository clRNG [https://github.com/clMathLibraries/clRNG]

A library for uniform random number generation in OpenCL.

Streams of random numbers act as virtual random number generators. They can be created on the host computer in unlimited numbers, and then used either on the host or on computing devices by work items to generate random numbers. Each stream also has equally-spaced substreams, which are occasionally useful. The API is currently implemented for four different RNGs, namely the MRG31k3p, MRG32k3a, LFSR113 and Philox-4×32-10 generators.

Documentation

	HTML Documentation (generated with Doxygen) [http://clmathlibraries.github.io/clRNG/htmldocs/index.html]

	Tutorial Document (please cite this document if you use clRNG) clRNG: A Random Number API with Multiple Streams for OpenCL [http://clmathlibraries.github.io/clRNG/docs/clrng-api.pdf]

What’s New

Libraries related to clRNG, for probability distributions and quasi-Monte Carlo methods, are available:

	clProbDist [https://github.com/umontreal-simul/clProbDist]

	clQMC [https://github.com/umontreal-simul/clQMC]

Releases

The first public version of clRNG is v1.0.0 beta. Please go to releases [https://github.com/clMathLibraries/clRNG/releases] for downloads.

Building

	
	Install the runtime dependency:
	
	An OpenCL SDK, such as APP SDK.

	Install the build dependencies:

	The CMake cross-platform build system. Visual Studio users can use CMake Tools for Visual Studio.

	A recent C compiler, such as GCC 4.9 [https://gcc.gnu.org/] , or Visual Studio 2013.

	Get the clRNG source code.

	Configure the project using CMake [https://cmake.org/] (to generate standard makefiles) or CMake Tools for Visual Studio [https://cmaketools.codeplex.com/] (to generate solution and project files).

	Build the project.

	Install the project (by default, the library will be installed in the package directory under the build directory).

	Point the environment variable CLRNG_ROOT to the installation directory, i.e., the directory under which include/clRNG can be found. This step is optional if the library is installed under /usr, which is the default.

	In order to execute the example programs (under the bin subdirectory of the installation directory) or to link clRNG into other software, the dynamic linker must be informed where to find the clRNG shared library. The name and location of the shared library generally depend on the platform.

	Optionally run the tests.

Example Instructions for Linux

On a 64-bit Linux platform, steps 3 through 9 from above, executed in a Bash-compatible shell, could consist of:

git clone https://github.com/clMathLibraries/clRNG.git
mkdir clRNG.build; cd clRNG.build; cmake ../clRNG/src
make
make install
export CLRNG_ROOT=$PWD/package
export LD_LIBRARY_PATH=$CLRNG_ROOT/lib64:$LD_LIBRARY_PATH
$CLRNG_ROOT/bin/CTest

Examples

Examples can be found in src/client. The compiled client program examples can be found under the bin subdirectory of the installation package ($CLRNG_ROOT/bin under Linux). Note that the examples expect an OpenCL GPU device to be available.

Simple example

The simple example below shows how to use clRNG to generate random numbers by directly using device side headers (.clh) in your OpenCL kernel.

#include <stdlib.h>
#include <string.h>

#include "clRNG/clRNG.h"
#include "clRNG/mrg31k3p.h"

int main(void)
{
 cl_int err;
 cl_platform_id platform = 0;
 cl_device_id device = 0;
 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM, 0, 0 };
 cl_context ctx = 0;
 cl_command_queue queue = 0;
 cl_program program = 0;
 cl_kernel kernel = 0;
 cl_event event = 0;
 cl_mem bufIn, bufOut;
 float *out;
 char *clrng_root;
 char include_str[1024];
 char build_log[4096];
 size_t i = 0;
 size_t numWorkItems = 64;
 clrngMrg31k3pStream *streams = 0;
 size_t streamBufferSize = 0;
 size_t kernelLines = 0;

 /* Sample kernel that calls clRNG device-side interfaces to generate random numbers */
 const char *kernelSrc[] = {
 " #define CLRNG_SINGLE_PRECISION \n",
 " #include <clRNG/mrg31k3p.clh> \n",
 " \n",
 " __kernel void example(__global clrngMrg31k3pHostStream *streams, \n",
 " __global float *out) \n",
 " { \n",
 " int gid = get_global_id(0); \n",
 " \n",
 " clrngMrg31k3pStream workItemStream; \n",
 " clrngMrg31k3pCopyOverStreamsFromGlobal(1, &workItemStream, \n",
 " &streams[gid]); \n",
 " \n",
 " out[gid] = clrngMrg31k3pRandomU01(&workItemStream); \n",
 " } \n",
 " \n",
 };

 /* Setup OpenCL environment. */
 err = clGetPlatformIDs(1, &platform, NULL);
 err = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

 props[1] = (cl_context_properties)platform;
 ctx = clCreateContext(props, 1, &device, NULL, NULL, &err);
 queue = clCreateCommandQueue(ctx, device, 0, &err);

 /* Make sure CLRNG_ROOT is specified to get library path */
 clrng_root = getenv("CLRNG_ROOT");
 if(clrng_root == NULL) printf("\nSpecify environment variable CLRNG_ROOT as described\n");
 strcpy(include_str, "-I ");
 strcat(include_str, clrng_root);
 strcat(include_str, "/include");

 /* Create sample kernel */
 kernelLines = sizeof(kernelSrc) / sizeof(kernelSrc[0]);
 program = clCreateProgramWithSource(ctx, kernelLines, kernelSrc, NULL, &err);
 err = clBuildProgram(program, 1, &device, include_str, NULL, NULL);
 if(err != CL_SUCCESS)
 {
 printf("\nclBuildProgram has failed\n");
 clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 4096, build_log, NULL);
 printf("%s", build_log);
 }
 kernel = clCreateKernel(program, "example", &err);

 /* Create streams */
 streams = clrngMrg31k3pCreateStreams(NULL, numWorkItems, &streamBufferSize, (clrngStatus *)&err);

 /* Create buffers for the kernel */
 bufIn = clCreateBuffer(ctx, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, streamBufferSize, streams, &err);
 bufOut = clCreateBuffer(ctx, CL_MEM_WRITE_ONLY | CL_MEM_HOST_READ_ONLY, numWorkItems * sizeof(cl_float), NULL, &err);

 /* Setup the kernel */
 err = clSetKernelArg(kernel, 0, sizeof(bufIn), &bufIn);
 err = clSetKernelArg(kernel, 1, sizeof(bufOut), &bufOut);

 /* Execute the kernel and read back results */
 err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &numWorkItems, NULL, 0, NULL, &event);
 err = clWaitForEvents(1, &event);
 out = (float *)malloc(numWorkItems * sizeof(out[0]));
 err = clEnqueueReadBuffer(queue, bufOut, CL_TRUE, 0, numWorkItems * sizeof(out[0]), out, 0, NULL, NULL);

 /* Release allocated resources */
 clReleaseEvent(event);
 free(out);
 clReleaseMemObject(bufIn);
 clReleaseMemObject(bufOut);

 clReleaseKernel(kernel);
 clReleaseProgram(program);

 clReleaseCommandQueue(queue);
 clReleaseContext(ctx);

 return 0;
}

Building the documentation manually

The documentation can be generated by running make from within the doc directory. This requires Doxygen to be installed.

clSPARSE

For Github repository clSPARSE [https://github.com/clMathLibraries/clSPARSE]

an OpenCL™ library implementing Sparse linear algebra routines. This project is a result of a collaboration between AMD Inc. [http://www.amd.com/en] and Vratis Ltd. [http://www.vratis.com/].

What’s new in clSPARSE v0.10.1

	
	bug fix release
	
	Fixes for travis builds

	Fix to the matrix market reader in the cuSPARSE benchmark to synchronize with the regular MM reader

	Replace cl.hpp with cl2.hpp (thanks to arrayfire)

	
	Fixes for the Nvidia platform; tested 352.79
	
	Fixed buffer overruns in CSR-Adaptive kernels

	Fix invalid memory access on Nvidia GPUs in CSR-Adaptive SpMV kernel

clSPARSE features

	Sparse Matrix - dense Vector multiply (SpM-dV)

	Sparse Matrix - dense Matrix multiply (SpM-dM)

	Sparse Matrix - Sparse Matrix multiply Sparse Matrix Multiply(SpGEMM) - Single Precision

	Iterative conjugate gradient solver (CG)

	Iterative biconjugate gradient stabilized solver (BiCGStab)

	Dense to CSR conversions (& converse)

	COO to CSR conversions (& converse)

	Functions to read matrix market files in COO or CSR format

True in spirit with the other clMath libraries, clSPARSE exports a “C” interface to allow projects to build wrappers around clSPARSE in any language they need. A great deal of thought and effort went into designing the API’s to make them less ‘cluttered’ compared to the older clMath libraries. OpenCL state is not explicitly passed through the API, which enables the library to be forward compatible when users are ready to switch from OpenCL 1.2 to OpenCL 2.0 3

Google Groups

Two mailing lists have been created for the clMath projects:

clmath@googlegroups.com - group whose focus is to answer questions on using the library or reporting issues

clmath-developers@googlegroups.com - group whose focus is for developers interested in contributing to the library code itself

API semantic versioning

Good software is typically the result of iteration and feedback. clSPARSE follows the semantic [http://semver.org/] versioning guidelines, and while the major version number remains ‘0’, the public API should not be considered stable. We release clSPARSE as beta software (0.y.z) early to the community to elicit feedback and comment. This comes with the expectation that with feedback, we may incorporate breaking changes to the API that might require early users to recompile, or rewrite portions of their code as we iterate on the design.

clSPARSE Wiki

The project wiki [https://github.com/clMathLibraries/clSPARSE/wiki] contains helpful documentation.
A build primer [https://github.com/clMathLibraries/clSPARSE/wiki/Build] is available, which describes how to use cmake to generate platforms specific build files

Samples

clSPARSE contains a directory of simple OpenCL samples [https://github.com/clMathLibraries/clSPARSE/tree/master/samples] that demonstrate the use of the API in both C and C++. The superbuild [https://blog.kitware.com/wp-content/uploads/2016/01/kitware_quarterly1009.pdf] script for clSPARSE also builds the samples as an external project, to demonstrate how an application would find and link to clSPARSE with cmake.

clSPARSE library documentation

API documentation is available at http://clmathlibraries.github.io/clSPARSE/. The samples give an excellent starting point to basic library operations.

Contributing code

Please refer to and read the Contributing [https://github.com/clMathLibraries/clSPARSE/blob/master/CONTRIBUTING.md] document for guidelines on how to contribute code to this open source project. Code in the /master branch is considered to be stable and new library releases are made when commits are merged into /master. Active development and pull-requests should be made to the develop branch.

License

clSPARSE is licensed under the Apache License [http://www.apache.org/licenses/LICENSE-2.0], Version 2.0

Compiling for Windows

	Windows® 7/8

	Visual Studio 2013 and above

	CMake 2.8.12 (download from Kitware [http://www.cmake.org/download/])

	Solution (.sln) or

	Nmake makefiles

	An OpenCL SDK, such as APP SDK 3.0

Compiling for Linux

	GCC 4.8 and above

	CMake 2.8.12 (install with distro package manager)

	
	Unix makefiles or
	
	KDevelop or

	QT Creator

	An OpenCL SDK, such as APP SDK 3.0

Compiling for Mac OSX

	CMake 2.8.12 (install via brew)

	Unix makefiles or

	XCode

	An OpenCL SDK (installed via xcode-select –install)

Bench & Test infrastructure dependencies

	Googletest v1.7

	Boost v1.58

	Footnotes

[1]: Changed to reflect CppCoreGuidelines: F.21 [http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#a-namerf-out-multia-f21-to-return-multiple-out-values-prefer-returning-a-tuple-or-struct]

[2]: Changed to reflect CppCoreGuidelines: NL.8 [http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#a-namerl-namea-nl8-use-a-consistent-naming-style]

[3]: OpenCL 2.0 support is not yet fully implemented; only the interfaces have been designed

hcFFT

	HOME

	Examples

	Installation

	Introduction

	KeyFeature

	Prerequisites

	Tested Environments

HOME

welcome to the hcFFT wiki!

Examples

FFT 1D R2C example:

file: hcfft_1D_R2C.cpp

#!c++

#include <iostream>
#include <cstdlib>
#include "hcfft.h"
#include "hc_am.hpp"
#include "hcfftlib.h"

int main(int argc, char* argv[]) {
 int N = argc > 1 ? atoi(argv[1]) : 1024;
 // HCFFT work flow
 hcfftHandle plan;
 hcfftResult status = hcfftPlan1d(&plan, N, HCFFT_R2C);
 assert(status == HCFFT_SUCCESS);
 int Rsize = N;
 int Csize = (N / 2) + 1;
 hcfftReal* input = (hcfftReal*)calloc(Rsize, sizeof(hcfftReal));
 int seed = 123456789;
 srand(seed);

 // Populate the input
 for(int i = 0; i < Rsize ; i++) {
 input[i] = rand();
 }

 hcfftComplex* output = (hcfftComplex*)calloc(Csize, sizeof(hcfftComplex));

 std::vector<hc::accelerator> accs = hc::accelerator::get_all();
 assert(accs.size() && "Number of Accelerators == 0!");
 hc::accelerator_view accl_view = accs[1].get_default_view();

 hcfftReal* idata = hc::am_alloc(Rsize * sizeof(hcfftReal), accs[1], 0);
 accl_view.copy(input, idata, sizeof(hcfftReal) * Rsize);
 hcfftComplex* odata = hc::am_alloc(Csize * sizeof(hcfftComplex), accs[1], 0);
 accl_view.copy(output, odata, sizeof(hcfftComplex) * Csize);
 status = hcfftExecR2C(plan, idata, odata);
 assert(status == HCFFT_SUCCESS);
 accl_view.copy(odata, output, sizeof(hcfftComplex) * Csize);
 status = hcfftDestroy(plan);
 assert(status == HCFFT_SUCCESS);
 free(input);
 free(output);
 hc::am_free(idata);
 hc::am_free(odata);
}

	Compiling the example code:

Assuming the library and compiler installation is followed as in installation.

/opt/rocm/hcc/bin/clang++ /opt/rocm/hcc/bin/hcc-config –cxxflags –ldflags -lhc_am -lhcfft -I../lib/include -L../build/lib/src hcfft_1D_R2C.cpp

Installation

The following are the steps to use the library

	ROCM 1.5 Kernel, Driver and Compiler Installation (if not done until now)

	Library installation.

ROCM 1.5 Installation

To Know more about ROCM refer
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md

a. Installing Debian ROCM repositories

Before proceeding, make sure to completely uninstall any pre-release ROCm packages.

Refer https://github.com/RadeonOpenCompute/ROCm#removing-pre-release-packages for instructions to remove pre-release ROCM packages.

Steps to install rocm package are,

wget -qO - https://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -

sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'

sudo apt-get update

sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

sudo vi /etc/default/grub

sudo update-grub

and Reboot the system

b. Verifying the Installation

Once Reboot, to verify that the ROCm stack completed successfully you can execute HSA vector_copy sample application:

	cd /opt/rocm/hsa/sample

	make

	./vector_copy

Library Installation

a. Install using Prebuilt debian

wget https://github.com/ROCmSoftwarePlatform/hcFFT/blob/master/pre-builds/hcfft-master-87a37f5-Linux.deb
sudo dpkg -i hcfft-master-87a37f5-Linux.deb

b. Build debian from source

git clone https://github.com/ROCmSoftwarePlatform/hcFFT.git && cd hcFFT

chmod +x build.sh && ./build.sh

build.sh execution builds the library and generates a debian under build directory.

c. Install CPU based FFTW3 library

sudo apt-get install fftw3 fftw3-dev pkg-config

Introduction

This repository hosts the HCC based FFT Library, that targets GPU acceleration of FFT routines on AMD devices. To know what HCC compiler features, refer here [https://github.com/RadeonOpenCompute/hcc].

The following are the sub-routines that are implemented

	R2C : Transforms Real valued input in Time domain to Complex valued output in Frequency domain.

	C2R : Transforms Complex valued input in Frequency domain to Real valued output in Real domain.

	C2C : Transforms Complex valued input in Frequency domain to Complex valued output in Real domain or vice versa

KeyFeature

	Support 1D, 2D and 3D Fast Fourier Transforms

	Supports R2C, C2R, C2C, D2Z, Z2D and Z2Z Transforms

	Support Out-Of-Place data storage

	Ability to Choose desired target accelerator

	Single and Double precision

Prerequisites

This section lists the known set of hardware and software requirements to build this library

Hardware

	CPU: mainstream brand, Better if with >=4 Cores Intel Haswell based CPU

	System Memory >= 4GB (Better if >10GB for NN application over multiple GPUs)

	Hard Drive > 200GB (Better if SSD or NVMe driver for NN application over multiple GPUs)

	Minimum GPU Memory (Global) > 2GB

GPU cards supported

	dGPU: AMD R9 Fury X, R9 Fury, R9 Nano

	APU: AMD Kaveri or Carrizo

AMD Driver and Runtime

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

System software

	Ubuntu 14.04 trusty and later

	GCC 4.6 and later

	CPP 4.6 and later (come with GCC package)

	python 2.7 and later

	python-pip

	BeautifulSoup4 (installed using python-pip)

	HCC 0.9 from here

Tools and Misc

	git 1.9 and later

	cmake 2.6 and later (2.6 and 2.8 are tested)

	firewall off

	root privilege or user account in sudo group

Ubuntu Packages

	libc6-dev-i386

	liblapack-dev

	graphicsmagick

	libblas-dev

Tested Environments

This sections enumerates the list of tested combinations of Hardware and system softwares.

Driver versions

	
	Boltzmann Early Release Driver + dGPU
	
	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

	Traditional HSA driver + APU (Kaveri)

GPU Cards

	Radeon R9 Nano

	Radeon R9 FuryX

	Radeon R9 Fury

	Kaveri and Carizo APU

Server System

	Supermicro SYS 2028GR-THT 6 R9 NANO

	Supermicro SYS-1028GQ-TRT 4 R9 NANO

	Supermicro SYS-7048GR-TR Tower 4 R9 NANO

hcRNG

Home

Welcome to the hcRNG wiki!

Examples

Random number generator Mrg31k3p example:

file: Randomarray.cpp

#!c++

//This example is a simple random array generation and it compares host output with device output
//Random number generator Mrg31k3p
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <assert.h>
#include <hcRNG/mrg31k3p.h>
#include <hcRNG/hcRNG.h>
#include <hc.hpp>
#include <hc_am.hpp>
using namespace hc;

int main()
{
 hcrngStatus status = HCRNG_SUCCESS;
 bool ispassed = 1;
 size_t streamBufferSize;
 // Number oi streams
 size_t streamCount = 10;
 //Number of random numbers to be generated
 //numberCount must be a multiple of streamCount
 size_t numberCount = 100;
 //Enumerate the list of accelerators
 std::vector<hc::accelerator>acc = hc::accelerator::get_all();
 accelerator_view accl_view = (acc[1].create_view());
 //Allocate memory for host pointers
 float *Random1 = (float*) malloc(sizeof(float) * numberCount);
 float *Random2 = (float*) malloc(sizeof(float) * numberCount);
 float *outBufferDevice = hc::am_alloc(sizeof(float) * numberCount, acc[1], 0);

 //Create streams
 hcrngMrg31k3pStream *streams = hcrngMrg31k3pCreateStreams(NULL, streamCount, &streamBufferSize, NULL);
 hcrngMrg31k3pStream *streams_buffer = hc::am_alloc(sizeof(hcrngMrg31k3pStream) * streamCount, acc[1], 0);
 accl_view.copy(streams, streams_buffer, streamCount* sizeof(hcrngMrg31k3pStream));

 //Invoke random number generators in device (here strean_length and streams_per_thread arguments are default)
 status = hcrngMrg31k3pDeviceRandomU01Array_single(accl_view, streamCount, streams_buffer, numberCount, outBufferDevice);

 if(status) std::cout << "TEST FAILED" << std::endl;
 accl_view.copy(outBufferDevice, Random1, numberCount * sizeof(float));

 //Invoke random number generators in host
 for (size_t i = 0; i < numberCount; i++)
 Random2[i] = hcrngMrg31k3pRandomU01(&streams[i % streamCount]);
 // Compare host and device outputs
 for(int i =0; i < numberCount; i++) {
 if (Random1[i] != Random2[i]) {
 ispassed = 0;
 std::cout <<" RANDDEVICE[" << i<< "] " << Random1[i] << "and RANDHOST[" << i <<"] mismatches"<< Random2[i] << std::endl;
 break;
 }
 else
 continue;
 }
 if(!ispassed) std::cout << "TEST FAILED" << std::endl;

 //Free host resources
 free(Random1);
 free(Random2);
 //Release device resources
 hc::am_free(outBufferDevice);
 hc::am_free(streams_buffer);
 return 0;
}

	Compiling the example code:

/opt/hcc/bin/clang++ /opt/hcc/bin/hcc-config –cxxflags –ldflags -lhc_am -lhcrng Randomarray.cpp

Installation

Installation steps

The following are the steps to use the library

	ROCM 2.4 Kernel, Driver and Compiler Installation (if not done until now)

	Library installation.

ROCM 2.4 Installation

To Know more about ROCM refer https://rocm-documentation.readthedocs.io/en/latest/Current_Release_Notes/Current-Release-Notes.html

a. Installing Debian ROCM repositories

Before proceeding, make sure to completely uninstall any pre-release ROCm packages.

Refer Here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#removing-pre-release-packages] for instructions to remove pre-release ROCM packages

Follow Steps to install rocm package

wget -qO - https://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'
sudo apt-get update
sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

sudo vi /etc/default/grub
sudo update-grub

and Reboot the system

b. Verifying the Installation

Once Reboot, to verify that the ROCm stack completed successfully you can execute HSA vector_copy sample application:

cd /opt/rocm/hsa/sample
make
./vector_copy

Library Installation

a. Install using Prebuilt debian

wget https://github.com/ROCmSoftwarePlatform/hcRNG/blob/master/pre-builds/hcrng-master-184472e-Linux.deb
sudo dpkg -i hcrng-master-184472e-Linux.deb

b. Build debian from source

git clone https://github.com/ROCmSoftwarePlatform/hcRNG.git && cd hcRNG
chmod +x build.sh && ./build.sh

build.sh execution builds the library and generates a debian under build directory.

Introduction

The hcRNG library is an implementation of uniform random number generators targeting the AMD heterogeneous hardware via HCC compiler runtime. The computational resources of underlying AMD heterogenous compute gets exposed and exploited through the HCC C++ frontend. Refer here [https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#hcc] for more details on HCC compiler.

The following list enumerates the current set of RNG generators that are supported so far.

	MRG31k3p

	MRG32k3a

	LFSR113

	Philox-4x32-10

Key Features

	Support for 4 commonly used uniform random number generators.

	Single and Double precision.

	Multiple streams, created on the host and generates random numbers either on the host or on computing devices.

Prerequisites

This section lists the known set of hardware and software requirements to build this library

Hardware

	CPU: mainstream brand, Better if with >=4 Cores Intel Haswell based CPU

	System Memory >= 4GB (Better if >10GB for NN application over multiple GPUs)

	Hard Drive > 200GB (Better if SSD or NVMe driver for NN application over multiple GPUs)

	Minimum GPU Memory (Global) > 2GB

GPU cards supported

	dGPU: AMD R9 Fury X, R9 Fury, R9 Nano

	APU: AMD Kaveri or Carrizo

AMD Driver and Runtime

	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

System software

	Ubuntu 14.04 trusty and later

	GCC 4.6 and later

	CPP 4.6 and later (come with GCC package)

	python 2.7 and later

	python-pip

	BeautifulSoup4 (installed using python-pip)

	HCC 0.9 from here

Tools and Misc

	git 1.9 and later

	cmake 2.6 and later (2.6 and 2.8 are tested)

	firewall off

	root privilege or user account in sudo group

Ubuntu Packages

	libc6-dev-i386

	liblapack-dev

	graphicsmagick

	libblas-dev

Tested Environments

Driver versions

	
	Boltzmann Early Release Driver + dGPU
	
	Radeon Open Compute Kernel (ROCK) driver : https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver

	HSA runtime API and runtime for Boltzmann: https://github.com/RadeonOpenCompute/ROCR-Runtime

	Traditional HSA driver + APU (Kaveri)

GPU Cards

	Radeon R9 Nano

	Radeon R9 FuryX

	Radeon R9 Fury

	Kaveri and Carizo APU

Server System

	Supermicro SYS 2028GR-THT 6 R9 NANO

	Supermicro SYS-1028GQ-TRT 4 R9 NANO

	Supermicro SYS-7048GR-TR Tower 4 R9 NANO

Unit testing

a) Automated testing:

Follow these steps to start automated testing:

cd ~/hcRNG/
./build.sh --test=on

b) Manual testing:

(i) Google testing (GTEST) with Functionality check

cd ~/hcRNG/build/test/unit/bin/

All functions are tested against google test.

hipBLAS

Please Refer here for Github link hipBLAS [https://github.com/ROCmSoftwarePlatform/hipBLAS]

hipBLAS is a BLAS marshalling library, with multiple supported backends. It sits between the application and a ‘worker’ BLAS library, marshalling inputs into the backend library and marshalling results back to the application. hipBLAS exports an interface that does not require the client to change, regardless of the chosen backend. Currently, hipBLAS supports rocBLAS and cuBLAS [https://developer.nvidia.com/cublas] as backends.

Installing pre-built packages

Download pre-built packages either from ROCm’s package servers or by clicking the github releases tab and manually downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install hipblas

Quickstart hipBLAS build

Bash helper build script (Ubuntu only)

The root of this repository has a helper bash script install.sh to build and install hipBLAS on Ubuntu with a single command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands in the script need sudo access, so it may prompt you for a password.

./install -h -- shows help
./install -id -- build library, build dependencies and install (-d flag only needs to be passed once on a system)

Manual build (all supported platforms)

If you use a distro other than Ubuntu, or would like more control over the build process, the hipblas build wiki has helpful information on how to configure cmake and manually build.

Functions supported

A list of exported functions from hipblas can be found on the wiki

hipBLAS interface examples

The hipBLAS interface is compatible with rocBLAS and cuBLAS-v2 APIs. Porting a CUDA application which originally calls the cuBLAS API to an application calling hipBLAS API should be relatively straightforward. For example, the hipBLAS SGEMV interface is

GEMV API

hipblasStatus_t
hipblasSgemv(hipblasHandle_t handle,
 hipblasOperation_t trans,
 int m, int n, const float *alpha,
 const float *A, int lda,
 const float *x, int incx, const float *beta,
 float *y, int incy);

Batched and strided GEMM API

hipBLAS GEMM can process matrices in batches with regular strides. There are several permutations of these API’s, the following is an example that takes everything

hipblasStatus_t
hipblasSgemmStridedBatched(hipblasHandle_t handle,
 hipblasOperation_t transa, hipblasOperation_t transb,
 int m, int n, int k, const float *alpha,
 const float *A, int lda, long long bsa,
 const float *B, int ldb, long long bsb, const float *beta,
 float *C, int ldc, long long bsc,
 int batchCount);

hipBLAS assumes matrices A and vectors x, y are allocated in GPU memory space filled with data. Users are responsible for copying data from/to the host and device memory.

hipeigen

Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms.

For more information go to http://eigen.tuxfamily.org/.

Installation instructions for ROCm

The ROCm Platform brings a rich foundation to advanced computing by seamlessly integrating the CPU and GPU with the goal of solving real-world problems.

To insatll rocm, please follow:

Installing from AMD ROCm repositories

AMD is hosting both debian and rpm repositories for the ROCm 2.4 packages. The packages in both repositories have been signed to ensure package integrity. Directions for each repository are given below:

	Debian repository - apt-get

	Add the ROCm apt repository

Complete installation steps of ROCm can be found Here [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html]

or

For Debian based systems, like Ubuntu, configure the Debian ROCm repository as follows:

wget -qO - https://packages.amd.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
sudo sh -c 'echo deb [arch=amd64] http://packages.amd.com/rocm/apt/debian/ xenial main > /etc/apt/sources.list.d/rocm.list'

The gpg key might change, so it may need to be updated when installing a new release.

Install or Update

Next, update the apt-get repository list and install/update the rocm package:

Warning

Before proceeding, make sure to completely uninstall any pre-release ROCm packages

	::
	sudo apt-get update
sudo apt-get install rocm

Then, make the ROCm kernel your default kernel. If using grub2 as your bootloader, you can edit the GRUB_DEFAULT variable in the following file:

	::
	sudo vi /etc/default/grub
sudo update-grub

Once complete, reboot your system.

We recommend you verify your installation to make sure everything completed successfully.

Installation instructions for Eigen

Explanation before starting

Eigen consists only of header files, hence there is nothing to compile before you can use it. Moreover, these header files do not depend on your platform, they are the same for everybody.

Method 1. Installing without using CMake

You can use right away the headers in the Eigen/ subdirectory. In order to install, just copy this Eigen/ subdirectory to your favorite location. If you also want the unsupported features, copy the unsupported/ subdirectory too.

Method 2. Installing using CMake

Let’s call this directory ‘source_dir’ (where this INSTALL file is). Before starting, create another directory which we will call ‘build_dir’.

Do:

cd build_dir
cmake source_dir
make install

The make install step may require administrator privileges.

You can adjust the installation destination (the “prefix”) by passing the -DCMAKE_INSTALL_PREFIX=myprefix option to cmake, as is explained in the message that cmake prints at the end.

Build and Run hipeigen direct tests

To build the direct tests for hipeigen:

cd build_dir
make check -j $(nproc)

Note: All direct tests should pass with ROCm2.4

build from source

Installing pre-built packages

HIP can be easily installed using pre-built binary packages using the package manager for your platform.

Prerequisites

HIP code can be developed either on AMD ROCm platform using hcc compiler, or a CUDA platform with nvcc installed:

AMD-hcc

	Install the rocm [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu] packages. ROCm will install all of the necessary components, including the kernel driver, runtime software, HCC compiler, and HIP.

	Default paths and environment variables:

	By default HIP looks for hcc in /opt/rocm/hcc (can be overridden by setting HCC_HOME environment variable)

	By default HIP looks for HSA in /opt/rocm/hsa (can be overridden by setting HSA_PATH environment variable)

	By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).

	Optionally, consider adding /opt/rocm/bin to your PATH to make it easier to use the tools.

NVIDIA-nvcc

	Configure the additional package server as described here [https://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/].

	Install the “hip_nvcc” package. This will install CUDA SDK and the HIP porting layer.

 apt-get install hip_nvcc

* Default paths and environment variables:
 * By default HIP looks for CUDA SDK in /usr/local/cuda (can be overriden by setting CUDA_PATH env variable)
 * By default HIP is installed into /opt/rocm/hip (can be overridden by setting HIP_PATH environment variable).
 * Optionally, consider adding /opt/rocm/bin to your path to make it easier to use the tools.

Verify your installation

Run hipconfig (instructions below assume default installation path) :

/opt/rocm/bin/hipconfig --full
Compile and run the square sample.

Building HIP from source

HIP source code is available and the project can be built from source on the HCC platform.

	Follow the above steps to install and validate the binary packages.

	Download HIP source code (from the GitHub repot.)

	Install HIP build-time dependencies using sudo apt-get install libelf-dev.

	Build and install HIP (This is the simple version assuming default paths ; see below for additional options.)

cd HIP
mkdir build
cd build
cmake ..
make
make install

	
	Default paths:
	
	By default cmake looks for hcc in /opt/rocm/hcc (can be overridden by setting -DHCC_HOME=/path/to/hcc in the cmake step).*

	By default cmake looks for HSA in /opt/rocm/hsa (can be overridden by setting -DHSA_PATH=/path/to/hsa in the cmake step).*

	By default cmake installs HIP to /opt/rocm/hip (can be overridden by setting -DCMAKE_INSTALL_PREFIX=/where/to/install/hip in the cmake step).*

Here’s a richer command-line that overrides the default paths:

cd HIP
mkdir build
cd build
cmake -DHSA_PATH=/path/to/hsa -DHCC_HOME=/path/to/hcc -DCMAKE_INSTALL_PREFIX=/where/to/install/hip -DCMAKE_BUILD_TYPE=Release ..
make
make install

After installation, make sure HIP_PATH is pointed to /where/to/install/hip.
HCC Options

Using HIP with the AMD Native-GCN compiler.

AMD recently released a direct-to-GCN-ISA target. This compiler generates GCN ISA directly from LLVM, without going through an intermediate compiler IR such as HSAIL or PTX. The native GCN target is included with upstream LLVM, and has also been integrated with HCC compiler and can be used to compiler HIP programs for AMD. Binary packages for the direct-to-isa package are included with the rocm package. Alternatively, this sections describes how to build it from source:

	Install the ROCm packages as described above.

	
	Follow the instructions here HCC-Native-GCN-ISA (Deprecated)
	
	In the make step for HCC, we recommend setting -DCMAKE_INSTALL_PREFIX.

	Set HCC_HOME environment variable before compiling HIP program to point to the native compiler:

export HCC_HOME=/path/to/native/hcc

rocFFT

rocFFT is a software library for computing Fast Fourier Transforms (FFT) written in HIP. It is part of AMD’s software ecosystem based on ROCm. In addition to AMD GPU devices, the library can also be compiled with the CUDA compiler using HIP tools for running on Nvidia GPU devices.

API design

Please refer to the rocFFT API design for current documentation. Work in progress.

Installing pre-built packages

Download pre-built packages either from ROCm’s package servers [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html] or by clicking the github releases tab and manually downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install rocfft

Quickstart rocFFT build

Bash helper build script (Ubuntu only)
The root of this repository has a helper bash script install.sh to build and install rocFFT on Ubuntu with a single command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands in the script need sudo access, so it may prompt you for a password.
* ./install -h – shows help
* ./install -id – build library, build dependencies and install globally (-d flag only needs to be specified once on a system)
* ./install -c --cuda – build library and clients for cuda backend into a local directory
Manual build (all supported platforms)
If you use a distro other than Ubuntu, or would like more control over the build process, the rocfft build wiki [https://github.com/ROCmSoftwarePlatform/rocFFT/wiki/Build] has helpful information on how to configure cmake and manually build.

Library and API Documentation
Please refer to the Library documentation for current documentation.

Example

The following is a simple example code that shows how to use rocFFT to compute a 1D single precision 16-point complex forward transform.

#include <iostream>
#include <vector>
#include "hip/hip_runtime_api.h"
#include "hip/hip_vector_types.h"
#include "rocfft.h"

int main()
{
 // rocFFT gpu compute
 // ==

 size_t N = 16;
 size_t Nbytes = N * sizeof(float2);

 // Create HIP device buffer
 float2 *x;
 hipMalloc(&x, Nbytes);

 // Initialize data
 std::vector<float2> cx(N);
 for (size_t i = 0; i < N; i++)
 {
 cx[i].x = 1;
 cx[i].y = -1;
 }

 // Copy data to device
 hipMemcpy(x, cx.data(), Nbytes, hipMemcpyHostToDevice);

 // Create rocFFT plan
 rocfft_plan plan = NULL;
 size_t length = N;
 rocfft_plan_create(&plan, rocfft_placement_inplace, rocfft_transform_type_complex_forward, rocfft_precision_single, 1, &length, 1, NULL);

 // Execute plan
 rocfft_execute(plan, (void**) &x, NULL, NULL);

 // Wait for execution to finish
 hipDeviceSynchronize();

 // Destroy plan
 rocfft_plan_destroy(plan);

 // Copy result back to host
 std::vector<float2> y(N);
 hipMemcpy(y.data(), x, Nbytes, hipMemcpyDeviceToHost);

 // Print results
 for (size_t i = 0; i < N; i++)
 {
 std::cout << y[i].x << ", " << y[i].y << std::endl;
 }

 // Free device buffer
 hipFree(x);

 return 0;
 }

rocFFT API design

Summary

In this document, I attempt to explain the rationale behind the design of rocFFT API. In designing the rocFFT API, I studied other popular FFT libraries to understand and compare their interfaces and usage. These include FFTW, Intel MKL FFT, Nvidia cuFFT, and our own clFFT. At the beginning, my desire was to create an interface closely resembling FFTW given its wide adoption. But after writing some preliminary interface code, I dropped that idea for a number of reasons. I should note though, that the overall usage structure (with 2 distinct stages: an initial plan definition stage, and a subsequent execution stage) still remain the same in rocFFT, similar to clFFT and rooted in FFTW. With the current design of rocFFT, my approach has been to take clFFT’s API and substantially improve it based on user experience and feedback. At the same time, I am making the usage as simple as possible and intuitive for the common cases. Some of the main reasons for my approach are:

	FFTW duplicates every function for each FP precision, this is cumbersome

	it is designed for CPU, doesn’t take into account GPU programming constraints

	three levels of planning interfaces (basic, advanced, guru) may be good to target a wide variety of users; not necessary given our goals

	it is always possible to provide an exact drop-in replacement FFTW API as an additional/separate interface in rocFFT in the future

	similarity with clFFT API helps with continuity for current OpenCL users looking to switch to ROC

	C API is only the first step; we will define a C++ interface layer on top

	clFFT’s custom data layout specification falls at a level between the advanced and guru interface of FFTW; and is plenty powerful; no user has ever asked for guru level functionality

Plan definition

There is a single step (as opposed to 2 steps in clFFT) to create a plan object in rocFFT.

rocfft_status rocfft_plan_create(rocfft_plan *plan,
 rocfft_result_placement placement,
 rocfft_transform_type transform_type, rocfft_precision precision,
 size_t dimensions, const size_t *lengths, size_t number_of_transforms,
 const rocfft_plan_description description);

Here, ‘plan’ parameter is a pointer to an internal object created by library that holds plan information. The ‘placement’ parameter specific whether results are written back to the input buffer (in-place) or not (not in-place). The parameters ‘transform_type’ and ‘precision’ specify the fundamental type and precision of the transform. ‘dimensions’ specify the number of dimensions in the data. Valid values are 1, 2 and 3. The ‘lengths’ array specifies size in each dimension. Unless custom strides are specified, the data is assumed to be packed. It is important to note that lengths[0] specifies the size of the dimension where consecutive elements are contiguous in memory. The lengths[1], if applicable, is the next higher dimension and so on. The ‘number_of_transforms’ parameter specifies how many transforms (of the same kind) needs to be computed. By specifying a value greater than 1, an array of transforms can be computed. The ‘description’ parameter can be set to NULL if no further specification is necessary. Or a description object, set up using other api functions, can be passed in to specify more plan properties.

To specify data layout in detail, the following function can be used to set up the description object to be passed subsequently to ‘rocfft_plan_create’. This function can be used to specify input and output array types. Not all combinations of array types are supported and error code will be returned for unsupported cases. Additionally, input and output buffer offsets can be specified using this function. The function can be used to specify custom layout of data, with the ability to specify stride between consecutive elements in all dimensions. Also, distance between transform array members can be specified. The library will choose appropriate defaults if offsets/strides are set to NULL and/or distances set to 0.

rocfft_status rocfft_plan_description_set_data_layout(rocfft_plan_description description,
 rocfft_array_type in_array_type, rocfft_array_type out_array_type,
 const size_t *in_offsets, const size_t *out_offsets,
 size_t in_strides_size, const size_t *in_strides, size_t in_distance,
 size_t out_strides_size, const size_t *out_strides, size_t out_distance);

The following function can be used to change the default device or add a set of devices for which the plan has to be created.

rocfft_status rocfft_plan_description_set_devices(rocfft_plan_description description,
 void *devices,
 size_t number_of_devices);

To destruct a plan after it is no longer needed, the following function can be used.

rocfft_status rocfft_plan_destroy(rocfft_plan plan);

The following functions can be used to create and destroy description objects.

rocfft_status rocfft_plan_description_create(rocfft_plan_description *description);
rocfft_status rocfft_plan_description_destroy(rocfft_plan_description description);

Execution of plan

After a plan is created, the library can be instructed to execute that plan on input/output data using the function shown below. If the transform is in-place, only the input buffer is needed and the output buffer parameter can be set to NULL. For not in-place transforms, output buffers have to be specified. The final parameter in this function is an execution_info object. This parameter serves as both a way for the user to control execution related things, as well as for the library to pass any information back to the user.

rocfft_status rocfft_execute(const rocfft_plan plan,
 rocfft_buffer *in_buffer,
 rocfft_buffer *out_buffer,
 rocfft_execution_info info);

The following functions can be used to create and destroy execution_info objects.

rocfft_status rocfft_execution_info_create(rocfft_execution_info *info);
rocfft_status rocfft_execution_info_destroy(rocfft_execution_info info);

As an example of the usage of execution_info object, consider the following functions.

rocfft_status rocfft_execution_info_set_mode(rocfft_execution_info info, rocfft_execution_mode mode);
rocfft_status rocfft_execution_info_set_work_buffer(rocfft_execution_info info, rocfft_buffer work_buffer);
rocfft_status rocfft_execution_info_set_stream(rocfft_execution_info info, void *stream);

rocfft_status rocfft_execution_info_get_events(const rocfft_execution_info info,
 void **events,
 size_t number_of_events);

In the function ‘rocfft_execution_info_set_mode’ shown above, the execution_info object is used to control the execution mode. Appropriate enumeration value can be specified to control blocking/non-blocking behavior. It serves as an input to the library and has to be called before a call to the rocfft_execute function. This is applicable to all of the set functions shown above. The function ‘rocfft_execution_info_set_work_buffer’ can be used to pass buffers created by the user to the library if for any reason user does not prefer library allocating/freeing device memory from inside ‘rocfft_execute’ function. The function ‘rocfft_execution_info_set_stream’ can be used to set the underlying device queue/stream where the library computations would be inserted. The library assumes user has created such a stream in the program and merely assigns work to the stream. The function ‘rocfft_execution_info_get_events’ can be used to get handles to events the library created around one or more kernel launches inside the library. Needless to say, this function and other get functions are called after a call to ‘rocfft_execute’.

Enumeration types and values

Documentation is TBD.

// Status & error message
typedef enum rocfft_status_e
{
 rocfft_status_success,
 rocfft_status_failure,
} rocfft_status;

// Type of transform
typedef enum rocfft_transform_type_e
{
 rocfft_transform_type_complex_forward,
 rocfft_transform_type_complex_inverse,
 rocfft_transform_type_real_forward,
 rocfft_transform_type_real_inverse,
} rocfft_transform_type;

// Precision
typedef enum rocfft_precision_e
{
 rocfft_precision_single,
 rocfft_precision_double,
} rocfft_precision;

// Element type
typedef enum rocfft_element_type_e
{
 rocfft_element_type_complex_single,
 rocfft_element_type_complex_double,
 rocfft_element_type_single,
 rocfft_element_type_double,
 rocfft_element_type_byte,
} rocfft_element_type;

// Result placement
typedef enum rocfft_result_placement_e
{
 rocfft_placement_inplace,
 rocfft_placement_notinplace,
} rocfft_result_placement;

// Array type
typedef enum rocfft_array_type_e
{
 rocfft_array_type_complex_interleaved,
 rocfft_array_type_complex_planar,
 rocfft_array_type_real,
 rocfft_array_type_hermitian_interleaved,
 rocfft_array_type_hermitian_planar,
} rocfft_array_type;

// Execution mode
typedef enum rocfft_execution_mode_e
{
 rocfft_exec_mode_nonblocking,
 rocfft_exec_mode_nonblocking_with_flush,
 rocfft_exec_mode_blocking,
} rocfft_execution_mode;

Usage of the API

To give an idea of how the library API is intended to be used, the following sequence of function calls and pseudo-code is provided.

// initialize input
...

// setup description if needed
rocfft_plan_description description = NULL;
status = rocfft_plan_description_create(&description);
status = rocfft_plan_description_set_data_layout(&description, ...);

// create plan
status = rocfft_plan_create(&plan, ..., &description);

// create execution_info as needed
status = rocfft_execution_info_create(&execution_info);
status = rocfft_execution_info_set_mode(execution_info, rocfft_exec_mode_blocking);

// execute the plan
status = rocfft_execute(plan, &buffer_a, &buffer_b, execution_info);

// analyze results
...

// destruct library objects
status = rocfft_plan_description_destroy(description);
status = rocfft_execution_info_destroy(execution_info);

// destruct plan
status = rocfft_plan_destroy(plan);

rocBLAS

	rocBLAS Github link [https://github.com/ROCmSoftwarePlatform/rocBLAS]

A BLAS implementation on top of AMD’s Radeon Open Compute ROCm [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html] runtime and toolchains. rocBLAS is implemented in the HIP [http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-programing-guide] programming language and optimized for AMD’s latest discrete GPUs.

Installing pre-built packages

Download pre-built packages either from ROCm’s package servers [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu] or by clicking the github releases tab and manually downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install rocblas

Quickstart rocBLAS build

Bash helper build script (Ubuntu only)

The root of this repository has a helper bash script install.sh to build and install rocBLAS on Ubuntu with a single command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands in the script need sudo access, so it may prompt you for a password.

./install -h -- shows help
./install -id -- build library, build dependencies and install (-d flag only needs to be passed once on a system)

Manual build (all supported platforms)

If you use a distro other than Ubuntu, or would like more control over the build process, the rocblaswiki has helpful information on how to configure cmake and manually build.

Functions supported

A list of exported functions from rocblas can be found on the wiki

rocBLAS interface examples

In general, the rocBLAS interface is compatible with CPU oriented Netlib BLAS [http://www.netlib.org/blas/] and the cuBLAS-v2 API, with the explicit exception that traditional BLAS interfaces do not accept handles. The cuBLAS’ cublasHandle_t is replaced with rocblas_handle everywhere. Thus, porting a CUDA application which originally calls the cuBLAS API to a HIP application calling rocBLAS API should be relatively straightforward. For example, the rocBLAS SGEMV interface is

GEMV API

rocblas_status
rocblas_sgemv(rocblas_handle handle,
 rocblas_operation trans,
 rocblas_int m, rocblas_int n,
 const float* alpha,
 const float* A, rocblas_int lda,
 const float* x, rocblas_int incx,
 const float* beta,
 float* y, rocblas_int incy);

Batched and strided GEMM API

rocBLAS GEMM can process matrices in batches with regular strides. There are several permutations of these API’s, the following is an example that takes everything

rocblas_status
rocblas_sgemm_strided_batched(
 rocblas_handle handle,
 rocblas_operation transa, rocblas_operation transb,
 rocblas_int m, rocblas_int n, rocblas_int k,
 const float* alpha,
 const float* A, rocblas_int ls_a, rocblas_int ld_a, rocblas_int bs_a,
 const float* B, rocblas_int ls_b, rocblas_int ld_b, rocblas_int bs_b,
 const float* beta,
 float* C, rocblas_int ls_c, rocblas_int ld_c, rocblas_int bs_c,
 rocblas_int batch_count)

rocBLAS assumes matrices A and vectors x, y are allocated in GPU memory space filled with data. Users are responsible for copying data from/to the host and device memory. HIP provides memcpy style API’s to facilitate data management.

Asynchronous API

Except a few routines (like TRSM) having memory allocation inside preventing asynchronicity, most of the library routines (like BLAS-1 SCAL, BLAS-2 GEMV, BLAS-3 GEMM) are configured to operate in asynchronous fashion with respect to CPU, meaning these library functions return immediately.

ROCm-GPUDebugSDK

The ROCm-GPUDebugSDK repository provides the components required to build a GPU kernel debugger for Radeon Open Compute platforms (ROCm). The ROCm GPU Debug SDK components are used by ROCm-GDB and CodeXL debugger to support debugging GPU kernels on ROCm.

Package Contents

The ROCm GPU Debug SDK includes the source code and libraries briefly listed below

	
	Source code
	
	HSA Debug Agent: The HSA Debug Agent is a library injected into an HSA application by the ROCR-Runtime. The source code for the Agent is provided in src/HSADebugAgent.

	Debug Facilities: The Debug Facilities is a utility library to perform symbol processing for ROCm code object. The header file FacilitiesInterface.h is in the include folder while the source code is provided in src/HwDbgFacilities.

	Matrix multiplication example: A sample HSA application that runs a matrix multiplication kernel.

	
	Header files and libraries
	
	libAMDGPUDebugHSA-x64: This library provides the low level hardware control required to enable debugging a kernel executing on ROCm. The functionality of this library is exposed by the header file AMDGPUDebug.h in include/. The HSA Debug Agent library uses this interface

	libelf: A libelf library compatible with the ROCm and its corresponding header files. The HSA Debug Agent library uses this libelf.

Build Steps

1.Install ROCm using the instruction here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu]

2.Clone the Debug SDK repository

	::
	git clone https://github.com/RadeonOpenCompute/ROCm-GPUDebugSDK.git

	Build the AMD HSA Debug Agent Library and the Matrix multiplication examples by calling make in the src/HSADebugAgent and the samples/MatrixMultiplication directories respectively

	::
	cd src/HSADebugAgent
make

	Note that matrixMul_kernel.hsail is included for reference only. This sample will load the pre-built hsa binary (matrixMul_kernel.brig) to run the kernel.

cd samples/MatrixMultiplication

make

	Build the Debug Facilities library by calling make in the src/HwDbgFacilities directory

cd src/HwDbgFacilities
make

	Build the ROCm-GDB debugger as shown in the GDB repository.

Tensile wiki

	HOME

	Benchmark Config

	Benchmark Protocol

	Contributing

	Dependencies

	Installation

	Kernel Parameters

	Languages

	Library Logic

	Problem Nomenclature

	Tensile.lib

	Versioning

HOME

A tool for creating a benchmark-driven backend library for GEMMs, GEMM-like problems (such as batched GEMM), N-dimensional tensor contractions, and anything else that multiplies two multi-dimensional objects together on a GPU.

Overview for creating a custom TensileLib backend library for your application:

	Install Tensile (optional), or at least install the PyYAML dependency (mandatory).

	Create a benchmark config.yaml file.

	Run the benchmark to produce a library logic.yaml file.

	
	Add the Tensile library to your application’s CMake target. The Tensile library will be written, compiled and linked to your application at application-compile-time.
	
	GPU kernels, written in HIP or OpenCL.

	Solution classes which enqueue the kernels.

	APIs which call the fastest solution for a problem.

Quick Example:

sudo apt-get install python-yaml
mkdir Tensile
cd Tensile
git clone https://github.com/RadeonOpenCompute/Tensile.git repo
mkdir build
cd build
python ../repo/Tensile/Tensile.py ../repo/Tensile/Configs/sgemm_5760.yaml ./

After a while of benchmarking, Tensile will print out the path to the client you can run.

./4_LibraryClient/build/client -h
./4_LibraryClient/build/client --sizes 5760 5760 5760

Benchmark Config

Example Benchmark config.yaml

GlobalParameters:
 PrintLevel: 1
 ForceRedoBenchmarkProblems: False
 ForceRedoLibraryLogic: True
 ForceRedoLibraryClient: True
 CMakeBuildType: Release
 EnqueuesPerSync: 1
 SyncsPerBenchmark: 1
 LibraryPrintDebug: False
 NumElementsToValidate: 128
 ValidationMaxToPrint: 16
 ValidationPrintValids: False
 ShortNames: False
 MergeFiles: True
 PlatformIdx: 0
 DeviceIdx: 0
 DataInitTypeAB: 0

BenchmarkProblems:
 - # sgemm NN
 - # ProblemType
 OperationType: GEMM
 DataType: s
 TransposeA: False
 TransposeB: False
 UseBeta: True
 Batched: False

 - # BenchmarkProblemSizeGroup
 InitialSolutionParameters:
 BenchmarkCommonParameters:
 - ProblemSizes:
 - Range: [[5760], 0, 0]
 - LoopDoWhile: [False]
 - NumLoadsCoalescedA: [-1]
 - NumLoadsCoalescedB: [1]
 - WorkGroupMapping: [1]
 ForkParameters:
 - ThreadTile:
 - [8, 8]
 - [4, 8]
 - [4, 4]
 - WorkGroup:
 - [8, 16, 1]
 - [16, 16, 1]
 - LoopTail: [False, True]
 - EdgeType: ["None", "Branch", "ShiftPtr"]
 - DepthU: [8, 16]
 - VectorWidth: [1, 2, 4]
 BenchmarkForkParameters:
 JoinParameters:
 - MacroTile
 BenchmarkJoinParameters:
 BenchmarkFinalParameters:
 - ProblemSizes:
 - Range: [[5760], 0, 0]

LibraryLogic:

LibraryClient:

Structure of config.yaml

Top level data structure whose keys are Parameters, BenchmarkProblems, LibraryLogic and LibraryClient.

	Parameters contains a dictionary storing global parameters used for all parts of the benchmarking.

	BenchmarkProblems contains a list of dictionaries representing the benchmarks to conduct; each element, i.e. dictionary, in the list is for benchmarking a single ProblemType. The keys for these dictionaries are ProblemType, InitialSolutionParameters, BenchmarkCommonParameters, ForkParameters, BenchmarkForkParameters, JoinParameters, BenchmarkJoinParameters and BenchmarkFinalParameters. See Benchmark Protocol for more information on these steps.

	LibraryLogic contains a dictionary storing parameters for analyzing the benchmark data and designing how the backend library will select which Solution for certain ProblemSizes.

	LibraryClient contains a dictionary storing parameters for actually creating the library and creating a client which calls into the library.

Global Parameters

	Name: Prefix to add to API function names; typically name of device.

	MinimumRequiredVersion: Which version of Tensile is required to interpret this yaml file

	RuntimeLanguage: Use HIP or OpenCL runtime.

	KernelLanguage: For OpenCL runtime, kernel language must be set to OpenCL. For HIP runtime, kernel language can be set to HIP or assembly (gfx803, gfx900).

	PrintLevel: 0=Tensile prints nothing, 1=prints some, 2=prints a lot.

	ForceRedoBenchmarkProblems: False means don’t redo a benchmark phase if results for it already exist.

	ForceRedoLibraryLogic: False means don’t re-generate library logic if it already exist.

	ForceRedoLibraryClient: False means don’t re-generate library client if it already exist.

	CMakeBuildType: Release or Debug

	EnqueuesPerSync: Num enqueues before syncing the queue.

	SyncsPerBenchmark: Num queue syncs for each problem size.

	LibraryPrintDebug: True means Tensile solutions will print kernel enqueue info to stdout

	NumElementsToValidate: Number of elements to validate; 0 means no validation.

	ValidationMaxToPrint: How many invalid results to print.

	ValidationPrintValids: True means print validation comparisons that are valid, not just invalids.

	ShortNames: Convert long kernel, solution and files names to short serial ids.

	MergeFiles: False means write each solution and kernel to its own file.

	PlatformIdx: OpenCL platform id.

	DeviceIdx: OpenCL or HIP device id.

	DataInitType[AB,C]: Initialize validation data with 0=0’s, 1=1’s, 2=serial, 3=random.

	KernelTime: Use kernel time reported from runtime rather than api times from cpu clocks to compare kernel performance.

The exhaustive list of global parameters and their defaults is stored in Common.py.

Problem Type Parameters

	OperationType: GEMM or TensorContraction.

	DataType: s, d, c, z, h

	UseBeta: False means library/solutions/kernel won’t accept a beta parameter; thus beta=0.

	UseInitialStrides: False means data is contiguous in memory.

	HighPrecisionAccumulate: For tmpC += a*b, use twice the precision for tmpC as for DataType. Not yet implemented.

	ComplexConjugateA: True or False; ignored for real precision.

	ComplexConjugateB: True or False; ignored for real precision.

For OperationType=GEMM only:
* TransposeA: True or False.
* TransposeB: True or False.
* Batched: True or False.

For OperationType=TensorContraction only (showing batched gemm NT: C[ijk] = Sum[l] A[ilk] * B[jlk])
* IndexAssignmentsA: [0, 3, 2]
* IndexAssignmentsB: [1, 3, 2]
* NumDimensionsC: 3.

Defaults

Because of the flexibility / complexity of the benchmarking process and, therefore, of the config.yaml files; Tensile has a default value for every parameter. If you neglect to put LoopUnroll anywhere in your benchmark, rather than crashing or complaining, Tensile will put the default LoopUnroll options into the default phase (common, fork, join…). This guarantees ease of use and more importantly backward compatibility; every time we add a new possible solution parameter, you don’t necessarily need to update your configs; we’ll have a default figured out for you.

However, this may cause some confusion. If your config fork 2 parameters, but you see that 3 were forked during benchmarking, that’s because you didn’t specify the 3rd parameter anywhere, so Tensile stuck it in its default phase, which was forking (for example). Also, specifying ForkParameters: and leaving it empty isn’t the same as leaving JoinParameter out of your config. If you leave ForkParameters out of your config, Tensile will add a ForkParameters step and put the default parameters into it (unless you put all the parameters elsewhere), but if you specify ForkParameters and leave it empty, then you won’t work anything.

Therefore, it is safest to specify all parameters in your config.yaml files; that way you’ll guarantee the behavior you want. See /Tensile/Common.py for the current list of parameters.

Benchmark Protocol

Old Benchmark Architecture was Intractable

The benchmarking strategy from version 1 was vanilla flavored brute force: (8 WorkGroups)* (12 ThreadTiles)* (4 NumLoadsCoalescedAs)* (4 NumLoadsCoalescedBs)* (3 LoopUnrolls)* (5 BranchTypes)* ...*(1024 ProblemSizes)=23,592,960 is a multiplicative series which grows very quickly. Adding one more boolean parameter doubles the number of kernel enqueues of the benchmark.

Incremental Benchmark is Faster

Tensile version 2 allows the user to manually interrupt the multiplicative series with “additions” instead of “multiplies”, i.e., (8 WorkGroups)* (12 ThreadTiles)+ (4 NumLoadsCoalescedAs)* (4 NumLoadsCoalescedBs)* (3 LoopUnrolls)+ (5 BranchTypes)* ...+(1024 ProblemSizes)=1,151 is a dramatically smaller number of enqueues. Now, adding one more boolean parameter may only add on 2 more enqueues.

Phases of Benchmark

To make the Tensile’s programability more manageable for the user and developer, the benchmarking protocol has been split up into several steps encoded in a config.yaml file. The below sections reference the following config.yaml. Note that this config.yaml has been created to be a simple illustration and doesn’t not represent an actual good benchmark protocol. See the configs included in the repository (/Tensile/Configs) for examples of good benchmarking configs.

BenchmarkProblems:
 - # sgemm
 - # Problem Type
 OperationType: GEMM
 - # Benchmark Size-Group
 InitialSolutionParameters:
 - WorkGroup: [[16, 16, 1]]
 - NumLoadsCoalescedA: [1]
 - NumLoadsCoalescedB: [1]
 - ThreadTile: [[4, 4]]

 BenchmarkCommonParameters:
 - ProblemSizes:
 - Range: [[512], [512], [512]]
 - EdgeType: ["Branch", "ShiftPtr"]
 PrefetchGlobalRead: [False, True]

 ForkParameters:
 - WorkGroup: [[8, 32, 1], [16, 16, 1], [32, 8, 1]]
 ThreadTile: [[2, 8], [4, 4], [8, 2]]

 BenchmarkForkParameters:
 - ProblemSizes:
 - Exact: [2880, 2880, 2880]
 - NumLoadsCoalescedA: [1, 2, 4, 8]
 - NumLoadsCoalescedB: [1, 2, 4, 8]

 JoinParameters:
 - MacroTile

 BenchmarkJoinParameters:
 - LoopUnroll: [8, 16]

 BenchmarkFinalParameters:
 - ProblemSizes:
 - Range: [[16, 128], [16, 128], [256]]

Initial Solution Parameters

A Solution is comprised of ~20 parameters, and all are needed to create a kernel. Therefore, during the first benchmark which determines which WorkGroupShape is fastest, what are the other 19 solution parameters which are used to describe the kernels that we benchmark? That’s what InitialSolutionParameters are for. The solution used for benchmarking WorkGroupShape will use the parameters from InitialSolutionParameters. The user must choose good default solution parameters in order to correctly identify subsequent optimal parameters.

Problem Sizes

Each step of the benchmark can override what problem sizes will be benchmarked. A ProblemSizes entry of type Range is a list whose length is the number of indices in the ProblemType. A GEMM ProblemSizes must have 3 elements while a batched-GEMM ProblemSizes must have 4 elements. So, for a ProblemType of C[ij] = Sum[k] A[ik]*B[jk], the ProblemSizes elements represent [SizeI, SizeJ, SizeK]. For each index, there are 5 ways of specifying the sizes of that index:

	1.[1968]
	
	Benchmark only size 1968; n = 1.

	2.[16, 1920]
	
	Benchmark sizes 16 to 1968 using the default step size (=16); n = 123.

	3.[16, 32, 1968]
	
	Benchmark sizes 16 to 1968 using a step size of 32; n = 61.

	4.[64, 32, 16, 1968]
	
	Benchmark sizes from 64 to 1968 with a step size of 32. Also, increase the step size by 16 each iteration.

	This causes fewer sizes to be benchmarked when the sizes are large, and more benchmarks where the sizes are small; this is typically desired behavior.

	n = 16 (64, 96, 144, 208, 288, 384, 496, 624, 768, 928, 1104, 1296, 1504, 1728, 1968). The stride at the beginning is 32, but the stride at the end is 256.

	5.[0]
	
	The size of this index is just whatever size index 0 is. For a 3-dimensional ProblemType, this allows benchmarking only a 2- dimensional or 1-dimensional slice of problem sizes.

Here are a few examples of valid ProblemSizes for 3D GEMMs:

Range: [[16, 128], [16, 128], [16, 128]] # n = 512
Range: [[16, 128], 0, 0] # n = 8
Range: [[16, 16, 16, 5760], 0, [1024, 1024, 4096]] # n = 108

Benchmark Common Parameters

During this first phase of benchmarking, we examine parameters which will be the same for all solutions for this ProblemType. During each step of benchmarking, there is only 1 winner. In the above example we are benchmarking the dictionary {EdgeType: [Branch, ShiftPtr], PrefetchGlobalRead: [False, True]}.; therefore, this benchmark step generates 4 solution candidates, and the winner will be the fastest EdgeType/PrefetchGlobalRead combination. Assuming the winner is ET=SP and PGR=T, then all solutions for this ProblemType will have ET=SP and PGR=T. Also, once a parameter has been determined, all subsequent benchmarking steps will use this determined parameter rather than pulling values from InitialSolutionParameters. Because the common parameters will apply to all kernels, they are typically the parameters which are compiler-dependent or hardware-dependent rather than being tile-dependent.

Fork Parameters

If we continued to determine every parameter in the above manner, we’d end up with a single fastest solution for the specified ProblemSizes; we usually desire multiple different solutions with varying parameters which may be fastest for different groups of ProblemSizes. One simple example of this is small tiles sizes are fastest for small problem sizes, and large tiles are fastest for large tile sizes.

Therefore, we allow “forking” parameters; this means keeping multiple winners after each benchmark steps. In the above example we fork {WorkGroup: […], ThreadTile: […]}. This means that in subsequent benchmarking steps, rather than having one winning parameter, we’ll have one winning parameter per fork permutation; we’ll have 9 winners.

Benchmark Fork Parameters

When we benchmark the fork parameters, we retain one winner per permutation. Therefore, we first determine the fastest NumLoadsCoalescedA for each of the WG,TT permutations, then we determine the fastest NumLoadsCoalescedB for each permutation.

Join Parameters

After determining fastest parameters for all the forked solution permutations, we have the option of reducing the number of winning solutions. When a parameter is listed in the JoinParameters section, that means that of the kept winning solutions, each will have a different value for that parameter. Listing more parameters to join results in more winners being kept, while having a JoinParameters section with no parameters listed results on only 1 fastest solution.

In our example we join over the MacroTile (work-group x thread-tile). After forking tiles, there were 9 solutions that we kept. After joining MacroTile, we’ll only keep six: 16x256, 32x128, 64x64, 128x32 and 256x16. The solutions that are kept are based on their performance during the last BenchmarkForkParameters benchmark, or, if there weren’t any, JoinParameters will conduct a benchmark of all solution candidates then choose the fastest.

Benchmark Join Parameters

After narrowing the list of fastest solutions through joining, you can continue to benchmark parameters, keeping one winning parameter per solution permutation.

Benchmark Final Parameters

After all the parameter benchmarking has been completed and the final list of fastest solution has been assembled, we can benchmark all the solution over a large set of ProblemSizes. This benchmark represent the final output of benchmarking; it outputs a .csv file where the rows are all the problem sizes and the columns are all the solutions. This is the information which gets analysed to produce the library logic.

Contributing

We’d love your help, but…

	Never check in a tab (t); use 2 spaces.

	Follow the coding style of the file you’re editing.

	Make pull requests against develop branch.

	Rebase your develop branch against ROCmSoftwarePlatform::Tensile::develop branch right before pull-requesting.

	In your pull request, state what you tested (which OS, what drivers, what devices, which config.yaml’s) so we can ensure that your changes haven’t broken anything.

Dependencies

CMake

	CMake 2.8

Python

	Python 2.7

	PyYAML (Can be installed via apt, apt-get, yum, pip…; module is typically named python-yaml, pyyaml or PyYAML.)

Compilers

	
	For Tensile_BACKEND = OpenCL1.2
	
	Visual Studio 14 (2015). (VS 2012 may also be supported; c++11 should no longer be required by Tensile. Need to verify.)

	GCC 4.8

	
	For Tensile_BACKEND = HIP
	
	ROCM 2.4

Installation

Tensile can be installed via:

	Install directly from repo using pip:

pip install git+https://github.com/RadeonOpenCompute/Tensile.git@develop
tensile config.yaml benchmark_path

	Download repo and install manually:

git clone https://github.com/RadeonOpenCompute/Tensile.git
cd Tensile
sudo python setup.py install
tensile config.yaml benchmark_path

	Download repo and don’t install; install PyYAML dependency manually and call python scripts manually:

git clone https://github.com/RadeonOpenCompute/Tensile.git
python Tensile/Tensile/Tensile.py config.yaml benchmark_path

Kernel Parameters

Solution / Kernel Parameters

	LoopDoWhile: True=DoWhile loop, False=While or For loop

	LoopTail: Additional loop with LoopUnroll=1.

	EdgeType: Branch, ShiftPtr or None

	WorkGroup: [dim0, dim1, LocalSplitU]

	ThreadTile: [dim0, dim1]

	GlobalSplitU: Split up summation among work-groups to create more concurrency. This option launches a kernel to handle the beta scaling, then a second kernel where the writes to global memory are atomic.

	PrefetchGlobalRead: True means outer loop should prefetch global data one iteration ahead.

	PrefetchLocalRead: True means inner loop should prefetch lds data one iteration ahead.

	WorkGroupMapping: In what order will work-groups compute C; affects cacheing.

	LoopUnroll: How many iterations to unroll inner loop; helps loading coalesced memory.

	MacroTile: Derrived from WorkGroup*ThreadTile.

	DepthU: Derrived from LoopUnroll*SplitU.

	NumLoadsCoalescedA,B: Number of loads from A in coalesced dimension.

	GlobalReadCoalesceGroupA,B: True means adjacent threads map to adjacent global read elements (but, if transposing data then write to lds is scattered).

	GlobalReadCoalesceVectorA,B: True means vector components map to adjacent global read elements (but, if transposing data then write to lds is scattered).

	VectorWidth: Thread tile elements are contiguous for faster memory accesses. For example VW=4 means a thread will read a float4 from memory rather than 4 non-contiguous floats.

The exhaustive list of solution parameters and their defaults is stored in Common.py.

Kernel Parameters Affect Performance

The kernel parameters affect many aspects of performance. Changing a parameter may help address one performance bottleneck but worsen another. That is why searching through the parameter space is vital to discovering the fastest kernel for a given problem.

[image: ../_images/img11.png]

How N-Dimensional Tensor Contractions Are Mapped to Finite-Dimensional GPU Kernels

For a traditional GEMM, the 2-dimensional output, C[i,j], is mapped to launching a 2-dimensional grid of work groups, each of which has a 2-dimensional grid of work items; one dimension belongs to i and one dimension belongs to j. The 1-dimensional summation is represented by a single loop within the kernel body.

Special Dimensions: D0, D1 and DU

To handle arbitrary dimensionality, Tensile begins by determining 3 special dimensions: D0, D1 and DU.

D0 and D1 are the free indices of A and B (one belongs to A and one to B) which have the shortest strides. This allows the inner-most loops to read from A and B the fastest via coalescing. In a traditional GEMM, every matrix has a dimension with a shortest stride of 1, but Tensile doesn’t make that assumption. Of these two dimensions, D0 is the dimension which has the shortest tensor C stride which allows for fast writing.

DU represents the summation index with the shortest combined stride (stride in A + stride in B); it becomes the inner most loop which gets “U”nrolled. This assignment is also mean’t to assure fast reading in the inner-most summation loop. There can be multiple summation indices (i.e. embedded loops) and DU will be iterated over in the inner most loop.

GPU Kernel Dimension

OpenCL allows for 3-dimensional grid of work-groups, and each work-group can be a 3-dimensional grid of work-items. Tensile assigns D0 to be dimension-0 of the work-group and work-item grid; it assigns D1 to be dimension-1 of the work-group and work-item grids. All other free or batch dimensions are flattened down into the final dimension-2 of the work-group and work-item grids. Withing the GPU kernel, dimensions-2 is reconstituted back into whatever dimensions it represents.

Languages

Tensile Benchmarking is Python

The benchmarking module, Tensile.py, is written in python. The python scripts write solution, kernels, cmake files and all other C/C++ files used for benchmarking.

Tensile Library

The Tensile API, Tensile.h, is confined to C89 so that it will be usable by most software. The code behind the API is allowed to be c++11.

Device Languages

The device languages Tensile supports for the gpu kernels is

	OpenCL 1.2

	HIP

	
	Assembly
	
	gfx803

	gfx900

Library Logic

Running the LibraryLogic phase of benchmarking analyses the benchmark data and encodes a mapping for each problem type. For each problem type, it maps problem sizes to best solution (i.e. kernel).

When you build Tensile.lib, you point the TensileCreateLibrary function to a directory where your library logic yaml files are.

Problem Nomenclature

Example Problems

	C[i,j] = Sum[k] A[i,k] * B[k,j] (GEMM; 2 free indices and 1 summation index)

	C[i,j,k] = Sum[l] A[i,l,k] * B[l,j,k] (batched-GEMM; 2 free indices, 1 batched index and 1 summation index)

	C[i,j] = Sum[k,l] A[i,k,l] * B[j,l,k] (2D summation)

	C[i,j,k,l,m] = Sum[n] A[i,k,m,l,n] * B[j,k,l,n,m] (GEMM with 3 batched indices)

	C[i,j,k,l,m] = Sum[n,o] A[i,k,m,o,n] * B[j,m,l,n,o] (4 free indices, 2 summation indices and 1 batched index)

	C[i,j,k,l] = Sum[m,n] A[i,j,m,n,l] * B[m,n,k,j,l] (batched image convolution mapped to 7D tensor contraction)

	and even crazier

Nomenclature

The indices describe the dimensionality of the problem being solved. A GEMM operation takes 2 2-dimensional matrices as input (totaling 4 input dimensions) and contracts them along one dimension (which cancels out 2 of the dimensions), resulting in a 2-dimensional result.

Whenever an index shows up in multiple tensors, those tensors must be the same size along that dimension but they may have different strides.

There are 3 categories of indices/dimensions that Tensile deals with: free, batch and bound.

Free Indices

Free indices are the indices of tensor C which come in pairs; one of the pair shows up in tensor A while the other shows up in tensor B. In the really crazy example above, i/j/k/l are the 4 free indices of tensor C. Indices i and k come from tensor A and indices j and l come from tensor B.

Batch Indices

Batch indices are the indices of tensor C which shows up in both tensor A and tensor B. For example, the difference between the GEMM example and the batched-GEMM example above is the additional index. In the batched-GEMM example, the index K is the batch index which is batching together multiple independent GEMMs.

Bound/Summation Indices

The final type of indices are called bound indices or summation indices. These indices do not show up in tensor C; they show up in the summation symbol (Sum[k]) and in tensors A and B. It is along these indices that we perform the inner products (pairwise multiply then sum).

Limitations

Problem supported by Tensile must meet the following conditions:

There must be at least one pair of free indices.

Tensile.lib

After running the benchmark and generating library config files, you’re ready to add Tensile.lib to your project. Tensile provides a TensileCreateLibrary function, which can be called:

 set(Tensile_BACKEND "HIP")
 set(Tensile_LOGIC_PATH "~/LibraryLogic" CACHE STRING "Path to Tensile logic.yaml files")
 option(Tensile_MERGE_FILES "Tensile to merge kernels and solutions files?" OFF)
 option(Tensile_SHORT_NAMES "Tensile to use short file/function names? Use if compiler complains they're too long." OFF)
 option(Tensile_PRINT_DEBUG "Tensile to print runtime debug info?" OFF)

 find_package(Tensile) # use if Tensile has been installed

 TensileCreateLibrary(
 ${Tensile_LOGIC_PATH}
 ${Tensile_BACKEND}
 ${Tensile_MERGE_FILES}
 ${Tensile_SHORT_NAMES}
 ${Tensile_PRINT_DEBUG}
 Tensile_ROOT ${Tensile_ROOT} # optional; use if tensile not installed
)
 target_link_libraries(TARGET Tensile)

.. _Versioning:

Versioning

Tensile follows semantic versioning practices, i.e. Major.Minor.Patch, in BenchmarkConfig.yaml files, LibraryConfig.yaml files and in cmake find_package. Tensile is compatible with a “MinimumRequiredVersion” if Tensile.Major==MRV.Major and Tensile.Minor.Patch >= MRV.Minor.Patch.

	Major: Tensile increments the major version if the public API changes, or if either the benchmark.yaml or library-config.yaml files change format in a non-backwards-compatible manner.

	Minor: Tensile increments the minor version when new kernel, solution or benchmarking features are introduced in a backwards- compatible manner.

	Patch: Bug fixes or minor improvements.

tutorial

How do I debug my GPU application?

You can start your program in rocm-gdb just like you would any application under gdb

	rocm-gdb MatrixMul

	You should now be in the gdb prompt and can start execution of the application

	(ROCm-gdb) start

How do I view the list of all ROCm gdb commands?

To view the list of all rocm related gdb commands, you can type :: help rocm.

(ROCm-gdb) help rocm
ROCm specific features in ROCm-gdb.
--
ROCm focus thread command:
rocm thread wg:<x,y,z> wi:<x,y,z> Switch focus to a specific active GPU work-item
--
ROCm breakpoint commands:
break rocm Break on every GPU dispatch
break rocm:<kernel_name> Break when kernel <kernel_name> is about to begin execution
break rocm:<line_number> Break when execution hits line <line_number> in temp_source
--
ROCm info commands:
info rocm devices Print all available GPU devices
info rocm kernels Print all GPU kernel dispatches
info rocm kernel <kernel_name> Print all GPU kernel dispatches with a specific <kernel_name>
info rocm [work-groups|wgs] Print all GPU work-group items
info rocm [work-group|wg] [<flattened_id>|<x,y,z>] Print a specific GPU work-group item
info rocm [work-item|wi|work-items|wis] Print the focus GPU work-item
info rocm [work-item|wi] <x,y,z> Print a specific GPU work-item
--
ROCm specific configuration commands:
set rocm trace [on|off] Enable/Disable tracing of GPU dispatches
set rocm trace <filename> Save GPU dispatch trace to <filename>
set rocm logging [on|off] Enable/Disable internal logging
set rocm show-isa [on|off] Enable/Disable saving ISA to a temp_isa file when in GPU dispatches
--
ROCm variable print commands:
print rocm:<variable> Print value of <variable> for the focus work-item
--
To disassemble a GPU kernel:
disassemble Show the GPU ISA disassembly text when at a GPU breakpoint
--

How do I set breakpoints in my GPU application?

To set breakpoints in GPU kernels, rocm-gdb defines

	GPU kernel function breakpoint: Similar to a gdb function breakpoint, allows you stop the application just before a specific GPU dispatch starts

	Generic GPU kernel breakpoint: Stop the application before any GPU dispatch starts

	Source line breakpoint: A breakpoint that is set on a particular line of GPU kernel source

Setting GPU function breakpoints

The gdb :: break command has been extended to break rocm in order to set GPU breakpoints. To set a specific GPU kernel function breakpoints:

	break rocm:<kernel_name>

For matrix multiplication, you can specify the kernel name

	(ROCm-gdb) break rocm:&__OpenCL_matrixMul_kernel

This will stop the application’s execution just before the GPU kernel (in this case, the matrix multiplication kernel) begins executing on the device.

To set a general GPU kernel function breakpoint, use either of the following command:

	(ROCm-gdb) break rocm

	(ROCm-gdb) break rocm:*

This will stop the application just before every dispatch begins executing on the device.

Setting GPU kernel source breakpoints

In order to break into GPU kernels, you need to set GPU source breakpoints. ROCm-gdb saves the kernel source for the present dispatch to a temporary file called temp_source. GPU source breakpoints can be set by specifying the line number from the temp_source GPU kernel source file. The temp_source file is overwritten by rocm-gdb on every GPU dispatch.

Once you hit a kernel function breakpoint, you can view the temp_source file and choose a line number. You can set the source breakpoint using the syntax

	break rocm:<line_number>

For example, this will set a breakpoint at line 150 in the temp_source

(ROCm-gdb) b rocm:150
GPU breakpoint 1 (PC:0x08d0 mad_u32 $s0, $s1, $s0, $s3; temp_source@line 150)

When you continue the program’s execution, the application will stop when any work-item reaches line 150 in temp_source.

Setting Conditional GPU kernel source breakpoints

Conditional GPU breakpoints allow you to stop the application only when a particular work-item hits a breakpoint. You can set a conditional source breakpoint by specifying the a work-item using the syntax:

	break rocm:line_number if wg:x,y,z wi:x,y,z For example, this will set a breakpoint at line 150 and only stop the application if the work-item in workgroup 2,0,0 and local work-item 1,0,0

(ROCm-gdb) b rocm:150 if wg:2,0,0 wi:16,0,0
GPU breakpoint 1 (PC:0x08d0 mad_u32 $s0, $s1, $s0, $s3; temp_source@line 150)

When the application is executed, the dispatch will stop when line 150 is executed for the above work-item as shown below:

[ROCm-gdb]: Switching to work-group (2,0,0) and work-item (1,0,0)
[ROCm-gdb]: Condition: active work-group: 2, 0, 0 @ work-item: 1, 0, 0
[ROCm-gdb]: Breakpoint 2 at mad_u32 $s0, $s1, $s0, $s3; temp_source@line 150
Stopped on GPU breakpoint

Managing GPU breakpoints

	You can use the same gdb commands such as info bre to view information about the active GPU and host breakpoints The command info bre shows multiple GPU kernel source breakpoints, an GPU function breakpoint and a host breakpoint

(ROCm-gdb) info bre
Num Type Disp Enb Address What
1 GPU breakpoint keep y --- Every GPU dispatch(*)
breakpoint already hit 2 times
4 GPU breakpoint keep y PC:0x06d8 add_u32 $s3, $s3, 1; temp_source@line 150
breakpoint already hit 320 times
5 GPU breakpoint keep y --- &__Gdt_vectoradd_kernel
6 breakpoint keep y 0x0000000000407105 in RunTest() at MultiKernelDispatch.cpp:100

* You can also delete GPU breakpoints using the same command as GDB's host breakpoints del breakpoint_number

How do I single step in a GPU kernel?

You can single step in a GPU dispatch using the conventional step command. Only a single step is supported at a time.

The following shows how rocm-gdb steps 4 source lines after hitting a kernel source breakpoint

(ROCm-gdb) b rocm:64
GPU breakpoint 2 (PC:0x02a0 workitemabsid_u32 $s0, 0; temp_source@line 64)
(ROCm-gdb) c
Continuing.
[New Thread 0x7fffef286700 (LWP 2776)]
[New Thread 0x7fffeea85700 (LWP 2777)]
Waiting for completion...
[Switching to Thread 0x7fffeea85700 (LWP 2777)]
[ROCm-gdb]: Switching to work-group (5,4,0) and work-item (0,8,0)
[ROCm-gdb]: Breakpoint 2 at PC:0x02a0 workitemabsid_u32 $s0, 0; temp_source@line 64
Stopped on GPU breakpoint

(ROCm-gdb) step
[ROCm-gdb]: PC:0x02ac cvt_u64_u32 $d5, $s0; temp_source@line 65
Stopped on GPU breakpoint

(ROCm-gdb) s
[ROCm-gdb]: PC:0x02d0 workitemabsid_u32 $s0, 1; temp_source@line 66
Stopped on GPU breakpoint

(ROCm-gdb) s
[ROCm-gdb]: PC:0x02dc ld_kernarg_align(8)_width(all)_u64 $d6, [%__global_offset_0]; temp_source@line 67
Stopped on GPU breakpoint

(ROCm-gdb) s
[ROCm-gdb]: PC:0x0304 add_u64 $d0, $d5, $d6; temp_source@line 68
Stopped on GPU breakpoint

(ROCm-gdb) c
Continuing.

How do I print GPU registers?

To print registers in a GPU kernel, the gdb print command has been extended. To print GPU registers.

	print rocm:$register_name

This will print the value $register_name for a single work-item. For example, printing GPU register $s0 will provide the value of register $s0

(ROCm-gdb) print rocm:$s0
$4 = 0

To view the data of a different work-item, you need switch focus between different work-items. The rocm thread command allows you to set the focus on a different work-item by specifying its work-item and work-group ID. It should be noted that you cannot switch focus to work-items not scheduled on the device.

Switching the focus to another work-item and printing $s0 allows us to view data for the other work-item.

(ROCm-gdb) rocm thread wg:0,0,0 wi:1,0,0
[ROCm-gdb]: Switching to work-group (0,0,0) and work-item (1,0,0)
(ROCm-gdb) print rocm:$s0
 $3 = 1

How do I view the GPU ISA disassembly?

To view the GPU ISA disassembly, you can use the standard gdb disassemble command while gdb stops at the GPU function breakpoint or GPU kernel source breakpoint.

While gdb stops at a GPU kernel source breakpoint, the program counter of the focus wave is shown with a (=>) prefix and some ISA instructions above and below the program counter are shown.

[ROCm-gdb]: Breakpoint 1 at GPU Kernel, &ZZ4mainEN3_EC__219__cxxamp_trampolineEPfiiiiiiifS0_iiiiiii()
GPU kernel saved to temp_source
Stopped on GPU breakpoint

(ROCm-gdb) s
[New Thread 0x7fffee0e9700 (LWP 3190)]
[ROCm-gdb]: Switching to work-group (486,0,0) and work-item (256,0,0)
[ROCm-gdb]: Breakpoint: at line 24
Stopped on GPU breakpoint
[Switching to Thread 0x7fffee0e9700 (LWP 3190)]

(ROCm-gdb) disassemble
Disassembly:
 s_lshr_b32 s16, s16, 16 // 000000000144: 8F109010
 s_mul_i32 s18, s12, s13 // 000000000148: 92120D0C
 s_mul_i32 s20, s5, s15 // 00000000014C: 92140F05
 s_movk_i32 s19, 0x0000 // 000000000150: B0130000
 s_movk_i32 s21, 0x0000 // 000000000154: B0150000
 s_add_u32 s18, s18, s20 // 000000000158: 80121412
 s_addc_u32 s19, s19, s21 // 00000000015C: 82131513
 s_movk_i32 s17, 0x0000 // 000000000160: B0110000
 s_add_u32 s16, s16, s18 // 000000000164: 80101210
 s_addc_u32 s17, s17, s19 // 000000000168: 82111311
 s_lshr_b64 s[16:17], s[16:17], 16 // 00000000016C: 8F909010
 s_mul_i32 s5, s5, s13 // 000000000170: 92050D05
 s_add_u32 s5, s5, s16 // 000000000174: 80051005
 s_mul_i32 s4, s4, s8 // 000000000178: 92040804
 v_add_u32 v3, vcc, s4, v0 // 00000000017C: 32060004
=> s_nop 0x0000 // 000000000180: BF800000
 s_load_dword s4, s[6:7], 0x18 // 000000000184: C0020103 00000018
 s_nop 0x0000 // 00000000018C: BF800000
 s_load_dword s5, s[6:7], 0x40 // 000000000190: C0020143 00000040
 s_nop 0x0000 // 000000000198: BF800000
 s_load_dword s12, s[6:7], 0x20 // 00000000019C: C0020303 00000020
 s_nop 0x0000 // 0000000001A4: BF800000
 s_load_dword s13, s[6:7], 0x48 // 0000000001A8: C0020343 00000048
 s_waitcnt lgkmcnt(0) // 0000000001B0: BF8C007F
 s_nop 0x0000 // 0000000001B4: BF800000
 v_add_u32 v9, vcc, s4, v3 // 0000000001B8: 32120604
 s_nop 0x0000 // 0000000001BC: BF800000
 v_add_u32 v13, vcc, s5, v3 // 0000000001C0: 321A0605
 v_mov_b32 v5, s8 // 0000000001C4: 7E0A0208
 s_nop 0x0000 // 0000000001C8: BF800000
 v_ashrrev_i32 v10, 31, v9 // 0000000001CC: 2214129F
 ...
 ...
 Remaining GPU ISA saved to temp_isa

If you want to view the complete ISA for the GPU kernel, the ISA is saved to temp_isa. The temp_isa also provides important information about the kernel such as the number of registers used, compiler flags used and the GPU ISA version.

An alternative method of viewing the ISA for every kernel is the set rocm option to save the ISA to a file whenever a GPU kernel is active. This can be enabled using the set rocm show-isa as shown below.

(ROCm-gdb) set rocm show-isa on

With this option, ROCm-gdb saves the ISA for the active kernel to temp_isa whenever a GPU kernel is active.

How do I view GPU dispatch info?

The info command has been extended to info rocm. The info rocm command allows you to view the present state of the GPU dispatch and also allows you to view information about the GPU dispatches that have executed over the lifetime of the application.

(ROCm-gdb) info rocm

This will print all the possible options for info rocm. The info rocm command allows you to view information about the active dispatch, active work-groups and active work-items on the device. The possible inputs to info rocm are below

info rocm kernels Print all GPU kernel dispatches
info rocm kernel <kernel_name> Print all GPU kernel dispatches with a specific <kernel_name>
info rocm [work-groups|wgs] Print all GPU work-group items
info rocm [work-group|wg] [<flattened_id>|<x,y,z>] Print a specific GPU work-group item
info rocm [work-item|wi|work-items|wis] Print the focus GPU work-item
info rocm [work-item|wi] <x,y,z> Print a specific GPU work-item

For example, info rocm kernels on an application that dispatches two kernels shows

(ROCm-gdb) info rocm kernels
Kernels info
Index KernelName DispatchCount # of Work-groups Work-group Dimensions
 0 &__Gdt_vectoradd_kernel 1 1,1,1 64,1,1
 *1 &__OpenCL_matrixMul_kernel 1 8,5,1 16,16,1

The info rocm work-groups command will show the active work-groups for the active dispatch

(ROCm-gdb) info rocm work-groups
 Index Work-group ID Flattened Work-group ID
 *0 0,0,0 0
 1 1,0,0 1
 2 2,0,0 2

The info rocm wg 0 command will show the information of work-group 0 for the active dispatch

Information for Work-group 0
Index Wave ID {SE,SH,CU,SIMD,Wave} Work-item ID Abs Work-item ID PC Source line
 0 0x408001c0 { 0, 0, 1, 0, 0} [0,12, 0 - 15,15, 0] [0,12, 0 - 15,15, 0] 0x2a8 temp_source@line 64
 1 0x408001d0 { 0, 0, 1, 1, 0} [0, 4, 0 - 15, 7, 0] [0, 4, 0 - 15, 7, 0] 0x2a8 temp_source@line 64
 2 0x408001e0 { 0, 0, 1, 2, 0} [0, 0, 0 - 15, 3, 0] [0, 0, 0 - 15, 3, 0] 0x2a8 temp_source@line 64
 3 0x408001f0 { 0, 0, 1, 3, 0} [0, 8, 0 - 15,11, 0] [0, 8, 0 - 15,11, 0] 0x2a8 temp_source@line 64

Wave ID contains the hardware slot ids where SE is the Shader Engine id, SH is the shader array id, CU is the Compute Unit id, SIMD is the SIMD id, and Wave is the wave slot id.

The info rocm work-item command will show the focus work-item for the active dispatch

(ROCm-gdb) info rocm wi
Information for Work-item
Index Wave ID {SE,SH,CU,SIMD,Wave} Work-item ID Abs Work-item ID PC Source line
 *0 0x408002d0 { 0, 0, 2, 1, 0} [0, 0, 0] [16, 0, 0] 0x68 temp_source@line 150

The info rocm devices command will show the available ROCm devices in the system and the device presently executing a dispatch.

(ROCm-gdb) info rocm devices
Devices info
Index Name ChipID CUs Waves/CU EngineFreq MemoryFreq
 *0 AMD gfx803 0x7300 64 40 1000 500

How do I view a trace of GPU dispatches

ROCm-gdb helps developers to view information about kernels that have been launched on the GPU using the rocm trace commands. ROCm-gdb can save a trace of all the GPU kernel launches to a Comma Separated Value (CSV) file using the set rocm trace command. The following commands enable tracing GPU kernel launches to mytrace.csv.

(ROCm-gdb) set rocm trace mytrace.csv
(ROCm-gdb) set rocm trace on

	You can now execute and debug the application within ROCm-gdb. Anytime during the application’s execution you can view my_trace.csv to see the kernels have been dispatched. A sample trace for an application that dispatches a vector add kernel followed by a matrix multiplication kernel in a loop is shown below.
	&__OpenCL_matrixMul_kernel

group_segment_size kernel_object kernarg_address reserved2 completion_signal

0 380095252 0 &__Gdt_vectoradd_kernel 5122 1 {64 1 1} 0 {64 1 1} 0 0 140737353981952 0x713000 0 7513216
1 380095252 1 &__OpenCL_matrixMul_kernel 5122 2 {16 16 1} 0 {128 80 1} 0 0 140737353983488 0x6ca000 0 7910848
2 380095252 2 &__Gdt_vectoradd_kernel 5122 1 {64 1 1} 0 {64 1 1} 0 0 140737353977856 0x6e2000 0 7858432
3 380095252 3 &__OpenCL_matrixMul_kernel 5122 2 {16 16 1} 0 {128 80 1} 0 0 140737353979392 0x6a3000 0 7177152
4 380095252 4 &__Gdt_vectoradd_kernel 5122 1 {64 1 1} 0 {64 1 1} 0 0 140737353973760 0x666000 0 7981376
5 380095252 5 &__OpenCL_matrixMul_kernel 5122 2 {16 16 1} 0 {128 80 1} 0 0 140737353975296 0x7a3000 0 7192640
6 380095252 6 &__Gdt_vectoradd_kernel 5122 1 {64 1 1} 0 {64 1 1} 0 0 140737353969664 0x7a3000 0 7940224
7 380095252 7 &__OpenCL_matrixMul_kernel 5122 2 {16 16 1} 0 {128 80 1} 0 0 140737353971200 0x697000 0 7765760
8 380095252 8 &__Gdt_vectoradd_kernel 5122 1 {64 1 1} 0 {64 1 1} 0 0 140737353965568 0x70f000 0 6968192
9 380095252 9 &__OpenCL_matrixMul_kernel 5122 2 {16 16 1} 0 {128 80 1} 0 0 140737353967104 0x708000 0 7081216

How do I compile GPU kernels for debug?

To debug GPU kernels that target ROCm, you need to compile the kernels for debug and embed the HSAIL kernel source in the resulting code object. Debug flags can be passed to high level compiler and the finalizer using environment variables. To simplify this process, the rocm-gdb-debug-flags.sh script is included in the /opt/rocm/gpudebugsdk/bin directory.

It should be noted that the rocm-gdb-debug-flags.sh should be called as source rocm-gdb-debug-flags.sh and not executed as ./rocm-gdb-debug-flags.sh since the script sets environment variables and the variables need to be visible for the subsequent build commands.

	For applications using libHSAIL to compile their GPU kernels source rocm-gdb-debug-flags.sh should be called when the application is compiled.

	For SNACK applications, you can call source rocm-gdb-debug-flags.sh before calling the buildrun.sh script for the SNACK applications.

Note that kernel debugging is not yet supported with applications compiled using HCC-LC.

Once the application has been built using the environment variables specified in rocm-gdb-debug-flags.sh, you can debug libHSAIL applications as described in this tutorial.

Generating logs for reporting issues in rocm-gdb

Additional log files can be generated by rocm-gdb. These log files should be sent to the rocm-gdb developers to allow them to diagnose issues. Logging is enabled with the ROCM_GDB_ENABLE_LOG environment variable as shown below

export ROCM_GDB_ENABLE_LOG='DebugLogs'
rocm-gdb MatrixMul

The environment variable enables logging and provides a prefix for the log file names. As the MatrixMul application executes, log files with the prefix DebugLogs_ will be generated. The log files generated include logs from GDB, the HSA Debug Agent and the HSA code objects used in the applications. Each debug session’s log file’s name will include a unique SessionID.
Others

A useful tutorial on how to use GDB can be found on RMS’s site [http://www.unknownroad.com/rtfm/gdbtut/].

Virtualization & Containers

PCIe Passthrough on KVM

The following KVM-based instructions assume a headless host with an input/output memory management unit (IOMMU) to pass peripheral devices such as a GPU to guest virtual machines. If you know your host supports IOMMU but the below command does not find “svm” or “vxm”, you may need to enable IOMMU in your BIOS.

cat /proc/cpuinfo | grep -E “svm|vxm”

Ubuntu 16.04

Assume we use an intel system that support VT-d , with fresh ubuntu 16.04 installed

a. Install necessary packages and prepare for pass through device

	sudo apt-get install qemu-kvm qemu-system bridge-utils virt-manager ubuntu-vm-builder libvirt-dev

	
	add following modules into /etc/modules
	

vfio

vfio_iommu_type1

vfio_pci

kvm

kvm_intel

	add intel_iommu=on in /etc/default/grub
	
GRUB_CMDLINE_LINUX_DEFAULT=”quiet splash intel_iommu=on”

sudo update-grub

	
	Blacklist amdgpu by adding the following line to /etc/modprobe.d/blacklist.conf
	

blacklist amdgpu

b. Bind pass through device to vfio-pci

	Create a script file (vfio-bind) under /usr/bin. The script file has the following content:

#!/bin/bash
modprobe vfio-pci
for dev in "$@"; do
 vendor=$(cat /sys/bus/pci/devices/$dev/vendor)
 device=$(cat /sys/bus/pci/devices/$dev/device)
 if [-e /sys/bus/pci/devices/$dev/driver]; then
 echo $dev > /sys/bus/pci/devices/$dev/driver/unbind
 fi
 echo $vendor $device > /sys/bus/pci/drivers/vfio-pci/new_id
done

	Make it executable by enter the command

chmod 755 vfio-bind

	Bind the device to vfio by running the command for the three pass through devices

lspci -n -d 1002:
 83:00.0 0300: 1002:7300 (rev ca)
vfio.bind 0000:83:00.0

	sudo reboot

c. Pass through device to guest VM

	Start VMM by running “virt-manager” as root. Follow the on screen instruction to create one virtual machine(VM), make sure CPU copy host CPU configuration, network use bridge mode.

	Add Hardware –> Select PCI Host device, select the appropriate device to pass through. ex:0000:83:00.0

	sudo setpci -s 83:00.0 CAP_EXP+28.l=40

	sudo reboot

After reboot, start virt-manager and then start the VM, inside the VM , lspci -d 1002: should shows the pass throughed device.

Fedora 27 or CentOS 7 (1708)

From a fresh install of Fedora 27 or CentOS 7 (1708)

a. Install necessary packages and prepare for pass through device

	
	Identity the vendor and device id(s) for the PCIe device(s) you wish to passthrough, e.g., 1002:6861 and 1002:aaf8 for an AMD Radeon Pro WX 9100 and its associated audio device,
	lspci -nnk

	
	Install virtualization packages
	sudo dnf install @virtualization
sudo usermod -G libvirt -a $(whoami)
sudo usermod -G kvm -a $(whoami)

	
	Enable IOMMU in the GRUB_CMDLINE_LINUX variable for your target kernel
	
	
	For an AMD CPU
	sudo sed ‘s/quiet/quiet amd_iommu=on iommu=pt/’ /etc/sysconfig/grub

	
	For an Intel CPU
	sudo sed ‘s/quiet/quiet intel_iommu=on iommu=pt/’ /etc/sysconfig/grub

b. Bind pass through device to vfio-pci

	Preempt the host claiming the device by loading a stub driver

	::
	echo “options vfio-pci ids=1002:6861,1002:aaf8” | sudo tee -a /etc/modprobe.d/vfio.conf
echo “options vfio-pci disable_vga=1” | sudo tee -a /etc/modprobe.d/vfio.conf
sed ‘s/quiet/quiet rd.driver.pre=vfio-pci video=efifb:off/’ /etc/sysconfig/grub

	Update the kernel boot settings

	::
	sudo grub2-mkconfig -o /etc/grub2-efi.cfg
echo ‘add_drivers+=”vfio vfio_iommu_type1 vfio_pci”’ | sudo tee -a /etc/dracut.conf.d/vfio.conf
sudo dracut -f –kver uname -r

	Reboot and verify that vfio-pci driver has been loaded

	::
	lspci -nnk

c. Pass through device to guest VM

	Within virt-manager the device should now appear in the list of available PCI devices

Note: To pass a device within a particular IOMMU group, all devices within that IOMMU group must also be passed. You may wish to refer here [https://wiki.archlinux.org/index.php/PCI_passthrough_via_OVMF] for more details, such as the following script that lists all IOMMU groups and the devices within them.

#!/bin/bash
shopt -s nullglob
for d in /sys/kernel/iommu_groups/*/devices/*; do
 n=${d#*/iommu_groups/*}; n=${n%%/*}
 printf 'IOMMU Group %s ' "$n"
 lspci -nns "${d##*/}"
done;

ROCm-Docker

Radeon Open Compute Platform for docker

Please refer ROCm-Docker [https://github.com/RadeonOpenCompute/ROCm-docker]

This repository contains a framework for building the software layers defined in the Radeon Open Compute Platform into portable docker images. The following are docker dependencies, which should be installed on the target machine.

	Docker on Ubuntu [https://docs.docker.com/v2.0/installation/ubuntulinux/] systems or Fedora systems [https://docs.docker.com/v2.0/installation/fedora/]

	Highly recommended: Docker-Compose [https://docs.docker.com/compose/install/] to simplify container management

Docker Hub

Looking for an easy start with ROCm + Docker? The rocm/rocm-terminal image is hosted on Docker Hub [https://hub.docker.com/r/rocm/rocm-terminal/] . After the ROCm kernel is installed [https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/ROCK-Kernel-Driver_readme.html#opencomute-kernel-deriver] , pull the image from Docker Hub and create a new instance of a container.

sudo docker pull rocm/rocm-terminal
sudo docker run -it --device=/dev/kfd --device=/dev/dri --security-opt seccomp=unconfined --group-add video rocm/rocm-terminal

ROCm-docker set up guide

Installation instructions [https://github.com/RadeonOpenCompute/ROCm-docker/blob/master/quick-start.md] and asciicasts demos are available to help users quickly get running with rocm-docker. Visit the set up guide to read more.

F.A.Q

When working with the ROCm containers, the following are common and useful docker commands:

	A new docker container typically does not house apt repository meta-data. Before trying to install new software using apt, make sure to run sudo apt update first

	A message like the following typically means your user does not have permissions to execute docker; use sudo or add your user [https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/] to the docker group.

	Cannot connect to the Docker daemon. Is the docker daemon running on this host?

	Open another terminal into a running container

	sudo docker exec -it <CONTAINER-NAME> bash -l

	
	Copy files from host machine into running docker container
	
	sudo docker cp HOST_PATH <CONTAINER-NAME>:/PATH

	
	Copy files from running docker container onto host machine
	
	sudo docker cp <CONTAINER-NAME>:/PATH/TO/FILE HOST_PATH

	If receiving messages about no space left on device when pulling images, check the storage driver in use by the docker engine. If its ‘device mapper’, that means the image size limits imposed by the ‘device mapper’ storage driver are a problem
Follow the documentation in the quick start guide for a solution to change to the storage driver

Saving work in a container

Docker containers are typically ephemeral, and are discarded after closing the container with the ‘–rm’ flag to docker run. However, there are times when it is desirable to close a container that has arbitrary work in it, and serialize it back into a docker image. This may be to to create a checkpoint in a long and complicated series of instructions, or it may be desired to share the image with others through a docker registry, such as docker hub.

sudo docker ps -a # Find container of interest
sudo docker commit <container-name> <new-image-name>
sudo docker images # Confirm existence of a new image

Details

Docker does not virtualize or package the linux kernel inside of an image or container. This is a design decision of docker to provide lightweight and fast containerization. The implication for this on the ROCm compute stack is that in order for the docker framework to function, the ROCm kernel and corresponding modules must be installed on the host machine. Containers share the host kernel, so the ROCm KFD component ROCK-Kernel-Driver1 functions outside of docker.

Installing ROCK on the host machine.

An apt-get repository [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html] is available to automate the installation of the required kernel and kernel modules.

Building images

There are two ways to install rocm components:

1.install from the rocm apt/rpm repository (repo.radeon.com)

2.build the components from source and run install scripts

The first method produces docker images with the smallest footprint and best building speed. The footprint is smaller because no developer tools need to be installed in the image, an the images build speed is fastest because typically downloading binaries is much faster than downloading source and then invoking a build process. Of course, building components allows much greater flexibility on install location and the ability to step through the source with debug builds. ROCm-docker supports making images either way, and depends on the flags passed to the setup script.

The setup script included in this repository is provides some flexibility to how docker containers are constructed. Unfortunately, Dockerfiles do not have a preprocessor or template language, so typically build instructions are hardcoded. However, the setup script allows us to write a primitive ‘template’, and after running it instantiates baked dockerfiles with environment variables substituted in. For instance, if you wish to build release images and debug images, first run the setup script to generate release dockerfiles and build the images. Then, run the setup script again and specify debug dockerfiles and build new images. The docker images should generate unique image names and not conflict with each other.

setup.sh

Currently, the setup.sh scripts checks to make sure that it is running on an Ubuntu system, as it makes a few assumptions about the availability of tools and file locations. If running rocm on a Fedora machine, inspect the source of setup.sh and issue the appropriate commands manually. There are a few parameters to setup.sh of a generic nature that affects all images built after running. If no parameters are given, built images will be based off of Ubuntu 16.04 with rocm components installed from debians downloaded from packages.amd.com. Supported parameters can be queried with ./setup –help.

	setup.sh parameters

	parameter [default]

	description

	–ubuntu

	xx.yy [16.04]

	Ubuntu version for to inherit base image

	–install-docker-compose

	
	helper to install the docker-compose tool

The following parameters are specific to building containers that compile rocm components from source.

	setup.sh parameters

	parameter [default]

	description

	–tag

	string [‘master’]

	string representing a git branch name

	–branch

	string [‘master’]

	alias for tag

	–debug

	
	build code with debug flags

./setup generates finalized Dockerfiles from textual template files ending with the .template suffix. Each sub-directory of this repository corresponds to a docker ‘build context’ responsible for a software layer in the ROCm stack. After running the script, each directory contains generated dockerfiles for building images from debians and from source.

Docker compose

./setup prepares an environment to be controlled with Docker Compose [https://docs.docker.com/compose/]. While docker-compose is not necessary for proper operation, it is highly recommended. setup.sh does provide a flag to simplify the installation of this tool. Docker-compose coordinates the relationships between the various ROCm software layers, and it remembers flags that should be passed to docker to expose devices and import volumes.

Example of using docker-compose

docker-compose.yml provides services that build and run containers. YAML is structured data, so it’s easy to modify and extend. The setup.sh script generates a .env file that docker-compose reads to satisfy the definitions of the variables in the .yml file.

	docker-compose run –rm rocm – Run container using rocm packages

	docker-compose run –rm rocm-from-src – Run container with rocm built from source

	Docker-compose

	description

	docker-compose

	docker compose executable

	run

	sub-command to bring up interactive container

	–rm

	when shutting the container down, delete it

	rocm

	application service defined in docker-compose.yml

rocm-user has root privileges by default

The dockerfile that serves as a ‘terminal’ creates a non-root user called rocm-user. This container is meant to serve as a development environment (therefore apt-get is likely needed), the user has been added to the linux sudo group. Since it is somewhat difficult to set and change passwords in a container (often requiring a rebuild), the password prompt has been disabled for the sudo group. While this is convenient for development to be able sudo apt-get install packages, it does imply lower security in the container.

To increase container security:

1.Eliminate the sudo-nopasswd COPY statement in the dockerfile and replace with

2.Your own password with RUN echo ‘account:password’ | chpasswd

The docker.ce release 18.02 has known defects working with rocm-user account insider docker image. Please upgrade docker package to the 18.04 build [https://download.docker.com/linux/ubuntu/dists/xenial/pool/nightly/amd64/docker-ce_18.04.0~ce~dev~git20180313.171447.0.6e4307b-0~ubuntu_amd64.deb].

Footnotes:

[1] It can be installed into a container, it just doesn’t do anything because containers do not go through the traditional boot process. We actually do provide a container for ROCK-Kernel-Driver, but it not used by the rest of the docker images. It does provide isolation and a reproducible environment for kernel development.

 https://github.com/RadeonOpenCompute/ROCm-docker/blob/master/README.md

quick start guide

Please refer the updated AMD ROCm installation instructions at the following location:

https://rocmdocs.amd.com/en/latest/Installation_Guide/Installation-Guide.html

Infrastructure for asynchronous event delivery

This infrastructure is for handling external events. There are 2 types of events:

	File-descriptor events

	Timer

Also, there are 2 methods to deliver the events:

	Signal

	Progress thread

A user may register for file/timer events and select which method to use. User can also have an optional “async context” which guarantees safe (synchronized) event delivery. The user can temporarily “block” events for an async context, in which case they will be put in a queue, and check for them later. If the events are not block, they will be dispatched in an asynchronous manner (either on progress thread or from signal handler).

Additional notes:

	There can be only one handler for every file descriptor.

	There is (practically) no limit on the amount of timers.

	There is configurable limit on amount of events/timers per context, due to limited size of missed events queue. (missed = not handled because async context was blocked by the user)

	If there are no timers/event handlers, there will not be a progress thread or signal handler installed.

	The progress thread/signal handler will wake up in the interval of the minimal timer in the system, if such exists.

	A timer with interval of less than one millisecond cannot be used with progress thread, because it uses epoll_wait.

	Signal context can be used only from one thread. If there is no context, it can be used only from main thread.

	If the system does not support F_SETOWN_EX (redirecting fd signals to particular thread), signals can be used only for main thread.

Further improvements (TODO):

	Use timerfd in progress thread to handle smaller timer resolution (if kernel supports).

	Use eventfd instead of pipe() for notifications (if kernel supports). Update: Cannot do it because eventfd does not support SIGIO.

Design Discuss

Potential design flaws

Below are some points which are potential design flaws. To keep the design consistent, we put them down here until the design is updated.

###Notes by Rich:

	Missing FCA-3 handle based completion

	UD - consider reliability at the higher level

	tag matching may also have low-level api

	stateless offload - fragmentation

	flow control - missing

	atomics - masked extended atomics

	check that the data type will support MPI data semantics

Notes by Pasha and Yossi:

	consider separating memory managers from transports

	consider CUDA support with the unified memory model

Memory hooks

UCX includes the libucm library, which provides methods to intercept events which map and unmap memory to/from the current process. These may be used by transports to optimize their handling of user-allocated memory, for example:

	Maintain memory registration cache (and get notification when cached memory is unmapped)

	Modify the way memory is allocated (e.g hugepages, MAP_PRIVATE vs MAP_SHARED)

Events API

libucm API allows registering for the following events:

	UCM_EVENT_MMAP

	mmap() is called

	UCM_EVENT_MUNMAP

	munmap() is called

	UCM_EVENT_MREMAP

	mremap() is called

	UCM_EVENT_SHMAT

	shmat() is called

	UCM_EVENT_SHMDT

	shmdt() is called

	UCM_EVENT_SBRK

	sbrk() is called

	UCM_EVENT_VM_MAPPED

	memory is mapped to the process

	UCM_EVENT_VM_UNMAPPED

	memory is unmapped from the process

An event handler may modify the parameters, set the result, or do nothing and continue to the next handler.

Installing the hooks

We use the following algorithm to install the memory hooks:

	Install hooks for mmap/munmap/mremap/shmat/shmdt/sbrk

	libucm contains symbols with these names. If libucm is loaded before any other implementation of those functions (for example, by using LD_PRELOAD), nothing else should be done here. This is detected by calling the functions and checking if the events work.

	If this didn’t work, modify the relocation tables or all currently loaded objects (and objects that will be loaded in the future*) to point to our implementation of these functions.

	TBD modify the loaded code of glibc to call our hooks (IBM’s method)

	Test events again. If this failed, notify the user we can’t install memory events.

	Install hooks for malloc/free/realloc/memalign

	Sometimes it’s enough to have hooks for mmap/… to get those events when they are called from malloc/… as well. So first we do some memory allocations and check if we are able to get all events this way.

	If we can’t, install legacy malloc hooks (__malloc_hook).
We have our own implementation of heap manager in libucm - ptmalloc3. After we replace the original heap manager, we keep track of which pointers were allocated by our library, so we would know ignore all others (since they were allocated by the previous heap manager). Also, we can’t restore the previous state, so libucm.so is marked as ‘nodelete’.

	If the former didn’t work, modify the relocation tables to point to our implementation of malloc (and friends).

	If even that didn’t work, notify the user we can’t install memory events.

	If one of the methods was successful, modify the relocation tables to point to our versions of malloc_trim, malloc_stats, mallinfo, and so on.

Thread safety

Memory events and API calls are thread safe.

Configuration

libucm has a simple standalone configuration manager, with following settings:

Logging

libucm has a standalone logger which support minimal set of formatting specifiers, and is malloc-safe.

External references

	Glibc malloc hooks [https://stackoverflow.com/questions/17803456/an-alternative-for-the-deprecated-malloc-hook-functionality-of-glibc]

	Valgrind malloc hooks [https://code.google.com/archive/p/valgrind-variant/source#1175]

We also install relocation table hook for dlopen() to install all existing relocation patches to objects loaded in the future.

Performance measurement

This infrastructure provided a function which runs a performance test (in the current thread) on UCX communication APIs. The purpose is to allow a developer make optimizations to the code and immediately test their effects.
The infrastructure provides both an API, and a standalone tool which uses that API - ucx_perftest.
The API is also used for unit tests.
Location: src/tools/perf

Features of the library:

	uct_perf_test_run() is the function which runs the test. (currently only UCT API is supported)

	No need to do any resource allocation - just pass the testing parameters to the API

	Requires running the function on 2 threads/processes/nodes - by passing RTE callbacks which are used to bootstrap the connections.

	Two testing modes - ping-pong and unidirectional stream (TBD bi-directional stream)

	Configurabe message size, and data layout (short/bcopy/zcopy)

	Supports: warmup cycles, unlimited iterations.

	UCT Active-messages stream is measured with simple flow-control.

	Tests driver is written in C++ (C linkage), to take advantage of templates.

	Results are reported to callback function at the specified intervals, and also returned from the API call.
* Including: latency, message rate, bandwidth - iteration average, and overall average.

Features of ucx_perftest:

	Have pre-defined list of tests which are valid combinations of operation and testing mode.

	Can be run either as client-server application, as MPI application, or using libRTE.

	Supports: CSV output, numeric formatting.

	
	Supports “batch mode” - write the lists of tests to run to a text file (see example in contrib/perf) and run them one after another. Every line is the list of arguments that the tool would normally read as command-line options. They are “appended” to the other command-line arguments, if such were passed.
	
	“Cartesian” mode: if several batch files are specified, all possible combinations are executed!

$ ucx_perftest -h
Usage: ucx_perftest [server-hostname] [options]

This test can be also launched as an MPI application
 Common options:

 Test options:
 -t <test> Test to run.
 am_lat : active message latency.
 put_lat : put latency.
 add_lat : atomic add latency.
 get : get latency / bandwidth / message rate.
 fadd : atomic fetch-and-add latency / message rate.
 swap : atomic swap latency / message rate.
 cswap : atomic compare-and-swap latency / message rate.
 am_bw : active message bandwidth / message rate.
 put_bw : put bandwidth / message rate.
 add_mr : atomic add message rate.

 -D <layout> Data layout.
 short : Use short messages API (cannot used for get).
 bcopy : Use copy-out API (cannot used for atomics).
 zcopy : Use zero-copy API (cannot used for atomics).

 -d <device> Device to use for testing.
 -x <tl> Transport to use for testing.
 -c <cpu> Set affinity to this CPU. (off)
 -n <iters> Number of iterations to run. (1000000)
 -s <size> Message size. (8)
 -H <size> AM Header size. (8)
 -w <iters> Number of warm-up iterations. (10000)
 -W <count> Flow control window size, for active messages. (128)
 -O <count> Maximal number of uncompleted outstanding sends. (1)
 -N Use numeric formatting - thousands separator.
 -f Print only final numbers.
 -v Print CSV-formatted output.
 -p <port> TCP port to use for data exchange. (13337)
 -b <batchfile> Batch mode. Read and execute tests from a file.
 Every line of the file is a test to run. The first word is the
 test name, and the rest are command-line arguments for the test.
 -h Show this help message.

 Server options:
 -l Accept clients in an infinite loop

Example - using mpi as a launcher

When using mpi as the launcher to run ucx_perftest, please make sure that your ucx library was configured with mpi. Add the following to your configure line:

--with-mpi=/path/to/mpi/home

$salloc -N2 --ntasks-per-node=1 mpirun --bind-to core --display-map ucx_perftest -d mlx5_1:1 \
 -x rc_mlx5 -t put_lat
salloc: Granted job allocation 6991
salloc: Waiting for resource configuration
salloc: Nodes clx-orion-[001-002] are ready for job
 Data for JOB [62403,1] offset 0

 ======================== JOB MAP ========================

 Data for node: clx-orion-001 Num slots: 1 Max slots: 0 Num procs: 1
 Process OMPI jobid: [62403,1] App: 0 Process rank: 0

 Data for node: clx-orion-002 Num slots: 1 Max slots: 0 Num procs: 1
 Process OMPI jobid: [62403,1] App: 0 Process rank: 1

 ===
+--------------+-----------------------------+---------------------+-----------------------+
| | latency (usec) | bandwidth (MB/s) | message rate (msg/s) |
+--------------+---------+---------+---------+----------+----------+-----------+-----------+
| # iterations | typical | average | overall | average | overall | average | overall |
+--------------+---------+---------+---------+----------+----------+-----------+-----------+
 586527 0.845 0.852 0.852 4.47 4.47 586527 586527
 1000000 0.844 0.848 0.851 4.50 4.48 589339

Print UCX info

This tool prints various information about UCX library:

	Version and build configuration

	Configuration settings and help for every variable.

	Sizes of various data structures

	Transport information: devices and capabilities. The tool resides in src/tools/info.

Full options list:

$ ucx_info -h
Usage: ucx_info [options]
Options are:
 -v Version
 -d Devices
 -c Configuration
 -a Show also hidden configuration
 -b Build configuration
 -y Type information
 -f Fully decorated output
 -t <name> Print information for a specific transport

Sample output:

Transport: rc
#
mlx5_0:1
speed: 6502.32 MB/sec
capabilities:
put_short: <= 92
put_bcopy: <= 8192
put_zcopy: <= 1073741824
get_bcopy: <= 8192
get_zcopy: <= 1073741824
am_short: <= 91
am_bcopy: <= 8191
am_zcopy: <= 8191
am header: <= 127
atomic_add: 32, 64 bit
atomic_fadd: 32, 64 bit
atomic_swap: 32, 64 bit
atomic_cswap: 32, 64 bit
error handling: none
#
mlx4_0:1
speed: 6502.32 MB/sec
capabilities:
put_short: <= 88
put_bcopy: <= 8192
put_zcopy: <= 1073741824
get_bcopy: <= 8192
get_zcopy: <= 1073741824
am_short: <= 87
am_bcopy: <= 8191
am_zcopy: <= 8191
am header: <= 127
atomic_add: 64 bit
atomic_fadd: 64 bit
atomic_swap: 64 bit
atomic_cswap: 64 bit
error handling: none
#
mlx4_0:2
speed: 6502.32 MB/sec
capabilities:
put_short: <= 88
put_bcopy: <= 8192
put_zcopy: <= 1073741824
get_bcopy: <= 8192
get_zcopy: <= 1073741824
am_short: <= 87
am_bcopy: <= 8191
am_zcopy: <= 8191
am header: <= 127
atomic_add: 64 bit
atomic_fadd: 64 bit
atomic_swap: 64 bit
atomic_cswap: 64 bit
error handling: none
#

Testing

UCX uses Google Test Framework (https://github.com/google/googletest) This framework is intergated into project and does not require gtest preinstallation.

	location: < root >/test/gtest

	build: use –enable-gtest configuration option

	launch:

	make gtest

	update Google Test Framework:

	download latest stable version

	launch fuse_gtest_files.py [GTEST_ROOT_DIR] OUTPUT_DIR from scripts folder

	replace gtest/common/gtest.h and gtest/common/gtest-all.cc files with new from OUTPUT_DIR location.

UCP Design

Context and objects

	ucp_context_h - The global application context. This is the first object that the user creates in order to use ucp layer. Internally, it contains references to uct resources that would be used later. When creating this object, user may specify the set of required features (e.g RMA, AMO, Tag matching) which allows further optimizations.

	ucp_worker_h - Communication context with dedicated resources. Typically, either one, or one-per-thread would be created.

	ucp_ep_h - Represents a one-sided connection to a remote worker. In order to create the ep, user must pass a globally unique address, which was originally obtained from the worker. The created endpoint handle should be passed to communication functions such as put or send.

Ordering semantics

	RMA,AMO,AM - no order, tag matching - order guaranteed.

	fence - insert order between previous and subsequent operations

	flush - returns after all previous operations are remote-completed.

Active message

	might spawn on a thread.

MPI Tag Matching strategies

	Actual tag matching will happen in UCP, and will leverage UCT active messages to send the envelope.

Data specification

	Contiguous data (no lkey required)

	Non-contiguous data with strides and hierarchy, but without memory key

	Pack/unpack callbacks

	Atomics support only immediate data

Control over type of user transport

	In UCT, user would have control over transport

	In UCP, library would select best transport (according to configuration)

Connection establishment

	UCP API exposes one-sided connection establishment from worker to worker, which results in an endpoint handle which represents the connection.

	Multiple connection can be done, and will result in different ucp_ep_h object.

	UCP may create endpoint as a response to connection from remote side, even without explicit user request. In this case, there will be event notification, and user will get a handle to this new endpoint.

UCT Design

A low level transport API, which provides access to the simple and commonly supported hardware capabilities.

Transport

The library will contain an abstraction layer called “transport” or “tl”. It enables the support of different types of hardware with single API. There are multiple functions in the API, for each type of operation and data layout. Not all capabilities have to be supported, and such support is exposed through attributes.

Communication primitives

	
	Remote memory access:
	
	put

	get

	
	Remote memory atomics:
	
	add

	fetch-and-add

	swap

	compare-and-swap

	32/64 bit arguments

	active message

	flush/fence

Context and communication objects

	uct_md_h - Memory domain object. Supports memory registrations and allocation for the use of underlying transports.

	uct_md_resource_desc_t, uct_tl_resource_desc_t - Structs which hold information about resources available to the current process. Has distinctive properties such as bandwidth, latency, message rate, cpu locality.

	uct_worker_h - Groups communication resources and holds a progress engine. When explicitly progressing UCT, need to pass the worker object.

	uct_iface_h - Communication resource on a specific device with a specific transport, on a given worker. It has unique network address and can (potentially) be connected to. Also, it holds a table of active messages.

	uct_ep_h - A connection to remote peer. There are 2 ways to create it: either create an endpoint which is connected to remote interface (by its address), or create an endpoint and later connect it to a remote endpoint (p2p mode). A transport should support at least one of these method, and indicate this in capability bits.
examples: * RC: a qp * UD: address handle, reliability state * DC: address handle * Shared memory: Mapped segment

	performs RMA to any virtual addresses which was registered within the protection domain on which the remote interface is running.

Ordering semantics

	based on endpoint/transport configuration and capabilities.

	ordering property is exposed to the upper layer.

	a fence operation can be used to insert order enforcement

Completion Semantics

There are 2 types of completion a “local completion” and a “remote completion”.

	Remote completion: Remote side has performed the operation.
There is no way to track a remote completion of a particular operation. It’s only possible to wait for the remote completion of all operations issues so far, using a blocking/non-blocking flush. The exact semantics of remote completion depend on the transport and exposed as part of its capabilities. For example

	RMA: Remote memory has been written / data has been scheduled on PCI bus.

	AM: Remote callback has started / completed

	
	Local completion: User buffer can be reused.
	
	Explicit non-blocking: User will accept a handle, and the completion will be signaled on this handle.

	Implicit non-blocking: User will not request a handle, and the local completion would be implied by remote completion.

	Option to specify send completion callback. The callback thread safety semantics are same as network AM handler. After it’s called, the handle will be release by the library.

Operation handle allocation

Communication API which may not local-complete immediately will look like this:

ucs_status_t uct_OPERATION(… , uct_completion_t *comp)

For example:

 ucs_status_t uct_ep_put_zcopy(uct_ep_h ep, const void *buffer, size_t length,
 uct_mem_h memh, uint64_t remote_addr,
 uct_rkey_t rkey, uct_completion_t *comp)
* comp - Pointer to callback structure, allocated by the user, which will be used to signal local completion. The user should initialize the struct with a counter and a callback. UCT decrements the counter in case of a completion, and calls the callback whenever it reaches 0. The same pointer can be passed to multiple communication functions. If NULL, it is ignored, and in that case need to use flush to wait for local completion.
* Possible return values:
 * UCS_OK - Operation is completed locally and buffer can be reused. No request handle is returned and callback parameter is ignored.
 * UCS_INPROGRESS - The operation has started, will complete in the future. If comp != NULL, the callback will be called when local completion is known.
 * UCS_ERR_NO_RESOURCE - The operation cannot be initiated right now, but could be later. It is recommended to retry later after calling uct_worker_progress().

Usage example:

status = api_call(..., &my_handle->comp);
if (likely(status == UCS_OK)) {
 /* done */
} else if (status == UCS_INPROGRESS) {
 /* started */
} else if (status == UCS_ERR_NO_RESOURCE) {
 /* cannot be started now */
} else {
 /* error */
}

Ordering
Callback is triggered by lowest level interface. transport may be not-locally-ordered (which means completion for X does not imply local completion for 0..X-1). Therefore the high-level/user might want to put a callback for every fragment. In addition there would be a separate fence operation.

Active messages

	User would specify whether his callback is thread safe or not. If not, the transport would have to call it only during API’s progress call, and not from progress thread, if such exists.

	The callback may call any communication function, but not progress. Recursion is avoided because the callback has to take care of putting the desired operation on a pending queue, in case it cannot be initiated (returns UCS_ERR_NO_RESOURCE).

	The callback is allowed to keep the data passed to it, and release it later (example usage unexpected tags), by returning UCS_INPROGRESS.

Progress Semantics

	There is an explicit progress function for worker.

	RMA and AMO operations do not require explicit call to progress on destination side. If the transport does not support HW RMA/AMO, it should use progress thread to emulate it in SW.

Thread safety

	All API functions should be thread safe

	Interface (uct_iface_h) can progress independently from different threads.

	
	During compile time, could specify one of following:
	
	Not thread safe

	Coarse grained lock (per-context)

	Fine-grained locks (do best effort to progress same context from multiple threads)

	
	Thread safety of data structures:
	
	Every data structure will have non-thread-safe version

	Some data structures will have also thread-safe-version

	During compile time, if it’s not “fine-grained”, the thread-safe-version will be downgraded to non-thread-safe.

	When using data structure, the developer may use thread-safe version as part of fine-grained-locking version.

	
	In order to decide in runtime (ala MPI_Init_thread):
	
	Option1: load alternative library versions (e.g -mt)

	Option2: add runtime check for every lock/atomic

Memory handling

	Memory domain has support for alloc/free and register/unregister.

	Registered memory is represented by uct_mem_h

	In order to allow remote access to a memory region, the user has to get a packed rkey and send it over using and out-of-band mechanism. The packed rkey buffer is obtained by providing the memory handle.

	The side which performs the RMA unpacks the buffer, and gets an rkey_bundle_t, which contains the rkey as uct_rkey_t, and an opaque pointer used to track it resource usage.

	The rkey can be used directly for RMA.

	A memory domain may choose to cache registrations, to lower their overhead, or take advantage of on-demand-paging mechanisms.

	In UCP, there will be function which can figure out correct order to register memory with multiple transports.

Data specifications

	1.short - inline:
	
	buffer, length.

	exposes the maximal supported inline size.

	transport must guarantee a minimal size of <CONSTANT> bytes, defined in compile time. About 40 bytes.

	not supported by get()

	
	bcopy:
	
	“pack” callback, context argument, length

	memcpy() can be passed as the pack callback

	size limit is defined by bounce buffer size and exposed in transport attributes.

	
	zcopy:
	
	buffer, length, memory handle

	data must be sent as zero copy.

	local key must be valid

	
	single-dimension scatter/gather - iovec (can be either local or remote)
	
	iovec element has: pointer, length, stride, count, key / iovec+len

	the key should have been obtained from mmap functions.

	transport exposes its max number of entries in the iovec

	IB implementation note: tl will post umr-s in correct order as needed, with temporary memory keys.

	atomics - pass the arguments directly without local key, since cost of copying the result is negligible.

Connection establishment

	
	Transport supports:
	
	create_ep(iface) -> uct_ep_t - local operation

	connect_ep_to_ep(uct_ep_t, remote_iface_addr, remote_ep_addr) - both sides have to call it - most likely local operation.

	connect_ep_to_iface(uct_ep_t, remote_iface_addr) - optional by transport capabilities - one sided - it’s enough one side would call it.

	Transport exposes what it supports by setting capability flags

	DC would use only connect_to_iface()

	active message callback does not really has to know who is the sender. Only for tag matching, and in that case we already pack sender rank number.

	It’s possible to create multiple endpoints on same network context, and connect them to multiple endpoints of same destination network context. each local endpoint may have unique “index”/”tag” which is part of the address. this information would be exchanged as part of remote_ep_addr_blob.

RTE

	will not be part of the API. a user may use RTE to provide UCT the address blobs to connect to.

	callback table

	point-to-point semantics (active messages)

	consider runtimes: slurm, alps, orte, stci, hydra, lsf, torque, sge, ssh, rsh, oracle grid engine, pmi-x

UCX environment parameters

Setting the transports to use

UCX_TLS variable controls the transports to use.
In addition to the built-in transports it’s possible to use aliases which specify multiple transports.
Using a prefix before a transport name treats it as an explicit transport name rather than an alias.
Currently supported aliases:

	all

	use all the available transports.

	sm / shm

	all shared memory transports.

	mm

	shared memory transports - only memory mappers.

	ugni

	ugni_rdma and ugni_udt.

	rc

	rc and ud.

	rc_x

	rc with accelerated verbs and ud.

	ud_x

	ud with accelerated verbs.

For example:

	UCX_TLS=rc will select rc and ud

	UCX_TLS=rc,cm will select rc, ud, and cm

	UCX_TLS=rc,cm will select rc and cm

Setting the devices to use

In order to specify the devices to use for the run, please use the following environment parameters:

	UCX_NET_DEVICES for specifying the network devices. For example: mlx5_1:1 , mlx5_1:1 GEMINI

	UCX_SHM_DEVICES for specifying the shared memory devices. For example: sysv , knem

	UCX_ACC_DEVICES for specifying the acceleration devices. For example: gpu0

The following command line will use the rc_x and mm transports, and their corresponding devices will be mlx5_0:1 and sysv.
mpirun -mca pml ucx -x UCX_TLS=rc_x,mm -x UCX_NET_DEVICES=mlx5_0:1 -x UCX_SHM_DEVICES=sysv …

This way, for instance, making the choice for the HCA to use doesn’t affect the devices used for the shared memory UCTs.

If one or more of these environment variables are not set, their default values will be used.
The current default for each of them is ‘all’, which means to use all available devices and all available transports.

The following command shows the default values of these (as well as all other) environment parameters:

$./bin/ucx_info -f

For these specific ones:

$./bin/ucx_info -f | grep DEVICES
UCX_NET_DEVICES=all
UCX_SHM_DEVICES=all
UCX_ACC_DEVICES=all

using ucx_info to find UCP endpoint short bcopy zcopy rndv thresholds

	Use -n option to give expected ucp endpoint count

	Use -t option to choose ucp features

	Use environment variables UCX_TLS and UCX_NET_DEVICES to select transport and network devices

	Use tasket -c to simulate binding to the specific CPU

For example, to find short/bcopy/zcopy/rndv thresholds of the open mpi rank 0 that are used for the inter node communication run:

UCX_IB_RCACHE=y UCX_TLS=dc_x UCX_NET_DEVICES=mlx5_0:1 taskset -c 0 src/tools/info/ucx_info -n 256 -u t -e
#
UCP endpoint
#
peer: uuid 0x139638649a076593
lane[0]: 0:dc_mlx5/mlx5_0:1 md[0] -> md[0] am zcopy_rndv
#
tag_send: 0..<egr/short>..180..<egr/bcopy>..1076..<egr/zcopy>..32954..<rndv>..(inf)
tag_send_sync: 0..<egr/short>..180..<egr/bcopy>..1076..<egr/zcopy>..32954..<rndv>..(inf)

Logging

UCS has logging infrastructure. logging is controlled by a single level:

	fatal - stops the program

	error - an error which does not stop the program and can be reported back to user.

	warn - a warning which does not return error to the user.

	info
	
	debug - debugging messages, low volume, about initialization/cleanup.

	trace - debugging messages, high volume, during runtime, for “special” events.

	req - details of every send/receive request and tag matching.

	data - headers of every packet being sent/received.

	async - async notifications and progress thread.

	func - function calls and arguments.

	poll - same as func, but also for functions which do busy-polling.

Rules:

	UCS_LOG_LEVEL controls the logging level.

	When log level is selected, it enables all messages with this level or higher.

	Logging messages can be sent to stdout (default) or to a file by setting UCS_LOG_FILE

Features:

	It’s possible to define maximal log level during compile time, to avoid checks in release mode.

	It’s possible to install custom log message handler.

Profiling

Overview

UCS contains a tool to collect profiling information and save it to a file. Profiling is based on “locations”, which are places in the code to collect timestamps from.
There are 3 types of locations:

	SAMPLE - simple timestamp

	SCOPE_START - mark the beginning of a nested block (code block or function call)

	SCOPE_END - mark the end of a nested block. Scopes allow measuring the time it took to run a particular piece of code.

In addition there are several convenience macros to profile the code:

	UCS_PROFILE_CODE - Declare a profiled scope of code.

	UCS_PROFILE_FUNC - Create a profiled function.

	UCS_PROFILE_CALL - Profile a function call.

When enabling profile collection, one or more of the following modes can be used:

	accum - Accumulate time and count per location.

	log - Collect all timestamps. If the log buffer is exhausted, newer records would override old ones.

The profiling data is saved to a file when the program exits, or when UCS catches the signal SIGHUP.
In order to read it, the ucx_read_profile tool should be used:

$ ucx_read_profile -h
Usage: ucx_read_profile [options] <file>
Options:
 -r raw output
 -t UNITS select time units (sec/msec/usec/nsec)

Usage example

The following profiled code is a top-level function called my_func which is profiled, and in addition it calls printf(“Hello World!”) and profiles that call:

	UCS_PROFILE_FUNC_VOID(my_func, ()) {
	UCS_PROFILE_CALL(printf, “Hello World!n”);

}

Run an application and collect profile:

$ UCX_PROFILE_MODE=log,accum UCX_PROFILE_FILE=ucx.prof ./app

Read profile output file:

$ ucx_read_profile ucx.prof

 command : ./app
 host : my_host
 pid : 9999
 units : usec

 NAME AVG TOTAL COUNT FILE FUNCTION
 printf 15.316 15 1 profiling.c:13 my_func_inner()
 my_func 15.883 16 1 profiling.c:12 my_func()

 0.000 my_func 15.883 { profiling.c:12 my_func()
 0.332 printf 15.316 { profiling.c:13 my_func_inner()
 15.316 }
 0.236 }

Send side progress completion

Transport layer

Note: “completion” here refers to a “local completion”, e.g. send buffer can be reused.
On the low level, we can consider 2 types of operations: bcopy (including short), and zcopy (including iovec). bcopy operations can complete immediately after being fired off, whereas zcopy complete only after acknowledgement from remote peer (either in sw or in hw). Therefore for will be completion callback only for zcopy, and not for bcopy:

ucs_status_t uct_XXX_bcopy(uct_ep_h ep, ..., uint32_t flags);
ucs_status_t ucx_XXX_zcopy(uct_ep_h ep, ..., uint32_t flags, uct_req_t *req);

typedef struct uct_req {
 ucs_queue_elem_t queue;
 void (*cb)(uct_req_t *self);
} uct_req_t;

These functions will behave as follows:

	bcopy - if the operation cannot be started (and completed) immediately, UCS_ERR_WOULD_BLOCK would be returned. In that case, if flags have UCT_FLAG_PENDING, a special callback, defined per-endpoint during initialization time, would be called, whenever send resources become available for this endpoint. At this time, the user is allowed to retry the operation. Note that if the send resources are actually per-interface (in the transport implementation) - than this callback is called when this endpoint is scheduled to use them, according to transport’s scheduling policy. If the pending flag is not specified, the failure has no effect.
Note that the function cannot return UCS_ERR_INPROGRESS, since it can only complete or fail. It will not try to queue the operation.

	zcopy - behaves the same as bcopy. In addition, if the return value is UCS_INPROGRESS, and req != NULL, the callback specified in the request will be called when the operation is completed by the transport, passing the request pointer itself as the argument. It’s advised that the user would embed the request into his own structure, which may hold additional data. If req == NULL, the only way to deduce the completion of the operation, is by either a completion of a subsequent zero copy request [note: transport send completions are in-order, even if the transport itself is not ordered], or the completion of a subsequent flush.

Implementation notes:

	The transport might limit the amount of sends to single endpoint without considering other endpoints, to enforce fairness. In that case, if the limit is reached, the send will return UCS_ERR_WOULD_BLOCK.

Protocol layer - Nonblocking MPI

 ucp_send_req_h ucp_tag_send(ucp_ep_h ep, uint64_t tag, ...)
 if (retval == NULL) {
 /* completed */
 } else if (UCS_IS_ERR(retval)) {
 /* failed */
 } else {
 /* in progress */
 }

* Inline/bcopy send, without protocol - First, will try to push out as many fragments as possible to the transport bcopy send. Pass UCS_FLAG_PENDING. If the transport returns UCS_ERR_WOULD_BLOCK, allocate a request, and add it to the ep's pending queue. Whenever the pending callback is called, progress the pending queue and finally complete this request. In the mean time, return the request to the user.
* Zcopy/Rendezvous - Since this is not going to complete immediately, we might as well allocate a request from the start. So we do, and if we need to push zcopy fragments, embed a uct_req_t inside the request, pass its pointer when sending the last zero copy fragment.

Protocol layer - blocking MPI

We can either use the non-blocking functions, or just progress everything from withing the function, using local variables/structs for uct_req_t if we need it. No need to pass UCS_FLAG_PENDING; we can just call the transport functions repeatedly until they finally send.

SHMEM

Since we have only blocking calls, we can just repeatedly call the transport send function, until it finally sends.

Statistics

Throughout the code there are counting points. The counters are divided into classes. The classes are arranged in a hierarchy. An example of classes and their relation maybe:

ucp_worker->uct_iface->uct_ep->rc_fc

For example the group uct_ep contains the counters:am, put, get, atomic, bytes_short, bytes_bcopy, bytes_zcopy, no_res, flush, flush_wait.

The counters may be printed in two ways: full report and summary. In full report mode all classes and their counters will be printed. The user may specify the subset of the counters to be printed, either as a list of counters or as a list of regular expressions (globing). The result will be a single line. For example if the user specified the following

list:=*copy*,*eager*

then the result will look like:

[elrond1:13966] ucp_worker{rx_eager_msg:10000 rx_eager_chunk_exp:1670000 rx_eager_chunk_unexp:0} ucp_ep{tx_eager:10000 tx_eager_sync:0} uct_ep{bytes_bcopy:10253440130 uct_ep.bytes_zcopy:0}

Each counter will be an accumulation of all instances within its class. For example: uct_ep.bytes_bcopy has 2 instances in:

ucp_worker-0x6aeb90:

 uct_iface-mlx5_0:1-0x6b4760:

 uct_ep-0x7289d0:

 bytes_bcopy: 10253440000

 uct_iface-mlx5_0:1-0x716020:

 uct_ep-0x732a30:

 bytes_bcopy: 130

The list of counters or regular expressions is defined in the UCX_STATS_FILTER environment variable. If UCX_STATS_FILTER=* then full report will be provided. Otherwize a summary.

GCN asm Tutorial

The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. In a previous blog we described how to combine several languages in a single program using ROCm and Hsaco. This article explains how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture. I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s capabilities. Some reasons are the following:

	The program may be written in a high level language that does not expose all of the features available on the hardware.

	The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra]). Recent hardware architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To become more familiar with the instruction set, review the GCN ISA Reference Guide [https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf]. Note: the assembler is currently experimental; some of syntax we describe may change.

DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index, __global uint * out)
{
 size_t i = get_global_id(0);
 out[i] = in[index[i]];
}

Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding between variables—except to honor the requirements of natural alignment and any align qualifier. The example host program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like the following:

/*
* This is the host-side representation of the kernel arguments that the simplePermute kernel expects.
*/
struct simplePermute_args_t {
 uint32_t * in;
 uint32_t * index;
 uint32_t * out;
};
/*
 * Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate(kernarg_region, sizeof(simplePermute_args_t), (void**)(&args));
assert(HSA_STATUS_SUCCESS == status);
aql->kernarg_address = args;
/*
* Write the args directly to the kernargs buffer;
* the code assumes that memory is already allocated for the
* buffers that in_ptr, index_ptr and out_ptr point to
*/
args->in = in_ptr;
args->index = index_ptr;
args->out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 * sizeof(void*))) { return false; }

// Create buffers
Buffer *in, *index, *out;
in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer(size);

// Fill Kernarg memory
Kernarg(in); // Add base pointer to “in” buffer
Kernarg(index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the kernel, such as

	The LDS size

	The number of GPRs

	Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in the AMDGPU-ABI [http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer#introduction] specification. This is what it looks like in source code:

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t
enable_sgpr_kernarg_segment_ptr = 1
is_ptr64 = 1
compute_pgm_rsrc1_vgprs = 1
compute_pgm_rsrc1_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5
.end_amd_kernel_code_t

s_load_dwordx2 s[4:5], s[0:1], 0x10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_lshlrev_b32 v0, 2, v0
s_waitcnt lgkmcnt(0)
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc
flat_load_dword v1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vmcnt(0) & lgkmcnt(0)
v_lshlrev_b32 v1, 2, v1
ds_bpermute_b32 v1, v1, v2
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkmcnt(0)
flat_store_dword v[3:4], v1
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully, this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension. Registers v1 and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1] registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is the scheme showing initial state for our kernel. initial_state

The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward, however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wavefront_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs v0–v4, so workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0–s5, since the special registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Previous generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers. The fields compute_pgm_rsrc1_*gprs contain a device-specific number for each register-block type to allocate for a wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following formulas for all three GCN GPU generations:

compute_pgm_rsrc1_vgprs = (workitem_vgpr_count-1)/4

compute_pgm_rsrc1_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into s[2:3] from kernarg
v_lshlrev_b32 v0, 2, v0 // v0 *= 4;
s_waitcnt lgkmcnt(0) // wait for memory reads to finish

// compute address of corresponding element of index buffer
// i.e. v[1:2] = &index[workitem_id]
v_add_u32 v1, vcc, s2, v0
v_mov_b32 v2, s3
v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer
// i.e. v[3:4] = &in[workitem_id]
v_add_u32 v3, vcc, s0, v0
v_mov_b32 v4, s1
v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword v1, v[1:2] // load index[workitem_id] into v1
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vmcnt(0) & lgkmcnt(0) // wait for memory reads to finish

// v1 *= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_lshlrev_b32 v1, 2, v1

// perform permutation
// temp[thread_id] = v2
// v1 = temp[v1]
// effectively we got v1 = in[index[thread_id]]
ds_bpermute_b32 v1, v1, v2

// compute address of corresponding element of out buffer
// i.e. v[3:4] = &out[workitem_id]
v_add_u32 v3, vcc, s4, v0
v_mov_b32 v2, s5
v_addc_u32 v4, vcc, v2, 0, vcc

s_waitcnt lgkmcnt(0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = v1
flat_store_dword v[3:4], v1

s_endpgm

Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so you can use Clang to do all the necessary magic:

clang -x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The GitHub examples [https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra] use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

Optimizing-Dispatches

ROCm with Rapid Harmony : Optimizing HSA Dispatch

We previously [https://rocm.github.io/rocncloc.html] looked at how to launch an OpenCL™ kernel using the HSA runtime. That example showed the basics of using the HSA Runtime. Here [https://github.com/ROCm-Developer-Tools/HCC-Example-Application/tree/master/BitonicSort-CL-from-HCC] we’ll turn up the tempo a bit by optimizing the launch code - moving some expensive operations into the setup code (rather than on each dispatch), removing host-side synchronization, and optimizing the memory fences to the bare minimum required. We’ll measure the contributions of the different optimizations and discuss the results.The code is available at the same GitHub repository [https://github.com/ROCm-Developer-Tools/HCC-Example-Application/tree/master/BitonicSort-CL-from-HCC] as before and the optimizations can be enabled with a series of command-line switches.

Optimizing

Bitonic sort involves running the same kernel several times. For the default array length of 32768, the algorithm launches 120 kernels. The original OpenCL code and the associated port used in the example synchronize with the host after each of the kernel code. To improve performance, we can submit all 120 kernels at one time, and only synchronize with the host after the last one completes. To make this change, we will need to restructure the BitonicSort::run call as follows:

	Each kernel still needs to wait for the previous kernel to finish executing. The AQL packet in the HSA system architecture defines a “barrier” bit which provides exactly this synchronization – packets with the barrier bit set will wait for all preceding kernels in the same queue to complete before beginning their own execution. Barrier-bit synchronization only works for commands in the same queue, but will be more efficient than using signals in the cases where it applies. So we’ll set the barrier bit for all the kernels to provide the required synchronization between kernels, and therefore will only need to use a completion_signal for the last kernel in the sequence. (all other kernels set the completion_signal to 0, which saves an atomic decrement operation when the command finishes.) This optimization is marked with p_optPreallocSignal.

	In HSA, each kernel submission requires a block of “kernarg” memory to hold the kernel arguments. The baseline implementation allocates a single kernarg block and re-uses it for each kernel submission. In the optimized version, we submit all the kernels at the same time, but with different kernel arguments, so we must ensure that each kernel has its own kernarg block. The code actually performs a single kernarg allocation with enough space to cover all of the inflight kernels. Additionally, the code aligns each kernarg block on a 64-byte cache line boundary. This avoids false-sharing cases where the GPU is reading kernargs for one command while the host is writing arguments for another kernel, causing the cache line to ping-pong between CPU and GPU caches. The kernarg optimizations are marked with p_optPreallocKernarg.

	The function bitonicSortGPU_opt contains the optimized loop which submits the batch of 120 kernels to the GPU. This code is marked with o_optAvoidHostSync).

	Each AQL kernel dispatch packet contains a field that controls the memory fences applied before and after the kernel executes. In the baseline implementation, the fences conservatively specify system visibility for both acquire and release fences. (The subject of fences and what they control is well beyond the scope of this document but it covered extensively in the HSA System Architecture Specification Memory Model. It turns out we can make a more surgical use of these fences in the optimized version: (code marked with p_optFence)

	The first kernel needs a system acquire fence to make sure it gets the data from the host->device copy.
The last kernel needs a system release fence to make sure it releases the data for the device->host copy.
All of the intermediate kernels only need to use “agent” level fences. On the AMD Fiji hardware, agent-scope fences are significantly faster than system-scope fences since the former flush only the L1 caches while the latter flush both the L1 and the L2 caches.

 // Optimize HSA Fences
 if (p_optFence) {
 aql.header =
 (HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE) |
 (1 << HSA_PACKET_HEADER_BARRIER);

 bool setFence=false;

 if (kernelCount == 1) {

 // first packet needs to acquire from system to make sure it gets the host->device copy:
 aql.header |= (HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE);
 aql.header |= (HSA_FENCE_SCOPE_AGENT << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE); setFence = true;

 }

 if (kernelCount == numKernels) {
 // last packet needs to release to system to make sure data is visible for device->host copy:
 aql.header |= (HSA_FENCE_SCOPE_AGENT << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE);
 aql.header |= (HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE);
 setFence = true;
 }

 if (!setFence) {
 // fences at agent scope:
 aql.header |= (HSA_FENCE_SCOPE_AGENT << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE);
 aql.header |= (HSA_FENCE_SCOPE_AGENT << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE);
 }
 }

* The flag p_optPinHost uses hc::am_alloc with the amPinnedHost flag to allocate pinned host memory. Pinned host memory accelerates the data transfer operations since the runtime will identify that the memory is already pinned and thus immediately start the DMA transactions - this achieves a peak transfer rate of 13-14GB/s. Unpinned memory is transferred through a host-side staging buffer and can be transferred at 6-7GB/s.

Results

After making these changes, we see the speedups shown in the chart and table below.

[image: ../_images/perf-data.png]
The timing numbers shown here includes the time to transfer the array to the GPU, run all of the kernels, and transfer back the result. The numbers do not include time spent initializing the runtime, allocating memory, or performing the result verification. The times show the time required to sort 32768 integers using 120 kernels. This is relatively small size to offload to the GPU (only 128K) and as a result the kernels run in 3-4 us, which stresses the HSA runtime features that we want to discuss.

	
	Baseline

	+optPreallocSignal

	+optPreallocKernarg

	+optAvoidHostSync

	+optFence

	+optPinnedHost

	RunTime/Iteration (us)

	1943

	1906

	1869

	1665

	1221

	1137

	Delta/Iteration(us)

	
	-37

	-37

	-204

	-444

	-84

The results show that signal allocation and kernarg allocation both take approximately 37us to complete, which makes sense since both operations require a trip into kernel space (ROCK) and perform memory allocation. Even the baseline operation shares the signal and kernarg allocation for all 120 kernels but the overhead here is still significant. Kernels can be dispatched in 5-10us each, so optimal programs definitely will want to perform these operations outside of the critical path. The optimized code path here moves these operations into the setup routine. Another option is to create a buffer pool of signals and kernargs (this is the approach used by HCC [https://github.com/RadeonOpenCompute/hcc/blob/master/lib/hsa/mcwamp_hsa.cpp#L47]) or to use thread-local-storage (if thread-safety is required).

Avoiding the host synchronization saves 204us, or about 1.7us per kernel.

The system-scope fences are fairly expensive - Fiji has a 2MB L2 cache, and it takes 3-4 us to flush the entire thing. Additionally, the bitonic kernel default size is only 128K (32K elements * 4 bytes/element) which can easily fit in the L2 cache. Each kernel in the sequence then reads from the L2 and writes the data back to it. By optimizing these fences to use AGENT scope when possible, we are able to save approximately 3.7us per kernel launch.

Finally, using pinned host memory improves the transfer speeds from around 6GB/s to 14GB/s. In this workload, we see a modest performance improvement (84us) since most of the benchmark is spent running the kernels and synchronizing between them.

Overall the performance improvement from these optimizations is 1.7X faster than the baseline version.

Reference

Wikipedia [https://en.m.wikipedia.org/wiki/Bitonic_sorter] has a nice description of the Bitonic sort algorithm, including pictures. Eric Bainville wrote a nice explanation here [http://www.bealto.com/gpu-sorting_intro.html] describing how to optimize Bitonic Sort for the GPU.

MultiGPU In-node and Out of Node P2P Solutions

In-node

	Large BAR support BAR = Base Address Register Making the GPU memory visible BAR 1 Region Suppoted in Radeon Instinct MI25,MI8, MI6

	ROCr Base driver has P2P API support

	ROCr (HSA) AGENT API with Peer to Peer support [http://www.hsafoundation.com/html_spec111/HSA_Library.htm#Runtime/Topics/02_Core/hsa_iterate_agents.htm%3FTocPath%3DHSA%2520Runtime%2520Programmer%25E2%2580%2599s%2520Reference%2520Manual%2520Version%25201.1.1%2520%7CChapter%25202.%2520HSA%2520Core%2520Programming%2520Guide%7C2.3%2520System%2520and%2520agent%2520information%7C2.3.1%2520System%2520and%2520agent%2520information%2520API%7C_____18].

	HCC Language Runtime support of P2P ROCr Agent API [https://scchan.github.io/hcc/classhc_1_1accelerator.html#aebd49b998f9421bd032ea450cbafd247].

	HIP Language Runtime support of P2P P2P API’s model after CUDA P2P API’s [http://rocm-developer-tools.github.io/HIP/group__PeerToPeer.html].

	
	OpenCL Language Runtime P2P API Peer-to-Peer API with Autocopy support over Intel QPI bus
	
	API name - clEnqueueBufferCopyP2PAMD

	Releasing in OpenCL with ROCm 1.6.2

	HIP based Communication Primitives Helper Library to make it easier to use P2P - In Development

	ROCr level IPC Inter Process Communication API

	IPC is Supported in HIP API

Out of Node

	Remote DMA technology (RDMA) Peer-to-Peer bridge driver for PeerDirect [https://github.com/RadeonOpenCompute/ROCnRDMA].

	libibverbs Linux RDMA library YES -since ROCm 1.0 [https://github.com/RadeonOpenCompute/ROCnRDMA].

	PeerDirect Mellanox Peer API for Infiniband [https://community.mellanox.com/docs/DOC-2486].

Standard Frameworks for Out of Node Communication

	OpenUCX UCX is a communication library implementing high-performance messaging for MPI/PGAS frameworks - In Development [http://www.openucx.org./] Source for ROCm [https://github.com/openucx/ucx/tree/master/src/uct/rocm].

	OpenMPI Open MPI Project is an open source Message Passing Interface https://www.open-mpi.org In Development [https://github.com/openucx/ucx/wiki/OpenMPI-and-OpenSHMEM-installation-with-UCX].

	MPICH MPICH is a high-performance and widely portable implementation of the Message Passing Interface (MPI) standard (MPI-1, MPI-2 and MPI-3) [https://www.mpich.org/about/overview/] In Development [https://www.mpich.org/2016/08/30/mpich-3-3a1-released/].

	OpenSHMEM Partitioned Global Address Space & Communication Library - In Development [https://github.com/openucx/ucx/wiki/OpenMPI-and-OpenSHMEM-installation-with-UCX].

	OSU benchmark to test performance [https://github.com/ROCm-Developer-Tools/OSU_Microbenchmarks].

ROCm Learning Center

Refer to the new ROCm Learning Center for tutorials and presentations!

https://developer.amd.com/resources/rocm-resources/rocm-learning-center/

Other Articles of Interest

	hipCaffe: the HIP Port of Caffe How use Caffe on ROCm

	Vector-Add [https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/master/vectorAdd] example ussing the HIP Programing Language

	mini-nbody: A simple N-body Code This sample demonstrates the use of the HIP API for a mini n-body problem.

	GCN asm Tutorial Assembly Sample The Art of AMDGCN Assembly:How to Bend the Machine to Your Will. This tutorial demonstrates GCN assembly with ROCm application development.

	Optimizing-Dispatches ROCm With Rapid Harmony: Optimizing HSA Dispatch: This tutorial shows how to optimize HSA dispatch performance for ROCm application development.

	CLOC offline compiler ROCm With Harmony: Combining OpenCL Kernels, HCC and HSA in a Single Program. This tutorial demonstrates how to compile OpenCL kernels using the CL offline compiler (CLOC) and integrate them with HCC C++ compiled ROCm applications.

	The AMD GCN Architecture - A Crash Course, by Layla Mah [https://www.slideshare.net/DevCentralAMD/gs4106-the-amd-gcn-architecture-a-crash-course-by-layla-mah]

	AMD GCN Architecture White paper [https://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf]

	MultiGPU In-node and Out of Node P2P Solutions

Legal Disclaimer

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD’s Standard Terms and Conditions of Sale. AMD, the AMD Arrow logo, Radeon, Ryzen, Epyc, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Google® is a registered trademark of Google LLC.
PCIe® is a registered trademark of PCI-SIG Corporation.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Ubuntu and the Ubuntu logo are registered trademarks of Canonical Ltd.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

hipCaffe: the HIP Port of Caffe

Introduction

This repository hosts the HIP port of Caffe (or hipCaffe, for short). For details on HIP, please refer here. This HIP-ported framework is able to target both AMD ROCm and Nvidia CUDA devices from the same source code. Hardware-specific optimized library calls are also supported within this codebase.

Prerequisites

Hardware Requirements

	For ROCm hardware requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#system-requirement] .

Software and Driver Requirements

	For ROCm software requirements, see here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu]

Installation

AMD ROCm Installation

For further background information on ROCm, refer here [http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu].

Installing ROCm Debian packages:

PKG_REPO="http://repo.radeon.com/rocm/apt/debian/"

wget -qO - $PKG_REPO/rocm.gpg.key | sudo apt-key add -

sudo sh -c "echo deb [arch=amd64] $PKG_REPO xenial main > /etc/apt/sources.list.d/rocm.list"

sudo apt-get update

sudo apt-get install rocm rocm-utils rocm-opencl rocm-opencl-dev rocm-profiler cxlactivitylogger

echo 'export PATH=/opt/rocm/bin:$PATH' >> $HOME/.bashrc

echo 'export LD_LIBRARY_PATH=/opt/rocm/lib:$LD_LIBRARY_PATH' >> $HOME/.bashrc

source $HOME/.bashrc

sudo reboot

Then, verify the installation. Double-check your kernel (at a minimum, you should see “kfd” in the name):

uname -r

In addition, check that you can run the simple HSA vector_copy sample application:

cd /opt/rocm/hsa/sample
make
./vector_copy

Pre-requisites Installation

Install Caffe dependencies:

sudo apt-get install \
 pkg-config \
 protobuf-compiler \
 libprotobuf-dev \
 libleveldb-dev \
 libsnappy-dev \
 libhdf5-serial-dev \
 libatlas-base-dev \
 libboost-all-dev \
 libgflags-dev \
 libgoogle-glog-dev \
 liblmdb-dev \
 python-numpy python-scipy python3-dev python-yaml python-pip \
 libopencv-dev \
 libfftw3-dev \
 libelf-dev

Install the necessary ROCm compute libraries:

sudo apt-get install rocm-libs miopen-hip miopengemm

hipCaffe Build Steps

Clone hipCaffe:

git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git

cd hipCaffe

You may need to modify the Makefile.config file for your own installation. Then, build it:

cp ./Makefile.config.example ./Makefile.config
make

To improve build time, consider invoking parallel make with the “-j$(nproc)” flag.

Unit Testing

Run the following commands to perform unit testing of different components of Caffe.

make test
./build/test/test_all.testbin

Example Workloads

MNIST training

Steps:

./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

CIFAR-10 training

Steps:

./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt

CaffeNet inference

Steps:

./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin \ models/bvlc_reference_caffenet/deploy.prototxt \models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \data/ilsvrc12/imagenet_mean.binaryproto \data/ilsvrc12/synset_words.txt \examples/images/cat.jpg

Soumith’s Convnet benchmarks

Steps:

git clone https://github.com/soumith/convnet-benchmarks.git
cd convnet-benchmarks/caffe

OPTIONAL: reduce the batch sizes to avoid running out of memory for GoogleNet and VGG. For example, these configs work on Fiji: sed -i ‘s|input_dim: 128|input_dim: 8|1’ imagenet_winners/googlenet.prototxt

export CAFFE_ROOT=/path/to/your/caffe/installation
sed -i 's#./caffe/build/tools/caffe#$CAFFE_ROOT/build/tools/caffe#' ./run_imagenet.sh
./run_imagenet.sh

Known Issues

Temp workaround for multi-GPU data transfer error

Sometimes when training with multiple GPUs, we hit this type of error signature:

*** SIGSEGV (@0x0) received by PID 57122 (TID 0x7fd841500b80) from PID 0; stack trace: ***
 @ 0x7fd8409a1390 (unknown)
 @ 0x7fd8400a71f7 (unknown)
 @ 0x7fd840515263 (unknown)
 @ 0x7fd81f5ef907 UnpinnedCopyEngine::CopyHostToDevice()
 @ 0x7fd81f5d3bb9 HSACopy::syncCopyExt()
 @ 0x7fd81f5d28bc Kalmar::HSAQueue::copy_ext()
 @ 0x7fd8410dba5b ihipStream_t::locked_copySync()
 @ 0x7fd8411030bf hipMemcpy
 @ 0x6cfd43 caffe::caffe_gpu_rng_uniform()
 @ 0x5a32ba caffe::DropoutLayer<>::Forward_gpu()
 @ 0x430bbf caffe::Layer<>::Forward()
 @ 0x6fefe7 caffe::Net<>::ForwardFromTo()
 @ 0x6feeff caffe::Net<>::Forward()
 @ 0x801e8c caffe::Solver<>::Step()
 @ 0x8015c3 caffe::Solver<>::Solve()
 @ 0x71a277 caffe::P2PSync<>::Run()
 @ 0x42dcbc train()

See this comment [https://github.com/ROCmSoftwarePlatform/hipCaffe/issues/11#issuecomment-318518802].

In short, here’s the temporary workaround:

export HCC_UNPINNED_COPY_MODE=2

Tutorials

hipCaffe Quickstart Guide

hipCaffe Quickstart Guide

In this quickstart guide, we’ll walk through the steps for ROCm installation. Then, we’ll run a few training and inference experiments and check their accuracy.

Install ROCm

Here are the main ROCm components we’ll be using:

sudo apt install rocm-dkms
sudo apt-get install rocm-libs
sudo apt-get install miopen-hip miopengemm

And some misc packages:

sudo apt-get install -y \
 g++-multilib \
 libunwind-dev \
 git \
 cmake cmake-curses-gui \
 vim \
 emacs-nox \
 curl \
 wget \
 rpm \
 unzip \
 bc

Verify ROCm

Test a simple HIP sample:

cp -r /opt/rocm/hip/samples ~/hip-samples && cd ~/hip-samples/0_Intro/square/

make

./square.out

Install hipCaffe

Handle the Caffe dependencies first:

sudo apt-get install -y \
 pkg-config \
 protobuf-compiler \
 libprotobuf-dev \
 libleveldb-dev \
 libsnappy-dev \
 libhdf5-serial-dev \
 libatlas-base-dev \
 libboost-all-dev \
 libgflags-dev \
 libgoogle-glog-dev \
 liblmdb-dev \
 python-numpy python-scipy python3-dev python-yaml python-pip \
 python-skimage python-opencv python-protobuf \
 libopencv-dev \
 libfftw3-dev \
 libelf-dev

Note that you might need minor changes to Makefile.config (system dependent):

cd ~

git clone https://github.com/ROCmSoftwarePlatform/hipCaffe.git

cd hipCaffe

cp ./Makefile.config.example ./Makefile.config

make -j$(nproc)

Workloads

MNIST training

Details on MNIST training can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/mnist/readme.md].

Here are the basic instructions:

./data/mnist/get_mnist.sh
./examples/mnist/create_mnist.sh
./examples/mnist/train_lenet.sh

Expected result: >99% accuracy after 10000 iterations

I0717 21:06:03.349702 9965 solver.cpp:279] Solving LeNet
I0717 21:06:03.349711 9965 solver.cpp:280] Learning Rate Policy: inv
I0717 21:06:03.351486 9965 solver.cpp:337] Iteration 0, Testing net (#0)
I0717 21:06:05.472965 9965 solver.cpp:404] Test net output #0: accuracy = 0.1296
I0717 21:06:05.473023 9965 solver.cpp:404] Test net output #1: loss = 2.49735 (* 1 = 2.49735 loss)
I0717 21:06:08.612304 9965 solver.cpp:228] Iteration 0, loss = 2.42257
I0717 21:06:08.612390 9965 solver.cpp:244] Train net output #0: loss = 2.42257 (* 1 = 2.42257 loss)
I0717 21:06:08.612417 9965 sgd_solver.cpp:106] Iteration 0, lr = 0.01
...
I0717 21:06:58.502200 9965 solver.cpp:317] Iteration 10000, loss = 0.00258486
I0717 21:06:58.502228 9965 solver.cpp:337] Iteration 10000, Testing net (#0)
I0717 21:06:58.701591 9965 solver.cpp:404] Test net output #0: accuracy = 0.9917
I0717 21:06:58.701642 9965 solver.cpp:404] Test net output #1: loss = 0.0269806 (* 1 = 0.0269806 loss)
I0717 21:06:58.701668 9965 solver.cpp:322] Optimization Done.

CIFAR-10 training

Details on CIFAR-10 training can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/cifar10/readme.md].

Here are the basic instructions:

./data/cifar10/get_cifar10.sh
./examples/cifar10/create_cifar10.sh
./build/tools/caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt

Expected result: >70% accuracy after 4000 iterations

I0727 18:29:35.248363 33 solver.cpp:279] Solving CIFAR10_quick
I0727 18:29:35.248366 33 solver.cpp:280] Learning Rate Policy: fixed
I0727 18:29:35.248883 33 solver.cpp:337] Iteration 0, Testing net (#0)
I0727 18:29:37.263290 33 solver.cpp:404] Test net output #0: accuracy = 0.0779
I0727 18:29:37.263319 33 solver.cpp:404] Test net output #1: loss = 2.30241 (* 1 = 2.30241 loss)
I0727 18:29:40.074849 33 solver.cpp:228] Iteration 0, loss = 2.3028
I0727 18:29:40.074874 33 solver.cpp:244] Train net output #0: loss = 2.3028 (* 1 = 2.3028 loss)
I0727 18:29:40.074894 33 sgd_solver.cpp:106] Iteration 0, lr = 0.001
...
I0727 18:30:13.425905 33 solver.cpp:317] Iteration 4000, loss = 0.536751
I0727 18:30:13.425920 33 solver.cpp:337] Iteration 4000, Testing net (#0)
I0727 18:30:13.722070 33 solver.cpp:404] Test net output #0: accuracy = 0.7124
I0727 18:30:13.722090 33 solver.cpp:404] Test net output #1: loss = 0.848089 (* 1 = 0.848089 loss)
I0727 18:30:13.722095 33 solver.cpp:322] Optimization Done.

CaffeNet inference

Details on CaffeNet inference can be found at this link [https://github.com/BVLC/caffe/blob/master/examples/cpp_classification/readme.md].

Here are the basic instructions:

./data/ilsvrc12/get_ilsvrc_aux.sh
./scripts/download_model_binary.py models/bvlc_reference_caffenet
./build/examples/cpp_classification/classification.bin models/bvlc_reference_caffenet/deploy.prototxt models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel data/ilsvrc12/imagenet_mean.binaryproto data/ilsvrc12/synset_words.txt examples/images/cat.jpg

Expected result: (note the ordering and associated percentages)

---------- Prediction for examples/images/cat.jpg ----------
0.3134 - "n02123045 tabby, tabby cat"
0.2380 - "n02123159 tiger cat"
0.1235 - "n02124075 Egyptian cat"
0.1003 - "n02119022 red fox, Vulpes vulpes"
0.0715 - "n02127052 lynx, catamount"

mini-nbody: A simple N-body Code

	For Github Repository check HERE [https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/master/mini-nbody]

A simple gravitational N-body simulation in less than 100 lines of C code, with CUDA optimizations.

Benchmarks

There are 5 different benchmarks provided for CUDA and MIC platforms.

	nbody-orig : the original, unoptimized simulation (also for CPU)

	nbody-soa : Conversion from array of structures (AOS) data layout to structure of arrays (SOA) data layout

	nbody-flush : Flush denormals to zero (no code changes, just a command line option)

	nbody-block : Cache blocking

	nbody-unroll / nbody-align : platform specific final optimizations (loop unrolling in CUDA, and data alignment on MIC)

Files

nbody.c : simple, unoptimized OpenMP C code timer.h : simple cross-OS timing code

Each directory below includes scripts for building and running a “shmoo” of five successive optimizations of the code over a range of data sizes from 1024 to 524,288 bodies.

cuda/ : folder containing CUDA optimized versions of the original C code (in order of performance on Tesla K20c GPU)

	nbody-orig.cu : a straight port of the code to CUDA (shmoo-cuda-nbody-orig.sh)

	nbody-soa.cu : conversion to structure of arrays (SOA) data layout (shmoo-cuda-nbody-soa.sh)

	nbody-soa.cu + ftz : Enable flush denorms to zero (shmoo-cuda-nbody-ftz.sh)

	nbody-block.cu : cache blocking in CUDA shared memory (shmoo-cuda-nbody-block.sh)

	nbody-unroll.cu : addition of “#pragma unroll” to inner loop (shmoo-cuda-nbody-unroll.sh)

HIP/ : folder containing HIP optimized versions of the original C code (in order of performance on FIJI NANO)

	nbody-orig.cpp : a straight port of the code to HIP (HIP-nbody-orig.sh)

	nbody-soa.cpp : conversion to structure of arrays (SOA) data layout (HIP-nbody-soa.sh)

	nbody-block.cu : cache blocking in CUDA shared memory (shmoo-cuda-nbody-block.sh)

mic/ : folder containing Intel Xeon Phi (MIC) optimized versions of the original C code (in order of performance on Xeon Phi 7110P)

	../nbody-orig.cu : original code (shmoo-mic-nbody-orig.sh)

	nbody-soa.c : conversion to structure of arrays (SOA) data layout (shmoo-mic-nbody-soa.sh)

	nbody-soa.cu + ftz : Enable flush denorms to zero (shmoo-mic-nbody-ftz.sh)

	nbody-block.c : cache blocking via loop splitting (shmoo-mic-nbody-block.sh)

	nbody-align.c : aligned memory allocation and vector access (shmoo-mic-nbody-align.sh)

CLOC offline compiler

ROCm With Harmony: Combining OpenCL, HCC, and HSA in a Single Program

Introduction

In a previous blog we discussed the different languages available on the ROCm platform. Here we’ll show you how to combine several of these languages in a single program:

	We’ll use an offline OpenCL™ compiler to compile the “BitonicSort” OpenCL kernel (from the AMD APP SDK) into a standard HSA code object (“hsaco”) format.

	The host code will employ HCC’s hc dialect for device discovery (ie hc::accelerator and hc::accelerator_view) and memory management (hc::array)

	The actual dispatch will use the low-level HSA Runtime calls. Recall that ROCR is an implementation of the HSA Runtime with extensions for multi-GPU configurations. We’ll show you how to extract HSA queue and agent structures from the HCC C++ ones, and then use them to perform the kernel launch.

There are several reasons you might want to do something along these lines. First, many kernels exist in OpenCL and re-using this existing investment can save time. The OpenCL kernel language is widely-used, and it enables programmers to use advanced GPU features including local memory, rich math functions, and vector operations. But the OpenCL runtime can be verbose and the memory interface can be difficult to control and optimize. HCC provides the advantage of a full C++ runtime but also full control over the memory allocation and copies. Using the techniques we’ll show you here, you can employ OpenCL kernels without having to port the host runtime code to OpenCL. This approach offers a significant advantage for larger C++ programs that can use a few optimized OpenCL kernels while sticking with C++ kernels and features for the rest of the program.

hsaco : The Common Currency

Hsaco is informally pronounced “sock-o” (with a slight emphasis on the first letter to reflect the otherwise silent “h”). It’s a standard ELF file ;`ELF <https://en.wikipedia.org/wiki/Executable_and_Linkable_Format>`_ (“Executable and Linkable Format”) is a container format widely used in Linux to store object code, and the hsaco ELF container organization matches the one generated by the popular LLVM tool chain. Hsaco stores the compiled GCN code in the .text section, it optionally contains debug information, and it defines symbols that allow the host code to find the kernel entrypoints and functions. Like other ELF files, code objects can contain multiple kernels, functions, and data – so when using hsaco you will need to specify both the code object and the desired symbol. Refer to the detailed description [https://github.com/RadeonOpenCompute/ROCm-Docs] of the hsaco format for more information. Many tools in AMD’s compiler chain generate and use the hsaco format including OpenCL, HCC, HIP, the GCN assembler and the HSAIL Finalizer. Kernel code contained in hsaco can be extracted and then launched onto the GPU.Additionally, the dissembler tool [https://github.com/ROCm-Developer-Tools/LLVM-AMDGPU-Assembler-Extra] can disassemble hsaco files so you can see what is going on inside the kernel. In a future blog, we’ll talk about using the same techniques described here to assemble and then launch kernels written in GCN assembly. Essentially, hsaco is the interchange format used to pass code between these different tools, and allows code written in different languages to be used together.

Compiling an OpenCL Kernel into hsaco

The Makefile shows the usage of the CLOC [https://github.com/HSAFoundation/CLOC] (CL Offline Compiler) tool to compile the CL kernel into the hsaco file. Here’s the relevant call to CLOC: /opt/rocm/cloc/bin/cloc.sh BitonicSort_Kernels.cl -o BitonicSort_Kernels.hsaco

Using hsaco:

This example shows two methods for accessing the hsaco data from the host application :

	Use a separate file and load it using C++ file I/O code. See the load_hsa_from_file() command. This path is enabled when p_loadKernelFromFile=true.

	Serialize the code into a global string and thus directly link the hsaco into the executable. This approach avoids the need to find the hsaco file at runtime. This path is enabled when p_loadKernelFromFile=false.

The “load_hsa_code_object” shows the use of the standard HSA Runtime API calls to load the code object into memory and extract the pointer to the BitonicSort kernel. If we were working with an HSAIL or BRIG kernel we would first call the finalizer which would produce hsaco data, and the use these exact same finalizer APIs to load the hsaco into memory and find the desired symbols. This is a powerful and extremely useful concept that allows applications using the HSA Runtime to support either:

	An industry standard portable intermediate language (HSAIL/BRIG) that can be finalized to a vendor-specific binary, or

	A standard ELF container that stores vendor-specific binary code (hsaco). This flavor supports vendor-specific ISA inside a standard container format, and still benefits from the standard HSA runtime API. Effectively this enables use cases where apps and tools can use the HSA Runtime APIs without using HSAIL, and still retain source code portability.

The picture below shows the different steps in the code loading process, and in particular the clean separation between the pre-finalization (green) and post-finalization (yellow) steps.

[image: ../_images/finalizer-executable-hsail-flow.png]

Making HCC Sing

The example uses the hc C++ dialect to select the default accelerator and queue. To launch the hsaco file we’ve created, we need to make HCC reveal the details of the HSA data structure that live under the covers. Here’s the critical piece of code that shows how to get from the HCC world to the HSA world using “hc::accelerator_view::get_hsa_queue”:

//_acc is type hc::accelerator.

// Select default queue

hc::accelerator_view av = _acc.get_default_view();

// Extract the HSA queue from the accelerator view:
hsa_queue_t *hsaQueue = static_cast<hsa_queue_t*> (av.get_hsa_queue());

Now that we have an HSA queue we can use the low-level HSA runtime API to enqueue the kernel for execution on the GPU. The code creates an “AQL” packet, uses the hsa runtime APIs (such as hsa_queue_store_write_index_relaxed) to place the packet into the queue and make it visible to the GPU for execution. More details in the code. This capability is a quite useful since we can now mix HCC kernels (submitted with parallel_for_each) with kernels in hsaco format (from OpenCL kernels, or assembly, or other sources) in the same application or even in the same queue. For example, libraries can benefit from this architecture : the library interface can be based on HCC structures (accelerator, accelerator_view, completion_future) while the implementation uses HSA Runtime and hsacos.

Extracting Data Pointers

The example under discussion uses hc::array<>to store the array of integers that are sorted. The original OpenCL kernel of course knows nothing of the hc::array<> data-type. Here’s the OpenCL kernel signature:

__kernel
void bitonicSort(__global uint * theArray, const uint stage, const uint passOfStage, const uint direction)

When calling this kernel, the first parameter (theArray) is an 8-byte pointer. Fortunately the hc syntax defines an API that allows us to retrieve this pointer on the host side so we can later pass it to the kernel in the expected position:

_inputAccPtr = _inputArray->;accelerator_pointer();

Our application is still responsible for ensuring that the data at this pointer is valid on the accelerator, before calling the kernel. In this case, the application copies from host data (allocated with malloc) to the inputArray.

The code also shows the use of hc’s accelerator memory interface to allocate and copy the data. This is an alternative to using hc::array<>, and can be select by setting p_useHcArray=false in the top of the source code. Here’s the relevant code snippet:

 // Alternative allocation technique using am_alloc

_inputAccPtr = hc::am_alloc(sizeBytes, _acc, 0);

hc::am_copy(_inputAccPtr, _input, sizeBytes);

We do not recommended usinge hc::array_view<> with the direct hsaco code launching techniques we are discussing here. hc::array_view<> is designed to automatically synchronize the data before and after parallel_for_each blocks are launched. Direct launching with HSA runtime APIs will not automatically synchronize hc::array_view<>.

Finally, HCC provides accessors that allow easy retrieval of the the HSA “regions” associated with an accelerator. The HSA runtime API uses regions to specify where memory on an agent is located - for example coarse-grain device memory or fine-grain system memory. When enumerating accelerators, HCC scans the supported regions for each underlying HSA agent and provides the following accessors:

void* get_hsa_am_region();// Accelerator-memory region. On discrete GPUs its the device memory ; on APUs its shared host memory

void* get_hsa_am_system_region() // Pinned or registered host memory accessible to this accelerator

void* get_hsa_kernarg_region() // Memory for kernel arguments.

This example uses get_hsa_kernarg_region() to allocate memory for the kernel arguments passed to the BitonicSort kernel. Kernarg memory is typically written by the host CPU and read by the accelerator executing the kernel. The example defines a host-side structure to describe the layout of the arguments expected by the kernel, and then typecasts the pointer returned by the kernarg pointer.

/*

* This is the host-side representation of the kernel arguments expected by the BitonicSort kernel.

* The format and alignment for this structure must exactly match the kernel signature defined in the kernel

*/

struct BitonicSort_args_t {

uint32_t * theArray;

uint32_t stage;

uint32_t passOfStage;

uint32_t direction;

} ;

/*

* Allocate the kernel argument buffer from the correct region.

*/

BitonicSort_args_t * args = NULL;

hsa_region_t kernarg_region = *(static_cast<hsa_region_t*> (_acc.get_hsa_kernarg_region()));

hsa_status = hsa_memory_allocate(kernarg_region, sizeof(args), (void**)(&args));

aql.kernarg_address = args;

assert(HSA_STATUS_SUCCESS == hsa_status);

/*

* Write the args directly into the kernargs buffer:

*/

 args->theArray = _inputAccPtr;

args->stage = 0;

args->passOfStage = 0;

args->direction = _sortIncreasing;

Summary

We learned how to use offline compilation to convert an OpenCL kernel into a standard hsaco file and then employed the HSA Runtime API to launch that kernel from an HCC program. Harmony! In the future we’ll look at how to optimize the HSA Runtime calls, and also how to use other tools to create hsaco files (such as the AMDGCN assembler). Stay tuned.
Reference:
GitHub Code for this example [https://github.com/RadeonOpenCompute/HCC-Example-Application/tree/master/BitonicSort-CL-from-HCC]
https://en.wikipedia.org/wiki/Bitonic_sorter

 _images/microcode_vop3a.png
VOP3A

31

1

T T T 1
1 0 1 0 O

clmp

I | |
OP_SEL,

NEG | OMOD)

]
SRC1g

63

32

_images/microcode_vop2.png
T 1
SRCOq

T
VSRC1g

VOP2 0 OPsg

_images/microcode_vop3p.png
VOP3P

31 0
| | | | | I | I
1 01 0 0 111 OP; omp] o OP SEL20 NEG_HI VDSTs
| OP ISEL | | | | |
EG ’ A, | SRC2, SRC1q SRCOq

_images/microcode_vop3b.png
VOP3B

31

1

T T T 1
1 0 1 0 0

clmp

NEG | OMOD)

63

_images/modelCompilerWorkflow.png
Pre-Trained Models MIVisionx Model MIVisionX RunTime
Compiler & Optimizer

_images/microcode_vopc.png
B
VSRC1g

_images/simple_platform.png
Topology sample

(von-cacheatie)
o coherent

2

_images/perf-data.png
GPU Run Time (us/iteration)
o w a0 o sme e o w0 o w0 200

Baxeine

“optAvoidHostsyc

~optPimnedtiost

_images/winmlFrameWorks.png
Caffe c

Frameworks

‘o

hainer OPyTorch
B Microsoft

CNTK 44 PaddlePaddle

&) ONNX

‘a" WinML

é’ Caffe2

o
g—,-_ MIVisionX RunTime

_images/singleinstance.png
ROCm 3.0

Installs into

{

/opt/rocm

MiOpen HIP

HCC Thunk

ROCm Math libs

KFD

_images/microcode_vop1.png
VOP1

_images/microcode_sdwa.png
W A —] W —_8RCO—
SDWA ABS NRI>ECG1EX SRC1_SEL SO BS NREEX SRCO SEL OMOD clmp DST U DST SEL

_images/microcode_smem.png
31 0

| |

]
OFFSET21

SMEM | |SOI|:FS|ET7| %////////////%] I R L R

63 32

_images/microcode_sdwab.png
7 — SRC1—] SRCO—
SDWAB S1 ABS NF\I>EG1EX SRC1_SEL SO __ABS NREEX SRCO SEL SD

_images/microcode_sop2.png
T
SSRCOg

I | | | | |
SOP2 1 0 OP; SDST; SSRC1g

_images/microcode_sop1.png
T T T T
SDST, OPs SSRCOg

SOP1 10111110‘1

_images/microcode_sopk.png
I I
SIMM’16

_images/microcode_sopc.png
T 1
SSRC1g

T
SSRCOg

_images/microcode_vintrp.png
31
| | I I | ‘ |

|
VINTRP |1 1 0 0 1 0 ATIR

T T]
CHAN, VSRCs (1,J)

1 T T] |]
‘VDSTS (accum) ‘ OP, ‘ ATTRg

_images/microcode_sopp.png
| S|IMM16 |

_images/microcode_mubuf.png
MUBUF

31 0
I I I I I I I I I I I I I I I I I I I I
1171 0 0 0 | OP; SLC GLC | OFFSET 1
| I | | | / |] I I | I | | I I | I
SOFFSETs (sgpr) ITFE / //// | SRSRés (T#sgpr) VDATAg (vgpr: src or dst) I VADDRg (vgpr)

63

32

_images/microcode_mimg.png
| T T 1
AT S T T T T 7
0 0 |SLC OP; LWE| TFE|A16 |DA |GLClunrm III)MA|\SK| %

MIMG . . 5 | SSAMPs(S#sgpr)| SRSRCs (T#sgpr)| VDATA, (vgpr: src or dst) - i
s (Vgpr: src o dst VADDR (vgpr)

32

_images/2.1.png
address
0

2048
4096
6144
8192
10240
12288

1024

_images/2.11.png
Compute Applications

Third-Party Tools

OpenCL Runtime

Multicore AMD GPUs
CPUs

Figure2.1 AMD APP SDK Software Ecosystem

_static/ROCm_newlogo.jpg
COMPUTATIONAL
SCIENCE STARTS
HERE

Be ready for the
next generation of
Supercompu

with resource
initiatives for
educators and
researchers.

aMpl
INSTINCT
AMDDU

ROCm

_static/minus.png

_static/file.png

_static/plus.png

_images/d.1.png
Figure D.1 shows a simplified block diagram of a generalized AMD GPU compute
device.

AlWUs OOO0-e--

Figure D.1 Generalized AMD GPU Compute Device Structure

_images/atmi.png
CPU

atmi_task_launch

. mainApp (exe/bin)
AbD X High-level e
mainApp. Compiler i gpu_kernels i
________ ‘ GPU

atmi_module_register

4

gpu_kernels.cl gpu_kernels.hsaco gpu_kernels.brig

cloc.sh -b T

_images/fig_10_1.png
(WorkG roup

Private
Memory

Work-
ltem

Private
Memory

Work-
ltem

(WorkGroup
Private Private
Memory Memory
Work- Work-
ltem ltem

Frame Buffer

Host Memory

LDS

Global/Constant Memory

_images/d.2.png
Ultra-Threaded Dispatch Processor (UTDP)

General-Purpose Registers

Figure D.2 Simplified Block Diagram of an Evergreen-Family GPU'

_images/fig_1_1_vega.png
Host CPU

Host Application
Compute Driver

\ 4

<MMIO ACCESS

System Memory

Commands

Instructions
and Constants

\4

v

Inputs
and Outputs

v

Device Memory *

Commands

DMAs

Instructions
and Constants

|

\4

Inputs
and Outputs

\4

Return
Buffers

\4

Private
Data

v

\4

Memory Controller

Vega Series Processor

Command Processors

L2 R/W Cache

L1 R/W Cache

\

y

—> Ultra-Threaded Dispatch Processor
P
¢ \ 4 \ 4 \ 4 \ 4 \ 4
< Compute Unit
—» | VGPR vGPR vGPR vGPR sGPR ¢
Local Data ALU < — Program
Share vALU vALU vALU vALU S Counter
o < Compute Unit
© P | VGPR vGPR vGPR vGPR sGPR 4 =
rogram
Cg Log?]'a?:ta‘ VALU VALU vALU vALU SALU <€— Counter
a : DPP Array ! -
'© < Compute Unit
o +—»| | VGPR vGPR vGPR vGPR sGPR
0 Local Data AL ALU < — Program
Share vALU vALU vALU vALU S Counter
< Compute Unit
p | VGPR vGPR vGPR vGPR sGPR 4 =
rogram
Log?]'a?jta‘ vALU vALU vALU vALU sALU | |<— Counter

Y

Instruction Cache

Constant Cache

A

y

*Discrete GPU — Physical Device Memory; APU — Region of system for GPU direct access

_images/fig_10_2.png
Compute Unit

‘ Private ‘ Private
Memor Memo
2 y Buffers and
Work- Work- Images
ltem ltem
(Per Texture
Compute- L1
‘ LDS ‘ Unit)
Color Buffer/Depth Buffer Texture
Write-Only Coherence Cache (Global) L2
Global Memory VRAM

_images/amdblack3.jpg
AMDA1

_images/amdblack2.jpg
AMDA1

_images/amdblack5.jpg
AMDA1

_images/amdblack4.jpg
AMDA1

_images/amdblack6.jpg
AMDA1

_images/ROCm_Core_Stack.png
Support on Metal

& =
w £ o s
e [l B =}
2L ElE2|5Y
o L :8 28 >
(@ Gl=]872<| 3
o a S E
o e
Language RT API (-
System RT API
Core Linux Driver
RHEL/CentOS SuSE Ubuntu

_images/TShoot1.png

_images/ROCm_Stack.png
(o)

Delivering An Open Platform For GPU Computing O

c W

3

_images/amdblack1.jpg
AMDA1

_images/amdblack.jpg
AMDA1

_images/More_advanced_topology.png

_images/MetaPackTable.png
Meta-packages
‘rocm-lang-runtime

Metapackages and Their Descr
Des:
rocm-language-runtime meta-package is intended to install ROCs, also known as

ROCm rustime

‘rocm-hip-runtime

rocm-hip-runtime is intended to install packages necessary to run an application
written in HIP for the AMD platform.

‘rocm-opencl-runtime

rocm-opencl-runtime installs packages required to run OpenCL based applications on
the AMD platform.

rocm-hip-runtime-devel meta-package contains packages to develop an application
on HIP or port it from CUDA.

rocm-opencl-sdl installs packages required to develop applications in OpenCL for
the AMD platform.

rocm-hip-libraries iastalls HIP libraries optimized for AMD platforms.

‘rocm-hip-sdk

rocm-hip-sdl installs packages necessary to develop/port applications using HIP and
Hbraries for AMD platforms.

_images/OpenVX_100px_June16_210_75.png
OpenVX.

_images/MultiIns.png
Single Installation
Packages

[Jopt/rocm
symlink created by
rocm-dev

/opt/rocm (1]

MIiOpen HIP

Hee | [Thunk

ROCm Math libs

Kernel Fusion Driver

(amdgpu)

ROCmv3.3

Installs into |:> /opt/rocm. 0

Versioned Packages
(Multiple Installation Packages)

/opt/rocm-3.4.0
Miopen33[| HIP3.3 Miopen34| | HIP3.4
Hced3 | [Thunk3.3 HCe34 | [Thunk3.a
ROCm Math libs3.3 | ROCm Math libs3.4

Kernel Fusion Driver

(amdepy)
s Ensure Kernel Fusion Driver (KFD) is compatible

with ROCm v3.3 and ROCm v3.4
o ROCmv3.4is for illustration purposes only

_images/ROCmProgMod.png
GPU support for ROCm program
PU Name

GFX9 GPUs AMD Instinet™ M2 Vega 10
AMD Radeon Instinet™ MIS0
AMD Radeon Instinct™ MIG | Vega20
AMD Radeon Pro™ VI
RDNA GPUs AMD Radeon Pro™ W6800 AMD RDNATY
CDNA GPUs AMD Instinct™ MI100 CDNA ™

_images/PackName.png
0Cm ke Package Noing
OubinPaciages Ao pacages

e o e ois o

Moo 442126205008 ot e e . M- 44236 s s

e ey

=
s g o s e
s ey

S
B -~ FEEEE |

ROCm Release Package Naming

_images/img5.png
Figure 1.5 is a conceptual diagram of the dataflow within the memory structure
in pre-GCN devices.

Private | [Private

Memory || Memory
Wo Wor
Item Item

(Buffers) (Images)

lexture
L1

fexture
L2

Color Buffer/Depth Buffer
Wiite-Only Coherence Cache
Global Memory

Figure 1.5 Memory Hierarchy Dataflow

_images/img4.png
AMD APP SDK

Compute Device

Work-Group Work-Group

Private Private Private Private
Memory Memory Memory Memory

Work- Work- Work- Work-
Item Item Item Item

Host Memory

Figure 1.4 High-Level Memory Configuration

_images/loom-2.jpg
LOOM
Astitch InReal-time

Sttchedoutput inReal-
Time g DirectGMA o

to4Kx 2K iﬁ

CpenVX.

AMDI1 | RADEON

_images/initial_state-768x387.png
GPRs Memory

KernArg

_images/microcode_ds.png
LDS, GDS

GDS

T
OFFSET1s

N
OFFSETOs

T]
DATAOQg

T
ADDRg

32

_images/microcode_dpp16.png
DPP RC|)W_|MA|SK BA'NK_'MA'SK e R e BC |DP|P_C|TRL|9 |

_images/microcode_flat.png
FLAT

SLC

GLC

SEG

LDS

32

_images/microcode_exp.png
EXP
VS RC3 VSRC2; VSRC1g

_images/img2.png
AMD APP SDK

Compute Device
Compute Unit n

Private Memory

compute Ut
Reg Files

Private Memory| Y

Reg Files)

IMAGE / CONSTANT / BUFFER DATA
CACHE ((2)

DMA

Compute Device
Vemory (vVRAM, [GLOBAL MEMORY] [CONSTANT MEMORY] | <——>-

Figure 1.2 Interrelationship of Memory Domains for Southern Islands
Devices

_images/img11.png
Kernel Parameters

Global Splitu
Global SplitU Map

Workgroup Map

GPU Performance
Bottlenecks

GPU Occupancy

Local Splitu
Vector Width
Workgroup

Prefetch LDS

Prefetch Global

Num Loads Coalesced
Read Vectors

Thread Tile

Loop Unroll

Instruction Throughput
LDS Latency

Global Mem Latency

Num Threads

LDS

Registers

fouednaog

_images/img3.png
Figure 1.3 illustrates the standard dataflow between host (CPU) and GPU.

“»woT
o -0
Fr>@wWoro

- =

—_— [S—

Figure 1.3 Dataflow between Host and GPU

m4 >»< _ 2

_images/fig_8_2.png
Address Calculation for a Linear Buffer

ADDRESS = const_base + sgpr_offset + buffer_offset

V# SGPR
(soffset)

“Offset” “Index”

Buffer_Offset= Enst_offset + vgpr_offset) + const_stride * [(vgpr_index + ThreadIDD

Instr. VGPR V# VGPR 0..63

Full equations:
Index = (inst idxen ? vgpr index: 0)+ (const add tid enable ? thread id[5:0]: 0)

Offset = (inst offen ? vgpr offset : 0) + inst offset

_images/fig_8_5.png
LDS_ADDR = LDSbase + LDS_offset + inst_offset + (TIDinWave * 4)
HW-Alloc MO0[15:0] Instr. 0..63 bytes-per-dword

Zero — no vgpr 4 bytes Zero

MEM_ADDR = Base + mem_offset + inst_offset + off vgpr + stride * (idx_vgpr + TIDinWave)

T# SGPR Instr. VGPR T# VGPR 0..63
(soffset)

_images/fig_8_3.png
Original Buffer

X0| Y0 |20 |W0|UO|VO[X1|Y1|Z1|W1|U1|V1|X2|Y2|Z2W2|U2|V2| ® @ @ x31y31z231w31u31v31
(-

K 3
"~ Stride = 24 bytes

Swizzled Buffer

const_index_stride =8
const_element_size = 4 bytes

index_msb =index / const_index_stride
index_Isb =index % const_index_stride
offset_msb = offset / const_element_size

Element Size =
4 bytes

// how many consecutive indices to group together

// the size of a single element, in bytes

offset_Isb = offset % const_element_size

Buffer_offset = (index_msb * const_stride + offset_msb * const_element_size) * const_index_stride +

index_lsb * const_element_size + offset_Isb

which simplifies to...

Buffer_offset = (index/8 * const_stride + (offset/4)*4) * 8 + index%8 * 4 + offset%4

Note that because we are dealing with dwords, offset%4 is always == Q.

— A N

Index_stride span #0

V15

000 X23Y16

_/

16
—

[eJe)e)

/)

If the const_element_size had been 8 :

N—

Index_stride span #0

An alternate way to visualize Swizzled Buffers

Index_stride span #1

X8|Y8 |oo0
-

Index_stride span #2

byte address: 4...Original Buffer

0.3 X0 | Yo |zo [woluo|vo|x1

Y1

32171 W1jU1|V1|X2|Y2|Z2

W2

64|U2|V2(X3|Y3|Z3 W3|U3

128 [NN
16

18§
2%

4

96 |X4|Y4|z4\W4lua V4-

V3

32
64
96

128
16

18
2%

Swizzled Buffer

0 (elem_size =4) 31
x0|x1[x2[x3 X7
volvi|y2|y3 v7
70|z1|22 |23 77|
wowiwzw3 eee w7
uo|u1|uz|u3 u7
vo|vi|v2|v3 V7

0

Swizzled Buffer
(elem size = 8)

31

Y2|X3

Y3

Y6|X7

Y7

W2|Z3

W3

W6\ Z7

W7

V3
V7

_images/frameworks.png
Frameworks Exchange Formats Compiler & Optimizer RunTime

Caffe g
i

Chainer |

O PyTorch @ O N N X 5? * Layer Fusion 5? (\
& . * Memory Optimization O\
O Caffe? ' = I =P * Quantization — 87

P\ * Tensor Fusion
NEF * Dynamic Batch Size Update 1

i PaddlePaddle -

f

Tensor

O
%
-
p4

_images/finalizer-executable-hsail-flow.png

_images/img1.png
_kernel foo(...) {
Wi, Wi, Wi, Wi,

H

Local Memory

Context
Queue™— Queue

Global/Constant Memory

Figure1.1 OpenCL Programming Model

_images/gfx9_valid_texture_formats.png
0 INVALID 0 Any
1 8 0 UNORM
1 8 1 SNORM
1 8 2 USCALED
1 8 3 SSCALED
1 8 4 UINT

1 8 5 SINT

1 8 9 SRGB

2 16 0 UNORM
2 16 1 SNORM
2 16 2 USCALED
2 16 3 SSCALED
2 16 4 UINT

2 16 5 SINT

2 16 7 FLOAT
3 8 8 0 UNORM
3 8 8 1 SNORM
3 8 8 2 USCALED
3 8 8 3 SSCALED
3 8 8 4 UINT

3 8 8 5 SINT

3 8 8 9 SRGB
4 32 4 UINT
4 32 5 SINT

4 32 7 FLOAT
5 16_16 0 UNORM
5 16_16 1 SNORM
5 16_16 2 USCALED
5 16_16 3 SSCALED
5 16_16 4 UINT

5 16_16 5 SINT

5 16_16 7 FLOAT
6 10 11 11 7 FLOAT
7 11_11 10 7 FLOAT
8 10_10_10 2 0 UNORM
8 10_10_10 2 1 SNORM
8 10_10_10 2 2 USCALED
8 10_10_10 2 3 SSCALED
8 10_10_10 2 4 UINT

8 10_10_10 2 5 SINT

9 2.10_10_10 0 UNORM
9 2.10_10_10 1 SNORM
9 2.10_10_10 2 USCALED
9 2.10_10_10 3 SSCALED
9 2.10_10_10 4 UINT
9 2.10_10_10 5 SINT
10 88838 0 UNORM
10 88838 1 SNORM
10 88838 2 USCALED
10 88838 3 SSCALED
10 88838 4 UINT
10 88838 5 SINT
10 88838 9 SRGB
11 3232 4 UINT
11 3232 5 SINT
11 3232 7 FLOAT
12 16_16_16_16 0 UNORM
12 16_16_16_16 1 SNORM
12 16_16_16_16 2 USCALED
12 16_16_16_16 3 SSCALED
12 16_16_16_16 4 UINT
12 16_16_16_16 5 SINT
12 16_16_16_16 7 FLOAT
13 32.32 32 4 UINT
13 32.32 32 5 SINT
13 32.32 32 7 FLOAT
14 32.32.32 32 4 UINT
14 32.32.32 32 5 SINT
14 32.32.32 32 7 FLOAT

16 565 0 UNORM
17 1555 0 UNORM
18 5551 0 UNORM
19 4.4 44 0 UNORM
20 8 24 0 UNORM
20 8 24 4 UINT
21 24 8 0 UNORM
21 24 8 4 UINT
22 X24 8 32 4 UINT
22 X24 8 32 7 FLOAT
24 ETC2_RGB 0 UNORM
24 ETC2_RGB 9 SRGB
25 ETC2_RGBA 0 UNORM
25 ETC2_RGBA 9 SRGB
26 ETC2_R 0 UNORM
26 ETC2_R 1 SNORM
27 ETC2_RG 0 UNORM
27 ETC2_RG 1 SNORM
28 ETC2_RGBA1l 0 UNORM
28 ETC2_RGBA1l 9 SRGB
31 6E4 7 FLOAT
32 GB_GR 0 UNORM
32 GB_GR 1 SNORM
32 GB_GR 2 USCALED
32 GB_GR 3 SSCALED
32 GB_GR 4 UINT
32 GB_GR 9 SRGB
33 BG_RG 0 UNORM
33 BG_RG 1 SNORM
33 BG_RG 2 USCALED
33 BG_RG 3 SSCALED
33 BG_RG 4 UINT
33 BG_RG 9 SRGB
34 5999 7 FLOAT
35 BC1 0 UNORM
35 BC1 9 SRGB
36 BC2 0 UNORM
36 BC2 9 SRGB
37 BC3 0 UNORM
37 BC3 9 SRGB
38 BC4 0 UNORM
38 BC4 1 SNORM
39 BC5 0 UNORM
39 BC5 1 SNORM
40 BC6 (Unsigned Float) 0 UNORM
40 BC6 (Signed Float) 1 SNORM
41 BC7 0 UNORM
41 BC7 9 SRGB
45 FMASK 0 821
45 FMASK 1 841
45 FMASK 2 881
45 FMASK 3 822
45 FMASK 4 842
45 FMASK 5 84 4
45 FMASK 6 16_16_1
45 FMASK 7 18 8 2
45 FMASK 8 32 16 2
45 FMASK 9 3284
45 FMASK 10 3288
45 FMASK 11 64 16 4
45 FMASK 12 64 16 8
46 ASTC_2D_LDR 0 4x4
46 ASTC_2D_LDR 1 5x4

46 ASTC_2D_LDR 10 10x8
46 ASTC_2D_LDR 11 10x10
46 ASTC_2D_LDR 12 12x10
46 ASTC_2D_LDR 13 12x12
47 ASTC_2D_HDR 0 4x4
47 ASTC_2D_HDR 1 5x4
47 ASTC_2D_HDR 2 5x5
47 ASTC_2D_HDR 3 6x5
47 ASTC_2D_HDR 4 6x6
47 ASTC_2D_HDR 5 8x5
47 ASTC_2D_HDR 6 8x6
47 ASTC_2D_HDR 7 8x8
47 ASTC_2D_HDR 8 10x5
47 ASTC_2D_HDR 9 10x6
47 ASTC_2D_HDR 10 10x8
47 ASTC_2D_HDR 11 10x10
47 ASTC_2D_HDR 12 12x10
47 ASTC_2D_HDR 13 12x12
48 ASTC_2D_LDR_SRGB 0 4x4
48 ASTC_2D_LDR_SRGB 1 5x4
48 ASTC_2D_LDR_SRGB 2 5x5
48 ASTC_2D_LDR_SRGB 3 6x5
48 ASTC_2D_LDR_SRGB 4 6x6
48 ASTC_2D_LDR_SRGB 5 8x5
48 ASTC_2D_LDR_SRGB 6 8x6
48 ASTC_2D_LDR_SRGB 7 8x8
48 ASTC_2D_LDR_SRGB 8 10x5
48 ASTC_2D_LDR_SRGB 9 10x6
48 ASTC_2D_LDR_SRGB 10 10x8
48 ASTC_2D_LDR_SRGB 11 10x10
48 ASTC_2D_LDR_SRGB 12 12x10
48 ASTC_2D_LDR_SRGB 13 12x12
49 ASTC_3D_LDR 0 3x3x3
49 ASTC_3D_LDR 1 4x3x3
49 ASTC_3D_LDR 2 4x4x3
49 ASTC_3D_LDR 3 Ax4x4
49 ASTC_3D_LDR 4 5x4x4
49 ASTC_3D_LDR 5 5x5x4
49 ASTC_3D_LDR 6 5x5x5
49 ASTC_3D_LDR 7 6X5x5
49 ASTC_3D_LDR 8 6X6X5
49 ASTC_3D_LDR 9 6x6x6
50 ASTC_3D_HDR 0 3x3x3
50 ASTC_3D_HDR 1 4x3x3
50 ASTC_3D_HDR 2 4x4x3
50 ASTC_3D_HDR 3 Ax4x4
50 ASTC_3D_HDR 4 5x4x4
50 ASTC_3D_HDR 5 5x5x4
50 ASTC_3D_HDR 6 5x5x5
50 ASTC_3D_HDR 7 6X5x5
50 ASTC_3D_HDR 8 6X6X5
50 ASTC_3D_HDR 9 6x6x6
51 ASTC_3D_LDR_SRGB 0 3x3x3
51 ASTC_3D_LDR_SRGB 1 4x3x3
51 ASTC_3D_LDR_SRGB 2 4x4x3
51 ASTC_3D_LDR_SRGB 3 Ax4x4
51 ASTC_3D_LDR_SRGB 4 5x4x4
51 ASTC_3D_LDR_SRGB 5 5x5x4
51 ASTC_3D_LDR_SRGB 6 5x5x5
51 ASTC_3D_LDR_SRGB 7 6X5x5
51 ASTC_3D_LDR_SRGB 8 6X6X5
51 ASTC_3D_LDR_SRGB 9 6x6x6
57 4 4 0 UNORM

_images/fig_2_1_vega.png
CrossBar

v v

Compute Unit Compute Unit

GDS (64KB) — Shared by all Compute Units
A I |
6

SIMD 0 6 SIMD 0 SIMD 3

SGPR (XX SGPR

800 o000 800 o000

X il X -
32 | 32
15 15 ‘ 15 15
0 0 (0 0

SALU SALU

_images/fig_1_2.png
Input Data
(System Memory)

Output Data
CS » (System or Local
Memory)

Input Data
(Local Memory)

_images/fig_8_1.png
ADDR = Base + DbaseOffset + Inst offset + Voffset + Stride * (Vindex + TID)
V# SGPR Instr VGPR V# VGPR 0..63

Voffset is ignored when instruction bit “OFFEN” == 0
Vindex is ignored when instructino bit “IDXEN” == 0
TID is a constant value (0..63) unique to each thread in the wave. It is ignored when resource bit ADD _TID ENABLE ==

_images/fig_3_1_fork_join.png
(mov64 sO, exec)
|

(mov s2,Ccsp)

cb @

(join s2)

(mov64 ;xec , sO)

FORK

JOIN

Every Fork/Join block requires three
scalar GPR’s. Two SGPR’s are
needed to store the exec mask prior
to entering the block, and one SGPR
is needed to store the (3-bit) stack
pointer.

nav.xhtml

 Table of Contents

 		
 Welcome to AMD ROCm™ Platform

_images/AssoPack.png
Vobden el |
it roomne s oot
Pl ey
L :».-u--— rcchdevel hipfort devel rocalution-devel
oo o
Pl Py
e o
R oo o T [o
T T
oty e
ompmtins [[ip st

across the meta pckages.

Fkinrodovh [o e [o | ot Jomgr] et aciages snd ssocisted

packages arerepresenced n same
coor.

Associated Packages

_images/AMD1.png
AMDD1

_images/MetaPack.png
rocm-hip-sdk

ROCm Software
Development Kits

rocm-hip-libraries rocm-opencl-sdk

I rocm-hip-runtime-devel

rocm-hip-runtime

rocm-opencl-runtime

rocm-language-runtime

Kernel GPU Driver

SLES / OpenSUSE UBUNTU / DEBIAN

ROCm HIP Programmi
ROCm OPENCL Programming Model

ROCm-llvm package
ROCm-Components
ROCm Component Categories

_images/MXNet_image1.png
Portable Efficient Scalable

l baseline [l mxnet GPUs

Machines

Memory (GB)

Hours
O 4O N W D

O a N W N

Alexnet Inception VGG 1 2 4

_images/4.6.png
Figure 4.6 CodeXL Performance Counter

_images/4.5.png
[Aopicaton e | Kerl Occpncy (EsEnred 8

Number of waves ‘Number of waves Number of waves Number of waves 3

limited by Work- limited by VGPRs. limited by SGPRs limited by LDS

. group size PR g P

E“ e & &

i 2 2 2w

D § g g

2. 2. 2. 2.

i : ;

5, e < 5«

3 £ £ £

€ 3 3]

3. 2. 2, Z,
T Cummm| e
Number of VGPRS Number of SGPR LDS Size

Device Info

Device name.

Number of compute units

Max number of waves per compute unit

Max number of work-groups per compute unit

Figure 4.5 CodeXL Kernel Occupancy

]

_images/4.8.png
JEp—
vy

o
) e e -
ot s e e
[l ey
St

e et
[Erema—"
[Epee———
[EL————

) o e v s

Orent bt ot e

um’o o w3 133 4

Figure 4.8 Summary of OpenCL Options in CodeXL

_images/4.7.png
_kernel _acsribute_((reqd_sork_group_stae(s, 4, 4)) vold
T _gloel it - vy,

_cnst ol vt * sortdhrsy,

Tt s ot Fie)

stgrd 14 - e gloal (0
o e i th el for i thesd 1
it et srtebery (44
7718 e lemrt 9 e found does st L btueen then, hen uthin Le 1 o n his hend 1
((leert > finde) || (leent.y ¢ i)
«
1+ b, § the elmen dos 1 betven the Lo and e bounds of this Sren's s
e et aron o he S4B forther 0, thi Semch e
/
7 Th s spce o his hrend s mrked I the a5 et the total seneh suce fo th et s/

ot 8]x - 16y
oS e 15

Figure 4.7 Highlighting Keywords in CodeXL

_images/6.1.png
23.46 3.22 +1.92 +49.58 +8.50
86.11 24.87 13.95 +4.15 +259.12 +34.30
0 180.73 51.58 N/A
5] 381.77 129.58 N/A

Figure 6.1 GPU Processing with and without SVM Comparison

_images/4.9.png
e (16583) 31
o 10, dna 3

oy i, int

iy zarcon(innity)

Ry T———

e
G sroncon 1 postion o theesd it b i) o
et [ty prar i

g
1+ tac Ohendweies 4 1low pransgnd
pranssiged
e thers e,
el biteral 6,
ol seass
72 s Lo rns o e
i T
/- eotatne g s
e T

7+ Losd vales o blecks

Figure 4.9 Viewing IL and ISA Compilation Results in CodeXL

_images/6.2.png
Performance comparison v/s 1.2

1400
1200
1000
Kernel Time 800 |
(Millisecs) 600
400 = OpenCL1.2
10((” —— L = OpenCL2.0
110 1000/ 2000/ 1 | 10 | 100 | 1000 2000
100K | 100K | 100K | 100K | 100K | 10M | 10M | 10M | 10M | 10M
Keys & Samples

Figure 6.2 Binary Search with and without Device-side Enqueue
Comparison

_images/4.2.png
=

[P———— - Rt Do (oo
3 awoiee tomcy s

[om0 L L QS doan
10 cmmdubl SNBSS M UL S [T

o o s s

o ey S o) s

o ey S O s

rpp— S o s

s ety ML ORI, s

6 cmsotee by s

10 commdmpens st 0 0 QS gen mm
16 commdubde SIS QAL SMOEO0E LSS [T

e s = s

Figure 4.2 CodeXL API Trace

_images/4.4.png
Figure 44 CodeXL Summary Page

_images/4.3.png
T T T
s miw sem

T
e mon sk

Figure4.3 CodeXL Timeline Visualization

_images/3.1.png
Memory Channel

((Acdress | 258) %

cu cu
16po 16po
Los Los

Compioto]
Paih
Atomics

FastPain

Memory Channel

Chamel
((Adress /258) % n)

Complete]

Memory Ghannel

cu cu cu
16po 16po 16 pe
Los s Los

Paih
Atomics

FastPain

Memory Channel

Chamel Channel
(Addross /256) % n)

((Acdress / 258) %

_images/3.12.png
AMD APP SDK

Programming
Layer
Command
Queues

For CPU queue For CPU queue

Device
Command
Queue

Scheduler

CPU Core 1 § CPU Core 2

Figure 3.1 Runtime processing structure

_images/3.11.png
Physic

Logic

nf,//‘; »/) /> Z
Lt
3D ‘D/w

_images/3.3.png
o
0.0 0.0
Matrix in row
1.0 major order 10
2,0 20

o

| 2

Linear format (each group

is a power of two apart)

10

After transform

0 o ...n...
‘ .

20

K+2"

I K2t

Offset format (each group is not a
power of two apart)

_images/3.2.png
Bandwidth (MB/s)

100000

80000 |

60000 |

40000

20000 |

00000000000-00000—0—0—0—0—0—0—0—0——0

0e+00 1e+07 26407 3e+07

_images/3.5.png
Bandwidth (MB/s)

95000 +

90000 1

85000

80000 -

amd
amd-NOCoal

°

amd-Split o

1e+07

T
2e+07

Size (Bytes)

3e+07

_images/3.4.png
Bandwidth (MB/s)

130000 -

120000

110000 4

100000 -

90000

1e+07

T
2e+07

Size (Bytes)

T
3e+07

_images/3.7.png
—_kernel void loopKernellA(int loopCount,
global float *output,
global const float * input)

uint gid = get_global_id(0);

for (int i=0; i<loopCount; i+=1) {
float Velm0 = (input[i] * 6.0 + 17.0);
output [gid+i] = Velm0;

_images/3.6.png
96000 7

95000 -

94000 +

93000 -

92000 -

Offset

_images/4.10.png
[cmamarm | w0

St s s b+

R it ¢ e

= e G e 9035
sonpi e

e e

e

e e 1M D
et L st b ey g

=
T P ———

o P e et

Py) s e
omagan v " [roeteied
[—

et e drtos

r——

=

iy

X

P N S R SR P

et e ttepteet
e e e S,
=

T e e s s e
e o St v e Y
L I L T i e e e

Figure 4.10 CodeXL Statistics Tab

_images/2.21.png
GPU DEVICE

CUs
Compute Unit 0
’ 0
. 1
Processing Elements [~ 2

Work-ltems

Work-Groups

ND-RANGE

Figure 2.2 Simplified Mapping of OpenCL onto AMD Accelerated Parallel
Processing Technology

_images/2.2.png
G
"] Work-Group size k by k

»
00 00
Matix in row
10 maior order w0 Afer ransform
20 20
1)
2 I > |
Linear format (each growp
is @ power of two apar)
' |

K2 I 2K 2 |

Offset format (each group is not a
power of two apart)

_images/2.31.png
Range

WORK-GROUP
\
>
£
i\ 8
i LA
N L
5 Dimension X
i\
i\
Al
N
N
> WORK-ITEM
ElN
a N
i
N

Wavefront
(HW-Specific Size)
\—Dimension X

Figure 2.3 Work-Item Grouping Into Work-Groups and Wavefronts

_images/2.3.png
Physical

_images/2.41.png
16 Processing Elements (ALUs)

16 Processing Elements (ALUS)| e
16 Processing Elements (ALUs)

16 Processing Elements (ALUs)

1 Scalar Unn +

Figure 2.4 Generalized AMD GPU Compute Device Structure for GCN
Devices

_images/2.4.png
TEXTURE

UNIT

_images/2.51.png
Asynchronous Compute Engine

/ Command Processor

Asynchronous Compute Engine
/ Command Processor

1 Scalar Unit | 4 Vector Unit [L1 [LDS

LDS | L1 | [4 Vector Unit | 1 Scalar Unit

1 Scalar Unit_| 4 vector Unit_| L1 [LDS

LDS | L1 | |4 Vector Unit | 1 Scalar Unit

o ||
5| 2| | scarUnit [4 vector unt_[LL[LDS LDS] L1 | (4 vestorunic_|_L5calarni | |51
| S| |[CZ5calarUnit] 4 vector unit_[11 [LDS LDS | 11 | [4 vector Unit_| 25calrtinit | S|
¥ 1 5calar Unit | 4 vectorunit [L1 [LDS| | 8| |[LDS]L1] [4vectorunit | 1Scalar Unit ®
o| | [(Z5cabarUnit 4 vectorunt [L1[1DS| | € | [LDSJLL] [4 vectorunic | iscarnit | [
G| 2| |[scolor Unt 4 veaorune [LL[1DS] | £ | [[LDS]LL] [avectorun: | Lscaortnic | |55
5| S} |[scslarUnit Ja vectorun [LLTLDS] | & | [LDS]LL] [4 vectorun | Lscalartni | |3 8
i 1 Scalar Unit | 4 Vector Unit | L1 [LDS | | € | |[LDS]LL] 4 Vector unit | 15calarUnit 2
| | |[5calar Unit | a vectorumt [11[LDS] | & | |[LDS]LL] [avectoruni | 1scalartnit | [|lg,
5| 2| |scolor Unt 4 veaorune [LL[10S] | @ | [[LDS]LL] [avectorunm: | Lscaortoic | |55
5| 8| [(xscalar Unit |4 vector unit [L1[LDS | % LDS | 11 | (4 vector Unit | 25calartinit | S5
7 4 Scalar Unit | a vector unt [L1 [LDS] | B | |[LDSJLL] [a vector unt | 1 Sealar Unit D
@ 1 Scalar Unit |4 vectorunit [L1[LDS| | & LDS [L1 | [4 vector unit [1 Scalar unit | [_|[o,
5| 2| |scolor Unit 4 veworune [LL[LDS] [0S | 11] [4 vector unic | Lsealortnit | | [©)
Qﬁ 1 Scalar Unit | 4 Vector Unit_| L1 [LDS | LDS | L1] [4 Vector Unit_|_15calar Unit §§

Level 2 cache

GDDR5 Memory System

Figure 2.5 AMD Radeon™ HD 79XX Device Partial Block Diagram

_images/2.5.png
VECTOR

ALU

VECTOR
ALU

VECTOR
ALU

VECTOR
ALU

TEXTURE
UNIT

_images/2.7.png
Wo

2w
c
[e]
S
=
(0]
5w
wa

AMD APP SDK

1

@ 0T D
STALL|

STALL

M XXX
STALL
STALL
0 20 40 60 80

@ - exccuting () = ready (not executing) (XXX) = stalled

Figure 2.7 Compute Unit Stall Due to Data Dependency

_images/2.6.png
AMD APP SDK

L
o QN SO0
STALL READY
L w
c
o READ! STALL
=
“—
=
© W2
; READ! STALL
w3
READ! STALL
0 20 40 60 80

executing D = ready (not executing) m = stalled

Figure 2.6 Simplified Execution Of Wavefront On A Single Compute Unit

